aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorRoman Zippel <zippel@linux-m68k.org>2006-10-01 02:28:25 -0400
committerLinus Torvalds <torvalds@g5.osdl.org>2006-10-01 03:39:26 -0400
commit3d3675cc3d04d7fd4bb11e8c1ea79e5ade4f5e44 (patch)
tree7beeef2896cb92e06b0a2ee8fa62b17f1732b72b
parentdc6a43e46f1b6de22701f97bec022e97088cfa90 (diff)
[PATCH] ntp: prescale time_offset
This converts time_offset into a scaled per tick value. This avoids now completely the crude compensation in second_overflow(). Signed-off-by: Roman Zippel <zippel@linux-m68k.org> Cc: john stultz <johnstul@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-rw-r--r--include/linux/timex.h2
-rw-r--r--kernel/time/ntp.c64
2 files changed, 17 insertions, 49 deletions
diff --git a/include/linux/timex.h b/include/linux/timex.h
index b589c8218bb9..1cde6f6a2712 100644
--- a/include/linux/timex.h
+++ b/include/linux/timex.h
@@ -89,7 +89,7 @@
89 * FINENSEC is 1 ns in SHIFT_UPDATE units of the time_phase variable. 89 * FINENSEC is 1 ns in SHIFT_UPDATE units of the time_phase variable.
90 */ 90 */
91#define SHIFT_SCALE 22 /* phase scale (shift) */ 91#define SHIFT_SCALE 22 /* phase scale (shift) */
92#define SHIFT_UPDATE (SHIFT_KG + MAXTC) /* time offset scale (shift) */ 92#define SHIFT_UPDATE (SHIFT_HZ + 1) /* time offset scale (shift) */
93#define SHIFT_USEC 16 /* frequency offset scale (shift) */ 93#define SHIFT_USEC 16 /* frequency offset scale (shift) */
94#define FINENSEC (1L << (SHIFT_SCALE - 10)) /* ~1 ns in phase units */ 94#define FINENSEC (1L << (SHIFT_SCALE - 10)) /* ~1 ns in phase units */
95 95
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c
index ab21eb06e09b..238ce47ef09d 100644
--- a/kernel/time/ntp.c
+++ b/kernel/time/ntp.c
@@ -31,7 +31,7 @@ int tickadj = 500/HZ ? : 1; /* microsecs */
31/* TIME_ERROR prevents overwriting the CMOS clock */ 31/* TIME_ERROR prevents overwriting the CMOS clock */
32int time_state = TIME_OK; /* clock synchronization status */ 32int time_state = TIME_OK; /* clock synchronization status */
33int time_status = STA_UNSYNC; /* clock status bits */ 33int time_status = STA_UNSYNC; /* clock status bits */
34long time_offset; /* time adjustment (us) */ 34long time_offset; /* time adjustment (ns) */
35long time_constant = 2; /* pll time constant */ 35long time_constant = 2; /* pll time constant */
36long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */ 36long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
37long time_precision = 1; /* clock precision (us) */ 37long time_precision = 1; /* clock precision (us) */
@@ -57,6 +57,7 @@ void ntp_clear(void)
57 ntp_update_frequency(); 57 ntp_update_frequency();
58 58
59 tick_length = tick_length_base; 59 tick_length = tick_length_base;
60 time_offset = 0;
60} 61}
61 62
62#define CLOCK_TICK_OVERFLOW (LATCH * HZ - CLOCK_TICK_RATE) 63#define CLOCK_TICK_OVERFLOW (LATCH * HZ - CLOCK_TICK_RATE)
@@ -83,7 +84,7 @@ void ntp_update_frequency(void)
83 */ 84 */
84void second_overflow(void) 85void second_overflow(void)
85{ 86{
86 long ltemp, time_adj; 87 long time_adj;
87 88
88 /* Bump the maxerror field */ 89 /* Bump the maxerror field */
89 time_maxerror += time_tolerance >> SHIFT_USEC; 90 time_maxerror += time_tolerance >> SHIFT_USEC;
@@ -151,42 +152,14 @@ void second_overflow(void)
151 * adjustment for each second is clamped so as to spread the adjustment 152 * adjustment for each second is clamped so as to spread the adjustment
152 * over not more than the number of seconds between updates. 153 * over not more than the number of seconds between updates.
153 */ 154 */
154 ltemp = time_offset;
155 if (!(time_status & STA_FLL))
156 ltemp = shift_right(ltemp, SHIFT_KG + time_constant);
157 ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE);
158 ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE);
159 time_offset -= ltemp;
160 time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
161
162 /*
163 * Compute the frequency estimate and additional phase adjustment due
164 * to frequency error for the next second.
165 */
166
167#if HZ == 100
168 /*
169 * Compensate for (HZ==100) != (1 << SHIFT_HZ). Add 25% and 3.125% to
170 * get 128.125; => only 0.125% error (p. 14)
171 */
172 time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5);
173#endif
174#if HZ == 250
175 /*
176 * Compensate for (HZ==250) != (1 << SHIFT_HZ). Add 1.5625% and
177 * 0.78125% to get 255.85938; => only 0.05% error (p. 14)
178 */
179 time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
180#endif
181#if HZ == 1000
182 /*
183 * Compensate for (HZ==1000) != (1 << SHIFT_HZ). Add 1.5625% and
184 * 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
185 */
186 time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
187#endif
188 tick_length = tick_length_base; 155 tick_length = tick_length_base;
189 tick_length += (s64)time_adj << (TICK_LENGTH_SHIFT - (SHIFT_SCALE - 10)); 156 time_adj = time_offset;
157 if (!(time_status & STA_FLL))
158 time_adj = shift_right(time_adj, SHIFT_KG + time_constant);
159 time_adj = min(time_adj, -((MAXPHASE / HZ) << SHIFT_UPDATE) / MINSEC);
160 time_adj = max(time_adj, ((MAXPHASE / HZ) << SHIFT_UPDATE) / MINSEC);
161 time_offset -= time_adj;
162 tick_length += (s64)time_adj << (TICK_LENGTH_SHIFT - SHIFT_UPDATE);
190} 163}
191 164
192/* 165/*
@@ -347,12 +320,8 @@ int do_adjtimex(struct timex *txc)
347 * Scale the phase adjustment and 320 * Scale the phase adjustment and
348 * clamp to the operating range. 321 * clamp to the operating range.
349 */ 322 */
350 if (ltemp > MAXPHASE) 323 time_offset = min(ltemp, MAXPHASE);
351 time_offset = MAXPHASE << SHIFT_UPDATE; 324 time_offset = max(time_offset, -MAXPHASE);
352 else if (ltemp < -MAXPHASE)
353 time_offset = -(MAXPHASE << SHIFT_UPDATE);
354 else
355 time_offset = ltemp << SHIFT_UPDATE;
356 325
357 /* 326 /*
358 * Select whether the frequency is to be controlled 327 * Select whether the frequency is to be controlled
@@ -366,8 +335,7 @@ int do_adjtimex(struct timex *txc)
366 time_reftime = xtime.tv_sec; 335 time_reftime = xtime.tv_sec;
367 if (time_status & STA_FLL) { 336 if (time_status & STA_FLL) {
368 if (mtemp >= MINSEC) { 337 if (mtemp >= MINSEC) {
369 ltemp = (time_offset / mtemp) << (SHIFT_USEC - 338 ltemp = ((time_offset << 12) / mtemp) << (SHIFT_USEC - 12);
370 SHIFT_UPDATE);
371 time_freq += shift_right(ltemp, SHIFT_KH); 339 time_freq += shift_right(ltemp, SHIFT_KH);
372 } else /* calibration interval too short (p. 12) */ 340 } else /* calibration interval too short (p. 12) */
373 result = TIME_ERROR; 341 result = TIME_ERROR;
@@ -382,6 +350,7 @@ int do_adjtimex(struct timex *txc)
382 } 350 }
383 time_freq = min(time_freq, time_tolerance); 351 time_freq = min(time_freq, time_tolerance);
384 time_freq = max(time_freq, -time_tolerance); 352 time_freq = max(time_freq, -time_tolerance);
353 time_offset = (time_offset * NSEC_PER_USEC / HZ) << SHIFT_UPDATE;
385 } /* STA_PLL */ 354 } /* STA_PLL */
386 } /* txc->modes & ADJ_OFFSET */ 355 } /* txc->modes & ADJ_OFFSET */
387 if (txc->modes & ADJ_TICK) 356 if (txc->modes & ADJ_TICK)
@@ -395,9 +364,8 @@ leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0)
395 364
396 if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) 365 if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
397 txc->offset = save_adjust; 366 txc->offset = save_adjust;
398 else { 367 else
399 txc->offset = shift_right(time_offset, SHIFT_UPDATE); 368 txc->offset = shift_right(time_offset, SHIFT_UPDATE) * HZ / 1000;
400 }
401 txc->freq = time_freq; 369 txc->freq = time_freq;
402 txc->maxerror = time_maxerror; 370 txc->maxerror = time_maxerror;
403 txc->esterror = time_esterror; 371 txc->esterror = time_esterror;