diff options
| author | Andrea Bastoni <bastoni@cs.unc.edu> | 2010-05-28 10:51:01 -0400 |
|---|---|---|
| committer | Andrea Bastoni <bastoni@cs.unc.edu> | 2010-05-29 17:43:59 -0400 |
| commit | 7c1ff4c544dd650cceff3cd69a04bcba60856678 (patch) | |
| tree | 76d2dee2a96363f283b9440d46d1ed8be4fa3aff | |
| parent | 425a6b5043bcc2142804107c853f978ac2fe3040 (diff) | |
Add C-EDF Plugin2010.1
Improved C-EDF plugin. C-EDF now supports different cluster sizes (based
on L2 and L3 cache sharing) and supports dynamic changes of cluster size
(this requires reloading the plugin).
| -rw-r--r-- | include/litmus/sched_plugin.h | 3 | ||||
| -rw-r--r-- | litmus/Makefile | 1 | ||||
| -rw-r--r-- | litmus/litmus.c | 64 | ||||
| -rw-r--r-- | litmus/sched_cedf.c | 756 | ||||
| -rw-r--r-- | litmus/sched_plugin.c | 8 |
5 files changed, 832 insertions, 0 deletions
diff --git a/include/litmus/sched_plugin.h b/include/litmus/sched_plugin.h index 2d856d587041..9c1c9f28ba79 100644 --- a/include/litmus/sched_plugin.h +++ b/include/litmus/sched_plugin.h | |||
| @@ -133,6 +133,9 @@ struct sched_plugin { | |||
| 133 | 133 | ||
| 134 | extern struct sched_plugin *litmus; | 134 | extern struct sched_plugin *litmus; |
| 135 | 135 | ||
| 136 | /* cluster size: cache_index = 2 L2, cache_index = 3 L3 */ | ||
| 137 | extern int cluster_cache_index; | ||
| 138 | |||
| 136 | int register_sched_plugin(struct sched_plugin* plugin); | 139 | int register_sched_plugin(struct sched_plugin* plugin); |
| 137 | struct sched_plugin* find_sched_plugin(const char* name); | 140 | struct sched_plugin* find_sched_plugin(const char* name); |
| 138 | int print_sched_plugins(char* buf, int max); | 141 | int print_sched_plugins(char* buf, int max); |
diff --git a/litmus/Makefile b/litmus/Makefile index ff4eb8a7b6c4..0cc33e8bee51 100644 --- a/litmus/Makefile +++ b/litmus/Makefile | |||
| @@ -14,6 +14,7 @@ obj-y = sched_plugin.o litmus.o \ | |||
| 14 | ctrldev.o \ | 14 | ctrldev.o \ |
| 15 | sched_gsn_edf.o \ | 15 | sched_gsn_edf.o \ |
| 16 | sched_psn_edf.o \ | 16 | sched_psn_edf.o \ |
| 17 | sched_cedf.o \ | ||
| 17 | sched_pfair.o | 18 | sched_pfair.o |
| 18 | 19 | ||
| 19 | obj-$(CONFIG_FEATHER_TRACE) += ft_event.o ftdev.o | 20 | obj-$(CONFIG_FEATHER_TRACE) += ft_event.o ftdev.o |
diff --git a/litmus/litmus.c b/litmus/litmus.c index 3ef2df8ffb50..e43596a5104c 100644 --- a/litmus/litmus.c +++ b/litmus/litmus.c | |||
| @@ -566,6 +566,55 @@ static int proc_write_curr(struct file *file, | |||
| 566 | return len; | 566 | return len; |
| 567 | } | 567 | } |
| 568 | 568 | ||
| 569 | static int proc_read_cluster_size(char *page, char **start, | ||
| 570 | off_t off, int count, | ||
| 571 | int *eof, void *data) | ||
| 572 | { | ||
| 573 | int len; | ||
| 574 | if (cluster_cache_index == 2) | ||
| 575 | len = snprintf(page, PAGE_SIZE, "L2\n"); | ||
| 576 | else if (cluster_cache_index == 3) | ||
| 577 | len = snprintf(page, PAGE_SIZE, "L3\n"); | ||
| 578 | else /* (cluster_cache_index == 1) */ | ||
| 579 | len = snprintf(page, PAGE_SIZE, "L1\n"); | ||
| 580 | |||
| 581 | return len; | ||
| 582 | } | ||
| 583 | |||
| 584 | static int proc_write_cluster_size(struct file *file, | ||
| 585 | const char *buffer, | ||
| 586 | unsigned long count, | ||
| 587 | void *data) | ||
| 588 | { | ||
| 589 | int len; | ||
| 590 | /* L2, L3 */ | ||
| 591 | char cache_name[33]; | ||
| 592 | |||
| 593 | if(count > 32) | ||
| 594 | len = 32; | ||
| 595 | else | ||
| 596 | len = count; | ||
| 597 | |||
| 598 | if(copy_from_user(cache_name, buffer, len)) | ||
| 599 | return -EFAULT; | ||
| 600 | |||
| 601 | cache_name[len] = '\0'; | ||
| 602 | /* chomp name */ | ||
| 603 | if (len > 1 && cache_name[len - 1] == '\n') | ||
| 604 | cache_name[len - 1] = '\0'; | ||
| 605 | |||
| 606 | /* do a quick and dirty comparison to find the cluster size */ | ||
| 607 | if (!strcmp(cache_name, "L2")) | ||
| 608 | cluster_cache_index = 2; | ||
| 609 | else if (!strcmp(cache_name, "L3")) | ||
| 610 | cluster_cache_index = 3; | ||
| 611 | else if (!strcmp(cache_name, "L1")) | ||
| 612 | cluster_cache_index = 1; | ||
| 613 | else | ||
| 614 | printk(KERN_INFO "Cluster '%s' is unknown.\n", cache_name); | ||
| 615 | |||
| 616 | return len; | ||
| 617 | } | ||
| 569 | 618 | ||
| 570 | static int proc_read_release_master(char *page, char **start, | 619 | static int proc_read_release_master(char *page, char **start, |
| 571 | off_t off, int count, | 620 | off_t off, int count, |
| @@ -621,6 +670,7 @@ static struct proc_dir_entry *litmus_dir = NULL, | |||
| 621 | *curr_file = NULL, | 670 | *curr_file = NULL, |
| 622 | *stat_file = NULL, | 671 | *stat_file = NULL, |
| 623 | *plugs_file = NULL, | 672 | *plugs_file = NULL, |
| 673 | *clus_cache_idx_file = NULL, | ||
| 624 | *release_master_file = NULL; | 674 | *release_master_file = NULL; |
| 625 | 675 | ||
| 626 | static int __init init_litmus_proc(void) | 676 | static int __init init_litmus_proc(void) |
| @@ -651,6 +701,16 @@ static int __init init_litmus_proc(void) | |||
| 651 | release_master_file->read_proc = proc_read_release_master; | 701 | release_master_file->read_proc = proc_read_release_master; |
| 652 | release_master_file->write_proc = proc_write_release_master; | 702 | release_master_file->write_proc = proc_write_release_master; |
| 653 | 703 | ||
| 704 | clus_cache_idx_file = create_proc_entry("cluster_cache", | ||
| 705 | 0644, litmus_dir); | ||
| 706 | if (!clus_cache_idx_file) { | ||
| 707 | printk(KERN_ERR "Could not allocate cluster_cache " | ||
| 708 | "procfs entry.\n"); | ||
| 709 | return -ENOMEM; | ||
| 710 | } | ||
| 711 | clus_cache_idx_file->read_proc = proc_read_cluster_size; | ||
| 712 | clus_cache_idx_file->write_proc = proc_write_cluster_size; | ||
| 713 | |||
| 654 | stat_file = create_proc_read_entry("stats", 0444, litmus_dir, | 714 | stat_file = create_proc_read_entry("stats", 0444, litmus_dir, |
| 655 | proc_read_stats, NULL); | 715 | proc_read_stats, NULL); |
| 656 | 716 | ||
| @@ -668,6 +728,10 @@ static void exit_litmus_proc(void) | |||
| 668 | remove_proc_entry("stats", litmus_dir); | 728 | remove_proc_entry("stats", litmus_dir); |
| 669 | if (curr_file) | 729 | if (curr_file) |
| 670 | remove_proc_entry("active_plugin", litmus_dir); | 730 | remove_proc_entry("active_plugin", litmus_dir); |
| 731 | if (clus_cache_idx_file) | ||
| 732 | remove_proc_entry("cluster_cache", litmus_dir); | ||
| 733 | if (release_master_file) | ||
| 734 | remove_proc_entry("release_master", litmus_dir); | ||
| 671 | if (litmus_dir) | 735 | if (litmus_dir) |
| 672 | remove_proc_entry("litmus", NULL); | 736 | remove_proc_entry("litmus", NULL); |
| 673 | } | 737 | } |
diff --git a/litmus/sched_cedf.c b/litmus/sched_cedf.c new file mode 100644 index 000000000000..da44b451c9ad --- /dev/null +++ b/litmus/sched_cedf.c | |||
| @@ -0,0 +1,756 @@ | |||
| 1 | /* | ||
| 2 | * litmus/sched_cedf.c | ||
| 3 | * | ||
| 4 | * Implementation of the C-EDF scheduling algorithm. | ||
| 5 | * | ||
| 6 | * This implementation is based on G-EDF: | ||
| 7 | * - CPUs are clustered around L2 or L3 caches. | ||
| 8 | * - Clusters topology is automatically detected (this is arch dependent | ||
| 9 | * and is working only on x86 at the moment --- and only with modern | ||
| 10 | * cpus that exports cpuid4 information) | ||
| 11 | * - The plugins _does not_ attempt to put tasks in the right cluster i.e. | ||
| 12 | * the programmer needs to be aware of the topology to place tasks | ||
| 13 | * in the desired cluster | ||
| 14 | * - default clustering is around L2 cache (cache index = 2) | ||
| 15 | * supported clusters are: L1 (private cache: pedf), L2, L3 | ||
| 16 | * | ||
| 17 | * For details on functions, take a look at sched_gsn_edf.c | ||
| 18 | * | ||
| 19 | * This version uses the simple approach and serializes all scheduling | ||
| 20 | * decisions by the use of a queue lock. This is probably not the | ||
| 21 | * best way to do it, but it should suffice for now. | ||
| 22 | */ | ||
| 23 | |||
| 24 | #include <linux/spinlock.h> | ||
| 25 | #include <linux/percpu.h> | ||
| 26 | #include <linux/sched.h> | ||
| 27 | |||
| 28 | #include <litmus/litmus.h> | ||
| 29 | #include <litmus/jobs.h> | ||
| 30 | #include <litmus/sched_plugin.h> | ||
| 31 | #include <litmus/edf_common.h> | ||
| 32 | #include <litmus/sched_trace.h> | ||
| 33 | |||
| 34 | #include <litmus/bheap.h> | ||
| 35 | |||
| 36 | #include <linux/module.h> | ||
| 37 | |||
| 38 | /* forward declaration... a funny thing with C ;) */ | ||
| 39 | struct clusterdomain; | ||
| 40 | |||
| 41 | /* cpu_entry_t - maintain the linked and scheduled state | ||
| 42 | * | ||
| 43 | * A cpu also contains a pointer to the cedf_domain_t cluster | ||
| 44 | * that owns it (struct clusterdomain*) | ||
| 45 | */ | ||
| 46 | typedef struct { | ||
| 47 | int cpu; | ||
| 48 | struct clusterdomain* cluster; /* owning cluster */ | ||
| 49 | struct task_struct* linked; /* only RT tasks */ | ||
| 50 | struct task_struct* scheduled; /* only RT tasks */ | ||
| 51 | atomic_t will_schedule; /* prevent unneeded IPIs */ | ||
| 52 | struct bheap_node* hn; | ||
| 53 | } cpu_entry_t; | ||
| 54 | |||
| 55 | /* one cpu_entry_t per CPU */ | ||
| 56 | DEFINE_PER_CPU(cpu_entry_t, cedf_cpu_entries); | ||
| 57 | |||
| 58 | #define set_will_schedule() \ | ||
| 59 | (atomic_set(&__get_cpu_var(cedf_cpu_entries).will_schedule, 1)) | ||
| 60 | #define clear_will_schedule() \ | ||
| 61 | (atomic_set(&__get_cpu_var(cedf_cpu_entries).will_schedule, 0)) | ||
| 62 | #define test_will_schedule(cpu) \ | ||
| 63 | (atomic_read(&per_cpu(cedf_cpu_entries, cpu).will_schedule)) | ||
| 64 | |||
| 65 | /* | ||
| 66 | * In C-EDF there is a cedf domain _per_ cluster | ||
| 67 | * The number of clusters is dynamically determined accordingly to the | ||
| 68 | * total cpu number and the cluster size | ||
| 69 | */ | ||
| 70 | typedef struct clusterdomain { | ||
| 71 | /* rt_domain for this cluster */ | ||
| 72 | rt_domain_t domain; | ||
| 73 | /* cpus in this cluster */ | ||
| 74 | cpu_entry_t* *cpus; | ||
| 75 | /* map of this cluster cpus */ | ||
| 76 | cpumask_var_t cpu_map; | ||
| 77 | /* the cpus queue themselves according to priority in here */ | ||
| 78 | struct bheap_node *heap_node; | ||
| 79 | struct bheap cpu_heap; | ||
| 80 | /* lock for this cluster */ | ||
| 81 | #define lock domain.ready_lock | ||
| 82 | } cedf_domain_t; | ||
| 83 | |||
| 84 | /* a cedf_domain per cluster; allocation is done at init/activation time */ | ||
| 85 | cedf_domain_t *cedf; | ||
| 86 | |||
| 87 | #define remote_cluster(cpu) ((cedf_domain_t *) per_cpu(cedf_cpu_entries, cpu).cluster) | ||
| 88 | #define task_cpu_cluster(task) remote_cluster(get_partition(task)) | ||
| 89 | |||
| 90 | /* Uncomment WANT_ALL_SCHED_EVENTS if you want to see all scheduling | ||
| 91 | * decisions in the TRACE() log; uncomment VERBOSE_INIT for verbose | ||
| 92 | * information during the initialization of the plugin (e.g., topology) | ||
| 93 | #define WANT_ALL_SCHED_EVENTS | ||
| 94 | */ | ||
| 95 | #define VERBOSE_INIT | ||
| 96 | |||
| 97 | static int cpu_lower_prio(struct bheap_node *_a, struct bheap_node *_b) | ||
| 98 | { | ||
| 99 | cpu_entry_t *a, *b; | ||
| 100 | a = _a->value; | ||
| 101 | b = _b->value; | ||
| 102 | /* Note that a and b are inverted: we want the lowest-priority CPU at | ||
| 103 | * the top of the heap. | ||
| 104 | */ | ||
| 105 | return edf_higher_prio(b->linked, a->linked); | ||
| 106 | } | ||
| 107 | |||
| 108 | /* update_cpu_position - Move the cpu entry to the correct place to maintain | ||
| 109 | * order in the cpu queue. Caller must hold cedf lock. | ||
| 110 | */ | ||
| 111 | static void update_cpu_position(cpu_entry_t *entry) | ||
| 112 | { | ||
| 113 | cedf_domain_t *cluster = entry->cluster; | ||
| 114 | |||
| 115 | if (likely(bheap_node_in_heap(entry->hn))) | ||
| 116 | bheap_delete(cpu_lower_prio, | ||
| 117 | &cluster->cpu_heap, | ||
| 118 | entry->hn); | ||
| 119 | |||
| 120 | bheap_insert(cpu_lower_prio, &cluster->cpu_heap, entry->hn); | ||
| 121 | } | ||
| 122 | |||
| 123 | /* caller must hold cedf lock */ | ||
| 124 | static cpu_entry_t* lowest_prio_cpu(cedf_domain_t *cluster) | ||
| 125 | { | ||
| 126 | struct bheap_node* hn; | ||
| 127 | hn = bheap_peek(cpu_lower_prio, &cluster->cpu_heap); | ||
| 128 | return hn->value; | ||
| 129 | } | ||
| 130 | |||
| 131 | |||
| 132 | /* link_task_to_cpu - Update the link of a CPU. | ||
| 133 | * Handles the case where the to-be-linked task is already | ||
| 134 | * scheduled on a different CPU. | ||
| 135 | */ | ||
| 136 | static noinline void link_task_to_cpu(struct task_struct* linked, | ||
| 137 | cpu_entry_t *entry) | ||
| 138 | { | ||
| 139 | cpu_entry_t *sched; | ||
| 140 | struct task_struct* tmp; | ||
| 141 | int on_cpu; | ||
| 142 | |||
| 143 | BUG_ON(linked && !is_realtime(linked)); | ||
| 144 | |||
| 145 | /* Currently linked task is set to be unlinked. */ | ||
| 146 | if (entry->linked) { | ||
| 147 | entry->linked->rt_param.linked_on = NO_CPU; | ||
| 148 | } | ||
| 149 | |||
| 150 | /* Link new task to CPU. */ | ||
| 151 | if (linked) { | ||
| 152 | set_rt_flags(linked, RT_F_RUNNING); | ||
| 153 | /* handle task is already scheduled somewhere! */ | ||
| 154 | on_cpu = linked->rt_param.scheduled_on; | ||
| 155 | if (on_cpu != NO_CPU) { | ||
| 156 | sched = &per_cpu(cedf_cpu_entries, on_cpu); | ||
| 157 | /* this should only happen if not linked already */ | ||
| 158 | BUG_ON(sched->linked == linked); | ||
| 159 | |||
| 160 | /* If we are already scheduled on the CPU to which we | ||
| 161 | * wanted to link, we don't need to do the swap -- | ||
| 162 | * we just link ourselves to the CPU and depend on | ||
| 163 | * the caller to get things right. | ||
| 164 | */ | ||
| 165 | if (entry != sched) { | ||
| 166 | TRACE_TASK(linked, | ||
| 167 | "already scheduled on %d, updating link.\n", | ||
| 168 | sched->cpu); | ||
| 169 | tmp = sched->linked; | ||
| 170 | linked->rt_param.linked_on = sched->cpu; | ||
| 171 | sched->linked = linked; | ||
| 172 | update_cpu_position(sched); | ||
| 173 | linked = tmp; | ||
| 174 | } | ||
| 175 | } | ||
| 176 | if (linked) /* might be NULL due to swap */ | ||
| 177 | linked->rt_param.linked_on = entry->cpu; | ||
| 178 | } | ||
| 179 | entry->linked = linked; | ||
| 180 | #ifdef WANT_ALL_SCHED_EVENTS | ||
| 181 | if (linked) | ||
| 182 | TRACE_TASK(linked, "linked to %d.\n", entry->cpu); | ||
| 183 | else | ||
| 184 | TRACE("NULL linked to %d.\n", entry->cpu); | ||
| 185 | #endif | ||
| 186 | update_cpu_position(entry); | ||
| 187 | } | ||
| 188 | |||
| 189 | /* unlink - Make sure a task is not linked any longer to an entry | ||
| 190 | * where it was linked before. Must hold cedf_lock. | ||
| 191 | */ | ||
| 192 | static noinline void unlink(struct task_struct* t) | ||
| 193 | { | ||
| 194 | cpu_entry_t *entry; | ||
| 195 | |||
| 196 | if (unlikely(!t)) { | ||
| 197 | TRACE_BUG_ON(!t); | ||
| 198 | return; | ||
| 199 | } | ||
| 200 | |||
| 201 | |||
| 202 | if (t->rt_param.linked_on != NO_CPU) { | ||
| 203 | /* unlink */ | ||
| 204 | entry = &per_cpu(cedf_cpu_entries, t->rt_param.linked_on); | ||
| 205 | t->rt_param.linked_on = NO_CPU; | ||
| 206 | link_task_to_cpu(NULL, entry); | ||
| 207 | } else if (is_queued(t)) { | ||
| 208 | /* This is an interesting situation: t is scheduled, | ||
| 209 | * but was just recently unlinked. It cannot be | ||
| 210 | * linked anywhere else (because then it would have | ||
| 211 | * been relinked to this CPU), thus it must be in some | ||
| 212 | * queue. We must remove it from the list in this | ||
| 213 | * case. | ||
| 214 | * | ||
| 215 | * in C-EDF case is should be somewhere in the queue for | ||
| 216 | * its domain, therefore and we can get the domain using | ||
| 217 | * task_cpu_cluster | ||
| 218 | */ | ||
| 219 | remove(&(task_cpu_cluster(t))->domain, t); | ||
| 220 | } | ||
| 221 | } | ||
| 222 | |||
| 223 | |||
| 224 | /* preempt - force a CPU to reschedule | ||
| 225 | */ | ||
| 226 | static void preempt(cpu_entry_t *entry) | ||
| 227 | { | ||
| 228 | preempt_if_preemptable(entry->scheduled, entry->cpu); | ||
| 229 | } | ||
| 230 | |||
| 231 | /* requeue - Put an unlinked task into gsn-edf domain. | ||
| 232 | * Caller must hold cedf_lock. | ||
| 233 | */ | ||
| 234 | static noinline void requeue(struct task_struct* task) | ||
| 235 | { | ||
| 236 | cedf_domain_t *cluster = task_cpu_cluster(task); | ||
| 237 | BUG_ON(!task); | ||
| 238 | /* sanity check before insertion */ | ||
| 239 | BUG_ON(is_queued(task)); | ||
| 240 | |||
| 241 | if (is_released(task, litmus_clock())) | ||
| 242 | __add_ready(&cluster->domain, task); | ||
| 243 | else { | ||
| 244 | /* it has got to wait */ | ||
| 245 | add_release(&cluster->domain, task); | ||
| 246 | } | ||
| 247 | } | ||
| 248 | |||
| 249 | /* check for any necessary preemptions */ | ||
| 250 | static void check_for_preemptions(cedf_domain_t *cluster) | ||
| 251 | { | ||
| 252 | struct task_struct *task; | ||
| 253 | cpu_entry_t* last; | ||
| 254 | |||
| 255 | for(last = lowest_prio_cpu(cluster); | ||
| 256 | edf_preemption_needed(&cluster->domain, last->linked); | ||
| 257 | last = lowest_prio_cpu(cluster)) { | ||
| 258 | /* preemption necessary */ | ||
| 259 | task = __take_ready(&cluster->domain); | ||
| 260 | TRACE("check_for_preemptions: attempting to link task %d to %d\n", | ||
| 261 | task->pid, last->cpu); | ||
| 262 | if (last->linked) | ||
| 263 | requeue(last->linked); | ||
| 264 | link_task_to_cpu(task, last); | ||
| 265 | preempt(last); | ||
| 266 | } | ||
| 267 | } | ||
| 268 | |||
| 269 | /* cedf_job_arrival: task is either resumed or released */ | ||
| 270 | static noinline void cedf_job_arrival(struct task_struct* task) | ||
| 271 | { | ||
| 272 | cedf_domain_t *cluster = task_cpu_cluster(task); | ||
| 273 | BUG_ON(!task); | ||
| 274 | |||
| 275 | requeue(task); | ||
| 276 | check_for_preemptions(cluster); | ||
| 277 | } | ||
| 278 | |||
| 279 | static void cedf_release_jobs(rt_domain_t* rt, struct bheap* tasks) | ||
| 280 | { | ||
| 281 | cedf_domain_t* cluster = container_of(rt, cedf_domain_t, domain); | ||
| 282 | unsigned long flags; | ||
| 283 | |||
| 284 | spin_lock_irqsave(&cluster->lock, flags); | ||
| 285 | |||
| 286 | __merge_ready(&cluster->domain, tasks); | ||
| 287 | check_for_preemptions(cluster); | ||
| 288 | |||
| 289 | spin_unlock_irqrestore(&cluster->lock, flags); | ||
| 290 | } | ||
| 291 | |||
| 292 | /* caller holds cedf_lock */ | ||
| 293 | static noinline void job_completion(struct task_struct *t, int forced) | ||
| 294 | { | ||
| 295 | BUG_ON(!t); | ||
| 296 | |||
| 297 | sched_trace_task_completion(t, forced); | ||
| 298 | |||
| 299 | TRACE_TASK(t, "job_completion().\n"); | ||
| 300 | |||
| 301 | /* set flags */ | ||
| 302 | set_rt_flags(t, RT_F_SLEEP); | ||
| 303 | /* prepare for next period */ | ||
| 304 | prepare_for_next_period(t); | ||
| 305 | if (is_released(t, litmus_clock())) | ||
| 306 | sched_trace_task_release(t); | ||
| 307 | /* unlink */ | ||
| 308 | unlink(t); | ||
| 309 | /* requeue | ||
| 310 | * But don't requeue a blocking task. */ | ||
| 311 | if (is_running(t)) | ||
| 312 | cedf_job_arrival(t); | ||
| 313 | } | ||
| 314 | |||
| 315 | /* cedf_tick - this function is called for every local timer | ||
| 316 | * interrupt. | ||
| 317 | * | ||
| 318 | * checks whether the current task has expired and checks | ||
| 319 | * whether we need to preempt it if it has not expired | ||
| 320 | */ | ||
| 321 | static void cedf_tick(struct task_struct* t) | ||
| 322 | { | ||
| 323 | if (is_realtime(t) && budget_exhausted(t)) { | ||
| 324 | if (!is_np(t)) { | ||
| 325 | /* np tasks will be preempted when they become | ||
| 326 | * preemptable again | ||
| 327 | */ | ||
| 328 | set_tsk_need_resched(t); | ||
| 329 | set_will_schedule(); | ||
| 330 | TRACE("cedf_scheduler_tick: " | ||
| 331 | "%d is preemptable " | ||
| 332 | " => FORCE_RESCHED\n", t->pid); | ||
| 333 | } else if (is_user_np(t)) { | ||
| 334 | TRACE("cedf_scheduler_tick: " | ||
| 335 | "%d is non-preemptable, " | ||
| 336 | "preemption delayed.\n", t->pid); | ||
| 337 | request_exit_np(t); | ||
| 338 | } | ||
| 339 | } | ||
| 340 | } | ||
| 341 | |||
| 342 | /* Getting schedule() right is a bit tricky. schedule() may not make any | ||
| 343 | * assumptions on the state of the current task since it may be called for a | ||
| 344 | * number of reasons. The reasons include a scheduler_tick() determined that it | ||
| 345 | * was necessary, because sys_exit_np() was called, because some Linux | ||
| 346 | * subsystem determined so, or even (in the worst case) because there is a bug | ||
| 347 | * hidden somewhere. Thus, we must take extreme care to determine what the | ||
| 348 | * current state is. | ||
| 349 | * | ||
| 350 | * The CPU could currently be scheduling a task (or not), be linked (or not). | ||
| 351 | * | ||
| 352 | * The following assertions for the scheduled task could hold: | ||
| 353 | * | ||
| 354 | * - !is_running(scheduled) // the job blocks | ||
| 355 | * - scheduled->timeslice == 0 // the job completed (forcefully) | ||
| 356 | * - get_rt_flag() == RT_F_SLEEP // the job completed (by syscall) | ||
| 357 | * - linked != scheduled // we need to reschedule (for any reason) | ||
| 358 | * - is_np(scheduled) // rescheduling must be delayed, | ||
| 359 | * sys_exit_np must be requested | ||
| 360 | * | ||
| 361 | * Any of these can occur together. | ||
| 362 | */ | ||
| 363 | static struct task_struct* cedf_schedule(struct task_struct * prev) | ||
| 364 | { | ||
| 365 | cpu_entry_t* entry = &__get_cpu_var(cedf_cpu_entries); | ||
| 366 | cedf_domain_t *cluster = entry->cluster; | ||
| 367 | int out_of_time, sleep, preempt, np, exists, blocks; | ||
| 368 | struct task_struct* next = NULL; | ||
| 369 | |||
| 370 | spin_lock(&cluster->lock); | ||
| 371 | clear_will_schedule(); | ||
| 372 | |||
| 373 | /* sanity checking */ | ||
| 374 | BUG_ON(entry->scheduled && entry->scheduled != prev); | ||
| 375 | BUG_ON(entry->scheduled && !is_realtime(prev)); | ||
| 376 | BUG_ON(is_realtime(prev) && !entry->scheduled); | ||
| 377 | |||
| 378 | /* (0) Determine state */ | ||
| 379 | exists = entry->scheduled != NULL; | ||
| 380 | blocks = exists && !is_running(entry->scheduled); | ||
| 381 | out_of_time = exists && budget_exhausted(entry->scheduled); | ||
| 382 | np = exists && is_np(entry->scheduled); | ||
| 383 | sleep = exists && get_rt_flags(entry->scheduled) == RT_F_SLEEP; | ||
| 384 | preempt = entry->scheduled != entry->linked; | ||
| 385 | |||
| 386 | #ifdef WANT_ALL_SCHED_EVENTS | ||
| 387 | TRACE_TASK(prev, "invoked cedf_schedule.\n"); | ||
| 388 | #endif | ||
| 389 | |||
| 390 | if (exists) | ||
| 391 | TRACE_TASK(prev, | ||
| 392 | "blocks:%d out_of_time:%d np:%d sleep:%d preempt:%d " | ||
| 393 | "state:%d sig:%d\n", | ||
| 394 | blocks, out_of_time, np, sleep, preempt, | ||
| 395 | prev->state, signal_pending(prev)); | ||
| 396 | if (entry->linked && preempt) | ||
| 397 | TRACE_TASK(prev, "will be preempted by %s/%d\n", | ||
| 398 | entry->linked->comm, entry->linked->pid); | ||
| 399 | |||
| 400 | |||
| 401 | /* If a task blocks we have no choice but to reschedule. | ||
| 402 | */ | ||
| 403 | if (blocks) | ||
| 404 | unlink(entry->scheduled); | ||
| 405 | |||
| 406 | /* Request a sys_exit_np() call if we would like to preempt but cannot. | ||
| 407 | * We need to make sure to update the link structure anyway in case | ||
| 408 | * that we are still linked. Multiple calls to request_exit_np() don't | ||
| 409 | * hurt. | ||
| 410 | */ | ||
| 411 | if (np && (out_of_time || preempt || sleep)) { | ||
| 412 | unlink(entry->scheduled); | ||
| 413 | request_exit_np(entry->scheduled); | ||
| 414 | } | ||
| 415 | |||
| 416 | /* Any task that is preemptable and either exhausts its execution | ||
| 417 | * budget or wants to sleep completes. We may have to reschedule after | ||
| 418 | * this. Don't do a job completion if we block (can't have timers running | ||
| 419 | * for blocked jobs). Preemption go first for the same reason. | ||
| 420 | */ | ||
| 421 | if (!np && (out_of_time || sleep) && !blocks && !preempt) | ||
| 422 | job_completion(entry->scheduled, !sleep); | ||
| 423 | |||
| 424 | /* Link pending task if we became unlinked. | ||
| 425 | */ | ||
| 426 | if (!entry->linked) | ||
| 427 | link_task_to_cpu(__take_ready(&cluster->domain), entry); | ||
| 428 | |||
| 429 | /* The final scheduling decision. Do we need to switch for some reason? | ||
| 430 | * If linked is different from scheduled, then select linked as next. | ||
| 431 | */ | ||
| 432 | if ((!np || blocks) && | ||
| 433 | entry->linked != entry->scheduled) { | ||
| 434 | /* Schedule a linked job? */ | ||
| 435 | if (entry->linked) { | ||
| 436 | entry->linked->rt_param.scheduled_on = entry->cpu; | ||
| 437 | next = entry->linked; | ||
| 438 | } | ||
| 439 | if (entry->scheduled) { | ||
| 440 | /* not gonna be scheduled soon */ | ||
| 441 | entry->scheduled->rt_param.scheduled_on = NO_CPU; | ||
| 442 | TRACE_TASK(entry->scheduled, "scheduled_on = NO_CPU\n"); | ||
| 443 | } | ||
| 444 | } else | ||
| 445 | /* Only override Linux scheduler if we have a real-time task | ||
| 446 | * scheduled that needs to continue. | ||
| 447 | */ | ||
| 448 | if (exists) | ||
| 449 | next = prev; | ||
| 450 | |||
| 451 | spin_unlock(&cluster->lock); | ||
| 452 | |||
| 453 | #ifdef WANT_ALL_SCHED_EVENTS | ||
| 454 | TRACE("cedf_lock released, next=0x%p\n", next); | ||
| 455 | |||
| 456 | if (next) | ||
| 457 | TRACE_TASK(next, "scheduled at %llu\n", litmus_clock()); | ||
| 458 | else if (exists && !next) | ||
| 459 | TRACE("becomes idle at %llu.\n", litmus_clock()); | ||
| 460 | #endif | ||
| 461 | |||
| 462 | |||
| 463 | return next; | ||
| 464 | } | ||
| 465 | |||
| 466 | |||
| 467 | /* _finish_switch - we just finished the switch away from prev | ||
| 468 | */ | ||
| 469 | static void cedf_finish_switch(struct task_struct *prev) | ||
| 470 | { | ||
| 471 | cpu_entry_t* entry = &__get_cpu_var(cedf_cpu_entries); | ||
| 472 | |||
| 473 | entry->scheduled = is_realtime(current) ? current : NULL; | ||
| 474 | #ifdef WANT_ALL_SCHED_EVENTS | ||
| 475 | TRACE_TASK(prev, "switched away from\n"); | ||
| 476 | #endif | ||
| 477 | } | ||
| 478 | |||
| 479 | |||
| 480 | /* Prepare a task for running in RT mode | ||
| 481 | */ | ||
| 482 | static void cedf_task_new(struct task_struct * t, int on_rq, int running) | ||
| 483 | { | ||
| 484 | unsigned long flags; | ||
| 485 | cpu_entry_t* entry; | ||
| 486 | cedf_domain_t* cluster; | ||
| 487 | |||
| 488 | TRACE("gsn edf: task new %d\n", t->pid); | ||
| 489 | |||
| 490 | /* the cluster doesn't change even if t is running */ | ||
| 491 | cluster = task_cpu_cluster(t); | ||
| 492 | |||
| 493 | spin_lock_irqsave(&cluster->domain.ready_lock, flags); | ||
| 494 | |||
| 495 | /* setup job params */ | ||
| 496 | release_at(t, litmus_clock()); | ||
| 497 | |||
| 498 | if (running) { | ||
| 499 | entry = &per_cpu(cedf_cpu_entries, task_cpu(t)); | ||
| 500 | BUG_ON(entry->scheduled); | ||
| 501 | |||
| 502 | entry->scheduled = t; | ||
| 503 | tsk_rt(t)->scheduled_on = task_cpu(t); | ||
| 504 | } else { | ||
| 505 | t->rt_param.scheduled_on = NO_CPU; | ||
| 506 | } | ||
| 507 | t->rt_param.linked_on = NO_CPU; | ||
| 508 | |||
| 509 | cedf_job_arrival(t); | ||
| 510 | spin_unlock_irqrestore(&(cluster->domain.ready_lock), flags); | ||
| 511 | } | ||
| 512 | |||
| 513 | static void cedf_task_wake_up(struct task_struct *task) | ||
| 514 | { | ||
| 515 | unsigned long flags; | ||
| 516 | lt_t now; | ||
| 517 | cedf_domain_t *cluster; | ||
| 518 | |||
| 519 | TRACE_TASK(task, "wake_up at %llu\n", litmus_clock()); | ||
| 520 | |||
| 521 | cluster = task_cpu_cluster(task); | ||
| 522 | |||
| 523 | spin_lock_irqsave(&cluster->lock, flags); | ||
| 524 | /* We need to take suspensions because of semaphores into | ||
| 525 | * account! If a job resumes after being suspended due to acquiring | ||
| 526 | * a semaphore, it should never be treated as a new job release. | ||
| 527 | */ | ||
| 528 | if (get_rt_flags(task) == RT_F_EXIT_SEM) { | ||
| 529 | set_rt_flags(task, RT_F_RUNNING); | ||
| 530 | } else { | ||
| 531 | now = litmus_clock(); | ||
| 532 | if (is_tardy(task, now)) { | ||
| 533 | /* new sporadic release */ | ||
| 534 | release_at(task, now); | ||
| 535 | sched_trace_task_release(task); | ||
| 536 | } | ||
| 537 | else { | ||
| 538 | if (task->rt.time_slice) { | ||
| 539 | /* came back in time before deadline | ||
| 540 | */ | ||
| 541 | set_rt_flags(task, RT_F_RUNNING); | ||
| 542 | } | ||
| 543 | } | ||
| 544 | } | ||
| 545 | cedf_job_arrival(task); | ||
| 546 | spin_unlock_irqrestore(&cluster->lock, flags); | ||
| 547 | } | ||
| 548 | |||
| 549 | static void cedf_task_block(struct task_struct *t) | ||
| 550 | { | ||
| 551 | unsigned long flags; | ||
| 552 | cedf_domain_t *cluster; | ||
| 553 | |||
| 554 | TRACE_TASK(t, "block at %llu\n", litmus_clock()); | ||
| 555 | |||
| 556 | cluster = task_cpu_cluster(t); | ||
| 557 | |||
| 558 | /* unlink if necessary */ | ||
| 559 | spin_lock_irqsave(&cluster->lock, flags); | ||
| 560 | unlink(t); | ||
| 561 | spin_unlock_irqrestore(&cluster->lock, flags); | ||
| 562 | |||
| 563 | BUG_ON(!is_realtime(t)); | ||
| 564 | } | ||
| 565 | |||
| 566 | |||
| 567 | static void cedf_task_exit(struct task_struct * t) | ||
| 568 | { | ||
| 569 | unsigned long flags; | ||
| 570 | cedf_domain_t *cluster = task_cpu_cluster(t); | ||
| 571 | |||
| 572 | /* unlink if necessary */ | ||
| 573 | spin_lock_irqsave(&cluster->lock, flags); | ||
| 574 | unlink(t); | ||
| 575 | if (tsk_rt(t)->scheduled_on != NO_CPU) { | ||
| 576 | cluster->cpus[tsk_rt(t)->scheduled_on]->scheduled = NULL; | ||
| 577 | tsk_rt(t)->scheduled_on = NO_CPU; | ||
| 578 | } | ||
| 579 | spin_unlock_irqrestore(&cluster->lock, flags); | ||
| 580 | |||
| 581 | BUG_ON(!is_realtime(t)); | ||
| 582 | TRACE_TASK(t, "RIP\n"); | ||
| 583 | } | ||
| 584 | |||
| 585 | static long cedf_admit_task(struct task_struct* tsk) | ||
| 586 | { | ||
| 587 | return task_cpu(tsk) == tsk->rt_param.task_params.cpu ? 0 : -EINVAL; | ||
| 588 | } | ||
| 589 | |||
| 590 | /* total number of cluster */ | ||
| 591 | static int num_clusters; | ||
| 592 | /* we do not support cluster of different sizes */ | ||
| 593 | static unsigned int cluster_size; | ||
| 594 | |||
| 595 | #ifdef VERBOSE_INIT | ||
| 596 | static void print_cluster_topology(cpumask_var_t mask, int cpu) | ||
| 597 | { | ||
| 598 | int chk; | ||
| 599 | char buf[255]; | ||
| 600 | |||
| 601 | chk = cpulist_scnprintf(buf, 254, mask); | ||
| 602 | buf[chk] = '\0'; | ||
| 603 | printk(KERN_INFO "CPU = %d, shared cpu(s) = %s\n", cpu, buf); | ||
| 604 | |||
| 605 | } | ||
| 606 | #endif | ||
| 607 | |||
| 608 | static int clusters_allocated = 0; | ||
| 609 | |||
| 610 | static void cleanup_cedf(void) | ||
| 611 | { | ||
| 612 | int i; | ||
| 613 | |||
| 614 | if (clusters_allocated) { | ||
| 615 | for (i = 0; i < num_clusters; i++) { | ||
| 616 | kfree(cedf[i].cpus); | ||
| 617 | kfree(cedf[i].heap_node); | ||
| 618 | free_cpumask_var(cedf[i].cpu_map); | ||
| 619 | } | ||
| 620 | |||
| 621 | kfree(cedf); | ||
| 622 | } | ||
| 623 | } | ||
| 624 | |||
| 625 | static long cedf_activate_plugin(void) | ||
| 626 | { | ||
| 627 | int i, j, cpu, ccpu, cpu_count; | ||
| 628 | cpu_entry_t *entry; | ||
| 629 | |||
| 630 | cpumask_var_t mask; | ||
| 631 | int chk = 0; | ||
| 632 | |||
| 633 | /* de-allocate old clusters, if any */ | ||
| 634 | cleanup_cedf(); | ||
| 635 | |||
| 636 | printk(KERN_INFO "C-EDF: Activate Plugin, cache index = %d\n", | ||
| 637 | cluster_cache_index); | ||
| 638 | |||
| 639 | /* need to get cluster_size first */ | ||
| 640 | if(!zalloc_cpumask_var(&mask, GFP_ATOMIC)) | ||
| 641 | return -ENOMEM; | ||
| 642 | |||
| 643 | chk = get_shared_cpu_map(mask, 0, cluster_cache_index); | ||
| 644 | if (chk) { | ||
| 645 | /* if chk != 0 then it is the max allowed index */ | ||
| 646 | printk(KERN_INFO "C-EDF: Cannot support cache index = %d\n", | ||
| 647 | cluster_cache_index); | ||
| 648 | printk(KERN_INFO "C-EDF: Using cache index = %d\n", | ||
| 649 | chk); | ||
| 650 | cluster_cache_index = chk; | ||
| 651 | } | ||
| 652 | |||
| 653 | cluster_size = cpumask_weight(mask); | ||
| 654 | |||
| 655 | if ((num_online_cpus() % cluster_size) != 0) { | ||
| 656 | /* this can't be right, some cpus are left out */ | ||
| 657 | printk(KERN_ERR "C-EDF: Trying to group %d cpus in %d!\n", | ||
| 658 | num_online_cpus(), cluster_size); | ||
| 659 | return -1; | ||
| 660 | } | ||
| 661 | |||
| 662 | num_clusters = num_online_cpus() / cluster_size; | ||
| 663 | printk(KERN_INFO "C-EDF: %d cluster(s) of size = %d\n", | ||
| 664 | num_clusters, cluster_size); | ||
| 665 | |||
| 666 | /* initialize clusters */ | ||
| 667 | cedf = kmalloc(num_clusters * sizeof(cedf_domain_t), GFP_ATOMIC); | ||
| 668 | for (i = 0; i < num_clusters; i++) { | ||
| 669 | |||
| 670 | cedf[i].cpus = kmalloc(cluster_size * sizeof(cpu_entry_t), | ||
| 671 | GFP_ATOMIC); | ||
| 672 | cedf[i].heap_node = kmalloc( | ||
| 673 | cluster_size * sizeof(struct bheap_node), | ||
| 674 | GFP_ATOMIC); | ||
| 675 | bheap_init(&(cedf[i].cpu_heap)); | ||
| 676 | edf_domain_init(&(cedf[i].domain), NULL, cedf_release_jobs); | ||
| 677 | |||
| 678 | if(!zalloc_cpumask_var(&cedf[i].cpu_map, GFP_ATOMIC)) | ||
| 679 | return -ENOMEM; | ||
| 680 | } | ||
| 681 | |||
| 682 | /* cycle through cluster and add cpus to them */ | ||
| 683 | for (i = 0; i < num_clusters; i++) { | ||
| 684 | |||
| 685 | for_each_online_cpu(cpu) { | ||
| 686 | /* check if the cpu is already in a cluster */ | ||
| 687 | for (j = 0; j < num_clusters; j++) | ||
| 688 | if (cpumask_test_cpu(cpu, cedf[j].cpu_map)) | ||
| 689 | break; | ||
| 690 | /* if it is in a cluster go to next cpu */ | ||
| 691 | if (cpumask_test_cpu(cpu, cedf[j].cpu_map)) | ||
| 692 | continue; | ||
| 693 | |||
| 694 | /* this cpu isn't in any cluster */ | ||
| 695 | /* get the shared cpus */ | ||
| 696 | get_shared_cpu_map(mask, cpu, cluster_cache_index); | ||
| 697 | cpumask_copy(cedf[i].cpu_map, mask); | ||
| 698 | #ifdef VERBOSE_INIT | ||
| 699 | print_cluster_topology(mask, cpu); | ||
| 700 | #endif | ||
| 701 | /* add cpus to current cluster and init cpu_entry_t */ | ||
| 702 | cpu_count = 0; | ||
| 703 | for_each_cpu(ccpu, cedf[i].cpu_map) { | ||
| 704 | |||
| 705 | entry = &per_cpu(cedf_cpu_entries, ccpu); | ||
| 706 | cedf[i].cpus[cpu_count] = entry; | ||
| 707 | atomic_set(&entry->will_schedule, 0); | ||
| 708 | entry->cpu = ccpu; | ||
| 709 | entry->cluster = &cedf[i]; | ||
| 710 | entry->hn = &(cedf[i].heap_node[cpu_count]); | ||
| 711 | bheap_node_init(&entry->hn, entry); | ||
| 712 | |||
| 713 | cpu_count++; | ||
| 714 | |||
| 715 | entry->linked = NULL; | ||
| 716 | entry->scheduled = NULL; | ||
| 717 | update_cpu_position(entry); | ||
| 718 | } | ||
| 719 | /* done with this cluster */ | ||
| 720 | break; | ||
| 721 | } | ||
| 722 | } | ||
| 723 | |||
| 724 | free_cpumask_var(mask); | ||
| 725 | clusters_allocated = 1; | ||
| 726 | return 0; | ||
| 727 | } | ||
| 728 | |||
| 729 | /* Plugin object */ | ||
| 730 | static struct sched_plugin cedf_plugin __cacheline_aligned_in_smp = { | ||
| 731 | .plugin_name = "C-EDF", | ||
| 732 | .finish_switch = cedf_finish_switch, | ||
| 733 | .tick = cedf_tick, | ||
| 734 | .task_new = cedf_task_new, | ||
| 735 | .complete_job = complete_job, | ||
| 736 | .task_exit = cedf_task_exit, | ||
| 737 | .schedule = cedf_schedule, | ||
| 738 | .task_wake_up = cedf_task_wake_up, | ||
| 739 | .task_block = cedf_task_block, | ||
| 740 | .admit_task = cedf_admit_task, | ||
| 741 | .activate_plugin = cedf_activate_plugin, | ||
| 742 | }; | ||
| 743 | |||
| 744 | |||
| 745 | static int __init init_cedf(void) | ||
| 746 | { | ||
| 747 | return register_sched_plugin(&cedf_plugin); | ||
| 748 | } | ||
| 749 | |||
| 750 | static void clean_cedf(void) | ||
| 751 | { | ||
| 752 | cleanup_cedf(); | ||
| 753 | } | ||
| 754 | |||
| 755 | module_init(init_cedf); | ||
| 756 | module_exit(clean_cedf); | ||
diff --git a/litmus/sched_plugin.c b/litmus/sched_plugin.c index bc7c0e93fb18..3767b30e610a 100644 --- a/litmus/sched_plugin.c +++ b/litmus/sched_plugin.c | |||
| @@ -171,6 +171,14 @@ struct sched_plugin linux_sched_plugin = { | |||
| 171 | }; | 171 | }; |
| 172 | 172 | ||
| 173 | /* | 173 | /* |
| 174 | * The cluster size is needed in C-EDF: it makes sense only to cluster | ||
| 175 | * around L2 or L3, so if cluster_cache_index = 2 (default) we cluster | ||
| 176 | * all the CPUs that shares a L2 cache, while cluster_cache_index = 3 | ||
| 177 | * we cluster all CPs that shares a L3 cache | ||
| 178 | */ | ||
| 179 | int cluster_cache_index = 2; | ||
| 180 | |||
| 181 | /* | ||
| 174 | * The reference to current plugin that is used to schedule tasks within | 182 | * The reference to current plugin that is used to schedule tasks within |
| 175 | * the system. It stores references to actual function implementations | 183 | * the system. It stores references to actual function implementations |
| 176 | * Should be initialized by calling "init_***_plugin()" | 184 | * Should be initialized by calling "init_***_plugin()" |
