aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorShaohua Li <shli@kernel.org>2014-02-06 15:04:21 -0500
committerLinus Torvalds <torvalds@linux-foundation.org>2014-02-06 16:48:51 -0500
commit579f82901f6f41256642936d7e632f3979ad76d4 (patch)
tree13fbb21ce5ef3cefccc80675411614f4b9bca9d0
parentfb951eb5e167de9f07973ce0dfff674a2019bfab (diff)
swap: add a simple detector for inappropriate swapin readahead
This is a patch to improve swap readahead algorithm. It's from Hugh and I slightly changed it. Hugh's original changelog: swapin readahead does a blind readahead, whether or not the swapin is sequential. This may be ok on harddisk, because large reads have relatively small costs, and if the readahead pages are unneeded they can be reclaimed easily - though, what if their allocation forced reclaim of useful pages? But on SSD devices large reads are more expensive than small ones: if the readahead pages are unneeded, reading them in caused significant overhead. This patch adds very simplistic random read detection. Stealing the PageReadahead technique from Konstantin Khlebnikov's patch, avoiding the vma/anon_vma sophistications of Shaohua Li's patch, swapin_nr_pages() simply looks at readahead's current success rate, and narrows or widens its readahead window accordingly. There is little science to its heuristic: it's about as stupid as can be whilst remaining effective. The table below shows elapsed times (in centiseconds) when running a single repetitive swapping load across a 1000MB mapping in 900MB ram with 1GB swap (the harddisk tests had taken painfully too long when I used mem=500M, but SSD shows similar results for that). Vanilla is the 3.6-rc7 kernel on which I started; Shaohua denotes his Sep 3 patch in mmotm and linux-next; HughOld denotes my Oct 1 patch which Shaohua showed to be defective; HughNew this Nov 14 patch, with page_cluster as usual at default of 3 (8-page reads); HughPC4 this same patch with page_cluster 4 (16-page reads); HughPC0 with page_cluster 0 (1-page reads: no readahead). HDD for swapping to harddisk, SSD for swapping to VertexII SSD. Seq for sequential access to the mapping, cycling five times around; Rand for the same number of random touches. Anon for a MAP_PRIVATE anon mapping; Shmem for a MAP_SHARED anon mapping, equivalent to tmpfs. One weakness of Shaohua's vma/anon_vma approach was that it did not optimize Shmem: seen below. Konstantin's approach was perhaps mistuned, 50% slower on Seq: did not compete and is not shown below. HDD Vanilla Shaohua HughOld HughNew HughPC4 HughPC0 Seq Anon 73921 76210 75611 76904 78191 121542 Seq Shmem 73601 73176 73855 72947 74543 118322 Rand Anon 895392 831243 871569 845197 846496 841680 Rand Shmem 1058375 1053486 827935 764955 764376 756489 SSD Vanilla Shaohua HughOld HughNew HughPC4 HughPC0 Seq Anon 24634 24198 24673 25107 21614 70018 Seq Shmem 24959 24932 25052 25703 22030 69678 Rand Anon 43014 26146 28075 25989 26935 25901 Rand Shmem 45349 45215 28249 24268 24138 24332 These tests are, of course, two extremes of a very simple case: under heavier mixed loads I've not yet observed any consistent improvement or degradation, and wider testing would be welcome. Shaohua Li: Test shows Vanilla is slightly better in sequential workload than Hugh's patch. I observed with Hugh's patch sometimes the readahead size is shrinked too fast (from 8 to 1 immediately) in sequential workload if there is no hit. And in such case, continuing doing readahead is good actually. I don't prepare a sophisticated algorithm for the sequential workload because so far we can't guarantee sequential accessed pages are swap out sequentially. So I slightly change Hugh's heuristic - don't shrink readahead size too fast. Here is my test result (unit second, 3 runs average): Vanilla Hugh New Seq 356 370 360 Random 4525 2447 2444 Attached graph is the swapin/swapout throughput I collected with 'vmstat 2'. The first part is running a random workload (till around 1200 of the x-axis) and the second part is running a sequential workload. swapin and swapout throughput are almost identical in steady state in both workloads. These are expected behavior. while in Vanilla, swapin is much bigger than swapout especially in random workload (because wrong readahead). Original patches by: Shaohua Li and Konstantin Khlebnikov. [fengguang.wu@intel.com: swapin_nr_pages() can be static] Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Shaohua Li <shli@fusionio.com> Signed-off-by: Fengguang Wu <fengguang.wu@intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-rw-r--r--include/linux/page-flags.h4
-rw-r--r--mm/swap_state.c63
2 files changed, 62 insertions, 5 deletions
diff --git a/include/linux/page-flags.h b/include/linux/page-flags.h
index e464b4e987e8..d1fe1a761047 100644
--- a/include/linux/page-flags.h
+++ b/include/linux/page-flags.h
@@ -228,9 +228,9 @@ PAGEFLAG(OwnerPriv1, owner_priv_1) TESTCLEARFLAG(OwnerPriv1, owner_priv_1)
228TESTPAGEFLAG(Writeback, writeback) TESTSCFLAG(Writeback, writeback) 228TESTPAGEFLAG(Writeback, writeback) TESTSCFLAG(Writeback, writeback)
229PAGEFLAG(MappedToDisk, mappedtodisk) 229PAGEFLAG(MappedToDisk, mappedtodisk)
230 230
231/* PG_readahead is only used for file reads; PG_reclaim is only for writes */ 231/* PG_readahead is only used for reads; PG_reclaim is only for writes */
232PAGEFLAG(Reclaim, reclaim) TESTCLEARFLAG(Reclaim, reclaim) 232PAGEFLAG(Reclaim, reclaim) TESTCLEARFLAG(Reclaim, reclaim)
233PAGEFLAG(Readahead, reclaim) /* Reminder to do async read-ahead */ 233PAGEFLAG(Readahead, reclaim) TESTCLEARFLAG(Readahead, reclaim)
234 234
235#ifdef CONFIG_HIGHMEM 235#ifdef CONFIG_HIGHMEM
236/* 236/*
diff --git a/mm/swap_state.c b/mm/swap_state.c
index 98e85e9c2b2d..e76ace30d436 100644
--- a/mm/swap_state.c
+++ b/mm/swap_state.c
@@ -63,6 +63,8 @@ unsigned long total_swapcache_pages(void)
63 return ret; 63 return ret;
64} 64}
65 65
66static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
67
66void show_swap_cache_info(void) 68void show_swap_cache_info(void)
67{ 69{
68 printk("%lu pages in swap cache\n", total_swapcache_pages()); 70 printk("%lu pages in swap cache\n", total_swapcache_pages());
@@ -286,8 +288,11 @@ struct page * lookup_swap_cache(swp_entry_t entry)
286 288
287 page = find_get_page(swap_address_space(entry), entry.val); 289 page = find_get_page(swap_address_space(entry), entry.val);
288 290
289 if (page) 291 if (page) {
290 INC_CACHE_INFO(find_success); 292 INC_CACHE_INFO(find_success);
293 if (TestClearPageReadahead(page))
294 atomic_inc(&swapin_readahead_hits);
295 }
291 296
292 INC_CACHE_INFO(find_total); 297 INC_CACHE_INFO(find_total);
293 return page; 298 return page;
@@ -389,6 +394,50 @@ struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
389 return found_page; 394 return found_page;
390} 395}
391 396
397static unsigned long swapin_nr_pages(unsigned long offset)
398{
399 static unsigned long prev_offset;
400 unsigned int pages, max_pages, last_ra;
401 static atomic_t last_readahead_pages;
402
403 max_pages = 1 << ACCESS_ONCE(page_cluster);
404 if (max_pages <= 1)
405 return 1;
406
407 /*
408 * This heuristic has been found to work well on both sequential and
409 * random loads, swapping to hard disk or to SSD: please don't ask
410 * what the "+ 2" means, it just happens to work well, that's all.
411 */
412 pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
413 if (pages == 2) {
414 /*
415 * We can have no readahead hits to judge by: but must not get
416 * stuck here forever, so check for an adjacent offset instead
417 * (and don't even bother to check whether swap type is same).
418 */
419 if (offset != prev_offset + 1 && offset != prev_offset - 1)
420 pages = 1;
421 prev_offset = offset;
422 } else {
423 unsigned int roundup = 4;
424 while (roundup < pages)
425 roundup <<= 1;
426 pages = roundup;
427 }
428
429 if (pages > max_pages)
430 pages = max_pages;
431
432 /* Don't shrink readahead too fast */
433 last_ra = atomic_read(&last_readahead_pages) / 2;
434 if (pages < last_ra)
435 pages = last_ra;
436 atomic_set(&last_readahead_pages, pages);
437
438 return pages;
439}
440
392/** 441/**
393 * swapin_readahead - swap in pages in hope we need them soon 442 * swapin_readahead - swap in pages in hope we need them soon
394 * @entry: swap entry of this memory 443 * @entry: swap entry of this memory
@@ -412,11 +461,16 @@ struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
412 struct vm_area_struct *vma, unsigned long addr) 461 struct vm_area_struct *vma, unsigned long addr)
413{ 462{
414 struct page *page; 463 struct page *page;
415 unsigned long offset = swp_offset(entry); 464 unsigned long entry_offset = swp_offset(entry);
465 unsigned long offset = entry_offset;
416 unsigned long start_offset, end_offset; 466 unsigned long start_offset, end_offset;
417 unsigned long mask = (1UL << page_cluster) - 1; 467 unsigned long mask;
418 struct blk_plug plug; 468 struct blk_plug plug;
419 469
470 mask = swapin_nr_pages(offset) - 1;
471 if (!mask)
472 goto skip;
473
420 /* Read a page_cluster sized and aligned cluster around offset. */ 474 /* Read a page_cluster sized and aligned cluster around offset. */
421 start_offset = offset & ~mask; 475 start_offset = offset & ~mask;
422 end_offset = offset | mask; 476 end_offset = offset | mask;
@@ -430,10 +484,13 @@ struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
430 gfp_mask, vma, addr); 484 gfp_mask, vma, addr);
431 if (!page) 485 if (!page)
432 continue; 486 continue;
487 if (offset != entry_offset)
488 SetPageReadahead(page);
433 page_cache_release(page); 489 page_cache_release(page);
434 } 490 }
435 blk_finish_plug(&plug); 491 blk_finish_plug(&plug);
436 492
437 lru_add_drain(); /* Push any new pages onto the LRU now */ 493 lru_add_drain(); /* Push any new pages onto the LRU now */
494skip:
438 return read_swap_cache_async(entry, gfp_mask, vma, addr); 495 return read_swap_cache_async(entry, gfp_mask, vma, addr);
439} 496}