diff options
author | Jaegeuk Kim <jaegeuk.kim@samsung.com> | 2012-11-27 23:37:31 -0500 |
---|---|---|
committer | Jaegeuk Kim <jaegeuk.kim@samsung.com> | 2012-12-10 23:43:40 -0500 |
commit | 39a53e0ce0df01b3cf4bb898c7ae2fd2189647d5 (patch) | |
tree | 45c7028592e7520eb94afc8cd31f757f6a2c7553 | |
parent | dd31866b0d55c9b70722ebad6ccd643223d9269e (diff) |
f2fs: add superblock and major in-memory structure
This adds the following major in-memory structures in f2fs.
- f2fs_sb_info:
contains f2fs-specific information, two special inode pointers for node and
meta address spaces, and orphan inode management.
- f2fs_inode_info:
contains vfs_inode and other fs-specific information.
- f2fs_nm_info:
contains node manager information such as NAT entry cache, free nid list,
and NAT page management.
- f2fs_node_info:
represents a node as node id, inode number, block address, and its version.
- f2fs_sm_info:
contains segment manager information such as SIT entry cache, free segment
map, current active logs, dirty segment management, and segment utilization.
The specific structures are sit_info, free_segmap_info, dirty_seglist_info,
curseg_info.
In addition, add F2FS_SUPER_MAGIC in magic.h.
Signed-off-by: Chul Lee <chur.lee@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
-rw-r--r-- | fs/f2fs/f2fs.h | 1062 | ||||
-rw-r--r-- | fs/f2fs/node.h | 353 | ||||
-rw-r--r-- | fs/f2fs/segment.h | 615 | ||||
-rw-r--r-- | include/uapi/linux/magic.h | 1 |
4 files changed, 2031 insertions, 0 deletions
diff --git a/fs/f2fs/f2fs.h b/fs/f2fs/f2fs.h new file mode 100644 index 000000000000..7aa70b54172d --- /dev/null +++ b/fs/f2fs/f2fs.h | |||
@@ -0,0 +1,1062 @@ | |||
1 | /** | ||
2 | * fs/f2fs/f2fs.h | ||
3 | * | ||
4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | ||
5 | * http://www.samsung.com/ | ||
6 | * | ||
7 | * This program is free software; you can redistribute it and/or modify | ||
8 | * it under the terms of the GNU General Public License version 2 as | ||
9 | * published by the Free Software Foundation. | ||
10 | */ | ||
11 | #ifndef _LINUX_F2FS_H | ||
12 | #define _LINUX_F2FS_H | ||
13 | |||
14 | #include <linux/types.h> | ||
15 | #include <linux/page-flags.h> | ||
16 | #include <linux/buffer_head.h> | ||
17 | #include <linux/version.h> | ||
18 | #include <linux/slab.h> | ||
19 | #include <linux/crc32.h> | ||
20 | #include <linux/magic.h> | ||
21 | |||
22 | /* | ||
23 | * For mount options | ||
24 | */ | ||
25 | #define F2FS_MOUNT_BG_GC 0x00000001 | ||
26 | #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 | ||
27 | #define F2FS_MOUNT_DISCARD 0x00000004 | ||
28 | #define F2FS_MOUNT_NOHEAP 0x00000008 | ||
29 | #define F2FS_MOUNT_XATTR_USER 0x00000010 | ||
30 | #define F2FS_MOUNT_POSIX_ACL 0x00000020 | ||
31 | #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 | ||
32 | |||
33 | #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option) | ||
34 | #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option) | ||
35 | #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option) | ||
36 | |||
37 | #define ver_after(a, b) (typecheck(unsigned long long, a) && \ | ||
38 | typecheck(unsigned long long, b) && \ | ||
39 | ((long long)((a) - (b)) > 0)) | ||
40 | |||
41 | typedef u64 block_t; | ||
42 | typedef u32 nid_t; | ||
43 | |||
44 | struct f2fs_mount_info { | ||
45 | unsigned int opt; | ||
46 | }; | ||
47 | |||
48 | static inline __u32 f2fs_crc32(void *buff, size_t len) | ||
49 | { | ||
50 | return crc32_le(F2FS_SUPER_MAGIC, buff, len); | ||
51 | } | ||
52 | |||
53 | static inline bool f2fs_crc_valid(__u32 blk_crc, void *buff, size_t buff_size) | ||
54 | { | ||
55 | return f2fs_crc32(buff, buff_size) == blk_crc; | ||
56 | } | ||
57 | |||
58 | /* | ||
59 | * For checkpoint manager | ||
60 | */ | ||
61 | enum { | ||
62 | NAT_BITMAP, | ||
63 | SIT_BITMAP | ||
64 | }; | ||
65 | |||
66 | /* for the list of orphan inodes */ | ||
67 | struct orphan_inode_entry { | ||
68 | struct list_head list; /* list head */ | ||
69 | nid_t ino; /* inode number */ | ||
70 | }; | ||
71 | |||
72 | /* for the list of directory inodes */ | ||
73 | struct dir_inode_entry { | ||
74 | struct list_head list; /* list head */ | ||
75 | struct inode *inode; /* vfs inode pointer */ | ||
76 | }; | ||
77 | |||
78 | /* for the list of fsync inodes, used only during recovery */ | ||
79 | struct fsync_inode_entry { | ||
80 | struct list_head list; /* list head */ | ||
81 | struct inode *inode; /* vfs inode pointer */ | ||
82 | block_t blkaddr; /* block address locating the last inode */ | ||
83 | }; | ||
84 | |||
85 | #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats)) | ||
86 | #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits)) | ||
87 | |||
88 | #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne) | ||
89 | #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid) | ||
90 | #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se) | ||
91 | #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno) | ||
92 | |||
93 | static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i) | ||
94 | { | ||
95 | int before = nats_in_cursum(rs); | ||
96 | rs->n_nats = cpu_to_le16(before + i); | ||
97 | return before; | ||
98 | } | ||
99 | |||
100 | static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i) | ||
101 | { | ||
102 | int before = sits_in_cursum(rs); | ||
103 | rs->n_sits = cpu_to_le16(before + i); | ||
104 | return before; | ||
105 | } | ||
106 | |||
107 | /* | ||
108 | * For INODE and NODE manager | ||
109 | */ | ||
110 | #define XATTR_NODE_OFFSET (-1) /* | ||
111 | * store xattrs to one node block per | ||
112 | * file keeping -1 as its node offset to | ||
113 | * distinguish from index node blocks. | ||
114 | */ | ||
115 | #define RDONLY_NODE 1 /* | ||
116 | * specify a read-only mode when getting | ||
117 | * a node block. 0 is read-write mode. | ||
118 | * used by get_dnode_of_data(). | ||
119 | */ | ||
120 | #define F2FS_LINK_MAX 32000 /* maximum link count per file */ | ||
121 | |||
122 | /* for in-memory extent cache entry */ | ||
123 | struct extent_info { | ||
124 | rwlock_t ext_lock; /* rwlock for consistency */ | ||
125 | unsigned int fofs; /* start offset in a file */ | ||
126 | u32 blk_addr; /* start block address of the extent */ | ||
127 | unsigned int len; /* lenth of the extent */ | ||
128 | }; | ||
129 | |||
130 | /* | ||
131 | * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. | ||
132 | */ | ||
133 | #define FADVISE_COLD_BIT 0x01 | ||
134 | |||
135 | struct f2fs_inode_info { | ||
136 | struct inode vfs_inode; /* serve a vfs inode */ | ||
137 | unsigned long i_flags; /* keep an inode flags for ioctl */ | ||
138 | unsigned char i_advise; /* use to give file attribute hints */ | ||
139 | unsigned int i_current_depth; /* use only in directory structure */ | ||
140 | umode_t i_acl_mode; /* keep file acl mode temporarily */ | ||
141 | |||
142 | /* Use below internally in f2fs*/ | ||
143 | unsigned long flags; /* use to pass per-file flags */ | ||
144 | unsigned long long data_version;/* lastes version of data for fsync */ | ||
145 | atomic_t dirty_dents; /* # of dirty dentry pages */ | ||
146 | f2fs_hash_t chash; /* hash value of given file name */ | ||
147 | unsigned int clevel; /* maximum level of given file name */ | ||
148 | nid_t i_xattr_nid; /* node id that contains xattrs */ | ||
149 | struct extent_info ext; /* in-memory extent cache entry */ | ||
150 | }; | ||
151 | |||
152 | static inline void get_extent_info(struct extent_info *ext, | ||
153 | struct f2fs_extent i_ext) | ||
154 | { | ||
155 | write_lock(&ext->ext_lock); | ||
156 | ext->fofs = le32_to_cpu(i_ext.fofs); | ||
157 | ext->blk_addr = le32_to_cpu(i_ext.blk_addr); | ||
158 | ext->len = le32_to_cpu(i_ext.len); | ||
159 | write_unlock(&ext->ext_lock); | ||
160 | } | ||
161 | |||
162 | static inline void set_raw_extent(struct extent_info *ext, | ||
163 | struct f2fs_extent *i_ext) | ||
164 | { | ||
165 | read_lock(&ext->ext_lock); | ||
166 | i_ext->fofs = cpu_to_le32(ext->fofs); | ||
167 | i_ext->blk_addr = cpu_to_le32(ext->blk_addr); | ||
168 | i_ext->len = cpu_to_le32(ext->len); | ||
169 | read_unlock(&ext->ext_lock); | ||
170 | } | ||
171 | |||
172 | struct f2fs_nm_info { | ||
173 | block_t nat_blkaddr; /* base disk address of NAT */ | ||
174 | nid_t max_nid; /* maximum possible node ids */ | ||
175 | nid_t init_scan_nid; /* the first nid to be scanned */ | ||
176 | nid_t next_scan_nid; /* the next nid to be scanned */ | ||
177 | |||
178 | /* NAT cache management */ | ||
179 | struct radix_tree_root nat_root;/* root of the nat entry cache */ | ||
180 | rwlock_t nat_tree_lock; /* protect nat_tree_lock */ | ||
181 | unsigned int nat_cnt; /* the # of cached nat entries */ | ||
182 | struct list_head nat_entries; /* cached nat entry list (clean) */ | ||
183 | struct list_head dirty_nat_entries; /* cached nat entry list (dirty) */ | ||
184 | |||
185 | /* free node ids management */ | ||
186 | struct list_head free_nid_list; /* a list for free nids */ | ||
187 | spinlock_t free_nid_list_lock; /* protect free nid list */ | ||
188 | unsigned int fcnt; /* the number of free node id */ | ||
189 | struct mutex build_lock; /* lock for build free nids */ | ||
190 | |||
191 | /* for checkpoint */ | ||
192 | char *nat_bitmap; /* NAT bitmap pointer */ | ||
193 | int bitmap_size; /* bitmap size */ | ||
194 | }; | ||
195 | |||
196 | /* | ||
197 | * this structure is used as one of function parameters. | ||
198 | * all the information are dedicated to a given direct node block determined | ||
199 | * by the data offset in a file. | ||
200 | */ | ||
201 | struct dnode_of_data { | ||
202 | struct inode *inode; /* vfs inode pointer */ | ||
203 | struct page *inode_page; /* its inode page, NULL is possible */ | ||
204 | struct page *node_page; /* cached direct node page */ | ||
205 | nid_t nid; /* node id of the direct node block */ | ||
206 | unsigned int ofs_in_node; /* data offset in the node page */ | ||
207 | bool inode_page_locked; /* inode page is locked or not */ | ||
208 | block_t data_blkaddr; /* block address of the node block */ | ||
209 | }; | ||
210 | |||
211 | static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, | ||
212 | struct page *ipage, struct page *npage, nid_t nid) | ||
213 | { | ||
214 | dn->inode = inode; | ||
215 | dn->inode_page = ipage; | ||
216 | dn->node_page = npage; | ||
217 | dn->nid = nid; | ||
218 | dn->inode_page_locked = 0; | ||
219 | } | ||
220 | |||
221 | /* | ||
222 | * For SIT manager | ||
223 | * | ||
224 | * By default, there are 6 active log areas across the whole main area. | ||
225 | * When considering hot and cold data separation to reduce cleaning overhead, | ||
226 | * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, | ||
227 | * respectively. | ||
228 | * In the current design, you should not change the numbers intentionally. | ||
229 | * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 | ||
230 | * logs individually according to the underlying devices. (default: 6) | ||
231 | * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for | ||
232 | * data and 8 for node logs. | ||
233 | */ | ||
234 | #define NR_CURSEG_DATA_TYPE (3) | ||
235 | #define NR_CURSEG_NODE_TYPE (3) | ||
236 | #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) | ||
237 | |||
238 | enum { | ||
239 | CURSEG_HOT_DATA = 0, /* directory entry blocks */ | ||
240 | CURSEG_WARM_DATA, /* data blocks */ | ||
241 | CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ | ||
242 | CURSEG_HOT_NODE, /* direct node blocks of directory files */ | ||
243 | CURSEG_WARM_NODE, /* direct node blocks of normal files */ | ||
244 | CURSEG_COLD_NODE, /* indirect node blocks */ | ||
245 | NO_CHECK_TYPE | ||
246 | }; | ||
247 | |||
248 | struct f2fs_sm_info { | ||
249 | struct sit_info *sit_info; /* whole segment information */ | ||
250 | struct free_segmap_info *free_info; /* free segment information */ | ||
251 | struct dirty_seglist_info *dirty_info; /* dirty segment information */ | ||
252 | struct curseg_info *curseg_array; /* active segment information */ | ||
253 | |||
254 | struct list_head wblist_head; /* list of under-writeback pages */ | ||
255 | spinlock_t wblist_lock; /* lock for checkpoint */ | ||
256 | |||
257 | block_t seg0_blkaddr; /* block address of 0'th segment */ | ||
258 | block_t main_blkaddr; /* start block address of main area */ | ||
259 | block_t ssa_blkaddr; /* start block address of SSA area */ | ||
260 | |||
261 | unsigned int segment_count; /* total # of segments */ | ||
262 | unsigned int main_segments; /* # of segments in main area */ | ||
263 | unsigned int reserved_segments; /* # of reserved segments */ | ||
264 | unsigned int ovp_segments; /* # of overprovision segments */ | ||
265 | }; | ||
266 | |||
267 | /* | ||
268 | * For directory operation | ||
269 | */ | ||
270 | #define NODE_DIR1_BLOCK (ADDRS_PER_INODE + 1) | ||
271 | #define NODE_DIR2_BLOCK (ADDRS_PER_INODE + 2) | ||
272 | #define NODE_IND1_BLOCK (ADDRS_PER_INODE + 3) | ||
273 | #define NODE_IND2_BLOCK (ADDRS_PER_INODE + 4) | ||
274 | #define NODE_DIND_BLOCK (ADDRS_PER_INODE + 5) | ||
275 | |||
276 | /* | ||
277 | * For superblock | ||
278 | */ | ||
279 | /* | ||
280 | * COUNT_TYPE for monitoring | ||
281 | * | ||
282 | * f2fs monitors the number of several block types such as on-writeback, | ||
283 | * dirty dentry blocks, dirty node blocks, and dirty meta blocks. | ||
284 | */ | ||
285 | enum count_type { | ||
286 | F2FS_WRITEBACK, | ||
287 | F2FS_DIRTY_DENTS, | ||
288 | F2FS_DIRTY_NODES, | ||
289 | F2FS_DIRTY_META, | ||
290 | NR_COUNT_TYPE, | ||
291 | }; | ||
292 | |||
293 | /* | ||
294 | * FS_LOCK nesting subclasses for the lock validator: | ||
295 | * | ||
296 | * The locking order between these classes is | ||
297 | * RENAME -> DENTRY_OPS -> DATA_WRITE -> DATA_NEW | ||
298 | * -> DATA_TRUNC -> NODE_WRITE -> NODE_NEW -> NODE_TRUNC | ||
299 | */ | ||
300 | enum lock_type { | ||
301 | RENAME, /* for renaming operations */ | ||
302 | DENTRY_OPS, /* for directory operations */ | ||
303 | DATA_WRITE, /* for data write */ | ||
304 | DATA_NEW, /* for data allocation */ | ||
305 | DATA_TRUNC, /* for data truncate */ | ||
306 | NODE_NEW, /* for node allocation */ | ||
307 | NODE_TRUNC, /* for node truncate */ | ||
308 | NODE_WRITE, /* for node write */ | ||
309 | NR_LOCK_TYPE, | ||
310 | }; | ||
311 | |||
312 | /* | ||
313 | * The below are the page types of bios used in submti_bio(). | ||
314 | * The available types are: | ||
315 | * DATA User data pages. It operates as async mode. | ||
316 | * NODE Node pages. It operates as async mode. | ||
317 | * META FS metadata pages such as SIT, NAT, CP. | ||
318 | * NR_PAGE_TYPE The number of page types. | ||
319 | * META_FLUSH Make sure the previous pages are written | ||
320 | * with waiting the bio's completion | ||
321 | * ... Only can be used with META. | ||
322 | */ | ||
323 | enum page_type { | ||
324 | DATA, | ||
325 | NODE, | ||
326 | META, | ||
327 | NR_PAGE_TYPE, | ||
328 | META_FLUSH, | ||
329 | }; | ||
330 | |||
331 | struct f2fs_sb_info { | ||
332 | struct super_block *sb; /* pointer to VFS super block */ | ||
333 | struct buffer_head *raw_super_buf; /* buffer head of raw sb */ | ||
334 | struct f2fs_super_block *raw_super; /* raw super block pointer */ | ||
335 | int s_dirty; /* dirty flag for checkpoint */ | ||
336 | |||
337 | /* for node-related operations */ | ||
338 | struct f2fs_nm_info *nm_info; /* node manager */ | ||
339 | struct inode *node_inode; /* cache node blocks */ | ||
340 | |||
341 | /* for segment-related operations */ | ||
342 | struct f2fs_sm_info *sm_info; /* segment manager */ | ||
343 | struct bio *bio[NR_PAGE_TYPE]; /* bios to merge */ | ||
344 | sector_t last_block_in_bio[NR_PAGE_TYPE]; /* last block number */ | ||
345 | struct rw_semaphore bio_sem; /* IO semaphore */ | ||
346 | |||
347 | /* for checkpoint */ | ||
348 | struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ | ||
349 | struct inode *meta_inode; /* cache meta blocks */ | ||
350 | struct mutex cp_mutex; /* for checkpoint procedure */ | ||
351 | struct mutex fs_lock[NR_LOCK_TYPE]; /* for blocking FS operations */ | ||
352 | struct mutex write_inode; /* mutex for write inode */ | ||
353 | struct mutex writepages; /* mutex for writepages() */ | ||
354 | int por_doing; /* recovery is doing or not */ | ||
355 | |||
356 | /* for orphan inode management */ | ||
357 | struct list_head orphan_inode_list; /* orphan inode list */ | ||
358 | struct mutex orphan_inode_mutex; /* for orphan inode list */ | ||
359 | unsigned int n_orphans; /* # of orphan inodes */ | ||
360 | |||
361 | /* for directory inode management */ | ||
362 | struct list_head dir_inode_list; /* dir inode list */ | ||
363 | spinlock_t dir_inode_lock; /* for dir inode list lock */ | ||
364 | unsigned int n_dirty_dirs; /* # of dir inodes */ | ||
365 | |||
366 | /* basic file system units */ | ||
367 | unsigned int log_sectors_per_block; /* log2 sectors per block */ | ||
368 | unsigned int log_blocksize; /* log2 block size */ | ||
369 | unsigned int blocksize; /* block size */ | ||
370 | unsigned int root_ino_num; /* root inode number*/ | ||
371 | unsigned int node_ino_num; /* node inode number*/ | ||
372 | unsigned int meta_ino_num; /* meta inode number*/ | ||
373 | unsigned int log_blocks_per_seg; /* log2 blocks per segment */ | ||
374 | unsigned int blocks_per_seg; /* blocks per segment */ | ||
375 | unsigned int segs_per_sec; /* segments per section */ | ||
376 | unsigned int secs_per_zone; /* sections per zone */ | ||
377 | unsigned int total_sections; /* total section count */ | ||
378 | unsigned int total_node_count; /* total node block count */ | ||
379 | unsigned int total_valid_node_count; /* valid node block count */ | ||
380 | unsigned int total_valid_inode_count; /* valid inode count */ | ||
381 | int active_logs; /* # of active logs */ | ||
382 | |||
383 | block_t user_block_count; /* # of user blocks */ | ||
384 | block_t total_valid_block_count; /* # of valid blocks */ | ||
385 | block_t alloc_valid_block_count; /* # of allocated blocks */ | ||
386 | block_t last_valid_block_count; /* for recovery */ | ||
387 | u32 s_next_generation; /* for NFS support */ | ||
388 | atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */ | ||
389 | |||
390 | struct f2fs_mount_info mount_opt; /* mount options */ | ||
391 | |||
392 | /* for cleaning operations */ | ||
393 | struct mutex gc_mutex; /* mutex for GC */ | ||
394 | struct f2fs_gc_kthread *gc_thread; /* GC thread */ | ||
395 | |||
396 | /* | ||
397 | * for stat information. | ||
398 | * one is for the LFS mode, and the other is for the SSR mode. | ||
399 | */ | ||
400 | struct f2fs_stat_info *stat_info; /* FS status information */ | ||
401 | unsigned int segment_count[2]; /* # of allocated segments */ | ||
402 | unsigned int block_count[2]; /* # of allocated blocks */ | ||
403 | unsigned int last_victim[2]; /* last victim segment # */ | ||
404 | int total_hit_ext, read_hit_ext; /* extent cache hit ratio */ | ||
405 | int bg_gc; /* background gc calls */ | ||
406 | spinlock_t stat_lock; /* lock for stat operations */ | ||
407 | }; | ||
408 | |||
409 | /* | ||
410 | * Inline functions | ||
411 | */ | ||
412 | static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) | ||
413 | { | ||
414 | return container_of(inode, struct f2fs_inode_info, vfs_inode); | ||
415 | } | ||
416 | |||
417 | static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) | ||
418 | { | ||
419 | return sb->s_fs_info; | ||
420 | } | ||
421 | |||
422 | static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) | ||
423 | { | ||
424 | return (struct f2fs_super_block *)(sbi->raw_super); | ||
425 | } | ||
426 | |||
427 | static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) | ||
428 | { | ||
429 | return (struct f2fs_checkpoint *)(sbi->ckpt); | ||
430 | } | ||
431 | |||
432 | static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) | ||
433 | { | ||
434 | return (struct f2fs_nm_info *)(sbi->nm_info); | ||
435 | } | ||
436 | |||
437 | static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) | ||
438 | { | ||
439 | return (struct f2fs_sm_info *)(sbi->sm_info); | ||
440 | } | ||
441 | |||
442 | static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) | ||
443 | { | ||
444 | return (struct sit_info *)(SM_I(sbi)->sit_info); | ||
445 | } | ||
446 | |||
447 | static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) | ||
448 | { | ||
449 | return (struct free_segmap_info *)(SM_I(sbi)->free_info); | ||
450 | } | ||
451 | |||
452 | static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) | ||
453 | { | ||
454 | return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); | ||
455 | } | ||
456 | |||
457 | static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi) | ||
458 | { | ||
459 | sbi->s_dirty = 1; | ||
460 | } | ||
461 | |||
462 | static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi) | ||
463 | { | ||
464 | sbi->s_dirty = 0; | ||
465 | } | ||
466 | |||
467 | static inline void mutex_lock_op(struct f2fs_sb_info *sbi, enum lock_type t) | ||
468 | { | ||
469 | mutex_lock_nested(&sbi->fs_lock[t], t); | ||
470 | } | ||
471 | |||
472 | static inline void mutex_unlock_op(struct f2fs_sb_info *sbi, enum lock_type t) | ||
473 | { | ||
474 | mutex_unlock(&sbi->fs_lock[t]); | ||
475 | } | ||
476 | |||
477 | /* | ||
478 | * Check whether the given nid is within node id range. | ||
479 | */ | ||
480 | static inline void check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) | ||
481 | { | ||
482 | BUG_ON((nid >= NM_I(sbi)->max_nid)); | ||
483 | } | ||
484 | |||
485 | #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 | ||
486 | |||
487 | /* | ||
488 | * Check whether the inode has blocks or not | ||
489 | */ | ||
490 | static inline int F2FS_HAS_BLOCKS(struct inode *inode) | ||
491 | { | ||
492 | if (F2FS_I(inode)->i_xattr_nid) | ||
493 | return (inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1); | ||
494 | else | ||
495 | return (inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS); | ||
496 | } | ||
497 | |||
498 | static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, | ||
499 | struct inode *inode, blkcnt_t count) | ||
500 | { | ||
501 | block_t valid_block_count; | ||
502 | |||
503 | spin_lock(&sbi->stat_lock); | ||
504 | valid_block_count = | ||
505 | sbi->total_valid_block_count + (block_t)count; | ||
506 | if (valid_block_count > sbi->user_block_count) { | ||
507 | spin_unlock(&sbi->stat_lock); | ||
508 | return false; | ||
509 | } | ||
510 | inode->i_blocks += count; | ||
511 | sbi->total_valid_block_count = valid_block_count; | ||
512 | sbi->alloc_valid_block_count += (block_t)count; | ||
513 | spin_unlock(&sbi->stat_lock); | ||
514 | return true; | ||
515 | } | ||
516 | |||
517 | static inline int dec_valid_block_count(struct f2fs_sb_info *sbi, | ||
518 | struct inode *inode, | ||
519 | blkcnt_t count) | ||
520 | { | ||
521 | spin_lock(&sbi->stat_lock); | ||
522 | BUG_ON(sbi->total_valid_block_count < (block_t) count); | ||
523 | BUG_ON(inode->i_blocks < count); | ||
524 | inode->i_blocks -= count; | ||
525 | sbi->total_valid_block_count -= (block_t)count; | ||
526 | spin_unlock(&sbi->stat_lock); | ||
527 | return 0; | ||
528 | } | ||
529 | |||
530 | static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) | ||
531 | { | ||
532 | atomic_inc(&sbi->nr_pages[count_type]); | ||
533 | F2FS_SET_SB_DIRT(sbi); | ||
534 | } | ||
535 | |||
536 | static inline void inode_inc_dirty_dents(struct inode *inode) | ||
537 | { | ||
538 | atomic_inc(&F2FS_I(inode)->dirty_dents); | ||
539 | } | ||
540 | |||
541 | static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) | ||
542 | { | ||
543 | atomic_dec(&sbi->nr_pages[count_type]); | ||
544 | } | ||
545 | |||
546 | static inline void inode_dec_dirty_dents(struct inode *inode) | ||
547 | { | ||
548 | atomic_dec(&F2FS_I(inode)->dirty_dents); | ||
549 | } | ||
550 | |||
551 | static inline int get_pages(struct f2fs_sb_info *sbi, int count_type) | ||
552 | { | ||
553 | return atomic_read(&sbi->nr_pages[count_type]); | ||
554 | } | ||
555 | |||
556 | static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) | ||
557 | { | ||
558 | block_t ret; | ||
559 | spin_lock(&sbi->stat_lock); | ||
560 | ret = sbi->total_valid_block_count; | ||
561 | spin_unlock(&sbi->stat_lock); | ||
562 | return ret; | ||
563 | } | ||
564 | |||
565 | static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) | ||
566 | { | ||
567 | struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | ||
568 | |||
569 | /* return NAT or SIT bitmap */ | ||
570 | if (flag == NAT_BITMAP) | ||
571 | return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); | ||
572 | else if (flag == SIT_BITMAP) | ||
573 | return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); | ||
574 | |||
575 | return 0; | ||
576 | } | ||
577 | |||
578 | static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) | ||
579 | { | ||
580 | struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | ||
581 | int offset = (flag == NAT_BITMAP) ? ckpt->sit_ver_bitmap_bytesize : 0; | ||
582 | return &ckpt->sit_nat_version_bitmap + offset; | ||
583 | } | ||
584 | |||
585 | static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) | ||
586 | { | ||
587 | block_t start_addr; | ||
588 | struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | ||
589 | unsigned long long ckpt_version = le64_to_cpu(ckpt->checkpoint_ver); | ||
590 | |||
591 | start_addr = le64_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); | ||
592 | |||
593 | /* | ||
594 | * odd numbered checkpoint should at cp segment 0 | ||
595 | * and even segent must be at cp segment 1 | ||
596 | */ | ||
597 | if (!(ckpt_version & 1)) | ||
598 | start_addr += sbi->blocks_per_seg; | ||
599 | |||
600 | return start_addr; | ||
601 | } | ||
602 | |||
603 | static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) | ||
604 | { | ||
605 | return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); | ||
606 | } | ||
607 | |||
608 | static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, | ||
609 | struct inode *inode, | ||
610 | unsigned int count) | ||
611 | { | ||
612 | block_t valid_block_count; | ||
613 | unsigned int valid_node_count; | ||
614 | |||
615 | spin_lock(&sbi->stat_lock); | ||
616 | |||
617 | valid_block_count = sbi->total_valid_block_count + (block_t)count; | ||
618 | sbi->alloc_valid_block_count += (block_t)count; | ||
619 | valid_node_count = sbi->total_valid_node_count + count; | ||
620 | |||
621 | if (valid_block_count > sbi->user_block_count) { | ||
622 | spin_unlock(&sbi->stat_lock); | ||
623 | return false; | ||
624 | } | ||
625 | |||
626 | if (valid_node_count > sbi->total_node_count) { | ||
627 | spin_unlock(&sbi->stat_lock); | ||
628 | return false; | ||
629 | } | ||
630 | |||
631 | if (inode) | ||
632 | inode->i_blocks += count; | ||
633 | sbi->total_valid_node_count = valid_node_count; | ||
634 | sbi->total_valid_block_count = valid_block_count; | ||
635 | spin_unlock(&sbi->stat_lock); | ||
636 | |||
637 | return true; | ||
638 | } | ||
639 | |||
640 | static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, | ||
641 | struct inode *inode, | ||
642 | unsigned int count) | ||
643 | { | ||
644 | spin_lock(&sbi->stat_lock); | ||
645 | |||
646 | BUG_ON(sbi->total_valid_block_count < count); | ||
647 | BUG_ON(sbi->total_valid_node_count < count); | ||
648 | BUG_ON(inode->i_blocks < count); | ||
649 | |||
650 | inode->i_blocks -= count; | ||
651 | sbi->total_valid_node_count -= count; | ||
652 | sbi->total_valid_block_count -= (block_t)count; | ||
653 | |||
654 | spin_unlock(&sbi->stat_lock); | ||
655 | } | ||
656 | |||
657 | static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) | ||
658 | { | ||
659 | unsigned int ret; | ||
660 | spin_lock(&sbi->stat_lock); | ||
661 | ret = sbi->total_valid_node_count; | ||
662 | spin_unlock(&sbi->stat_lock); | ||
663 | return ret; | ||
664 | } | ||
665 | |||
666 | static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) | ||
667 | { | ||
668 | spin_lock(&sbi->stat_lock); | ||
669 | BUG_ON(sbi->total_valid_inode_count == sbi->total_node_count); | ||
670 | sbi->total_valid_inode_count++; | ||
671 | spin_unlock(&sbi->stat_lock); | ||
672 | } | ||
673 | |||
674 | static inline int dec_valid_inode_count(struct f2fs_sb_info *sbi) | ||
675 | { | ||
676 | spin_lock(&sbi->stat_lock); | ||
677 | BUG_ON(!sbi->total_valid_inode_count); | ||
678 | sbi->total_valid_inode_count--; | ||
679 | spin_unlock(&sbi->stat_lock); | ||
680 | return 0; | ||
681 | } | ||
682 | |||
683 | static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi) | ||
684 | { | ||
685 | unsigned int ret; | ||
686 | spin_lock(&sbi->stat_lock); | ||
687 | ret = sbi->total_valid_inode_count; | ||
688 | spin_unlock(&sbi->stat_lock); | ||
689 | return ret; | ||
690 | } | ||
691 | |||
692 | static inline void f2fs_put_page(struct page *page, int unlock) | ||
693 | { | ||
694 | if (!page || IS_ERR(page)) | ||
695 | return; | ||
696 | |||
697 | if (unlock) { | ||
698 | BUG_ON(!PageLocked(page)); | ||
699 | unlock_page(page); | ||
700 | } | ||
701 | page_cache_release(page); | ||
702 | } | ||
703 | |||
704 | static inline void f2fs_put_dnode(struct dnode_of_data *dn) | ||
705 | { | ||
706 | if (dn->node_page) | ||
707 | f2fs_put_page(dn->node_page, 1); | ||
708 | if (dn->inode_page && dn->node_page != dn->inode_page) | ||
709 | f2fs_put_page(dn->inode_page, 0); | ||
710 | dn->node_page = NULL; | ||
711 | dn->inode_page = NULL; | ||
712 | } | ||
713 | |||
714 | static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, | ||
715 | size_t size, void (*ctor)(void *)) | ||
716 | { | ||
717 | return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, ctor); | ||
718 | } | ||
719 | |||
720 | #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) | ||
721 | |||
722 | static inline bool IS_INODE(struct page *page) | ||
723 | { | ||
724 | struct f2fs_node *p = (struct f2fs_node *)page_address(page); | ||
725 | return RAW_IS_INODE(p); | ||
726 | } | ||
727 | |||
728 | static inline __le32 *blkaddr_in_node(struct f2fs_node *node) | ||
729 | { | ||
730 | return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; | ||
731 | } | ||
732 | |||
733 | static inline block_t datablock_addr(struct page *node_page, | ||
734 | unsigned int offset) | ||
735 | { | ||
736 | struct f2fs_node *raw_node; | ||
737 | __le32 *addr_array; | ||
738 | raw_node = (struct f2fs_node *)page_address(node_page); | ||
739 | addr_array = blkaddr_in_node(raw_node); | ||
740 | return le32_to_cpu(addr_array[offset]); | ||
741 | } | ||
742 | |||
743 | static inline int f2fs_test_bit(unsigned int nr, char *addr) | ||
744 | { | ||
745 | int mask; | ||
746 | |||
747 | addr += (nr >> 3); | ||
748 | mask = 1 << (7 - (nr & 0x07)); | ||
749 | return mask & *addr; | ||
750 | } | ||
751 | |||
752 | static inline int f2fs_set_bit(unsigned int nr, char *addr) | ||
753 | { | ||
754 | int mask; | ||
755 | int ret; | ||
756 | |||
757 | addr += (nr >> 3); | ||
758 | mask = 1 << (7 - (nr & 0x07)); | ||
759 | ret = mask & *addr; | ||
760 | *addr |= mask; | ||
761 | return ret; | ||
762 | } | ||
763 | |||
764 | static inline int f2fs_clear_bit(unsigned int nr, char *addr) | ||
765 | { | ||
766 | int mask; | ||
767 | int ret; | ||
768 | |||
769 | addr += (nr >> 3); | ||
770 | mask = 1 << (7 - (nr & 0x07)); | ||
771 | ret = mask & *addr; | ||
772 | *addr &= ~mask; | ||
773 | return ret; | ||
774 | } | ||
775 | |||
776 | /* used for f2fs_inode_info->flags */ | ||
777 | enum { | ||
778 | FI_NEW_INODE, /* indicate newly allocated inode */ | ||
779 | FI_NEED_CP, /* need to do checkpoint during fsync */ | ||
780 | FI_INC_LINK, /* need to increment i_nlink */ | ||
781 | FI_ACL_MODE, /* indicate acl mode */ | ||
782 | FI_NO_ALLOC, /* should not allocate any blocks */ | ||
783 | }; | ||
784 | |||
785 | static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag) | ||
786 | { | ||
787 | set_bit(flag, &fi->flags); | ||
788 | } | ||
789 | |||
790 | static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag) | ||
791 | { | ||
792 | return test_bit(flag, &fi->flags); | ||
793 | } | ||
794 | |||
795 | static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag) | ||
796 | { | ||
797 | clear_bit(flag, &fi->flags); | ||
798 | } | ||
799 | |||
800 | static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode) | ||
801 | { | ||
802 | fi->i_acl_mode = mode; | ||
803 | set_inode_flag(fi, FI_ACL_MODE); | ||
804 | } | ||
805 | |||
806 | static inline int cond_clear_inode_flag(struct f2fs_inode_info *fi, int flag) | ||
807 | { | ||
808 | if (is_inode_flag_set(fi, FI_ACL_MODE)) { | ||
809 | clear_inode_flag(fi, FI_ACL_MODE); | ||
810 | return 1; | ||
811 | } | ||
812 | return 0; | ||
813 | } | ||
814 | |||
815 | /* | ||
816 | * file.c | ||
817 | */ | ||
818 | int f2fs_sync_file(struct file *, loff_t, loff_t, int); | ||
819 | void truncate_data_blocks(struct dnode_of_data *); | ||
820 | void f2fs_truncate(struct inode *); | ||
821 | int f2fs_setattr(struct dentry *, struct iattr *); | ||
822 | int truncate_hole(struct inode *, pgoff_t, pgoff_t); | ||
823 | long f2fs_ioctl(struct file *, unsigned int, unsigned long); | ||
824 | |||
825 | /* | ||
826 | * inode.c | ||
827 | */ | ||
828 | void f2fs_set_inode_flags(struct inode *); | ||
829 | struct inode *f2fs_iget_nowait(struct super_block *, unsigned long); | ||
830 | struct inode *f2fs_iget(struct super_block *, unsigned long); | ||
831 | void update_inode(struct inode *, struct page *); | ||
832 | int f2fs_write_inode(struct inode *, struct writeback_control *); | ||
833 | void f2fs_evict_inode(struct inode *); | ||
834 | |||
835 | /* | ||
836 | * namei.c | ||
837 | */ | ||
838 | struct dentry *f2fs_get_parent(struct dentry *child); | ||
839 | |||
840 | /* | ||
841 | * dir.c | ||
842 | */ | ||
843 | struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *, | ||
844 | struct page **); | ||
845 | struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **); | ||
846 | ino_t f2fs_inode_by_name(struct inode *, struct qstr *); | ||
847 | void f2fs_set_link(struct inode *, struct f2fs_dir_entry *, | ||
848 | struct page *, struct inode *); | ||
849 | void init_dent_inode(struct dentry *, struct page *); | ||
850 | int f2fs_add_link(struct dentry *, struct inode *); | ||
851 | void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *); | ||
852 | int f2fs_make_empty(struct inode *, struct inode *); | ||
853 | bool f2fs_empty_dir(struct inode *); | ||
854 | |||
855 | /* | ||
856 | * super.c | ||
857 | */ | ||
858 | int f2fs_sync_fs(struct super_block *, int); | ||
859 | |||
860 | /* | ||
861 | * hash.c | ||
862 | */ | ||
863 | f2fs_hash_t f2fs_dentry_hash(const char *, int); | ||
864 | |||
865 | /* | ||
866 | * node.c | ||
867 | */ | ||
868 | struct dnode_of_data; | ||
869 | struct node_info; | ||
870 | |||
871 | int is_checkpointed_node(struct f2fs_sb_info *, nid_t); | ||
872 | void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *); | ||
873 | int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int); | ||
874 | int truncate_inode_blocks(struct inode *, pgoff_t); | ||
875 | int remove_inode_page(struct inode *); | ||
876 | int new_inode_page(struct inode *, struct dentry *); | ||
877 | struct page *new_node_page(struct dnode_of_data *, unsigned int); | ||
878 | void ra_node_page(struct f2fs_sb_info *, nid_t); | ||
879 | struct page *get_node_page(struct f2fs_sb_info *, pgoff_t); | ||
880 | struct page *get_node_page_ra(struct page *, int); | ||
881 | void sync_inode_page(struct dnode_of_data *); | ||
882 | int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *); | ||
883 | bool alloc_nid(struct f2fs_sb_info *, nid_t *); | ||
884 | void alloc_nid_done(struct f2fs_sb_info *, nid_t); | ||
885 | void alloc_nid_failed(struct f2fs_sb_info *, nid_t); | ||
886 | void recover_node_page(struct f2fs_sb_info *, struct page *, | ||
887 | struct f2fs_summary *, struct node_info *, block_t); | ||
888 | int recover_inode_page(struct f2fs_sb_info *, struct page *); | ||
889 | int restore_node_summary(struct f2fs_sb_info *, unsigned int, | ||
890 | struct f2fs_summary_block *); | ||
891 | void flush_nat_entries(struct f2fs_sb_info *); | ||
892 | int build_node_manager(struct f2fs_sb_info *); | ||
893 | void destroy_node_manager(struct f2fs_sb_info *); | ||
894 | int create_node_manager_caches(void); | ||
895 | void destroy_node_manager_caches(void); | ||
896 | |||
897 | /* | ||
898 | * segment.c | ||
899 | */ | ||
900 | void f2fs_balance_fs(struct f2fs_sb_info *); | ||
901 | void invalidate_blocks(struct f2fs_sb_info *, block_t); | ||
902 | void locate_dirty_segment(struct f2fs_sb_info *, unsigned int); | ||
903 | void clear_prefree_segments(struct f2fs_sb_info *); | ||
904 | int npages_for_summary_flush(struct f2fs_sb_info *); | ||
905 | void allocate_new_segments(struct f2fs_sb_info *); | ||
906 | struct page *get_sum_page(struct f2fs_sb_info *, unsigned int); | ||
907 | struct bio *f2fs_bio_alloc(struct block_device *, sector_t, int, gfp_t); | ||
908 | void f2fs_submit_bio(struct f2fs_sb_info *, enum page_type, bool sync); | ||
909 | int write_meta_page(struct f2fs_sb_info *, struct page *, | ||
910 | struct writeback_control *); | ||
911 | void write_node_page(struct f2fs_sb_info *, struct page *, unsigned int, | ||
912 | block_t, block_t *); | ||
913 | void write_data_page(struct inode *, struct page *, struct dnode_of_data*, | ||
914 | block_t, block_t *); | ||
915 | void rewrite_data_page(struct f2fs_sb_info *, struct page *, block_t); | ||
916 | void recover_data_page(struct f2fs_sb_info *, struct page *, | ||
917 | struct f2fs_summary *, block_t, block_t); | ||
918 | void rewrite_node_page(struct f2fs_sb_info *, struct page *, | ||
919 | struct f2fs_summary *, block_t, block_t); | ||
920 | void write_data_summaries(struct f2fs_sb_info *, block_t); | ||
921 | void write_node_summaries(struct f2fs_sb_info *, block_t); | ||
922 | int lookup_journal_in_cursum(struct f2fs_summary_block *, | ||
923 | int, unsigned int, int); | ||
924 | void flush_sit_entries(struct f2fs_sb_info *); | ||
925 | int build_segment_manager(struct f2fs_sb_info *); | ||
926 | void reset_victim_segmap(struct f2fs_sb_info *); | ||
927 | void destroy_segment_manager(struct f2fs_sb_info *); | ||
928 | |||
929 | /* | ||
930 | * checkpoint.c | ||
931 | */ | ||
932 | struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t); | ||
933 | struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t); | ||
934 | long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long); | ||
935 | int check_orphan_space(struct f2fs_sb_info *); | ||
936 | void add_orphan_inode(struct f2fs_sb_info *, nid_t); | ||
937 | void remove_orphan_inode(struct f2fs_sb_info *, nid_t); | ||
938 | int recover_orphan_inodes(struct f2fs_sb_info *); | ||
939 | int get_valid_checkpoint(struct f2fs_sb_info *); | ||
940 | void set_dirty_dir_page(struct inode *, struct page *); | ||
941 | void remove_dirty_dir_inode(struct inode *); | ||
942 | void sync_dirty_dir_inodes(struct f2fs_sb_info *); | ||
943 | void block_operations(struct f2fs_sb_info *); | ||
944 | void write_checkpoint(struct f2fs_sb_info *, bool, bool); | ||
945 | void init_orphan_info(struct f2fs_sb_info *); | ||
946 | int create_checkpoint_caches(void); | ||
947 | void destroy_checkpoint_caches(void); | ||
948 | |||
949 | /* | ||
950 | * data.c | ||
951 | */ | ||
952 | int reserve_new_block(struct dnode_of_data *); | ||
953 | void update_extent_cache(block_t, struct dnode_of_data *); | ||
954 | struct page *find_data_page(struct inode *, pgoff_t); | ||
955 | struct page *get_lock_data_page(struct inode *, pgoff_t); | ||
956 | struct page *get_new_data_page(struct inode *, pgoff_t, bool); | ||
957 | int f2fs_readpage(struct f2fs_sb_info *, struct page *, block_t, int); | ||
958 | int do_write_data_page(struct page *); | ||
959 | |||
960 | /* | ||
961 | * gc.c | ||
962 | */ | ||
963 | int start_gc_thread(struct f2fs_sb_info *); | ||
964 | void stop_gc_thread(struct f2fs_sb_info *); | ||
965 | block_t start_bidx_of_node(unsigned int); | ||
966 | int f2fs_gc(struct f2fs_sb_info *, int); | ||
967 | void build_gc_manager(struct f2fs_sb_info *); | ||
968 | int create_gc_caches(void); | ||
969 | void destroy_gc_caches(void); | ||
970 | |||
971 | /* | ||
972 | * recovery.c | ||
973 | */ | ||
974 | void recover_fsync_data(struct f2fs_sb_info *); | ||
975 | bool space_for_roll_forward(struct f2fs_sb_info *); | ||
976 | |||
977 | /* | ||
978 | * debug.c | ||
979 | */ | ||
980 | #ifdef CONFIG_F2FS_STAT_FS | ||
981 | struct f2fs_stat_info { | ||
982 | struct list_head stat_list; | ||
983 | struct f2fs_sb_info *sbi; | ||
984 | struct mutex stat_lock; | ||
985 | int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; | ||
986 | int main_area_segs, main_area_sections, main_area_zones; | ||
987 | int hit_ext, total_ext; | ||
988 | int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta; | ||
989 | int nats, sits, fnids; | ||
990 | int total_count, utilization; | ||
991 | int bg_gc; | ||
992 | unsigned int valid_count, valid_node_count, valid_inode_count; | ||
993 | unsigned int bimodal, avg_vblocks; | ||
994 | int util_free, util_valid, util_invalid; | ||
995 | int rsvd_segs, overp_segs; | ||
996 | int dirty_count, node_pages, meta_pages; | ||
997 | int prefree_count, call_count; | ||
998 | int tot_segs, node_segs, data_segs, free_segs, free_secs; | ||
999 | int tot_blks, data_blks, node_blks; | ||
1000 | int curseg[NR_CURSEG_TYPE]; | ||
1001 | int cursec[NR_CURSEG_TYPE]; | ||
1002 | int curzone[NR_CURSEG_TYPE]; | ||
1003 | |||
1004 | unsigned int segment_count[2]; | ||
1005 | unsigned int block_count[2]; | ||
1006 | unsigned base_mem, cache_mem; | ||
1007 | }; | ||
1008 | |||
1009 | #define stat_inc_call_count(si) ((si)->call_count++) | ||
1010 | |||
1011 | #define stat_inc_seg_count(sbi, type) \ | ||
1012 | do { \ | ||
1013 | struct f2fs_stat_info *si = sbi->stat_info; \ | ||
1014 | (si)->tot_segs++; \ | ||
1015 | if (type == SUM_TYPE_DATA) \ | ||
1016 | si->data_segs++; \ | ||
1017 | else \ | ||
1018 | si->node_segs++; \ | ||
1019 | } while (0) | ||
1020 | |||
1021 | #define stat_inc_tot_blk_count(si, blks) \ | ||
1022 | (si->tot_blks += (blks)) | ||
1023 | |||
1024 | #define stat_inc_data_blk_count(sbi, blks) \ | ||
1025 | do { \ | ||
1026 | struct f2fs_stat_info *si = sbi->stat_info; \ | ||
1027 | stat_inc_tot_blk_count(si, blks); \ | ||
1028 | si->data_blks += (blks); \ | ||
1029 | } while (0) | ||
1030 | |||
1031 | #define stat_inc_node_blk_count(sbi, blks) \ | ||
1032 | do { \ | ||
1033 | struct f2fs_stat_info *si = sbi->stat_info; \ | ||
1034 | stat_inc_tot_blk_count(si, blks); \ | ||
1035 | si->node_blks += (blks); \ | ||
1036 | } while (0) | ||
1037 | |||
1038 | int f2fs_build_stats(struct f2fs_sb_info *); | ||
1039 | void f2fs_destroy_stats(struct f2fs_sb_info *); | ||
1040 | void destroy_root_stats(void); | ||
1041 | #else | ||
1042 | #define stat_inc_call_count(si) | ||
1043 | #define stat_inc_seg_count(si, type) | ||
1044 | #define stat_inc_tot_blk_count(si, blks) | ||
1045 | #define stat_inc_data_blk_count(si, blks) | ||
1046 | #define stat_inc_node_blk_count(sbi, blks) | ||
1047 | |||
1048 | static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } | ||
1049 | static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } | ||
1050 | static inline void destroy_root_stats(void) { } | ||
1051 | #endif | ||
1052 | |||
1053 | extern const struct file_operations f2fs_dir_operations; | ||
1054 | extern const struct file_operations f2fs_file_operations; | ||
1055 | extern const struct inode_operations f2fs_file_inode_operations; | ||
1056 | extern const struct address_space_operations f2fs_dblock_aops; | ||
1057 | extern const struct address_space_operations f2fs_node_aops; | ||
1058 | extern const struct address_space_operations f2fs_meta_aops; | ||
1059 | extern const struct inode_operations f2fs_dir_inode_operations; | ||
1060 | extern const struct inode_operations f2fs_symlink_inode_operations; | ||
1061 | extern const struct inode_operations f2fs_special_inode_operations; | ||
1062 | #endif | ||
diff --git a/fs/f2fs/node.h b/fs/f2fs/node.h new file mode 100644 index 000000000000..5d525ed312ba --- /dev/null +++ b/fs/f2fs/node.h | |||
@@ -0,0 +1,353 @@ | |||
1 | /** | ||
2 | * fs/f2fs/node.h | ||
3 | * | ||
4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | ||
5 | * http://www.samsung.com/ | ||
6 | * | ||
7 | * This program is free software; you can redistribute it and/or modify | ||
8 | * it under the terms of the GNU General Public License version 2 as | ||
9 | * published by the Free Software Foundation. | ||
10 | */ | ||
11 | /* start node id of a node block dedicated to the given node id */ | ||
12 | #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) | ||
13 | |||
14 | /* node block offset on the NAT area dedicated to the given start node id */ | ||
15 | #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK) | ||
16 | |||
17 | /* # of pages to perform readahead before building free nids */ | ||
18 | #define FREE_NID_PAGES 4 | ||
19 | |||
20 | /* maximum # of free node ids to produce during build_free_nids */ | ||
21 | #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES) | ||
22 | |||
23 | /* maximum readahead size for node during getting data blocks */ | ||
24 | #define MAX_RA_NODE 128 | ||
25 | |||
26 | /* maximum cached nat entries to manage memory footprint */ | ||
27 | #define NM_WOUT_THRESHOLD (64 * NAT_ENTRY_PER_BLOCK) | ||
28 | |||
29 | /* vector size for gang look-up from nat cache that consists of radix tree */ | ||
30 | #define NATVEC_SIZE 64 | ||
31 | |||
32 | /* | ||
33 | * For node information | ||
34 | */ | ||
35 | struct node_info { | ||
36 | nid_t nid; /* node id */ | ||
37 | nid_t ino; /* inode number of the node's owner */ | ||
38 | block_t blk_addr; /* block address of the node */ | ||
39 | unsigned char version; /* version of the node */ | ||
40 | }; | ||
41 | |||
42 | struct nat_entry { | ||
43 | struct list_head list; /* for clean or dirty nat list */ | ||
44 | bool checkpointed; /* whether it is checkpointed or not */ | ||
45 | struct node_info ni; /* in-memory node information */ | ||
46 | }; | ||
47 | |||
48 | #define nat_get_nid(nat) (nat->ni.nid) | ||
49 | #define nat_set_nid(nat, n) (nat->ni.nid = n) | ||
50 | #define nat_get_blkaddr(nat) (nat->ni.blk_addr) | ||
51 | #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b) | ||
52 | #define nat_get_ino(nat) (nat->ni.ino) | ||
53 | #define nat_set_ino(nat, i) (nat->ni.ino = i) | ||
54 | #define nat_get_version(nat) (nat->ni.version) | ||
55 | #define nat_set_version(nat, v) (nat->ni.version = v) | ||
56 | |||
57 | #define __set_nat_cache_dirty(nm_i, ne) \ | ||
58 | list_move_tail(&ne->list, &nm_i->dirty_nat_entries); | ||
59 | #define __clear_nat_cache_dirty(nm_i, ne) \ | ||
60 | list_move_tail(&ne->list, &nm_i->nat_entries); | ||
61 | #define inc_node_version(version) (++version) | ||
62 | |||
63 | static inline void node_info_from_raw_nat(struct node_info *ni, | ||
64 | struct f2fs_nat_entry *raw_ne) | ||
65 | { | ||
66 | ni->ino = le32_to_cpu(raw_ne->ino); | ||
67 | ni->blk_addr = le32_to_cpu(raw_ne->block_addr); | ||
68 | ni->version = raw_ne->version; | ||
69 | } | ||
70 | |||
71 | /* | ||
72 | * For free nid mangement | ||
73 | */ | ||
74 | enum nid_state { | ||
75 | NID_NEW, /* newly added to free nid list */ | ||
76 | NID_ALLOC /* it is allocated */ | ||
77 | }; | ||
78 | |||
79 | struct free_nid { | ||
80 | struct list_head list; /* for free node id list */ | ||
81 | nid_t nid; /* node id */ | ||
82 | int state; /* in use or not: NID_NEW or NID_ALLOC */ | ||
83 | }; | ||
84 | |||
85 | static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) | ||
86 | { | ||
87 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
88 | struct free_nid *fnid; | ||
89 | |||
90 | if (nm_i->fcnt <= 0) | ||
91 | return -1; | ||
92 | spin_lock(&nm_i->free_nid_list_lock); | ||
93 | fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list); | ||
94 | *nid = fnid->nid; | ||
95 | spin_unlock(&nm_i->free_nid_list_lock); | ||
96 | return 0; | ||
97 | } | ||
98 | |||
99 | /* | ||
100 | * inline functions | ||
101 | */ | ||
102 | static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) | ||
103 | { | ||
104 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
105 | memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); | ||
106 | } | ||
107 | |||
108 | static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) | ||
109 | { | ||
110 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
111 | pgoff_t block_off; | ||
112 | pgoff_t block_addr; | ||
113 | int seg_off; | ||
114 | |||
115 | block_off = NAT_BLOCK_OFFSET(start); | ||
116 | seg_off = block_off >> sbi->log_blocks_per_seg; | ||
117 | |||
118 | block_addr = (pgoff_t)(nm_i->nat_blkaddr + | ||
119 | (seg_off << sbi->log_blocks_per_seg << 1) + | ||
120 | (block_off & ((1 << sbi->log_blocks_per_seg) - 1))); | ||
121 | |||
122 | if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) | ||
123 | block_addr += sbi->blocks_per_seg; | ||
124 | |||
125 | return block_addr; | ||
126 | } | ||
127 | |||
128 | static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, | ||
129 | pgoff_t block_addr) | ||
130 | { | ||
131 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
132 | |||
133 | block_addr -= nm_i->nat_blkaddr; | ||
134 | if ((block_addr >> sbi->log_blocks_per_seg) % 2) | ||
135 | block_addr -= sbi->blocks_per_seg; | ||
136 | else | ||
137 | block_addr += sbi->blocks_per_seg; | ||
138 | |||
139 | return block_addr + nm_i->nat_blkaddr; | ||
140 | } | ||
141 | |||
142 | static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) | ||
143 | { | ||
144 | unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); | ||
145 | |||
146 | if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) | ||
147 | f2fs_clear_bit(block_off, nm_i->nat_bitmap); | ||
148 | else | ||
149 | f2fs_set_bit(block_off, nm_i->nat_bitmap); | ||
150 | } | ||
151 | |||
152 | static inline void fill_node_footer(struct page *page, nid_t nid, | ||
153 | nid_t ino, unsigned int ofs, bool reset) | ||
154 | { | ||
155 | void *kaddr = page_address(page); | ||
156 | struct f2fs_node *rn = (struct f2fs_node *)kaddr; | ||
157 | if (reset) | ||
158 | memset(rn, 0, sizeof(*rn)); | ||
159 | rn->footer.nid = cpu_to_le32(nid); | ||
160 | rn->footer.ino = cpu_to_le32(ino); | ||
161 | rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT); | ||
162 | } | ||
163 | |||
164 | static inline void copy_node_footer(struct page *dst, struct page *src) | ||
165 | { | ||
166 | void *src_addr = page_address(src); | ||
167 | void *dst_addr = page_address(dst); | ||
168 | struct f2fs_node *src_rn = (struct f2fs_node *)src_addr; | ||
169 | struct f2fs_node *dst_rn = (struct f2fs_node *)dst_addr; | ||
170 | memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); | ||
171 | } | ||
172 | |||
173 | static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) | ||
174 | { | ||
175 | struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); | ||
176 | struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | ||
177 | void *kaddr = page_address(page); | ||
178 | struct f2fs_node *rn = (struct f2fs_node *)kaddr; | ||
179 | rn->footer.cp_ver = ckpt->checkpoint_ver; | ||
180 | rn->footer.next_blkaddr = blkaddr; | ||
181 | } | ||
182 | |||
183 | static inline nid_t ino_of_node(struct page *node_page) | ||
184 | { | ||
185 | void *kaddr = page_address(node_page); | ||
186 | struct f2fs_node *rn = (struct f2fs_node *)kaddr; | ||
187 | return le32_to_cpu(rn->footer.ino); | ||
188 | } | ||
189 | |||
190 | static inline nid_t nid_of_node(struct page *node_page) | ||
191 | { | ||
192 | void *kaddr = page_address(node_page); | ||
193 | struct f2fs_node *rn = (struct f2fs_node *)kaddr; | ||
194 | return le32_to_cpu(rn->footer.nid); | ||
195 | } | ||
196 | |||
197 | static inline unsigned int ofs_of_node(struct page *node_page) | ||
198 | { | ||
199 | void *kaddr = page_address(node_page); | ||
200 | struct f2fs_node *rn = (struct f2fs_node *)kaddr; | ||
201 | unsigned flag = le32_to_cpu(rn->footer.flag); | ||
202 | return flag >> OFFSET_BIT_SHIFT; | ||
203 | } | ||
204 | |||
205 | static inline unsigned long long cpver_of_node(struct page *node_page) | ||
206 | { | ||
207 | void *kaddr = page_address(node_page); | ||
208 | struct f2fs_node *rn = (struct f2fs_node *)kaddr; | ||
209 | return le64_to_cpu(rn->footer.cp_ver); | ||
210 | } | ||
211 | |||
212 | static inline block_t next_blkaddr_of_node(struct page *node_page) | ||
213 | { | ||
214 | void *kaddr = page_address(node_page); | ||
215 | struct f2fs_node *rn = (struct f2fs_node *)kaddr; | ||
216 | return le32_to_cpu(rn->footer.next_blkaddr); | ||
217 | } | ||
218 | |||
219 | /* | ||
220 | * f2fs assigns the following node offsets described as (num). | ||
221 | * N = NIDS_PER_BLOCK | ||
222 | * | ||
223 | * Inode block (0) | ||
224 | * |- direct node (1) | ||
225 | * |- direct node (2) | ||
226 | * |- indirect node (3) | ||
227 | * | `- direct node (4 => 4 + N - 1) | ||
228 | * |- indirect node (4 + N) | ||
229 | * | `- direct node (5 + N => 5 + 2N - 1) | ||
230 | * `- double indirect node (5 + 2N) | ||
231 | * `- indirect node (6 + 2N) | ||
232 | * `- direct node (x(N + 1)) | ||
233 | */ | ||
234 | static inline bool IS_DNODE(struct page *node_page) | ||
235 | { | ||
236 | unsigned int ofs = ofs_of_node(node_page); | ||
237 | if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || | ||
238 | ofs == 5 + 2 * NIDS_PER_BLOCK) | ||
239 | return false; | ||
240 | if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { | ||
241 | ofs -= 6 + 2 * NIDS_PER_BLOCK; | ||
242 | if ((long int)ofs % (NIDS_PER_BLOCK + 1)) | ||
243 | return false; | ||
244 | } | ||
245 | return true; | ||
246 | } | ||
247 | |||
248 | static inline void set_nid(struct page *p, int off, nid_t nid, bool i) | ||
249 | { | ||
250 | struct f2fs_node *rn = (struct f2fs_node *)page_address(p); | ||
251 | |||
252 | wait_on_page_writeback(p); | ||
253 | |||
254 | if (i) | ||
255 | rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); | ||
256 | else | ||
257 | rn->in.nid[off] = cpu_to_le32(nid); | ||
258 | set_page_dirty(p); | ||
259 | } | ||
260 | |||
261 | static inline nid_t get_nid(struct page *p, int off, bool i) | ||
262 | { | ||
263 | struct f2fs_node *rn = (struct f2fs_node *)page_address(p); | ||
264 | if (i) | ||
265 | return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); | ||
266 | return le32_to_cpu(rn->in.nid[off]); | ||
267 | } | ||
268 | |||
269 | /* | ||
270 | * Coldness identification: | ||
271 | * - Mark cold files in f2fs_inode_info | ||
272 | * - Mark cold node blocks in their node footer | ||
273 | * - Mark cold data pages in page cache | ||
274 | */ | ||
275 | static inline int is_cold_file(struct inode *inode) | ||
276 | { | ||
277 | return F2FS_I(inode)->i_advise & FADVISE_COLD_BIT; | ||
278 | } | ||
279 | |||
280 | static inline int is_cold_data(struct page *page) | ||
281 | { | ||
282 | return PageChecked(page); | ||
283 | } | ||
284 | |||
285 | static inline void set_cold_data(struct page *page) | ||
286 | { | ||
287 | SetPageChecked(page); | ||
288 | } | ||
289 | |||
290 | static inline void clear_cold_data(struct page *page) | ||
291 | { | ||
292 | ClearPageChecked(page); | ||
293 | } | ||
294 | |||
295 | static inline int is_cold_node(struct page *page) | ||
296 | { | ||
297 | void *kaddr = page_address(page); | ||
298 | struct f2fs_node *rn = (struct f2fs_node *)kaddr; | ||
299 | unsigned int flag = le32_to_cpu(rn->footer.flag); | ||
300 | return flag & (0x1 << COLD_BIT_SHIFT); | ||
301 | } | ||
302 | |||
303 | static inline unsigned char is_fsync_dnode(struct page *page) | ||
304 | { | ||
305 | void *kaddr = page_address(page); | ||
306 | struct f2fs_node *rn = (struct f2fs_node *)kaddr; | ||
307 | unsigned int flag = le32_to_cpu(rn->footer.flag); | ||
308 | return flag & (0x1 << FSYNC_BIT_SHIFT); | ||
309 | } | ||
310 | |||
311 | static inline unsigned char is_dent_dnode(struct page *page) | ||
312 | { | ||
313 | void *kaddr = page_address(page); | ||
314 | struct f2fs_node *rn = (struct f2fs_node *)kaddr; | ||
315 | unsigned int flag = le32_to_cpu(rn->footer.flag); | ||
316 | return flag & (0x1 << DENT_BIT_SHIFT); | ||
317 | } | ||
318 | |||
319 | static inline void set_cold_node(struct inode *inode, struct page *page) | ||
320 | { | ||
321 | struct f2fs_node *rn = (struct f2fs_node *)page_address(page); | ||
322 | unsigned int flag = le32_to_cpu(rn->footer.flag); | ||
323 | |||
324 | if (S_ISDIR(inode->i_mode)) | ||
325 | flag &= ~(0x1 << COLD_BIT_SHIFT); | ||
326 | else | ||
327 | flag |= (0x1 << COLD_BIT_SHIFT); | ||
328 | rn->footer.flag = cpu_to_le32(flag); | ||
329 | } | ||
330 | |||
331 | static inline void set_fsync_mark(struct page *page, int mark) | ||
332 | { | ||
333 | void *kaddr = page_address(page); | ||
334 | struct f2fs_node *rn = (struct f2fs_node *)kaddr; | ||
335 | unsigned int flag = le32_to_cpu(rn->footer.flag); | ||
336 | if (mark) | ||
337 | flag |= (0x1 << FSYNC_BIT_SHIFT); | ||
338 | else | ||
339 | flag &= ~(0x1 << FSYNC_BIT_SHIFT); | ||
340 | rn->footer.flag = cpu_to_le32(flag); | ||
341 | } | ||
342 | |||
343 | static inline void set_dentry_mark(struct page *page, int mark) | ||
344 | { | ||
345 | void *kaddr = page_address(page); | ||
346 | struct f2fs_node *rn = (struct f2fs_node *)kaddr; | ||
347 | unsigned int flag = le32_to_cpu(rn->footer.flag); | ||
348 | if (mark) | ||
349 | flag |= (0x1 << DENT_BIT_SHIFT); | ||
350 | else | ||
351 | flag &= ~(0x1 << DENT_BIT_SHIFT); | ||
352 | rn->footer.flag = cpu_to_le32(flag); | ||
353 | } | ||
diff --git a/fs/f2fs/segment.h b/fs/f2fs/segment.h new file mode 100644 index 000000000000..e380a8ef13f5 --- /dev/null +++ b/fs/f2fs/segment.h | |||
@@ -0,0 +1,615 @@ | |||
1 | /** | ||
2 | * fs/f2fs/segment.h | ||
3 | * | ||
4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | ||
5 | * http://www.samsung.com/ | ||
6 | * | ||
7 | * This program is free software; you can redistribute it and/or modify | ||
8 | * it under the terms of the GNU General Public License version 2 as | ||
9 | * published by the Free Software Foundation. | ||
10 | */ | ||
11 | /* constant macro */ | ||
12 | #define NULL_SEGNO ((unsigned int)(~0)) | ||
13 | |||
14 | /* V: Logical segment # in volume, R: Relative segment # in main area */ | ||
15 | #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno) | ||
16 | #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno) | ||
17 | |||
18 | #define IS_DATASEG(t) \ | ||
19 | ((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) || \ | ||
20 | (t == CURSEG_WARM_DATA)) | ||
21 | |||
22 | #define IS_NODESEG(t) \ | ||
23 | ((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) || \ | ||
24 | (t == CURSEG_WARM_NODE)) | ||
25 | |||
26 | #define IS_CURSEG(sbi, segno) \ | ||
27 | ((segno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ | ||
28 | (segno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ | ||
29 | (segno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ | ||
30 | (segno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ | ||
31 | (segno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ | ||
32 | (segno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno)) | ||
33 | |||
34 | #define IS_CURSEC(sbi, secno) \ | ||
35 | ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ | ||
36 | sbi->segs_per_sec) || \ | ||
37 | (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ | ||
38 | sbi->segs_per_sec) || \ | ||
39 | (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ | ||
40 | sbi->segs_per_sec) || \ | ||
41 | (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ | ||
42 | sbi->segs_per_sec) || \ | ||
43 | (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ | ||
44 | sbi->segs_per_sec) || \ | ||
45 | (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ | ||
46 | sbi->segs_per_sec)) \ | ||
47 | |||
48 | #define START_BLOCK(sbi, segno) \ | ||
49 | (SM_I(sbi)->seg0_blkaddr + \ | ||
50 | (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg)) | ||
51 | #define NEXT_FREE_BLKADDR(sbi, curseg) \ | ||
52 | (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff) | ||
53 | |||
54 | #define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr) | ||
55 | |||
56 | #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \ | ||
57 | ((blk_addr) - SM_I(sbi)->seg0_blkaddr) | ||
58 | #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ | ||
59 | (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg) | ||
60 | #define GET_SEGNO(sbi, blk_addr) \ | ||
61 | (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \ | ||
62 | NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ | ||
63 | GET_SEGNO_FROM_SEG0(sbi, blk_addr))) | ||
64 | #define GET_SECNO(sbi, segno) \ | ||
65 | ((segno) / sbi->segs_per_sec) | ||
66 | #define GET_ZONENO_FROM_SEGNO(sbi, segno) \ | ||
67 | ((segno / sbi->segs_per_sec) / sbi->secs_per_zone) | ||
68 | |||
69 | #define GET_SUM_BLOCK(sbi, segno) \ | ||
70 | ((sbi->sm_info->ssa_blkaddr) + segno) | ||
71 | |||
72 | #define GET_SUM_TYPE(footer) ((footer)->entry_type) | ||
73 | #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type) | ||
74 | |||
75 | #define SIT_ENTRY_OFFSET(sit_i, segno) \ | ||
76 | (segno % sit_i->sents_per_block) | ||
77 | #define SIT_BLOCK_OFFSET(sit_i, segno) \ | ||
78 | (segno / SIT_ENTRY_PER_BLOCK) | ||
79 | #define START_SEGNO(sit_i, segno) \ | ||
80 | (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK) | ||
81 | #define f2fs_bitmap_size(nr) \ | ||
82 | (BITS_TO_LONGS(nr) * sizeof(unsigned long)) | ||
83 | #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments) | ||
84 | |||
85 | /* during checkpoint, bio_private is used to synchronize the last bio */ | ||
86 | struct bio_private { | ||
87 | struct f2fs_sb_info *sbi; | ||
88 | bool is_sync; | ||
89 | void *wait; | ||
90 | }; | ||
91 | |||
92 | /* | ||
93 | * indicate a block allocation direction: RIGHT and LEFT. | ||
94 | * RIGHT means allocating new sections towards the end of volume. | ||
95 | * LEFT means the opposite direction. | ||
96 | */ | ||
97 | enum { | ||
98 | ALLOC_RIGHT = 0, | ||
99 | ALLOC_LEFT | ||
100 | }; | ||
101 | |||
102 | /* | ||
103 | * In the victim_sel_policy->alloc_mode, there are two block allocation modes. | ||
104 | * LFS writes data sequentially with cleaning operations. | ||
105 | * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. | ||
106 | */ | ||
107 | enum { | ||
108 | LFS = 0, | ||
109 | SSR | ||
110 | }; | ||
111 | |||
112 | /* | ||
113 | * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. | ||
114 | * GC_CB is based on cost-benefit algorithm. | ||
115 | * GC_GREEDY is based on greedy algorithm. | ||
116 | */ | ||
117 | enum { | ||
118 | GC_CB = 0, | ||
119 | GC_GREEDY | ||
120 | }; | ||
121 | |||
122 | /* | ||
123 | * BG_GC means the background cleaning job. | ||
124 | * FG_GC means the on-demand cleaning job. | ||
125 | */ | ||
126 | enum { | ||
127 | BG_GC = 0, | ||
128 | FG_GC | ||
129 | }; | ||
130 | |||
131 | /* for a function parameter to select a victim segment */ | ||
132 | struct victim_sel_policy { | ||
133 | int alloc_mode; /* LFS or SSR */ | ||
134 | int gc_mode; /* GC_CB or GC_GREEDY */ | ||
135 | unsigned long *dirty_segmap; /* dirty segment bitmap */ | ||
136 | unsigned int offset; /* last scanned bitmap offset */ | ||
137 | unsigned int ofs_unit; /* bitmap search unit */ | ||
138 | unsigned int min_cost; /* minimum cost */ | ||
139 | unsigned int min_segno; /* segment # having min. cost */ | ||
140 | }; | ||
141 | |||
142 | struct seg_entry { | ||
143 | unsigned short valid_blocks; /* # of valid blocks */ | ||
144 | unsigned char *cur_valid_map; /* validity bitmap of blocks */ | ||
145 | /* | ||
146 | * # of valid blocks and the validity bitmap stored in the the last | ||
147 | * checkpoint pack. This information is used by the SSR mode. | ||
148 | */ | ||
149 | unsigned short ckpt_valid_blocks; | ||
150 | unsigned char *ckpt_valid_map; | ||
151 | unsigned char type; /* segment type like CURSEG_XXX_TYPE */ | ||
152 | unsigned long long mtime; /* modification time of the segment */ | ||
153 | }; | ||
154 | |||
155 | struct sec_entry { | ||
156 | unsigned int valid_blocks; /* # of valid blocks in a section */ | ||
157 | }; | ||
158 | |||
159 | struct segment_allocation { | ||
160 | void (*allocate_segment)(struct f2fs_sb_info *, int, bool); | ||
161 | }; | ||
162 | |||
163 | struct sit_info { | ||
164 | const struct segment_allocation *s_ops; | ||
165 | |||
166 | block_t sit_base_addr; /* start block address of SIT area */ | ||
167 | block_t sit_blocks; /* # of blocks used by SIT area */ | ||
168 | block_t written_valid_blocks; /* # of valid blocks in main area */ | ||
169 | char *sit_bitmap; /* SIT bitmap pointer */ | ||
170 | unsigned int bitmap_size; /* SIT bitmap size */ | ||
171 | |||
172 | unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ | ||
173 | unsigned int dirty_sentries; /* # of dirty sentries */ | ||
174 | unsigned int sents_per_block; /* # of SIT entries per block */ | ||
175 | struct mutex sentry_lock; /* to protect SIT cache */ | ||
176 | struct seg_entry *sentries; /* SIT segment-level cache */ | ||
177 | struct sec_entry *sec_entries; /* SIT section-level cache */ | ||
178 | |||
179 | /* for cost-benefit algorithm in cleaning procedure */ | ||
180 | unsigned long long elapsed_time; /* elapsed time after mount */ | ||
181 | unsigned long long mounted_time; /* mount time */ | ||
182 | unsigned long long min_mtime; /* min. modification time */ | ||
183 | unsigned long long max_mtime; /* max. modification time */ | ||
184 | }; | ||
185 | |||
186 | struct free_segmap_info { | ||
187 | unsigned int start_segno; /* start segment number logically */ | ||
188 | unsigned int free_segments; /* # of free segments */ | ||
189 | unsigned int free_sections; /* # of free sections */ | ||
190 | rwlock_t segmap_lock; /* free segmap lock */ | ||
191 | unsigned long *free_segmap; /* free segment bitmap */ | ||
192 | unsigned long *free_secmap; /* free section bitmap */ | ||
193 | }; | ||
194 | |||
195 | /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ | ||
196 | enum dirty_type { | ||
197 | DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ | ||
198 | DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ | ||
199 | DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ | ||
200 | DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ | ||
201 | DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ | ||
202 | DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ | ||
203 | DIRTY, /* to count # of dirty segments */ | ||
204 | PRE, /* to count # of entirely obsolete segments */ | ||
205 | NR_DIRTY_TYPE | ||
206 | }; | ||
207 | |||
208 | struct dirty_seglist_info { | ||
209 | const struct victim_selection *v_ops; /* victim selction operation */ | ||
210 | unsigned long *dirty_segmap[NR_DIRTY_TYPE]; | ||
211 | struct mutex seglist_lock; /* lock for segment bitmaps */ | ||
212 | int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ | ||
213 | unsigned long *victim_segmap[2]; /* BG_GC, FG_GC */ | ||
214 | }; | ||
215 | |||
216 | /* victim selection function for cleaning and SSR */ | ||
217 | struct victim_selection { | ||
218 | int (*get_victim)(struct f2fs_sb_info *, unsigned int *, | ||
219 | int, int, char); | ||
220 | }; | ||
221 | |||
222 | /* for active log information */ | ||
223 | struct curseg_info { | ||
224 | struct mutex curseg_mutex; /* lock for consistency */ | ||
225 | struct f2fs_summary_block *sum_blk; /* cached summary block */ | ||
226 | unsigned char alloc_type; /* current allocation type */ | ||
227 | unsigned int segno; /* current segment number */ | ||
228 | unsigned short next_blkoff; /* next block offset to write */ | ||
229 | unsigned int zone; /* current zone number */ | ||
230 | unsigned int next_segno; /* preallocated segment */ | ||
231 | }; | ||
232 | |||
233 | /* | ||
234 | * inline functions | ||
235 | */ | ||
236 | static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) | ||
237 | { | ||
238 | return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); | ||
239 | } | ||
240 | |||
241 | static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, | ||
242 | unsigned int segno) | ||
243 | { | ||
244 | struct sit_info *sit_i = SIT_I(sbi); | ||
245 | return &sit_i->sentries[segno]; | ||
246 | } | ||
247 | |||
248 | static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, | ||
249 | unsigned int segno) | ||
250 | { | ||
251 | struct sit_info *sit_i = SIT_I(sbi); | ||
252 | return &sit_i->sec_entries[GET_SECNO(sbi, segno)]; | ||
253 | } | ||
254 | |||
255 | static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, | ||
256 | unsigned int segno, int section) | ||
257 | { | ||
258 | /* | ||
259 | * In order to get # of valid blocks in a section instantly from many | ||
260 | * segments, f2fs manages two counting structures separately. | ||
261 | */ | ||
262 | if (section > 1) | ||
263 | return get_sec_entry(sbi, segno)->valid_blocks; | ||
264 | else | ||
265 | return get_seg_entry(sbi, segno)->valid_blocks; | ||
266 | } | ||
267 | |||
268 | static inline void seg_info_from_raw_sit(struct seg_entry *se, | ||
269 | struct f2fs_sit_entry *rs) | ||
270 | { | ||
271 | se->valid_blocks = GET_SIT_VBLOCKS(rs); | ||
272 | se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); | ||
273 | memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); | ||
274 | memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); | ||
275 | se->type = GET_SIT_TYPE(rs); | ||
276 | se->mtime = le64_to_cpu(rs->mtime); | ||
277 | } | ||
278 | |||
279 | static inline void seg_info_to_raw_sit(struct seg_entry *se, | ||
280 | struct f2fs_sit_entry *rs) | ||
281 | { | ||
282 | unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | | ||
283 | se->valid_blocks; | ||
284 | rs->vblocks = cpu_to_le16(raw_vblocks); | ||
285 | memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); | ||
286 | memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); | ||
287 | se->ckpt_valid_blocks = se->valid_blocks; | ||
288 | rs->mtime = cpu_to_le64(se->mtime); | ||
289 | } | ||
290 | |||
291 | static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, | ||
292 | unsigned int max, unsigned int segno) | ||
293 | { | ||
294 | unsigned int ret; | ||
295 | read_lock(&free_i->segmap_lock); | ||
296 | ret = find_next_bit(free_i->free_segmap, max, segno); | ||
297 | read_unlock(&free_i->segmap_lock); | ||
298 | return ret; | ||
299 | } | ||
300 | |||
301 | static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) | ||
302 | { | ||
303 | struct free_segmap_info *free_i = FREE_I(sbi); | ||
304 | unsigned int secno = segno / sbi->segs_per_sec; | ||
305 | unsigned int start_segno = secno * sbi->segs_per_sec; | ||
306 | unsigned int next; | ||
307 | |||
308 | write_lock(&free_i->segmap_lock); | ||
309 | clear_bit(segno, free_i->free_segmap); | ||
310 | free_i->free_segments++; | ||
311 | |||
312 | next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno); | ||
313 | if (next >= start_segno + sbi->segs_per_sec) { | ||
314 | clear_bit(secno, free_i->free_secmap); | ||
315 | free_i->free_sections++; | ||
316 | } | ||
317 | write_unlock(&free_i->segmap_lock); | ||
318 | } | ||
319 | |||
320 | static inline void __set_inuse(struct f2fs_sb_info *sbi, | ||
321 | unsigned int segno) | ||
322 | { | ||
323 | struct free_segmap_info *free_i = FREE_I(sbi); | ||
324 | unsigned int secno = segno / sbi->segs_per_sec; | ||
325 | set_bit(segno, free_i->free_segmap); | ||
326 | free_i->free_segments--; | ||
327 | if (!test_and_set_bit(secno, free_i->free_secmap)) | ||
328 | free_i->free_sections--; | ||
329 | } | ||
330 | |||
331 | static inline void __set_test_and_free(struct f2fs_sb_info *sbi, | ||
332 | unsigned int segno) | ||
333 | { | ||
334 | struct free_segmap_info *free_i = FREE_I(sbi); | ||
335 | unsigned int secno = segno / sbi->segs_per_sec; | ||
336 | unsigned int start_segno = secno * sbi->segs_per_sec; | ||
337 | unsigned int next; | ||
338 | |||
339 | write_lock(&free_i->segmap_lock); | ||
340 | if (test_and_clear_bit(segno, free_i->free_segmap)) { | ||
341 | free_i->free_segments++; | ||
342 | |||
343 | next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), | ||
344 | start_segno); | ||
345 | if (next >= start_segno + sbi->segs_per_sec) { | ||
346 | if (test_and_clear_bit(secno, free_i->free_secmap)) | ||
347 | free_i->free_sections++; | ||
348 | } | ||
349 | } | ||
350 | write_unlock(&free_i->segmap_lock); | ||
351 | } | ||
352 | |||
353 | static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, | ||
354 | unsigned int segno) | ||
355 | { | ||
356 | struct free_segmap_info *free_i = FREE_I(sbi); | ||
357 | unsigned int secno = segno / sbi->segs_per_sec; | ||
358 | write_lock(&free_i->segmap_lock); | ||
359 | if (!test_and_set_bit(segno, free_i->free_segmap)) { | ||
360 | free_i->free_segments--; | ||
361 | if (!test_and_set_bit(secno, free_i->free_secmap)) | ||
362 | free_i->free_sections--; | ||
363 | } | ||
364 | write_unlock(&free_i->segmap_lock); | ||
365 | } | ||
366 | |||
367 | static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, | ||
368 | void *dst_addr) | ||
369 | { | ||
370 | struct sit_info *sit_i = SIT_I(sbi); | ||
371 | memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); | ||
372 | } | ||
373 | |||
374 | static inline block_t written_block_count(struct f2fs_sb_info *sbi) | ||
375 | { | ||
376 | struct sit_info *sit_i = SIT_I(sbi); | ||
377 | block_t vblocks; | ||
378 | |||
379 | mutex_lock(&sit_i->sentry_lock); | ||
380 | vblocks = sit_i->written_valid_blocks; | ||
381 | mutex_unlock(&sit_i->sentry_lock); | ||
382 | |||
383 | return vblocks; | ||
384 | } | ||
385 | |||
386 | static inline unsigned int free_segments(struct f2fs_sb_info *sbi) | ||
387 | { | ||
388 | struct free_segmap_info *free_i = FREE_I(sbi); | ||
389 | unsigned int free_segs; | ||
390 | |||
391 | read_lock(&free_i->segmap_lock); | ||
392 | free_segs = free_i->free_segments; | ||
393 | read_unlock(&free_i->segmap_lock); | ||
394 | |||
395 | return free_segs; | ||
396 | } | ||
397 | |||
398 | static inline int reserved_segments(struct f2fs_sb_info *sbi) | ||
399 | { | ||
400 | return SM_I(sbi)->reserved_segments; | ||
401 | } | ||
402 | |||
403 | static inline unsigned int free_sections(struct f2fs_sb_info *sbi) | ||
404 | { | ||
405 | struct free_segmap_info *free_i = FREE_I(sbi); | ||
406 | unsigned int free_secs; | ||
407 | |||
408 | read_lock(&free_i->segmap_lock); | ||
409 | free_secs = free_i->free_sections; | ||
410 | read_unlock(&free_i->segmap_lock); | ||
411 | |||
412 | return free_secs; | ||
413 | } | ||
414 | |||
415 | static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) | ||
416 | { | ||
417 | return DIRTY_I(sbi)->nr_dirty[PRE]; | ||
418 | } | ||
419 | |||
420 | static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) | ||
421 | { | ||
422 | return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + | ||
423 | DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + | ||
424 | DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + | ||
425 | DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + | ||
426 | DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + | ||
427 | DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; | ||
428 | } | ||
429 | |||
430 | static inline int overprovision_segments(struct f2fs_sb_info *sbi) | ||
431 | { | ||
432 | return SM_I(sbi)->ovp_segments; | ||
433 | } | ||
434 | |||
435 | static inline int overprovision_sections(struct f2fs_sb_info *sbi) | ||
436 | { | ||
437 | return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec; | ||
438 | } | ||
439 | |||
440 | static inline int reserved_sections(struct f2fs_sb_info *sbi) | ||
441 | { | ||
442 | return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec; | ||
443 | } | ||
444 | |||
445 | static inline bool need_SSR(struct f2fs_sb_info *sbi) | ||
446 | { | ||
447 | return (free_sections(sbi) < overprovision_sections(sbi)); | ||
448 | } | ||
449 | |||
450 | static inline int get_ssr_segment(struct f2fs_sb_info *sbi, int type) | ||
451 | { | ||
452 | struct curseg_info *curseg = CURSEG_I(sbi, type); | ||
453 | return DIRTY_I(sbi)->v_ops->get_victim(sbi, | ||
454 | &(curseg)->next_segno, BG_GC, type, SSR); | ||
455 | } | ||
456 | |||
457 | static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi) | ||
458 | { | ||
459 | return free_sections(sbi) <= reserved_sections(sbi); | ||
460 | } | ||
461 | |||
462 | static inline int utilization(struct f2fs_sb_info *sbi) | ||
463 | { | ||
464 | return (long int)valid_user_blocks(sbi) * 100 / | ||
465 | (long int)sbi->user_block_count; | ||
466 | } | ||
467 | |||
468 | /* | ||
469 | * Sometimes f2fs may be better to drop out-of-place update policy. | ||
470 | * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write | ||
471 | * data in the original place likewise other traditional file systems. | ||
472 | * But, currently set 100 in percentage, which means it is disabled. | ||
473 | * See below need_inplace_update(). | ||
474 | */ | ||
475 | #define MIN_IPU_UTIL 100 | ||
476 | static inline bool need_inplace_update(struct inode *inode) | ||
477 | { | ||
478 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
479 | if (S_ISDIR(inode->i_mode)) | ||
480 | return false; | ||
481 | if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL) | ||
482 | return true; | ||
483 | return false; | ||
484 | } | ||
485 | |||
486 | static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, | ||
487 | int type) | ||
488 | { | ||
489 | struct curseg_info *curseg = CURSEG_I(sbi, type); | ||
490 | return curseg->segno; | ||
491 | } | ||
492 | |||
493 | static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, | ||
494 | int type) | ||
495 | { | ||
496 | struct curseg_info *curseg = CURSEG_I(sbi, type); | ||
497 | return curseg->alloc_type; | ||
498 | } | ||
499 | |||
500 | static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) | ||
501 | { | ||
502 | struct curseg_info *curseg = CURSEG_I(sbi, type); | ||
503 | return curseg->next_blkoff; | ||
504 | } | ||
505 | |||
506 | static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) | ||
507 | { | ||
508 | unsigned int end_segno = SM_I(sbi)->segment_count - 1; | ||
509 | BUG_ON(segno > end_segno); | ||
510 | } | ||
511 | |||
512 | /* | ||
513 | * This function is used for only debugging. | ||
514 | * NOTE: In future, we have to remove this function. | ||
515 | */ | ||
516 | static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr) | ||
517 | { | ||
518 | struct f2fs_sm_info *sm_info = SM_I(sbi); | ||
519 | block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg; | ||
520 | block_t start_addr = sm_info->seg0_blkaddr; | ||
521 | block_t end_addr = start_addr + total_blks - 1; | ||
522 | BUG_ON(blk_addr < start_addr); | ||
523 | BUG_ON(blk_addr > end_addr); | ||
524 | } | ||
525 | |||
526 | /* | ||
527 | * Summary block is always treated as invalid block | ||
528 | */ | ||
529 | static inline void check_block_count(struct f2fs_sb_info *sbi, | ||
530 | int segno, struct f2fs_sit_entry *raw_sit) | ||
531 | { | ||
532 | struct f2fs_sm_info *sm_info = SM_I(sbi); | ||
533 | unsigned int end_segno = sm_info->segment_count - 1; | ||
534 | int valid_blocks = 0; | ||
535 | int i; | ||
536 | |||
537 | /* check segment usage */ | ||
538 | BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg); | ||
539 | |||
540 | /* check boundary of a given segment number */ | ||
541 | BUG_ON(segno > end_segno); | ||
542 | |||
543 | /* check bitmap with valid block count */ | ||
544 | for (i = 0; i < sbi->blocks_per_seg; i++) | ||
545 | if (f2fs_test_bit(i, raw_sit->valid_map)) | ||
546 | valid_blocks++; | ||
547 | BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks); | ||
548 | } | ||
549 | |||
550 | static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, | ||
551 | unsigned int start) | ||
552 | { | ||
553 | struct sit_info *sit_i = SIT_I(sbi); | ||
554 | unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start); | ||
555 | block_t blk_addr = sit_i->sit_base_addr + offset; | ||
556 | |||
557 | check_seg_range(sbi, start); | ||
558 | |||
559 | /* calculate sit block address */ | ||
560 | if (f2fs_test_bit(offset, sit_i->sit_bitmap)) | ||
561 | blk_addr += sit_i->sit_blocks; | ||
562 | |||
563 | return blk_addr; | ||
564 | } | ||
565 | |||
566 | static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, | ||
567 | pgoff_t block_addr) | ||
568 | { | ||
569 | struct sit_info *sit_i = SIT_I(sbi); | ||
570 | block_addr -= sit_i->sit_base_addr; | ||
571 | if (block_addr < sit_i->sit_blocks) | ||
572 | block_addr += sit_i->sit_blocks; | ||
573 | else | ||
574 | block_addr -= sit_i->sit_blocks; | ||
575 | |||
576 | return block_addr + sit_i->sit_base_addr; | ||
577 | } | ||
578 | |||
579 | static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) | ||
580 | { | ||
581 | unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start); | ||
582 | |||
583 | if (f2fs_test_bit(block_off, sit_i->sit_bitmap)) | ||
584 | f2fs_clear_bit(block_off, sit_i->sit_bitmap); | ||
585 | else | ||
586 | f2fs_set_bit(block_off, sit_i->sit_bitmap); | ||
587 | } | ||
588 | |||
589 | static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi) | ||
590 | { | ||
591 | struct sit_info *sit_i = SIT_I(sbi); | ||
592 | return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec - | ||
593 | sit_i->mounted_time; | ||
594 | } | ||
595 | |||
596 | static inline void set_summary(struct f2fs_summary *sum, nid_t nid, | ||
597 | unsigned int ofs_in_node, unsigned char version) | ||
598 | { | ||
599 | sum->nid = cpu_to_le32(nid); | ||
600 | sum->ofs_in_node = cpu_to_le16(ofs_in_node); | ||
601 | sum->version = version; | ||
602 | } | ||
603 | |||
604 | static inline block_t start_sum_block(struct f2fs_sb_info *sbi) | ||
605 | { | ||
606 | return __start_cp_addr(sbi) + | ||
607 | le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); | ||
608 | } | ||
609 | |||
610 | static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) | ||
611 | { | ||
612 | return __start_cp_addr(sbi) + | ||
613 | le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) | ||
614 | - (base + 1) + type; | ||
615 | } | ||
diff --git a/include/uapi/linux/magic.h b/include/uapi/linux/magic.h index e15192cb9cf4..66353ffd06a7 100644 --- a/include/uapi/linux/magic.h +++ b/include/uapi/linux/magic.h | |||
@@ -23,6 +23,7 @@ | |||
23 | #define EXT4_SUPER_MAGIC 0xEF53 | 23 | #define EXT4_SUPER_MAGIC 0xEF53 |
24 | #define BTRFS_SUPER_MAGIC 0x9123683E | 24 | #define BTRFS_SUPER_MAGIC 0x9123683E |
25 | #define NILFS_SUPER_MAGIC 0x3434 | 25 | #define NILFS_SUPER_MAGIC 0x3434 |
26 | #define F2FS_SUPER_MAGIC 0xF2F52010 | ||
26 | #define HPFS_SUPER_MAGIC 0xf995e849 | 27 | #define HPFS_SUPER_MAGIC 0xf995e849 |
27 | #define ISOFS_SUPER_MAGIC 0x9660 | 28 | #define ISOFS_SUPER_MAGIC 0x9660 |
28 | #define JFFS2_SUPER_MAGIC 0x72b6 | 29 | #define JFFS2_SUPER_MAGIC 0x72b6 |