diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2013-05-07 11:42:20 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2013-05-07 11:42:20 -0400 |
commit | 0f47c9423c0fe468d0b5b153f9b9d6e8e20707eb (patch) | |
tree | 9eaec7fb4dc5fbfae07d168d0493a0a0a67c7d47 | |
parent | b9e306e07ed58fc354bbd58124b281dd7dc697b7 (diff) | |
parent | 69df2ac1288b456a95aceadafbf88cd891a577c8 (diff) |
Merge branch 'slab/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux
Pull slab changes from Pekka Enberg:
"The bulk of the changes are more slab unification from Christoph.
There's also few fixes from Aaron, Glauber, and Joonsoo thrown into
the mix."
* 'slab/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux: (24 commits)
mm, slab_common: Fix bootstrap creation of kmalloc caches
slab: Return NULL for oversized allocations
mm: slab: Verify the nodeid passed to ____cache_alloc_node
slub: tid must be retrieved from the percpu area of the current processor
slub: Do not dereference NULL pointer in node_match
slub: add 'likely' macro to inc_slabs_node()
slub: correct to calculate num of acquired objects in get_partial_node()
slub: correctly bootstrap boot caches
mm/sl[au]b: correct allocation type check in kmalloc_slab()
slab: Fixup CONFIG_PAGE_ALLOC/DEBUG_SLAB_LEAK sections
slab: Handle ARCH_DMA_MINALIGN correctly
slab: Common definition for kmem_cache_node
slab: Rename list3/l3 to node
slab: Common Kmalloc cache determination
stat: Use size_t for sizes instead of unsigned
slab: Common function to create the kmalloc array
slab: Common definition for the array of kmalloc caches
slab: Common constants for kmalloc boundaries
slab: Rename nodelists to node
slab: Common name for the per node structures
...
-rw-r--r-- | fs/proc/stat.c | 2 | ||||
-rw-r--r-- | include/linux/kmalloc_sizes.h | 45 | ||||
-rw-r--r-- | include/linux/slab.h | 231 | ||||
-rw-r--r-- | include/linux/slab_def.h | 54 | ||||
-rw-r--r-- | include/linux/slub_def.h | 136 | ||||
-rw-r--r-- | mm/slab.c | 790 | ||||
-rw-r--r-- | mm/slab.h | 43 | ||||
-rw-r--r-- | mm/slab_common.c | 174 | ||||
-rw-r--r-- | mm/slub.c | 221 |
9 files changed, 781 insertions, 915 deletions
diff --git a/fs/proc/stat.c b/fs/proc/stat.c index e296572c73ed..1cf86c0e8689 100644 --- a/fs/proc/stat.c +++ b/fs/proc/stat.c | |||
@@ -184,7 +184,7 @@ static int show_stat(struct seq_file *p, void *v) | |||
184 | 184 | ||
185 | static int stat_open(struct inode *inode, struct file *file) | 185 | static int stat_open(struct inode *inode, struct file *file) |
186 | { | 186 | { |
187 | unsigned size = 1024 + 128 * num_possible_cpus(); | 187 | size_t size = 1024 + 128 * num_possible_cpus(); |
188 | char *buf; | 188 | char *buf; |
189 | struct seq_file *m; | 189 | struct seq_file *m; |
190 | int res; | 190 | int res; |
diff --git a/include/linux/kmalloc_sizes.h b/include/linux/kmalloc_sizes.h deleted file mode 100644 index e576b848ce10..000000000000 --- a/include/linux/kmalloc_sizes.h +++ /dev/null | |||
@@ -1,45 +0,0 @@ | |||
1 | #if (PAGE_SIZE == 4096) | ||
2 | CACHE(32) | ||
3 | #endif | ||
4 | CACHE(64) | ||
5 | #if L1_CACHE_BYTES < 64 | ||
6 | CACHE(96) | ||
7 | #endif | ||
8 | CACHE(128) | ||
9 | #if L1_CACHE_BYTES < 128 | ||
10 | CACHE(192) | ||
11 | #endif | ||
12 | CACHE(256) | ||
13 | CACHE(512) | ||
14 | CACHE(1024) | ||
15 | CACHE(2048) | ||
16 | CACHE(4096) | ||
17 | CACHE(8192) | ||
18 | CACHE(16384) | ||
19 | CACHE(32768) | ||
20 | CACHE(65536) | ||
21 | CACHE(131072) | ||
22 | #if KMALLOC_MAX_SIZE >= 262144 | ||
23 | CACHE(262144) | ||
24 | #endif | ||
25 | #if KMALLOC_MAX_SIZE >= 524288 | ||
26 | CACHE(524288) | ||
27 | #endif | ||
28 | #if KMALLOC_MAX_SIZE >= 1048576 | ||
29 | CACHE(1048576) | ||
30 | #endif | ||
31 | #if KMALLOC_MAX_SIZE >= 2097152 | ||
32 | CACHE(2097152) | ||
33 | #endif | ||
34 | #if KMALLOC_MAX_SIZE >= 4194304 | ||
35 | CACHE(4194304) | ||
36 | #endif | ||
37 | #if KMALLOC_MAX_SIZE >= 8388608 | ||
38 | CACHE(8388608) | ||
39 | #endif | ||
40 | #if KMALLOC_MAX_SIZE >= 16777216 | ||
41 | CACHE(16777216) | ||
42 | #endif | ||
43 | #if KMALLOC_MAX_SIZE >= 33554432 | ||
44 | CACHE(33554432) | ||
45 | #endif | ||
diff --git a/include/linux/slab.h b/include/linux/slab.h index 5d168d7e0a28..0c621752caa6 100644 --- a/include/linux/slab.h +++ b/include/linux/slab.h | |||
@@ -94,29 +94,6 @@ | |||
94 | #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ | 94 | #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ |
95 | (unsigned long)ZERO_SIZE_PTR) | 95 | (unsigned long)ZERO_SIZE_PTR) |
96 | 96 | ||
97 | /* | ||
98 | * Common fields provided in kmem_cache by all slab allocators | ||
99 | * This struct is either used directly by the allocator (SLOB) | ||
100 | * or the allocator must include definitions for all fields | ||
101 | * provided in kmem_cache_common in their definition of kmem_cache. | ||
102 | * | ||
103 | * Once we can do anonymous structs (C11 standard) we could put a | ||
104 | * anonymous struct definition in these allocators so that the | ||
105 | * separate allocations in the kmem_cache structure of SLAB and | ||
106 | * SLUB is no longer needed. | ||
107 | */ | ||
108 | #ifdef CONFIG_SLOB | ||
109 | struct kmem_cache { | ||
110 | unsigned int object_size;/* The original size of the object */ | ||
111 | unsigned int size; /* The aligned/padded/added on size */ | ||
112 | unsigned int align; /* Alignment as calculated */ | ||
113 | unsigned long flags; /* Active flags on the slab */ | ||
114 | const char *name; /* Slab name for sysfs */ | ||
115 | int refcount; /* Use counter */ | ||
116 | void (*ctor)(void *); /* Called on object slot creation */ | ||
117 | struct list_head list; /* List of all slab caches on the system */ | ||
118 | }; | ||
119 | #endif | ||
120 | 97 | ||
121 | struct mem_cgroup; | 98 | struct mem_cgroup; |
122 | /* | 99 | /* |
@@ -148,7 +125,63 @@ void kmem_cache_free(struct kmem_cache *, void *); | |||
148 | (__flags), NULL) | 125 | (__flags), NULL) |
149 | 126 | ||
150 | /* | 127 | /* |
151 | * The largest kmalloc size supported by the slab allocators is | 128 | * Common kmalloc functions provided by all allocators |
129 | */ | ||
130 | void * __must_check __krealloc(const void *, size_t, gfp_t); | ||
131 | void * __must_check krealloc(const void *, size_t, gfp_t); | ||
132 | void kfree(const void *); | ||
133 | void kzfree(const void *); | ||
134 | size_t ksize(const void *); | ||
135 | |||
136 | /* | ||
137 | * Some archs want to perform DMA into kmalloc caches and need a guaranteed | ||
138 | * alignment larger than the alignment of a 64-bit integer. | ||
139 | * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. | ||
140 | */ | ||
141 | #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 | ||
142 | #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN | ||
143 | #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN | ||
144 | #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN) | ||
145 | #else | ||
146 | #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) | ||
147 | #endif | ||
148 | |||
149 | #ifdef CONFIG_SLOB | ||
150 | /* | ||
151 | * Common fields provided in kmem_cache by all slab allocators | ||
152 | * This struct is either used directly by the allocator (SLOB) | ||
153 | * or the allocator must include definitions for all fields | ||
154 | * provided in kmem_cache_common in their definition of kmem_cache. | ||
155 | * | ||
156 | * Once we can do anonymous structs (C11 standard) we could put a | ||
157 | * anonymous struct definition in these allocators so that the | ||
158 | * separate allocations in the kmem_cache structure of SLAB and | ||
159 | * SLUB is no longer needed. | ||
160 | */ | ||
161 | struct kmem_cache { | ||
162 | unsigned int object_size;/* The original size of the object */ | ||
163 | unsigned int size; /* The aligned/padded/added on size */ | ||
164 | unsigned int align; /* Alignment as calculated */ | ||
165 | unsigned long flags; /* Active flags on the slab */ | ||
166 | const char *name; /* Slab name for sysfs */ | ||
167 | int refcount; /* Use counter */ | ||
168 | void (*ctor)(void *); /* Called on object slot creation */ | ||
169 | struct list_head list; /* List of all slab caches on the system */ | ||
170 | }; | ||
171 | |||
172 | #define KMALLOC_MAX_SIZE (1UL << 30) | ||
173 | |||
174 | #include <linux/slob_def.h> | ||
175 | |||
176 | #else /* CONFIG_SLOB */ | ||
177 | |||
178 | /* | ||
179 | * Kmalloc array related definitions | ||
180 | */ | ||
181 | |||
182 | #ifdef CONFIG_SLAB | ||
183 | /* | ||
184 | * The largest kmalloc size supported by the SLAB allocators is | ||
152 | * 32 megabyte (2^25) or the maximum allocatable page order if that is | 185 | * 32 megabyte (2^25) or the maximum allocatable page order if that is |
153 | * less than 32 MB. | 186 | * less than 32 MB. |
154 | * | 187 | * |
@@ -158,22 +191,120 @@ void kmem_cache_free(struct kmem_cache *, void *); | |||
158 | */ | 191 | */ |
159 | #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ | 192 | #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ |
160 | (MAX_ORDER + PAGE_SHIFT - 1) : 25) | 193 | (MAX_ORDER + PAGE_SHIFT - 1) : 25) |
194 | #define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH | ||
195 | #ifndef KMALLOC_SHIFT_LOW | ||
196 | #define KMALLOC_SHIFT_LOW 5 | ||
197 | #endif | ||
198 | #else | ||
199 | /* | ||
200 | * SLUB allocates up to order 2 pages directly and otherwise | ||
201 | * passes the request to the page allocator. | ||
202 | */ | ||
203 | #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) | ||
204 | #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT) | ||
205 | #ifndef KMALLOC_SHIFT_LOW | ||
206 | #define KMALLOC_SHIFT_LOW 3 | ||
207 | #endif | ||
208 | #endif | ||
161 | 209 | ||
162 | #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_HIGH) | 210 | /* Maximum allocatable size */ |
163 | #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_HIGH - PAGE_SHIFT) | 211 | #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) |
212 | /* Maximum size for which we actually use a slab cache */ | ||
213 | #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) | ||
214 | /* Maximum order allocatable via the slab allocagtor */ | ||
215 | #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) | ||
164 | 216 | ||
165 | /* | 217 | /* |
166 | * Some archs want to perform DMA into kmalloc caches and need a guaranteed | 218 | * Kmalloc subsystem. |
167 | * alignment larger than the alignment of a 64-bit integer. | ||
168 | * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. | ||
169 | */ | 219 | */ |
170 | #ifdef ARCH_DMA_MINALIGN | 220 | #ifndef KMALLOC_MIN_SIZE |
171 | #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN | 221 | #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) |
222 | #endif | ||
223 | |||
224 | extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; | ||
225 | #ifdef CONFIG_ZONE_DMA | ||
226 | extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; | ||
227 | #endif | ||
228 | |||
229 | /* | ||
230 | * Figure out which kmalloc slab an allocation of a certain size | ||
231 | * belongs to. | ||
232 | * 0 = zero alloc | ||
233 | * 1 = 65 .. 96 bytes | ||
234 | * 2 = 120 .. 192 bytes | ||
235 | * n = 2^(n-1) .. 2^n -1 | ||
236 | */ | ||
237 | static __always_inline int kmalloc_index(size_t size) | ||
238 | { | ||
239 | if (!size) | ||
240 | return 0; | ||
241 | |||
242 | if (size <= KMALLOC_MIN_SIZE) | ||
243 | return KMALLOC_SHIFT_LOW; | ||
244 | |||
245 | if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) | ||
246 | return 1; | ||
247 | if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) | ||
248 | return 2; | ||
249 | if (size <= 8) return 3; | ||
250 | if (size <= 16) return 4; | ||
251 | if (size <= 32) return 5; | ||
252 | if (size <= 64) return 6; | ||
253 | if (size <= 128) return 7; | ||
254 | if (size <= 256) return 8; | ||
255 | if (size <= 512) return 9; | ||
256 | if (size <= 1024) return 10; | ||
257 | if (size <= 2 * 1024) return 11; | ||
258 | if (size <= 4 * 1024) return 12; | ||
259 | if (size <= 8 * 1024) return 13; | ||
260 | if (size <= 16 * 1024) return 14; | ||
261 | if (size <= 32 * 1024) return 15; | ||
262 | if (size <= 64 * 1024) return 16; | ||
263 | if (size <= 128 * 1024) return 17; | ||
264 | if (size <= 256 * 1024) return 18; | ||
265 | if (size <= 512 * 1024) return 19; | ||
266 | if (size <= 1024 * 1024) return 20; | ||
267 | if (size <= 2 * 1024 * 1024) return 21; | ||
268 | if (size <= 4 * 1024 * 1024) return 22; | ||
269 | if (size <= 8 * 1024 * 1024) return 23; | ||
270 | if (size <= 16 * 1024 * 1024) return 24; | ||
271 | if (size <= 32 * 1024 * 1024) return 25; | ||
272 | if (size <= 64 * 1024 * 1024) return 26; | ||
273 | BUG(); | ||
274 | |||
275 | /* Will never be reached. Needed because the compiler may complain */ | ||
276 | return -1; | ||
277 | } | ||
278 | |||
279 | #ifdef CONFIG_SLAB | ||
280 | #include <linux/slab_def.h> | ||
281 | #elif defined(CONFIG_SLUB) | ||
282 | #include <linux/slub_def.h> | ||
172 | #else | 283 | #else |
173 | #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) | 284 | #error "Unknown slab allocator" |
174 | #endif | 285 | #endif |
175 | 286 | ||
176 | /* | 287 | /* |
288 | * Determine size used for the nth kmalloc cache. | ||
289 | * return size or 0 if a kmalloc cache for that | ||
290 | * size does not exist | ||
291 | */ | ||
292 | static __always_inline int kmalloc_size(int n) | ||
293 | { | ||
294 | if (n > 2) | ||
295 | return 1 << n; | ||
296 | |||
297 | if (n == 1 && KMALLOC_MIN_SIZE <= 32) | ||
298 | return 96; | ||
299 | |||
300 | if (n == 2 && KMALLOC_MIN_SIZE <= 64) | ||
301 | return 192; | ||
302 | |||
303 | return 0; | ||
304 | } | ||
305 | #endif /* !CONFIG_SLOB */ | ||
306 | |||
307 | /* | ||
177 | * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. | 308 | * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. |
178 | * Intended for arches that get misalignment faults even for 64 bit integer | 309 | * Intended for arches that get misalignment faults even for 64 bit integer |
179 | * aligned buffers. | 310 | * aligned buffers. |
@@ -224,42 +355,6 @@ struct seq_file; | |||
224 | int cache_show(struct kmem_cache *s, struct seq_file *m); | 355 | int cache_show(struct kmem_cache *s, struct seq_file *m); |
225 | void print_slabinfo_header(struct seq_file *m); | 356 | void print_slabinfo_header(struct seq_file *m); |
226 | 357 | ||
227 | /* | ||
228 | * Common kmalloc functions provided by all allocators | ||
229 | */ | ||
230 | void * __must_check __krealloc(const void *, size_t, gfp_t); | ||
231 | void * __must_check krealloc(const void *, size_t, gfp_t); | ||
232 | void kfree(const void *); | ||
233 | void kzfree(const void *); | ||
234 | size_t ksize(const void *); | ||
235 | |||
236 | /* | ||
237 | * Allocator specific definitions. These are mainly used to establish optimized | ||
238 | * ways to convert kmalloc() calls to kmem_cache_alloc() invocations by | ||
239 | * selecting the appropriate general cache at compile time. | ||
240 | * | ||
241 | * Allocators must define at least: | ||
242 | * | ||
243 | * kmem_cache_alloc() | ||
244 | * __kmalloc() | ||
245 | * kmalloc() | ||
246 | * | ||
247 | * Those wishing to support NUMA must also define: | ||
248 | * | ||
249 | * kmem_cache_alloc_node() | ||
250 | * kmalloc_node() | ||
251 | * | ||
252 | * See each allocator definition file for additional comments and | ||
253 | * implementation notes. | ||
254 | */ | ||
255 | #ifdef CONFIG_SLUB | ||
256 | #include <linux/slub_def.h> | ||
257 | #elif defined(CONFIG_SLOB) | ||
258 | #include <linux/slob_def.h> | ||
259 | #else | ||
260 | #include <linux/slab_def.h> | ||
261 | #endif | ||
262 | |||
263 | /** | 358 | /** |
264 | * kmalloc_array - allocate memory for an array. | 359 | * kmalloc_array - allocate memory for an array. |
265 | * @n: number of elements. | 360 | * @n: number of elements. |
diff --git a/include/linux/slab_def.h b/include/linux/slab_def.h index 8bb6e0eaf3c6..cd401580bdd3 100644 --- a/include/linux/slab_def.h +++ b/include/linux/slab_def.h | |||
@@ -11,8 +11,6 @@ | |||
11 | */ | 11 | */ |
12 | 12 | ||
13 | #include <linux/init.h> | 13 | #include <linux/init.h> |
14 | #include <asm/page.h> /* kmalloc_sizes.h needs PAGE_SIZE */ | ||
15 | #include <asm/cache.h> /* kmalloc_sizes.h needs L1_CACHE_BYTES */ | ||
16 | #include <linux/compiler.h> | 14 | #include <linux/compiler.h> |
17 | 15 | ||
18 | /* | 16 | /* |
@@ -97,23 +95,13 @@ struct kmem_cache { | |||
97 | * pointer for each node since "nodelists" uses the remainder of | 95 | * pointer for each node since "nodelists" uses the remainder of |
98 | * available pointers. | 96 | * available pointers. |
99 | */ | 97 | */ |
100 | struct kmem_list3 **nodelists; | 98 | struct kmem_cache_node **node; |
101 | struct array_cache *array[NR_CPUS + MAX_NUMNODES]; | 99 | struct array_cache *array[NR_CPUS + MAX_NUMNODES]; |
102 | /* | 100 | /* |
103 | * Do not add fields after array[] | 101 | * Do not add fields after array[] |
104 | */ | 102 | */ |
105 | }; | 103 | }; |
106 | 104 | ||
107 | /* Size description struct for general caches. */ | ||
108 | struct cache_sizes { | ||
109 | size_t cs_size; | ||
110 | struct kmem_cache *cs_cachep; | ||
111 | #ifdef CONFIG_ZONE_DMA | ||
112 | struct kmem_cache *cs_dmacachep; | ||
113 | #endif | ||
114 | }; | ||
115 | extern struct cache_sizes malloc_sizes[]; | ||
116 | |||
117 | void *kmem_cache_alloc(struct kmem_cache *, gfp_t); | 105 | void *kmem_cache_alloc(struct kmem_cache *, gfp_t); |
118 | void *__kmalloc(size_t size, gfp_t flags); | 106 | void *__kmalloc(size_t size, gfp_t flags); |
119 | 107 | ||
@@ -133,26 +121,22 @@ static __always_inline void *kmalloc(size_t size, gfp_t flags) | |||
133 | void *ret; | 121 | void *ret; |
134 | 122 | ||
135 | if (__builtin_constant_p(size)) { | 123 | if (__builtin_constant_p(size)) { |
136 | int i = 0; | 124 | int i; |
137 | 125 | ||
138 | if (!size) | 126 | if (!size) |
139 | return ZERO_SIZE_PTR; | 127 | return ZERO_SIZE_PTR; |
140 | 128 | ||
141 | #define CACHE(x) \ | 129 | if (WARN_ON_ONCE(size > KMALLOC_MAX_SIZE)) |
142 | if (size <= x) \ | 130 | return NULL; |
143 | goto found; \ | 131 | |
144 | else \ | 132 | i = kmalloc_index(size); |
145 | i++; | 133 | |
146 | #include <linux/kmalloc_sizes.h> | ||
147 | #undef CACHE | ||
148 | return NULL; | ||
149 | found: | ||
150 | #ifdef CONFIG_ZONE_DMA | 134 | #ifdef CONFIG_ZONE_DMA |
151 | if (flags & GFP_DMA) | 135 | if (flags & GFP_DMA) |
152 | cachep = malloc_sizes[i].cs_dmacachep; | 136 | cachep = kmalloc_dma_caches[i]; |
153 | else | 137 | else |
154 | #endif | 138 | #endif |
155 | cachep = malloc_sizes[i].cs_cachep; | 139 | cachep = kmalloc_caches[i]; |
156 | 140 | ||
157 | ret = kmem_cache_alloc_trace(cachep, flags, size); | 141 | ret = kmem_cache_alloc_trace(cachep, flags, size); |
158 | 142 | ||
@@ -186,26 +170,22 @@ static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) | |||
186 | struct kmem_cache *cachep; | 170 | struct kmem_cache *cachep; |
187 | 171 | ||
188 | if (__builtin_constant_p(size)) { | 172 | if (__builtin_constant_p(size)) { |
189 | int i = 0; | 173 | int i; |
190 | 174 | ||
191 | if (!size) | 175 | if (!size) |
192 | return ZERO_SIZE_PTR; | 176 | return ZERO_SIZE_PTR; |
193 | 177 | ||
194 | #define CACHE(x) \ | 178 | if (WARN_ON_ONCE(size > KMALLOC_MAX_SIZE)) |
195 | if (size <= x) \ | 179 | return NULL; |
196 | goto found; \ | 180 | |
197 | else \ | 181 | i = kmalloc_index(size); |
198 | i++; | 182 | |
199 | #include <linux/kmalloc_sizes.h> | ||
200 | #undef CACHE | ||
201 | return NULL; | ||
202 | found: | ||
203 | #ifdef CONFIG_ZONE_DMA | 183 | #ifdef CONFIG_ZONE_DMA |
204 | if (flags & GFP_DMA) | 184 | if (flags & GFP_DMA) |
205 | cachep = malloc_sizes[i].cs_dmacachep; | 185 | cachep = kmalloc_dma_caches[i]; |
206 | else | 186 | else |
207 | #endif | 187 | #endif |
208 | cachep = malloc_sizes[i].cs_cachep; | 188 | cachep = kmalloc_caches[i]; |
209 | 189 | ||
210 | return kmem_cache_alloc_node_trace(cachep, flags, node, size); | 190 | return kmem_cache_alloc_node_trace(cachep, flags, node, size); |
211 | } | 191 | } |
diff --git a/include/linux/slub_def.h b/include/linux/slub_def.h index 9db4825cd393..027276fa8713 100644 --- a/include/linux/slub_def.h +++ b/include/linux/slub_def.h | |||
@@ -53,17 +53,6 @@ struct kmem_cache_cpu { | |||
53 | #endif | 53 | #endif |
54 | }; | 54 | }; |
55 | 55 | ||
56 | struct kmem_cache_node { | ||
57 | spinlock_t list_lock; /* Protect partial list and nr_partial */ | ||
58 | unsigned long nr_partial; | ||
59 | struct list_head partial; | ||
60 | #ifdef CONFIG_SLUB_DEBUG | ||
61 | atomic_long_t nr_slabs; | ||
62 | atomic_long_t total_objects; | ||
63 | struct list_head full; | ||
64 | #endif | ||
65 | }; | ||
66 | |||
67 | /* | 56 | /* |
68 | * Word size structure that can be atomically updated or read and that | 57 | * Word size structure that can be atomically updated or read and that |
69 | * contains both the order and the number of objects that a slab of the | 58 | * contains both the order and the number of objects that a slab of the |
@@ -115,111 +104,6 @@ struct kmem_cache { | |||
115 | struct kmem_cache_node *node[MAX_NUMNODES]; | 104 | struct kmem_cache_node *node[MAX_NUMNODES]; |
116 | }; | 105 | }; |
117 | 106 | ||
118 | /* | ||
119 | * Kmalloc subsystem. | ||
120 | */ | ||
121 | #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 | ||
122 | #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN | ||
123 | #else | ||
124 | #define KMALLOC_MIN_SIZE 8 | ||
125 | #endif | ||
126 | |||
127 | #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE) | ||
128 | |||
129 | /* | ||
130 | * Maximum kmalloc object size handled by SLUB. Larger object allocations | ||
131 | * are passed through to the page allocator. The page allocator "fastpath" | ||
132 | * is relatively slow so we need this value sufficiently high so that | ||
133 | * performance critical objects are allocated through the SLUB fastpath. | ||
134 | * | ||
135 | * This should be dropped to PAGE_SIZE / 2 once the page allocator | ||
136 | * "fastpath" becomes competitive with the slab allocator fastpaths. | ||
137 | */ | ||
138 | #define SLUB_MAX_SIZE (2 * PAGE_SIZE) | ||
139 | |||
140 | #define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2) | ||
141 | |||
142 | #ifdef CONFIG_ZONE_DMA | ||
143 | #define SLUB_DMA __GFP_DMA | ||
144 | #else | ||
145 | /* Disable DMA functionality */ | ||
146 | #define SLUB_DMA (__force gfp_t)0 | ||
147 | #endif | ||
148 | |||
149 | /* | ||
150 | * We keep the general caches in an array of slab caches that are used for | ||
151 | * 2^x bytes of allocations. | ||
152 | */ | ||
153 | extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT]; | ||
154 | |||
155 | /* | ||
156 | * Sorry that the following has to be that ugly but some versions of GCC | ||
157 | * have trouble with constant propagation and loops. | ||
158 | */ | ||
159 | static __always_inline int kmalloc_index(size_t size) | ||
160 | { | ||
161 | if (!size) | ||
162 | return 0; | ||
163 | |||
164 | if (size <= KMALLOC_MIN_SIZE) | ||
165 | return KMALLOC_SHIFT_LOW; | ||
166 | |||
167 | if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) | ||
168 | return 1; | ||
169 | if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) | ||
170 | return 2; | ||
171 | if (size <= 8) return 3; | ||
172 | if (size <= 16) return 4; | ||
173 | if (size <= 32) return 5; | ||
174 | if (size <= 64) return 6; | ||
175 | if (size <= 128) return 7; | ||
176 | if (size <= 256) return 8; | ||
177 | if (size <= 512) return 9; | ||
178 | if (size <= 1024) return 10; | ||
179 | if (size <= 2 * 1024) return 11; | ||
180 | if (size <= 4 * 1024) return 12; | ||
181 | /* | ||
182 | * The following is only needed to support architectures with a larger page | ||
183 | * size than 4k. We need to support 2 * PAGE_SIZE here. So for a 64k page | ||
184 | * size we would have to go up to 128k. | ||
185 | */ | ||
186 | if (size <= 8 * 1024) return 13; | ||
187 | if (size <= 16 * 1024) return 14; | ||
188 | if (size <= 32 * 1024) return 15; | ||
189 | if (size <= 64 * 1024) return 16; | ||
190 | if (size <= 128 * 1024) return 17; | ||
191 | if (size <= 256 * 1024) return 18; | ||
192 | if (size <= 512 * 1024) return 19; | ||
193 | if (size <= 1024 * 1024) return 20; | ||
194 | if (size <= 2 * 1024 * 1024) return 21; | ||
195 | BUG(); | ||
196 | return -1; /* Will never be reached */ | ||
197 | |||
198 | /* | ||
199 | * What we really wanted to do and cannot do because of compiler issues is: | ||
200 | * int i; | ||
201 | * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) | ||
202 | * if (size <= (1 << i)) | ||
203 | * return i; | ||
204 | */ | ||
205 | } | ||
206 | |||
207 | /* | ||
208 | * Find the slab cache for a given combination of allocation flags and size. | ||
209 | * | ||
210 | * This ought to end up with a global pointer to the right cache | ||
211 | * in kmalloc_caches. | ||
212 | */ | ||
213 | static __always_inline struct kmem_cache *kmalloc_slab(size_t size) | ||
214 | { | ||
215 | int index = kmalloc_index(size); | ||
216 | |||
217 | if (index == 0) | ||
218 | return NULL; | ||
219 | |||
220 | return kmalloc_caches[index]; | ||
221 | } | ||
222 | |||
223 | void *kmem_cache_alloc(struct kmem_cache *, gfp_t); | 107 | void *kmem_cache_alloc(struct kmem_cache *, gfp_t); |
224 | void *__kmalloc(size_t size, gfp_t flags); | 108 | void *__kmalloc(size_t size, gfp_t flags); |
225 | 109 | ||
@@ -274,16 +158,17 @@ static __always_inline void *kmalloc_large(size_t size, gfp_t flags) | |||
274 | static __always_inline void *kmalloc(size_t size, gfp_t flags) | 158 | static __always_inline void *kmalloc(size_t size, gfp_t flags) |
275 | { | 159 | { |
276 | if (__builtin_constant_p(size)) { | 160 | if (__builtin_constant_p(size)) { |
277 | if (size > SLUB_MAX_SIZE) | 161 | if (size > KMALLOC_MAX_CACHE_SIZE) |
278 | return kmalloc_large(size, flags); | 162 | return kmalloc_large(size, flags); |
279 | 163 | ||
280 | if (!(flags & SLUB_DMA)) { | 164 | if (!(flags & GFP_DMA)) { |
281 | struct kmem_cache *s = kmalloc_slab(size); | 165 | int index = kmalloc_index(size); |
282 | 166 | ||
283 | if (!s) | 167 | if (!index) |
284 | return ZERO_SIZE_PTR; | 168 | return ZERO_SIZE_PTR; |
285 | 169 | ||
286 | return kmem_cache_alloc_trace(s, flags, size); | 170 | return kmem_cache_alloc_trace(kmalloc_caches[index], |
171 | flags, size); | ||
287 | } | 172 | } |
288 | } | 173 | } |
289 | return __kmalloc(size, flags); | 174 | return __kmalloc(size, flags); |
@@ -310,13 +195,14 @@ kmem_cache_alloc_node_trace(struct kmem_cache *s, | |||
310 | static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) | 195 | static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) |
311 | { | 196 | { |
312 | if (__builtin_constant_p(size) && | 197 | if (__builtin_constant_p(size) && |
313 | size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) { | 198 | size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) { |
314 | struct kmem_cache *s = kmalloc_slab(size); | 199 | int index = kmalloc_index(size); |
315 | 200 | ||
316 | if (!s) | 201 | if (!index) |
317 | return ZERO_SIZE_PTR; | 202 | return ZERO_SIZE_PTR; |
318 | 203 | ||
319 | return kmem_cache_alloc_node_trace(s, flags, node, size); | 204 | return kmem_cache_alloc_node_trace(kmalloc_caches[index], |
205 | flags, node, size); | ||
320 | } | 206 | } |
321 | return __kmalloc_node(size, flags, node); | 207 | return __kmalloc_node(size, flags, node); |
322 | } | 208 | } |
@@ -286,68 +286,27 @@ struct arraycache_init { | |||
286 | }; | 286 | }; |
287 | 287 | ||
288 | /* | 288 | /* |
289 | * The slab lists for all objects. | ||
290 | */ | ||
291 | struct kmem_list3 { | ||
292 | struct list_head slabs_partial; /* partial list first, better asm code */ | ||
293 | struct list_head slabs_full; | ||
294 | struct list_head slabs_free; | ||
295 | unsigned long free_objects; | ||
296 | unsigned int free_limit; | ||
297 | unsigned int colour_next; /* Per-node cache coloring */ | ||
298 | spinlock_t list_lock; | ||
299 | struct array_cache *shared; /* shared per node */ | ||
300 | struct array_cache **alien; /* on other nodes */ | ||
301 | unsigned long next_reap; /* updated without locking */ | ||
302 | int free_touched; /* updated without locking */ | ||
303 | }; | ||
304 | |||
305 | /* | ||
306 | * Need this for bootstrapping a per node allocator. | 289 | * Need this for bootstrapping a per node allocator. |
307 | */ | 290 | */ |
308 | #define NUM_INIT_LISTS (3 * MAX_NUMNODES) | 291 | #define NUM_INIT_LISTS (3 * MAX_NUMNODES) |
309 | static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS]; | 292 | static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; |
310 | #define CACHE_CACHE 0 | 293 | #define CACHE_CACHE 0 |
311 | #define SIZE_AC MAX_NUMNODES | 294 | #define SIZE_AC MAX_NUMNODES |
312 | #define SIZE_L3 (2 * MAX_NUMNODES) | 295 | #define SIZE_NODE (2 * MAX_NUMNODES) |
313 | 296 | ||
314 | static int drain_freelist(struct kmem_cache *cache, | 297 | static int drain_freelist(struct kmem_cache *cache, |
315 | struct kmem_list3 *l3, int tofree); | 298 | struct kmem_cache_node *n, int tofree); |
316 | static void free_block(struct kmem_cache *cachep, void **objpp, int len, | 299 | static void free_block(struct kmem_cache *cachep, void **objpp, int len, |
317 | int node); | 300 | int node); |
318 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); | 301 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); |
319 | static void cache_reap(struct work_struct *unused); | 302 | static void cache_reap(struct work_struct *unused); |
320 | 303 | ||
321 | /* | ||
322 | * This function must be completely optimized away if a constant is passed to | ||
323 | * it. Mostly the same as what is in linux/slab.h except it returns an index. | ||
324 | */ | ||
325 | static __always_inline int index_of(const size_t size) | ||
326 | { | ||
327 | extern void __bad_size(void); | ||
328 | |||
329 | if (__builtin_constant_p(size)) { | ||
330 | int i = 0; | ||
331 | |||
332 | #define CACHE(x) \ | ||
333 | if (size <=x) \ | ||
334 | return i; \ | ||
335 | else \ | ||
336 | i++; | ||
337 | #include <linux/kmalloc_sizes.h> | ||
338 | #undef CACHE | ||
339 | __bad_size(); | ||
340 | } else | ||
341 | __bad_size(); | ||
342 | return 0; | ||
343 | } | ||
344 | |||
345 | static int slab_early_init = 1; | 304 | static int slab_early_init = 1; |
346 | 305 | ||
347 | #define INDEX_AC index_of(sizeof(struct arraycache_init)) | 306 | #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init)) |
348 | #define INDEX_L3 index_of(sizeof(struct kmem_list3)) | 307 | #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) |
349 | 308 | ||
350 | static void kmem_list3_init(struct kmem_list3 *parent) | 309 | static void kmem_cache_node_init(struct kmem_cache_node *parent) |
351 | { | 310 | { |
352 | INIT_LIST_HEAD(&parent->slabs_full); | 311 | INIT_LIST_HEAD(&parent->slabs_full); |
353 | INIT_LIST_HEAD(&parent->slabs_partial); | 312 | INIT_LIST_HEAD(&parent->slabs_partial); |
@@ -363,7 +322,7 @@ static void kmem_list3_init(struct kmem_list3 *parent) | |||
363 | #define MAKE_LIST(cachep, listp, slab, nodeid) \ | 322 | #define MAKE_LIST(cachep, listp, slab, nodeid) \ |
364 | do { \ | 323 | do { \ |
365 | INIT_LIST_HEAD(listp); \ | 324 | INIT_LIST_HEAD(listp); \ |
366 | list_splice(&(cachep->nodelists[nodeid]->slab), listp); \ | 325 | list_splice(&(cachep->node[nodeid]->slab), listp); \ |
367 | } while (0) | 326 | } while (0) |
368 | 327 | ||
369 | #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ | 328 | #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ |
@@ -524,30 +483,6 @@ static inline unsigned int obj_to_index(const struct kmem_cache *cache, | |||
524 | return reciprocal_divide(offset, cache->reciprocal_buffer_size); | 483 | return reciprocal_divide(offset, cache->reciprocal_buffer_size); |
525 | } | 484 | } |
526 | 485 | ||
527 | /* | ||
528 | * These are the default caches for kmalloc. Custom caches can have other sizes. | ||
529 | */ | ||
530 | struct cache_sizes malloc_sizes[] = { | ||
531 | #define CACHE(x) { .cs_size = (x) }, | ||
532 | #include <linux/kmalloc_sizes.h> | ||
533 | CACHE(ULONG_MAX) | ||
534 | #undef CACHE | ||
535 | }; | ||
536 | EXPORT_SYMBOL(malloc_sizes); | ||
537 | |||
538 | /* Must match cache_sizes above. Out of line to keep cache footprint low. */ | ||
539 | struct cache_names { | ||
540 | char *name; | ||
541 | char *name_dma; | ||
542 | }; | ||
543 | |||
544 | static struct cache_names __initdata cache_names[] = { | ||
545 | #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, | ||
546 | #include <linux/kmalloc_sizes.h> | ||
547 | {NULL,} | ||
548 | #undef CACHE | ||
549 | }; | ||
550 | |||
551 | static struct arraycache_init initarray_generic = | 486 | static struct arraycache_init initarray_generic = |
552 | { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; | 487 | { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; |
553 | 488 | ||
@@ -586,15 +521,15 @@ static void slab_set_lock_classes(struct kmem_cache *cachep, | |||
586 | int q) | 521 | int q) |
587 | { | 522 | { |
588 | struct array_cache **alc; | 523 | struct array_cache **alc; |
589 | struct kmem_list3 *l3; | 524 | struct kmem_cache_node *n; |
590 | int r; | 525 | int r; |
591 | 526 | ||
592 | l3 = cachep->nodelists[q]; | 527 | n = cachep->node[q]; |
593 | if (!l3) | 528 | if (!n) |
594 | return; | 529 | return; |
595 | 530 | ||
596 | lockdep_set_class(&l3->list_lock, l3_key); | 531 | lockdep_set_class(&n->list_lock, l3_key); |
597 | alc = l3->alien; | 532 | alc = n->alien; |
598 | /* | 533 | /* |
599 | * FIXME: This check for BAD_ALIEN_MAGIC | 534 | * FIXME: This check for BAD_ALIEN_MAGIC |
600 | * should go away when common slab code is taught to | 535 | * should go away when common slab code is taught to |
@@ -625,28 +560,30 @@ static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep) | |||
625 | 560 | ||
626 | static void init_node_lock_keys(int q) | 561 | static void init_node_lock_keys(int q) |
627 | { | 562 | { |
628 | struct cache_sizes *s = malloc_sizes; | 563 | int i; |
629 | 564 | ||
630 | if (slab_state < UP) | 565 | if (slab_state < UP) |
631 | return; | 566 | return; |
632 | 567 | ||
633 | for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) { | 568 | for (i = 1; i < PAGE_SHIFT + MAX_ORDER; i++) { |
634 | struct kmem_list3 *l3; | 569 | struct kmem_cache_node *n; |
570 | struct kmem_cache *cache = kmalloc_caches[i]; | ||
571 | |||
572 | if (!cache) | ||
573 | continue; | ||
635 | 574 | ||
636 | l3 = s->cs_cachep->nodelists[q]; | 575 | n = cache->node[q]; |
637 | if (!l3 || OFF_SLAB(s->cs_cachep)) | 576 | if (!n || OFF_SLAB(cache)) |
638 | continue; | 577 | continue; |
639 | 578 | ||
640 | slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key, | 579 | slab_set_lock_classes(cache, &on_slab_l3_key, |
641 | &on_slab_alc_key, q); | 580 | &on_slab_alc_key, q); |
642 | } | 581 | } |
643 | } | 582 | } |
644 | 583 | ||
645 | static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q) | 584 | static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q) |
646 | { | 585 | { |
647 | struct kmem_list3 *l3; | 586 | if (!cachep->node[q]) |
648 | l3 = cachep->nodelists[q]; | ||
649 | if (!l3) | ||
650 | return; | 587 | return; |
651 | 588 | ||
652 | slab_set_lock_classes(cachep, &on_slab_l3_key, | 589 | slab_set_lock_classes(cachep, &on_slab_l3_key, |
@@ -702,41 +639,6 @@ static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) | |||
702 | return cachep->array[smp_processor_id()]; | 639 | return cachep->array[smp_processor_id()]; |
703 | } | 640 | } |
704 | 641 | ||
705 | static inline struct kmem_cache *__find_general_cachep(size_t size, | ||
706 | gfp_t gfpflags) | ||
707 | { | ||
708 | struct cache_sizes *csizep = malloc_sizes; | ||
709 | |||
710 | #if DEBUG | ||
711 | /* This happens if someone tries to call | ||
712 | * kmem_cache_create(), or __kmalloc(), before | ||
713 | * the generic caches are initialized. | ||
714 | */ | ||
715 | BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL); | ||
716 | #endif | ||
717 | if (!size) | ||
718 | return ZERO_SIZE_PTR; | ||
719 | |||
720 | while (size > csizep->cs_size) | ||
721 | csizep++; | ||
722 | |||
723 | /* | ||
724 | * Really subtle: The last entry with cs->cs_size==ULONG_MAX | ||
725 | * has cs_{dma,}cachep==NULL. Thus no special case | ||
726 | * for large kmalloc calls required. | ||
727 | */ | ||
728 | #ifdef CONFIG_ZONE_DMA | ||
729 | if (unlikely(gfpflags & GFP_DMA)) | ||
730 | return csizep->cs_dmacachep; | ||
731 | #endif | ||
732 | return csizep->cs_cachep; | ||
733 | } | ||
734 | |||
735 | static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags) | ||
736 | { | ||
737 | return __find_general_cachep(size, gfpflags); | ||
738 | } | ||
739 | |||
740 | static size_t slab_mgmt_size(size_t nr_objs, size_t align) | 642 | static size_t slab_mgmt_size(size_t nr_objs, size_t align) |
741 | { | 643 | { |
742 | return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align); | 644 | return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align); |
@@ -938,29 +840,29 @@ static inline bool is_slab_pfmemalloc(struct slab *slabp) | |||
938 | static void recheck_pfmemalloc_active(struct kmem_cache *cachep, | 840 | static void recheck_pfmemalloc_active(struct kmem_cache *cachep, |
939 | struct array_cache *ac) | 841 | struct array_cache *ac) |
940 | { | 842 | { |
941 | struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()]; | 843 | struct kmem_cache_node *n = cachep->node[numa_mem_id()]; |
942 | struct slab *slabp; | 844 | struct slab *slabp; |
943 | unsigned long flags; | 845 | unsigned long flags; |
944 | 846 | ||
945 | if (!pfmemalloc_active) | 847 | if (!pfmemalloc_active) |
946 | return; | 848 | return; |
947 | 849 | ||
948 | spin_lock_irqsave(&l3->list_lock, flags); | 850 | spin_lock_irqsave(&n->list_lock, flags); |
949 | list_for_each_entry(slabp, &l3->slabs_full, list) | 851 | list_for_each_entry(slabp, &n->slabs_full, list) |
950 | if (is_slab_pfmemalloc(slabp)) | 852 | if (is_slab_pfmemalloc(slabp)) |
951 | goto out; | 853 | goto out; |
952 | 854 | ||
953 | list_for_each_entry(slabp, &l3->slabs_partial, list) | 855 | list_for_each_entry(slabp, &n->slabs_partial, list) |
954 | if (is_slab_pfmemalloc(slabp)) | 856 | if (is_slab_pfmemalloc(slabp)) |
955 | goto out; | 857 | goto out; |
956 | 858 | ||
957 | list_for_each_entry(slabp, &l3->slabs_free, list) | 859 | list_for_each_entry(slabp, &n->slabs_free, list) |
958 | if (is_slab_pfmemalloc(slabp)) | 860 | if (is_slab_pfmemalloc(slabp)) |
959 | goto out; | 861 | goto out; |
960 | 862 | ||
961 | pfmemalloc_active = false; | 863 | pfmemalloc_active = false; |
962 | out: | 864 | out: |
963 | spin_unlock_irqrestore(&l3->list_lock, flags); | 865 | spin_unlock_irqrestore(&n->list_lock, flags); |
964 | } | 866 | } |
965 | 867 | ||
966 | static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac, | 868 | static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac, |
@@ -971,7 +873,7 @@ static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac, | |||
971 | 873 | ||
972 | /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */ | 874 | /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */ |
973 | if (unlikely(is_obj_pfmemalloc(objp))) { | 875 | if (unlikely(is_obj_pfmemalloc(objp))) { |
974 | struct kmem_list3 *l3; | 876 | struct kmem_cache_node *n; |
975 | 877 | ||
976 | if (gfp_pfmemalloc_allowed(flags)) { | 878 | if (gfp_pfmemalloc_allowed(flags)) { |
977 | clear_obj_pfmemalloc(&objp); | 879 | clear_obj_pfmemalloc(&objp); |
@@ -993,8 +895,8 @@ static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac, | |||
993 | * If there are empty slabs on the slabs_free list and we are | 895 | * If there are empty slabs on the slabs_free list and we are |
994 | * being forced to refill the cache, mark this one !pfmemalloc. | 896 | * being forced to refill the cache, mark this one !pfmemalloc. |
995 | */ | 897 | */ |
996 | l3 = cachep->nodelists[numa_mem_id()]; | 898 | n = cachep->node[numa_mem_id()]; |
997 | if (!list_empty(&l3->slabs_free) && force_refill) { | 899 | if (!list_empty(&n->slabs_free) && force_refill) { |
998 | struct slab *slabp = virt_to_slab(objp); | 900 | struct slab *slabp = virt_to_slab(objp); |
999 | ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem)); | 901 | ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem)); |
1000 | clear_obj_pfmemalloc(&objp); | 902 | clear_obj_pfmemalloc(&objp); |
@@ -1071,7 +973,7 @@ static int transfer_objects(struct array_cache *to, | |||
1071 | #ifndef CONFIG_NUMA | 973 | #ifndef CONFIG_NUMA |
1072 | 974 | ||
1073 | #define drain_alien_cache(cachep, alien) do { } while (0) | 975 | #define drain_alien_cache(cachep, alien) do { } while (0) |
1074 | #define reap_alien(cachep, l3) do { } while (0) | 976 | #define reap_alien(cachep, n) do { } while (0) |
1075 | 977 | ||
1076 | static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) | 978 | static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) |
1077 | { | 979 | { |
@@ -1143,33 +1045,33 @@ static void free_alien_cache(struct array_cache **ac_ptr) | |||
1143 | static void __drain_alien_cache(struct kmem_cache *cachep, | 1045 | static void __drain_alien_cache(struct kmem_cache *cachep, |
1144 | struct array_cache *ac, int node) | 1046 | struct array_cache *ac, int node) |
1145 | { | 1047 | { |
1146 | struct kmem_list3 *rl3 = cachep->nodelists[node]; | 1048 | struct kmem_cache_node *n = cachep->node[node]; |
1147 | 1049 | ||
1148 | if (ac->avail) { | 1050 | if (ac->avail) { |
1149 | spin_lock(&rl3->list_lock); | 1051 | spin_lock(&n->list_lock); |
1150 | /* | 1052 | /* |
1151 | * Stuff objects into the remote nodes shared array first. | 1053 | * Stuff objects into the remote nodes shared array first. |
1152 | * That way we could avoid the overhead of putting the objects | 1054 | * That way we could avoid the overhead of putting the objects |
1153 | * into the free lists and getting them back later. | 1055 | * into the free lists and getting them back later. |
1154 | */ | 1056 | */ |
1155 | if (rl3->shared) | 1057 | if (n->shared) |
1156 | transfer_objects(rl3->shared, ac, ac->limit); | 1058 | transfer_objects(n->shared, ac, ac->limit); |
1157 | 1059 | ||
1158 | free_block(cachep, ac->entry, ac->avail, node); | 1060 | free_block(cachep, ac->entry, ac->avail, node); |
1159 | ac->avail = 0; | 1061 | ac->avail = 0; |
1160 | spin_unlock(&rl3->list_lock); | 1062 | spin_unlock(&n->list_lock); |
1161 | } | 1063 | } |
1162 | } | 1064 | } |
1163 | 1065 | ||
1164 | /* | 1066 | /* |
1165 | * Called from cache_reap() to regularly drain alien caches round robin. | 1067 | * Called from cache_reap() to regularly drain alien caches round robin. |
1166 | */ | 1068 | */ |
1167 | static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3) | 1069 | static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) |
1168 | { | 1070 | { |
1169 | int node = __this_cpu_read(slab_reap_node); | 1071 | int node = __this_cpu_read(slab_reap_node); |
1170 | 1072 | ||
1171 | if (l3->alien) { | 1073 | if (n->alien) { |
1172 | struct array_cache *ac = l3->alien[node]; | 1074 | struct array_cache *ac = n->alien[node]; |
1173 | 1075 | ||
1174 | if (ac && ac->avail && spin_trylock_irq(&ac->lock)) { | 1076 | if (ac && ac->avail && spin_trylock_irq(&ac->lock)) { |
1175 | __drain_alien_cache(cachep, ac, node); | 1077 | __drain_alien_cache(cachep, ac, node); |
@@ -1199,7 +1101,7 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |||
1199 | { | 1101 | { |
1200 | struct slab *slabp = virt_to_slab(objp); | 1102 | struct slab *slabp = virt_to_slab(objp); |
1201 | int nodeid = slabp->nodeid; | 1103 | int nodeid = slabp->nodeid; |
1202 | struct kmem_list3 *l3; | 1104 | struct kmem_cache_node *n; |
1203 | struct array_cache *alien = NULL; | 1105 | struct array_cache *alien = NULL; |
1204 | int node; | 1106 | int node; |
1205 | 1107 | ||
@@ -1212,10 +1114,10 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |||
1212 | if (likely(slabp->nodeid == node)) | 1114 | if (likely(slabp->nodeid == node)) |
1213 | return 0; | 1115 | return 0; |
1214 | 1116 | ||
1215 | l3 = cachep->nodelists[node]; | 1117 | n = cachep->node[node]; |
1216 | STATS_INC_NODEFREES(cachep); | 1118 | STATS_INC_NODEFREES(cachep); |
1217 | if (l3->alien && l3->alien[nodeid]) { | 1119 | if (n->alien && n->alien[nodeid]) { |
1218 | alien = l3->alien[nodeid]; | 1120 | alien = n->alien[nodeid]; |
1219 | spin_lock(&alien->lock); | 1121 | spin_lock(&alien->lock); |
1220 | if (unlikely(alien->avail == alien->limit)) { | 1122 | if (unlikely(alien->avail == alien->limit)) { |
1221 | STATS_INC_ACOVERFLOW(cachep); | 1123 | STATS_INC_ACOVERFLOW(cachep); |
@@ -1224,28 +1126,28 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |||
1224 | ac_put_obj(cachep, alien, objp); | 1126 | ac_put_obj(cachep, alien, objp); |
1225 | spin_unlock(&alien->lock); | 1127 | spin_unlock(&alien->lock); |
1226 | } else { | 1128 | } else { |
1227 | spin_lock(&(cachep->nodelists[nodeid])->list_lock); | 1129 | spin_lock(&(cachep->node[nodeid])->list_lock); |
1228 | free_block(cachep, &objp, 1, nodeid); | 1130 | free_block(cachep, &objp, 1, nodeid); |
1229 | spin_unlock(&(cachep->nodelists[nodeid])->list_lock); | 1131 | spin_unlock(&(cachep->node[nodeid])->list_lock); |
1230 | } | 1132 | } |
1231 | return 1; | 1133 | return 1; |
1232 | } | 1134 | } |
1233 | #endif | 1135 | #endif |
1234 | 1136 | ||
1235 | /* | 1137 | /* |
1236 | * Allocates and initializes nodelists for a node on each slab cache, used for | 1138 | * Allocates and initializes node for a node on each slab cache, used for |
1237 | * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3 | 1139 | * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node |
1238 | * will be allocated off-node since memory is not yet online for the new node. | 1140 | * will be allocated off-node since memory is not yet online for the new node. |
1239 | * When hotplugging memory or a cpu, existing nodelists are not replaced if | 1141 | * When hotplugging memory or a cpu, existing node are not replaced if |
1240 | * already in use. | 1142 | * already in use. |
1241 | * | 1143 | * |
1242 | * Must hold slab_mutex. | 1144 | * Must hold slab_mutex. |
1243 | */ | 1145 | */ |
1244 | static int init_cache_nodelists_node(int node) | 1146 | static int init_cache_node_node(int node) |
1245 | { | 1147 | { |
1246 | struct kmem_cache *cachep; | 1148 | struct kmem_cache *cachep; |
1247 | struct kmem_list3 *l3; | 1149 | struct kmem_cache_node *n; |
1248 | const int memsize = sizeof(struct kmem_list3); | 1150 | const int memsize = sizeof(struct kmem_cache_node); |
1249 | 1151 | ||
1250 | list_for_each_entry(cachep, &slab_caches, list) { | 1152 | list_for_each_entry(cachep, &slab_caches, list) { |
1251 | /* | 1153 | /* |
@@ -1253,12 +1155,12 @@ static int init_cache_nodelists_node(int node) | |||
1253 | * begin anything. Make sure some other cpu on this | 1155 | * begin anything. Make sure some other cpu on this |
1254 | * node has not already allocated this | 1156 | * node has not already allocated this |
1255 | */ | 1157 | */ |
1256 | if (!cachep->nodelists[node]) { | 1158 | if (!cachep->node[node]) { |
1257 | l3 = kmalloc_node(memsize, GFP_KERNEL, node); | 1159 | n = kmalloc_node(memsize, GFP_KERNEL, node); |
1258 | if (!l3) | 1160 | if (!n) |
1259 | return -ENOMEM; | 1161 | return -ENOMEM; |
1260 | kmem_list3_init(l3); | 1162 | kmem_cache_node_init(n); |
1261 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | 1163 | n->next_reap = jiffies + REAPTIMEOUT_LIST3 + |
1262 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | 1164 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; |
1263 | 1165 | ||
1264 | /* | 1166 | /* |
@@ -1266,14 +1168,14 @@ static int init_cache_nodelists_node(int node) | |||
1266 | * go. slab_mutex is sufficient | 1168 | * go. slab_mutex is sufficient |
1267 | * protection here. | 1169 | * protection here. |
1268 | */ | 1170 | */ |
1269 | cachep->nodelists[node] = l3; | 1171 | cachep->node[node] = n; |
1270 | } | 1172 | } |
1271 | 1173 | ||
1272 | spin_lock_irq(&cachep->nodelists[node]->list_lock); | 1174 | spin_lock_irq(&cachep->node[node]->list_lock); |
1273 | cachep->nodelists[node]->free_limit = | 1175 | cachep->node[node]->free_limit = |
1274 | (1 + nr_cpus_node(node)) * | 1176 | (1 + nr_cpus_node(node)) * |
1275 | cachep->batchcount + cachep->num; | 1177 | cachep->batchcount + cachep->num; |
1276 | spin_unlock_irq(&cachep->nodelists[node]->list_lock); | 1178 | spin_unlock_irq(&cachep->node[node]->list_lock); |
1277 | } | 1179 | } |
1278 | return 0; | 1180 | return 0; |
1279 | } | 1181 | } |
@@ -1281,7 +1183,7 @@ static int init_cache_nodelists_node(int node) | |||
1281 | static void __cpuinit cpuup_canceled(long cpu) | 1183 | static void __cpuinit cpuup_canceled(long cpu) |
1282 | { | 1184 | { |
1283 | struct kmem_cache *cachep; | 1185 | struct kmem_cache *cachep; |
1284 | struct kmem_list3 *l3 = NULL; | 1186 | struct kmem_cache_node *n = NULL; |
1285 | int node = cpu_to_mem(cpu); | 1187 | int node = cpu_to_mem(cpu); |
1286 | const struct cpumask *mask = cpumask_of_node(node); | 1188 | const struct cpumask *mask = cpumask_of_node(node); |
1287 | 1189 | ||
@@ -1293,34 +1195,34 @@ static void __cpuinit cpuup_canceled(long cpu) | |||
1293 | /* cpu is dead; no one can alloc from it. */ | 1195 | /* cpu is dead; no one can alloc from it. */ |
1294 | nc = cachep->array[cpu]; | 1196 | nc = cachep->array[cpu]; |
1295 | cachep->array[cpu] = NULL; | 1197 | cachep->array[cpu] = NULL; |
1296 | l3 = cachep->nodelists[node]; | 1198 | n = cachep->node[node]; |
1297 | 1199 | ||
1298 | if (!l3) | 1200 | if (!n) |
1299 | goto free_array_cache; | 1201 | goto free_array_cache; |
1300 | 1202 | ||
1301 | spin_lock_irq(&l3->list_lock); | 1203 | spin_lock_irq(&n->list_lock); |
1302 | 1204 | ||
1303 | /* Free limit for this kmem_list3 */ | 1205 | /* Free limit for this kmem_cache_node */ |
1304 | l3->free_limit -= cachep->batchcount; | 1206 | n->free_limit -= cachep->batchcount; |
1305 | if (nc) | 1207 | if (nc) |
1306 | free_block(cachep, nc->entry, nc->avail, node); | 1208 | free_block(cachep, nc->entry, nc->avail, node); |
1307 | 1209 | ||
1308 | if (!cpumask_empty(mask)) { | 1210 | if (!cpumask_empty(mask)) { |
1309 | spin_unlock_irq(&l3->list_lock); | 1211 | spin_unlock_irq(&n->list_lock); |
1310 | goto free_array_cache; | 1212 | goto free_array_cache; |
1311 | } | 1213 | } |
1312 | 1214 | ||
1313 | shared = l3->shared; | 1215 | shared = n->shared; |
1314 | if (shared) { | 1216 | if (shared) { |
1315 | free_block(cachep, shared->entry, | 1217 | free_block(cachep, shared->entry, |
1316 | shared->avail, node); | 1218 | shared->avail, node); |
1317 | l3->shared = NULL; | 1219 | n->shared = NULL; |
1318 | } | 1220 | } |
1319 | 1221 | ||
1320 | alien = l3->alien; | 1222 | alien = n->alien; |
1321 | l3->alien = NULL; | 1223 | n->alien = NULL; |
1322 | 1224 | ||
1323 | spin_unlock_irq(&l3->list_lock); | 1225 | spin_unlock_irq(&n->list_lock); |
1324 | 1226 | ||
1325 | kfree(shared); | 1227 | kfree(shared); |
1326 | if (alien) { | 1228 | if (alien) { |
@@ -1336,17 +1238,17 @@ free_array_cache: | |||
1336 | * shrink each nodelist to its limit. | 1238 | * shrink each nodelist to its limit. |
1337 | */ | 1239 | */ |
1338 | list_for_each_entry(cachep, &slab_caches, list) { | 1240 | list_for_each_entry(cachep, &slab_caches, list) { |
1339 | l3 = cachep->nodelists[node]; | 1241 | n = cachep->node[node]; |
1340 | if (!l3) | 1242 | if (!n) |
1341 | continue; | 1243 | continue; |
1342 | drain_freelist(cachep, l3, l3->free_objects); | 1244 | drain_freelist(cachep, n, n->free_objects); |
1343 | } | 1245 | } |
1344 | } | 1246 | } |
1345 | 1247 | ||
1346 | static int __cpuinit cpuup_prepare(long cpu) | 1248 | static int __cpuinit cpuup_prepare(long cpu) |
1347 | { | 1249 | { |
1348 | struct kmem_cache *cachep; | 1250 | struct kmem_cache *cachep; |
1349 | struct kmem_list3 *l3 = NULL; | 1251 | struct kmem_cache_node *n = NULL; |
1350 | int node = cpu_to_mem(cpu); | 1252 | int node = cpu_to_mem(cpu); |
1351 | int err; | 1253 | int err; |
1352 | 1254 | ||
@@ -1354,9 +1256,9 @@ static int __cpuinit cpuup_prepare(long cpu) | |||
1354 | * We need to do this right in the beginning since | 1256 | * We need to do this right in the beginning since |
1355 | * alloc_arraycache's are going to use this list. | 1257 | * alloc_arraycache's are going to use this list. |
1356 | * kmalloc_node allows us to add the slab to the right | 1258 | * kmalloc_node allows us to add the slab to the right |
1357 | * kmem_list3 and not this cpu's kmem_list3 | 1259 | * kmem_cache_node and not this cpu's kmem_cache_node |
1358 | */ | 1260 | */ |
1359 | err = init_cache_nodelists_node(node); | 1261 | err = init_cache_node_node(node); |
1360 | if (err < 0) | 1262 | if (err < 0) |
1361 | goto bad; | 1263 | goto bad; |
1362 | 1264 | ||
@@ -1391,25 +1293,25 @@ static int __cpuinit cpuup_prepare(long cpu) | |||
1391 | } | 1293 | } |
1392 | } | 1294 | } |
1393 | cachep->array[cpu] = nc; | 1295 | cachep->array[cpu] = nc; |
1394 | l3 = cachep->nodelists[node]; | 1296 | n = cachep->node[node]; |
1395 | BUG_ON(!l3); | 1297 | BUG_ON(!n); |
1396 | 1298 | ||
1397 | spin_lock_irq(&l3->list_lock); | 1299 | spin_lock_irq(&n->list_lock); |
1398 | if (!l3->shared) { | 1300 | if (!n->shared) { |
1399 | /* | 1301 | /* |
1400 | * We are serialised from CPU_DEAD or | 1302 | * We are serialised from CPU_DEAD or |
1401 | * CPU_UP_CANCELLED by the cpucontrol lock | 1303 | * CPU_UP_CANCELLED by the cpucontrol lock |
1402 | */ | 1304 | */ |
1403 | l3->shared = shared; | 1305 | n->shared = shared; |
1404 | shared = NULL; | 1306 | shared = NULL; |
1405 | } | 1307 | } |
1406 | #ifdef CONFIG_NUMA | 1308 | #ifdef CONFIG_NUMA |
1407 | if (!l3->alien) { | 1309 | if (!n->alien) { |
1408 | l3->alien = alien; | 1310 | n->alien = alien; |
1409 | alien = NULL; | 1311 | alien = NULL; |
1410 | } | 1312 | } |
1411 | #endif | 1313 | #endif |
1412 | spin_unlock_irq(&l3->list_lock); | 1314 | spin_unlock_irq(&n->list_lock); |
1413 | kfree(shared); | 1315 | kfree(shared); |
1414 | free_alien_cache(alien); | 1316 | free_alien_cache(alien); |
1415 | if (cachep->flags & SLAB_DEBUG_OBJECTS) | 1317 | if (cachep->flags & SLAB_DEBUG_OBJECTS) |
@@ -1464,9 +1366,9 @@ static int __cpuinit cpuup_callback(struct notifier_block *nfb, | |||
1464 | case CPU_DEAD_FROZEN: | 1366 | case CPU_DEAD_FROZEN: |
1465 | /* | 1367 | /* |
1466 | * Even if all the cpus of a node are down, we don't free the | 1368 | * Even if all the cpus of a node are down, we don't free the |
1467 | * kmem_list3 of any cache. This to avoid a race between | 1369 | * kmem_cache_node of any cache. This to avoid a race between |
1468 | * cpu_down, and a kmalloc allocation from another cpu for | 1370 | * cpu_down, and a kmalloc allocation from another cpu for |
1469 | * memory from the node of the cpu going down. The list3 | 1371 | * memory from the node of the cpu going down. The node |
1470 | * structure is usually allocated from kmem_cache_create() and | 1372 | * structure is usually allocated from kmem_cache_create() and |
1471 | * gets destroyed at kmem_cache_destroy(). | 1373 | * gets destroyed at kmem_cache_destroy(). |
1472 | */ | 1374 | */ |
@@ -1494,22 +1396,22 @@ static struct notifier_block __cpuinitdata cpucache_notifier = { | |||
1494 | * | 1396 | * |
1495 | * Must hold slab_mutex. | 1397 | * Must hold slab_mutex. |
1496 | */ | 1398 | */ |
1497 | static int __meminit drain_cache_nodelists_node(int node) | 1399 | static int __meminit drain_cache_node_node(int node) |
1498 | { | 1400 | { |
1499 | struct kmem_cache *cachep; | 1401 | struct kmem_cache *cachep; |
1500 | int ret = 0; | 1402 | int ret = 0; |
1501 | 1403 | ||
1502 | list_for_each_entry(cachep, &slab_caches, list) { | 1404 | list_for_each_entry(cachep, &slab_caches, list) { |
1503 | struct kmem_list3 *l3; | 1405 | struct kmem_cache_node *n; |
1504 | 1406 | ||
1505 | l3 = cachep->nodelists[node]; | 1407 | n = cachep->node[node]; |
1506 | if (!l3) | 1408 | if (!n) |
1507 | continue; | 1409 | continue; |
1508 | 1410 | ||
1509 | drain_freelist(cachep, l3, l3->free_objects); | 1411 | drain_freelist(cachep, n, n->free_objects); |
1510 | 1412 | ||
1511 | if (!list_empty(&l3->slabs_full) || | 1413 | if (!list_empty(&n->slabs_full) || |
1512 | !list_empty(&l3->slabs_partial)) { | 1414 | !list_empty(&n->slabs_partial)) { |
1513 | ret = -EBUSY; | 1415 | ret = -EBUSY; |
1514 | break; | 1416 | break; |
1515 | } | 1417 | } |
@@ -1531,12 +1433,12 @@ static int __meminit slab_memory_callback(struct notifier_block *self, | |||
1531 | switch (action) { | 1433 | switch (action) { |
1532 | case MEM_GOING_ONLINE: | 1434 | case MEM_GOING_ONLINE: |
1533 | mutex_lock(&slab_mutex); | 1435 | mutex_lock(&slab_mutex); |
1534 | ret = init_cache_nodelists_node(nid); | 1436 | ret = init_cache_node_node(nid); |
1535 | mutex_unlock(&slab_mutex); | 1437 | mutex_unlock(&slab_mutex); |
1536 | break; | 1438 | break; |
1537 | case MEM_GOING_OFFLINE: | 1439 | case MEM_GOING_OFFLINE: |
1538 | mutex_lock(&slab_mutex); | 1440 | mutex_lock(&slab_mutex); |
1539 | ret = drain_cache_nodelists_node(nid); | 1441 | ret = drain_cache_node_node(nid); |
1540 | mutex_unlock(&slab_mutex); | 1442 | mutex_unlock(&slab_mutex); |
1541 | break; | 1443 | break; |
1542 | case MEM_ONLINE: | 1444 | case MEM_ONLINE: |
@@ -1551,37 +1453,37 @@ out: | |||
1551 | #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ | 1453 | #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ |
1552 | 1454 | ||
1553 | /* | 1455 | /* |
1554 | * swap the static kmem_list3 with kmalloced memory | 1456 | * swap the static kmem_cache_node with kmalloced memory |
1555 | */ | 1457 | */ |
1556 | static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list, | 1458 | static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, |
1557 | int nodeid) | 1459 | int nodeid) |
1558 | { | 1460 | { |
1559 | struct kmem_list3 *ptr; | 1461 | struct kmem_cache_node *ptr; |
1560 | 1462 | ||
1561 | ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid); | 1463 | ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); |
1562 | BUG_ON(!ptr); | 1464 | BUG_ON(!ptr); |
1563 | 1465 | ||
1564 | memcpy(ptr, list, sizeof(struct kmem_list3)); | 1466 | memcpy(ptr, list, sizeof(struct kmem_cache_node)); |
1565 | /* | 1467 | /* |
1566 | * Do not assume that spinlocks can be initialized via memcpy: | 1468 | * Do not assume that spinlocks can be initialized via memcpy: |
1567 | */ | 1469 | */ |
1568 | spin_lock_init(&ptr->list_lock); | 1470 | spin_lock_init(&ptr->list_lock); |
1569 | 1471 | ||
1570 | MAKE_ALL_LISTS(cachep, ptr, nodeid); | 1472 | MAKE_ALL_LISTS(cachep, ptr, nodeid); |
1571 | cachep->nodelists[nodeid] = ptr; | 1473 | cachep->node[nodeid] = ptr; |
1572 | } | 1474 | } |
1573 | 1475 | ||
1574 | /* | 1476 | /* |
1575 | * For setting up all the kmem_list3s for cache whose buffer_size is same as | 1477 | * For setting up all the kmem_cache_node for cache whose buffer_size is same as |
1576 | * size of kmem_list3. | 1478 | * size of kmem_cache_node. |
1577 | */ | 1479 | */ |
1578 | static void __init set_up_list3s(struct kmem_cache *cachep, int index) | 1480 | static void __init set_up_node(struct kmem_cache *cachep, int index) |
1579 | { | 1481 | { |
1580 | int node; | 1482 | int node; |
1581 | 1483 | ||
1582 | for_each_online_node(node) { | 1484 | for_each_online_node(node) { |
1583 | cachep->nodelists[node] = &initkmem_list3[index + node]; | 1485 | cachep->node[node] = &init_kmem_cache_node[index + node]; |
1584 | cachep->nodelists[node]->next_reap = jiffies + | 1486 | cachep->node[node]->next_reap = jiffies + |
1585 | REAPTIMEOUT_LIST3 + | 1487 | REAPTIMEOUT_LIST3 + |
1586 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | 1488 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; |
1587 | } | 1489 | } |
@@ -1589,11 +1491,11 @@ static void __init set_up_list3s(struct kmem_cache *cachep, int index) | |||
1589 | 1491 | ||
1590 | /* | 1492 | /* |
1591 | * The memory after the last cpu cache pointer is used for the | 1493 | * The memory after the last cpu cache pointer is used for the |
1592 | * the nodelists pointer. | 1494 | * the node pointer. |
1593 | */ | 1495 | */ |
1594 | static void setup_nodelists_pointer(struct kmem_cache *cachep) | 1496 | static void setup_node_pointer(struct kmem_cache *cachep) |
1595 | { | 1497 | { |
1596 | cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids]; | 1498 | cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids]; |
1597 | } | 1499 | } |
1598 | 1500 | ||
1599 | /* | 1501 | /* |
@@ -1602,20 +1504,18 @@ static void setup_nodelists_pointer(struct kmem_cache *cachep) | |||
1602 | */ | 1504 | */ |
1603 | void __init kmem_cache_init(void) | 1505 | void __init kmem_cache_init(void) |
1604 | { | 1506 | { |
1605 | struct cache_sizes *sizes; | ||
1606 | struct cache_names *names; | ||
1607 | int i; | 1507 | int i; |
1608 | 1508 | ||
1609 | kmem_cache = &kmem_cache_boot; | 1509 | kmem_cache = &kmem_cache_boot; |
1610 | setup_nodelists_pointer(kmem_cache); | 1510 | setup_node_pointer(kmem_cache); |
1611 | 1511 | ||
1612 | if (num_possible_nodes() == 1) | 1512 | if (num_possible_nodes() == 1) |
1613 | use_alien_caches = 0; | 1513 | use_alien_caches = 0; |
1614 | 1514 | ||
1615 | for (i = 0; i < NUM_INIT_LISTS; i++) | 1515 | for (i = 0; i < NUM_INIT_LISTS; i++) |
1616 | kmem_list3_init(&initkmem_list3[i]); | 1516 | kmem_cache_node_init(&init_kmem_cache_node[i]); |
1617 | 1517 | ||
1618 | set_up_list3s(kmem_cache, CACHE_CACHE); | 1518 | set_up_node(kmem_cache, CACHE_CACHE); |
1619 | 1519 | ||
1620 | /* | 1520 | /* |
1621 | * Fragmentation resistance on low memory - only use bigger | 1521 | * Fragmentation resistance on low memory - only use bigger |
@@ -1631,7 +1531,7 @@ void __init kmem_cache_init(void) | |||
1631 | * kmem_cache structures of all caches, except kmem_cache itself: | 1531 | * kmem_cache structures of all caches, except kmem_cache itself: |
1632 | * kmem_cache is statically allocated. | 1532 | * kmem_cache is statically allocated. |
1633 | * Initially an __init data area is used for the head array and the | 1533 | * Initially an __init data area is used for the head array and the |
1634 | * kmem_list3 structures, it's replaced with a kmalloc allocated | 1534 | * kmem_cache_node structures, it's replaced with a kmalloc allocated |
1635 | * array at the end of the bootstrap. | 1535 | * array at the end of the bootstrap. |
1636 | * 2) Create the first kmalloc cache. | 1536 | * 2) Create the first kmalloc cache. |
1637 | * The struct kmem_cache for the new cache is allocated normally. | 1537 | * The struct kmem_cache for the new cache is allocated normally. |
@@ -1640,7 +1540,7 @@ void __init kmem_cache_init(void) | |||
1640 | * head arrays. | 1540 | * head arrays. |
1641 | * 4) Replace the __init data head arrays for kmem_cache and the first | 1541 | * 4) Replace the __init data head arrays for kmem_cache and the first |
1642 | * kmalloc cache with kmalloc allocated arrays. | 1542 | * kmalloc cache with kmalloc allocated arrays. |
1643 | * 5) Replace the __init data for kmem_list3 for kmem_cache and | 1543 | * 5) Replace the __init data for kmem_cache_node for kmem_cache and |
1644 | * the other cache's with kmalloc allocated memory. | 1544 | * the other cache's with kmalloc allocated memory. |
1645 | * 6) Resize the head arrays of the kmalloc caches to their final sizes. | 1545 | * 6) Resize the head arrays of the kmalloc caches to their final sizes. |
1646 | */ | 1546 | */ |
@@ -1652,50 +1552,28 @@ void __init kmem_cache_init(void) | |||
1652 | */ | 1552 | */ |
1653 | create_boot_cache(kmem_cache, "kmem_cache", | 1553 | create_boot_cache(kmem_cache, "kmem_cache", |
1654 | offsetof(struct kmem_cache, array[nr_cpu_ids]) + | 1554 | offsetof(struct kmem_cache, array[nr_cpu_ids]) + |
1655 | nr_node_ids * sizeof(struct kmem_list3 *), | 1555 | nr_node_ids * sizeof(struct kmem_cache_node *), |
1656 | SLAB_HWCACHE_ALIGN); | 1556 | SLAB_HWCACHE_ALIGN); |
1657 | list_add(&kmem_cache->list, &slab_caches); | 1557 | list_add(&kmem_cache->list, &slab_caches); |
1658 | 1558 | ||
1659 | /* 2+3) create the kmalloc caches */ | 1559 | /* 2+3) create the kmalloc caches */ |
1660 | sizes = malloc_sizes; | ||
1661 | names = cache_names; | ||
1662 | 1560 | ||
1663 | /* | 1561 | /* |
1664 | * Initialize the caches that provide memory for the array cache and the | 1562 | * Initialize the caches that provide memory for the array cache and the |
1665 | * kmem_list3 structures first. Without this, further allocations will | 1563 | * kmem_cache_node structures first. Without this, further allocations will |
1666 | * bug. | 1564 | * bug. |
1667 | */ | 1565 | */ |
1668 | 1566 | ||
1669 | sizes[INDEX_AC].cs_cachep = create_kmalloc_cache(names[INDEX_AC].name, | 1567 | kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac", |
1670 | sizes[INDEX_AC].cs_size, ARCH_KMALLOC_FLAGS); | 1568 | kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS); |
1671 | 1569 | ||
1672 | if (INDEX_AC != INDEX_L3) | 1570 | if (INDEX_AC != INDEX_NODE) |
1673 | sizes[INDEX_L3].cs_cachep = | 1571 | kmalloc_caches[INDEX_NODE] = |
1674 | create_kmalloc_cache(names[INDEX_L3].name, | 1572 | create_kmalloc_cache("kmalloc-node", |
1675 | sizes[INDEX_L3].cs_size, ARCH_KMALLOC_FLAGS); | 1573 | kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS); |
1676 | 1574 | ||
1677 | slab_early_init = 0; | 1575 | slab_early_init = 0; |
1678 | 1576 | ||
1679 | while (sizes->cs_size != ULONG_MAX) { | ||
1680 | /* | ||
1681 | * For performance, all the general caches are L1 aligned. | ||
1682 | * This should be particularly beneficial on SMP boxes, as it | ||
1683 | * eliminates "false sharing". | ||
1684 | * Note for systems short on memory removing the alignment will | ||
1685 | * allow tighter packing of the smaller caches. | ||
1686 | */ | ||
1687 | if (!sizes->cs_cachep) | ||
1688 | sizes->cs_cachep = create_kmalloc_cache(names->name, | ||
1689 | sizes->cs_size, ARCH_KMALLOC_FLAGS); | ||
1690 | |||
1691 | #ifdef CONFIG_ZONE_DMA | ||
1692 | sizes->cs_dmacachep = create_kmalloc_cache( | ||
1693 | names->name_dma, sizes->cs_size, | ||
1694 | SLAB_CACHE_DMA|ARCH_KMALLOC_FLAGS); | ||
1695 | #endif | ||
1696 | sizes++; | ||
1697 | names++; | ||
1698 | } | ||
1699 | /* 4) Replace the bootstrap head arrays */ | 1577 | /* 4) Replace the bootstrap head arrays */ |
1700 | { | 1578 | { |
1701 | struct array_cache *ptr; | 1579 | struct array_cache *ptr; |
@@ -1713,36 +1591,35 @@ void __init kmem_cache_init(void) | |||
1713 | 1591 | ||
1714 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); | 1592 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); |
1715 | 1593 | ||
1716 | BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep) | 1594 | BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC]) |
1717 | != &initarray_generic.cache); | 1595 | != &initarray_generic.cache); |
1718 | memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep), | 1596 | memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]), |
1719 | sizeof(struct arraycache_init)); | 1597 | sizeof(struct arraycache_init)); |
1720 | /* | 1598 | /* |
1721 | * Do not assume that spinlocks can be initialized via memcpy: | 1599 | * Do not assume that spinlocks can be initialized via memcpy: |
1722 | */ | 1600 | */ |
1723 | spin_lock_init(&ptr->lock); | 1601 | spin_lock_init(&ptr->lock); |
1724 | 1602 | ||
1725 | malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = | 1603 | kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr; |
1726 | ptr; | ||
1727 | } | 1604 | } |
1728 | /* 5) Replace the bootstrap kmem_list3's */ | 1605 | /* 5) Replace the bootstrap kmem_cache_node */ |
1729 | { | 1606 | { |
1730 | int nid; | 1607 | int nid; |
1731 | 1608 | ||
1732 | for_each_online_node(nid) { | 1609 | for_each_online_node(nid) { |
1733 | init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid); | 1610 | init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); |
1734 | 1611 | ||
1735 | init_list(malloc_sizes[INDEX_AC].cs_cachep, | 1612 | init_list(kmalloc_caches[INDEX_AC], |
1736 | &initkmem_list3[SIZE_AC + nid], nid); | 1613 | &init_kmem_cache_node[SIZE_AC + nid], nid); |
1737 | 1614 | ||
1738 | if (INDEX_AC != INDEX_L3) { | 1615 | if (INDEX_AC != INDEX_NODE) { |
1739 | init_list(malloc_sizes[INDEX_L3].cs_cachep, | 1616 | init_list(kmalloc_caches[INDEX_NODE], |
1740 | &initkmem_list3[SIZE_L3 + nid], nid); | 1617 | &init_kmem_cache_node[SIZE_NODE + nid], nid); |
1741 | } | 1618 | } |
1742 | } | 1619 | } |
1743 | } | 1620 | } |
1744 | 1621 | ||
1745 | slab_state = UP; | 1622 | create_kmalloc_caches(ARCH_KMALLOC_FLAGS); |
1746 | } | 1623 | } |
1747 | 1624 | ||
1748 | void __init kmem_cache_init_late(void) | 1625 | void __init kmem_cache_init_late(void) |
@@ -1773,7 +1650,7 @@ void __init kmem_cache_init_late(void) | |||
1773 | #ifdef CONFIG_NUMA | 1650 | #ifdef CONFIG_NUMA |
1774 | /* | 1651 | /* |
1775 | * Register a memory hotplug callback that initializes and frees | 1652 | * Register a memory hotplug callback that initializes and frees |
1776 | * nodelists. | 1653 | * node. |
1777 | */ | 1654 | */ |
1778 | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); | 1655 | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); |
1779 | #endif | 1656 | #endif |
@@ -1803,7 +1680,7 @@ __initcall(cpucache_init); | |||
1803 | static noinline void | 1680 | static noinline void |
1804 | slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) | 1681 | slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) |
1805 | { | 1682 | { |
1806 | struct kmem_list3 *l3; | 1683 | struct kmem_cache_node *n; |
1807 | struct slab *slabp; | 1684 | struct slab *slabp; |
1808 | unsigned long flags; | 1685 | unsigned long flags; |
1809 | int node; | 1686 | int node; |
@@ -1818,24 +1695,24 @@ slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) | |||
1818 | unsigned long active_objs = 0, num_objs = 0, free_objects = 0; | 1695 | unsigned long active_objs = 0, num_objs = 0, free_objects = 0; |
1819 | unsigned long active_slabs = 0, num_slabs = 0; | 1696 | unsigned long active_slabs = 0, num_slabs = 0; |
1820 | 1697 | ||
1821 | l3 = cachep->nodelists[node]; | 1698 | n = cachep->node[node]; |
1822 | if (!l3) | 1699 | if (!n) |
1823 | continue; | 1700 | continue; |
1824 | 1701 | ||
1825 | spin_lock_irqsave(&l3->list_lock, flags); | 1702 | spin_lock_irqsave(&n->list_lock, flags); |
1826 | list_for_each_entry(slabp, &l3->slabs_full, list) { | 1703 | list_for_each_entry(slabp, &n->slabs_full, list) { |
1827 | active_objs += cachep->num; | 1704 | active_objs += cachep->num; |
1828 | active_slabs++; | 1705 | active_slabs++; |
1829 | } | 1706 | } |
1830 | list_for_each_entry(slabp, &l3->slabs_partial, list) { | 1707 | list_for_each_entry(slabp, &n->slabs_partial, list) { |
1831 | active_objs += slabp->inuse; | 1708 | active_objs += slabp->inuse; |
1832 | active_slabs++; | 1709 | active_slabs++; |
1833 | } | 1710 | } |
1834 | list_for_each_entry(slabp, &l3->slabs_free, list) | 1711 | list_for_each_entry(slabp, &n->slabs_free, list) |
1835 | num_slabs++; | 1712 | num_slabs++; |
1836 | 1713 | ||
1837 | free_objects += l3->free_objects; | 1714 | free_objects += n->free_objects; |
1838 | spin_unlock_irqrestore(&l3->list_lock, flags); | 1715 | spin_unlock_irqrestore(&n->list_lock, flags); |
1839 | 1716 | ||
1840 | num_slabs += active_slabs; | 1717 | num_slabs += active_slabs; |
1841 | num_objs = num_slabs * cachep->num; | 1718 | num_objs = num_slabs * cachep->num; |
@@ -2258,7 +2135,7 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) | |||
2258 | if (slab_state == DOWN) { | 2135 | if (slab_state == DOWN) { |
2259 | /* | 2136 | /* |
2260 | * Note: Creation of first cache (kmem_cache). | 2137 | * Note: Creation of first cache (kmem_cache). |
2261 | * The setup_list3s is taken care | 2138 | * The setup_node is taken care |
2262 | * of by the caller of __kmem_cache_create | 2139 | * of by the caller of __kmem_cache_create |
2263 | */ | 2140 | */ |
2264 | cachep->array[smp_processor_id()] = &initarray_generic.cache; | 2141 | cachep->array[smp_processor_id()] = &initarray_generic.cache; |
@@ -2272,13 +2149,13 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) | |||
2272 | cachep->array[smp_processor_id()] = &initarray_generic.cache; | 2149 | cachep->array[smp_processor_id()] = &initarray_generic.cache; |
2273 | 2150 | ||
2274 | /* | 2151 | /* |
2275 | * If the cache that's used by kmalloc(sizeof(kmem_list3)) is | 2152 | * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is |
2276 | * the second cache, then we need to set up all its list3s, | 2153 | * the second cache, then we need to set up all its node/, |
2277 | * otherwise the creation of further caches will BUG(). | 2154 | * otherwise the creation of further caches will BUG(). |
2278 | */ | 2155 | */ |
2279 | set_up_list3s(cachep, SIZE_AC); | 2156 | set_up_node(cachep, SIZE_AC); |
2280 | if (INDEX_AC == INDEX_L3) | 2157 | if (INDEX_AC == INDEX_NODE) |
2281 | slab_state = PARTIAL_L3; | 2158 | slab_state = PARTIAL_NODE; |
2282 | else | 2159 | else |
2283 | slab_state = PARTIAL_ARRAYCACHE; | 2160 | slab_state = PARTIAL_ARRAYCACHE; |
2284 | } else { | 2161 | } else { |
@@ -2287,20 +2164,20 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) | |||
2287 | kmalloc(sizeof(struct arraycache_init), gfp); | 2164 | kmalloc(sizeof(struct arraycache_init), gfp); |
2288 | 2165 | ||
2289 | if (slab_state == PARTIAL_ARRAYCACHE) { | 2166 | if (slab_state == PARTIAL_ARRAYCACHE) { |
2290 | set_up_list3s(cachep, SIZE_L3); | 2167 | set_up_node(cachep, SIZE_NODE); |
2291 | slab_state = PARTIAL_L3; | 2168 | slab_state = PARTIAL_NODE; |
2292 | } else { | 2169 | } else { |
2293 | int node; | 2170 | int node; |
2294 | for_each_online_node(node) { | 2171 | for_each_online_node(node) { |
2295 | cachep->nodelists[node] = | 2172 | cachep->node[node] = |
2296 | kmalloc_node(sizeof(struct kmem_list3), | 2173 | kmalloc_node(sizeof(struct kmem_cache_node), |
2297 | gfp, node); | 2174 | gfp, node); |
2298 | BUG_ON(!cachep->nodelists[node]); | 2175 | BUG_ON(!cachep->node[node]); |
2299 | kmem_list3_init(cachep->nodelists[node]); | 2176 | kmem_cache_node_init(cachep->node[node]); |
2300 | } | 2177 | } |
2301 | } | 2178 | } |
2302 | } | 2179 | } |
2303 | cachep->nodelists[numa_mem_id()]->next_reap = | 2180 | cachep->node[numa_mem_id()]->next_reap = |
2304 | jiffies + REAPTIMEOUT_LIST3 + | 2181 | jiffies + REAPTIMEOUT_LIST3 + |
2305 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | 2182 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; |
2306 | 2183 | ||
@@ -2403,7 +2280,7 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) | |||
2403 | else | 2280 | else |
2404 | gfp = GFP_NOWAIT; | 2281 | gfp = GFP_NOWAIT; |
2405 | 2282 | ||
2406 | setup_nodelists_pointer(cachep); | 2283 | setup_node_pointer(cachep); |
2407 | #if DEBUG | 2284 | #if DEBUG |
2408 | 2285 | ||
2409 | /* | 2286 | /* |
@@ -2426,7 +2303,7 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) | |||
2426 | size += BYTES_PER_WORD; | 2303 | size += BYTES_PER_WORD; |
2427 | } | 2304 | } |
2428 | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) | 2305 | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) |
2429 | if (size >= malloc_sizes[INDEX_L3 + 1].cs_size | 2306 | if (size >= kmalloc_size(INDEX_NODE + 1) |
2430 | && cachep->object_size > cache_line_size() | 2307 | && cachep->object_size > cache_line_size() |
2431 | && ALIGN(size, cachep->align) < PAGE_SIZE) { | 2308 | && ALIGN(size, cachep->align) < PAGE_SIZE) { |
2432 | cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align); | 2309 | cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align); |
@@ -2497,7 +2374,7 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) | |||
2497 | cachep->reciprocal_buffer_size = reciprocal_value(size); | 2374 | cachep->reciprocal_buffer_size = reciprocal_value(size); |
2498 | 2375 | ||
2499 | if (flags & CFLGS_OFF_SLAB) { | 2376 | if (flags & CFLGS_OFF_SLAB) { |
2500 | cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); | 2377 | cachep->slabp_cache = kmalloc_slab(slab_size, 0u); |
2501 | /* | 2378 | /* |
2502 | * This is a possibility for one of the malloc_sizes caches. | 2379 | * This is a possibility for one of the malloc_sizes caches. |
2503 | * But since we go off slab only for object size greater than | 2380 | * But since we go off slab only for object size greater than |
@@ -2543,7 +2420,7 @@ static void check_spinlock_acquired(struct kmem_cache *cachep) | |||
2543 | { | 2420 | { |
2544 | #ifdef CONFIG_SMP | 2421 | #ifdef CONFIG_SMP |
2545 | check_irq_off(); | 2422 | check_irq_off(); |
2546 | assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock); | 2423 | assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock); |
2547 | #endif | 2424 | #endif |
2548 | } | 2425 | } |
2549 | 2426 | ||
@@ -2551,7 +2428,7 @@ static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) | |||
2551 | { | 2428 | { |
2552 | #ifdef CONFIG_SMP | 2429 | #ifdef CONFIG_SMP |
2553 | check_irq_off(); | 2430 | check_irq_off(); |
2554 | assert_spin_locked(&cachep->nodelists[node]->list_lock); | 2431 | assert_spin_locked(&cachep->node[node]->list_lock); |
2555 | #endif | 2432 | #endif |
2556 | } | 2433 | } |
2557 | 2434 | ||
@@ -2562,7 +2439,7 @@ static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) | |||
2562 | #define check_spinlock_acquired_node(x, y) do { } while(0) | 2439 | #define check_spinlock_acquired_node(x, y) do { } while(0) |
2563 | #endif | 2440 | #endif |
2564 | 2441 | ||
2565 | static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, | 2442 | static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, |
2566 | struct array_cache *ac, | 2443 | struct array_cache *ac, |
2567 | int force, int node); | 2444 | int force, int node); |
2568 | 2445 | ||
@@ -2574,29 +2451,29 @@ static void do_drain(void *arg) | |||
2574 | 2451 | ||
2575 | check_irq_off(); | 2452 | check_irq_off(); |
2576 | ac = cpu_cache_get(cachep); | 2453 | ac = cpu_cache_get(cachep); |
2577 | spin_lock(&cachep->nodelists[node]->list_lock); | 2454 | spin_lock(&cachep->node[node]->list_lock); |
2578 | free_block(cachep, ac->entry, ac->avail, node); | 2455 | free_block(cachep, ac->entry, ac->avail, node); |
2579 | spin_unlock(&cachep->nodelists[node]->list_lock); | 2456 | spin_unlock(&cachep->node[node]->list_lock); |
2580 | ac->avail = 0; | 2457 | ac->avail = 0; |
2581 | } | 2458 | } |
2582 | 2459 | ||
2583 | static void drain_cpu_caches(struct kmem_cache *cachep) | 2460 | static void drain_cpu_caches(struct kmem_cache *cachep) |
2584 | { | 2461 | { |
2585 | struct kmem_list3 *l3; | 2462 | struct kmem_cache_node *n; |
2586 | int node; | 2463 | int node; |
2587 | 2464 | ||
2588 | on_each_cpu(do_drain, cachep, 1); | 2465 | on_each_cpu(do_drain, cachep, 1); |
2589 | check_irq_on(); | 2466 | check_irq_on(); |
2590 | for_each_online_node(node) { | 2467 | for_each_online_node(node) { |
2591 | l3 = cachep->nodelists[node]; | 2468 | n = cachep->node[node]; |
2592 | if (l3 && l3->alien) | 2469 | if (n && n->alien) |
2593 | drain_alien_cache(cachep, l3->alien); | 2470 | drain_alien_cache(cachep, n->alien); |
2594 | } | 2471 | } |
2595 | 2472 | ||
2596 | for_each_online_node(node) { | 2473 | for_each_online_node(node) { |
2597 | l3 = cachep->nodelists[node]; | 2474 | n = cachep->node[node]; |
2598 | if (l3) | 2475 | if (n) |
2599 | drain_array(cachep, l3, l3->shared, 1, node); | 2476 | drain_array(cachep, n, n->shared, 1, node); |
2600 | } | 2477 | } |
2601 | } | 2478 | } |
2602 | 2479 | ||
@@ -2607,19 +2484,19 @@ static void drain_cpu_caches(struct kmem_cache *cachep) | |||
2607 | * Returns the actual number of slabs released. | 2484 | * Returns the actual number of slabs released. |
2608 | */ | 2485 | */ |
2609 | static int drain_freelist(struct kmem_cache *cache, | 2486 | static int drain_freelist(struct kmem_cache *cache, |
2610 | struct kmem_list3 *l3, int tofree) | 2487 | struct kmem_cache_node *n, int tofree) |
2611 | { | 2488 | { |
2612 | struct list_head *p; | 2489 | struct list_head *p; |
2613 | int nr_freed; | 2490 | int nr_freed; |
2614 | struct slab *slabp; | 2491 | struct slab *slabp; |
2615 | 2492 | ||
2616 | nr_freed = 0; | 2493 | nr_freed = 0; |
2617 | while (nr_freed < tofree && !list_empty(&l3->slabs_free)) { | 2494 | while (nr_freed < tofree && !list_empty(&n->slabs_free)) { |
2618 | 2495 | ||
2619 | spin_lock_irq(&l3->list_lock); | 2496 | spin_lock_irq(&n->list_lock); |
2620 | p = l3->slabs_free.prev; | 2497 | p = n->slabs_free.prev; |
2621 | if (p == &l3->slabs_free) { | 2498 | if (p == &n->slabs_free) { |
2622 | spin_unlock_irq(&l3->list_lock); | 2499 | spin_unlock_irq(&n->list_lock); |
2623 | goto out; | 2500 | goto out; |
2624 | } | 2501 | } |
2625 | 2502 | ||
@@ -2632,8 +2509,8 @@ static int drain_freelist(struct kmem_cache *cache, | |||
2632 | * Safe to drop the lock. The slab is no longer linked | 2509 | * Safe to drop the lock. The slab is no longer linked |
2633 | * to the cache. | 2510 | * to the cache. |
2634 | */ | 2511 | */ |
2635 | l3->free_objects -= cache->num; | 2512 | n->free_objects -= cache->num; |
2636 | spin_unlock_irq(&l3->list_lock); | 2513 | spin_unlock_irq(&n->list_lock); |
2637 | slab_destroy(cache, slabp); | 2514 | slab_destroy(cache, slabp); |
2638 | nr_freed++; | 2515 | nr_freed++; |
2639 | } | 2516 | } |
@@ -2645,20 +2522,20 @@ out: | |||
2645 | static int __cache_shrink(struct kmem_cache *cachep) | 2522 | static int __cache_shrink(struct kmem_cache *cachep) |
2646 | { | 2523 | { |
2647 | int ret = 0, i = 0; | 2524 | int ret = 0, i = 0; |
2648 | struct kmem_list3 *l3; | 2525 | struct kmem_cache_node *n; |
2649 | 2526 | ||
2650 | drain_cpu_caches(cachep); | 2527 | drain_cpu_caches(cachep); |
2651 | 2528 | ||
2652 | check_irq_on(); | 2529 | check_irq_on(); |
2653 | for_each_online_node(i) { | 2530 | for_each_online_node(i) { |
2654 | l3 = cachep->nodelists[i]; | 2531 | n = cachep->node[i]; |
2655 | if (!l3) | 2532 | if (!n) |
2656 | continue; | 2533 | continue; |
2657 | 2534 | ||
2658 | drain_freelist(cachep, l3, l3->free_objects); | 2535 | drain_freelist(cachep, n, n->free_objects); |
2659 | 2536 | ||
2660 | ret += !list_empty(&l3->slabs_full) || | 2537 | ret += !list_empty(&n->slabs_full) || |
2661 | !list_empty(&l3->slabs_partial); | 2538 | !list_empty(&n->slabs_partial); |
2662 | } | 2539 | } |
2663 | return (ret ? 1 : 0); | 2540 | return (ret ? 1 : 0); |
2664 | } | 2541 | } |
@@ -2687,7 +2564,7 @@ EXPORT_SYMBOL(kmem_cache_shrink); | |||
2687 | int __kmem_cache_shutdown(struct kmem_cache *cachep) | 2564 | int __kmem_cache_shutdown(struct kmem_cache *cachep) |
2688 | { | 2565 | { |
2689 | int i; | 2566 | int i; |
2690 | struct kmem_list3 *l3; | 2567 | struct kmem_cache_node *n; |
2691 | int rc = __cache_shrink(cachep); | 2568 | int rc = __cache_shrink(cachep); |
2692 | 2569 | ||
2693 | if (rc) | 2570 | if (rc) |
@@ -2696,13 +2573,13 @@ int __kmem_cache_shutdown(struct kmem_cache *cachep) | |||
2696 | for_each_online_cpu(i) | 2573 | for_each_online_cpu(i) |
2697 | kfree(cachep->array[i]); | 2574 | kfree(cachep->array[i]); |
2698 | 2575 | ||
2699 | /* NUMA: free the list3 structures */ | 2576 | /* NUMA: free the node structures */ |
2700 | for_each_online_node(i) { | 2577 | for_each_online_node(i) { |
2701 | l3 = cachep->nodelists[i]; | 2578 | n = cachep->node[i]; |
2702 | if (l3) { | 2579 | if (n) { |
2703 | kfree(l3->shared); | 2580 | kfree(n->shared); |
2704 | free_alien_cache(l3->alien); | 2581 | free_alien_cache(n->alien); |
2705 | kfree(l3); | 2582 | kfree(n); |
2706 | } | 2583 | } |
2707 | } | 2584 | } |
2708 | return 0; | 2585 | return 0; |
@@ -2884,7 +2761,7 @@ static int cache_grow(struct kmem_cache *cachep, | |||
2884 | struct slab *slabp; | 2761 | struct slab *slabp; |
2885 | size_t offset; | 2762 | size_t offset; |
2886 | gfp_t local_flags; | 2763 | gfp_t local_flags; |
2887 | struct kmem_list3 *l3; | 2764 | struct kmem_cache_node *n; |
2888 | 2765 | ||
2889 | /* | 2766 | /* |
2890 | * Be lazy and only check for valid flags here, keeping it out of the | 2767 | * Be lazy and only check for valid flags here, keeping it out of the |
@@ -2893,17 +2770,17 @@ static int cache_grow(struct kmem_cache *cachep, | |||
2893 | BUG_ON(flags & GFP_SLAB_BUG_MASK); | 2770 | BUG_ON(flags & GFP_SLAB_BUG_MASK); |
2894 | local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); | 2771 | local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); |
2895 | 2772 | ||
2896 | /* Take the l3 list lock to change the colour_next on this node */ | 2773 | /* Take the node list lock to change the colour_next on this node */ |
2897 | check_irq_off(); | 2774 | check_irq_off(); |
2898 | l3 = cachep->nodelists[nodeid]; | 2775 | n = cachep->node[nodeid]; |
2899 | spin_lock(&l3->list_lock); | 2776 | spin_lock(&n->list_lock); |
2900 | 2777 | ||
2901 | /* Get colour for the slab, and cal the next value. */ | 2778 | /* Get colour for the slab, and cal the next value. */ |
2902 | offset = l3->colour_next; | 2779 | offset = n->colour_next; |
2903 | l3->colour_next++; | 2780 | n->colour_next++; |
2904 | if (l3->colour_next >= cachep->colour) | 2781 | if (n->colour_next >= cachep->colour) |
2905 | l3->colour_next = 0; | 2782 | n->colour_next = 0; |
2906 | spin_unlock(&l3->list_lock); | 2783 | spin_unlock(&n->list_lock); |
2907 | 2784 | ||
2908 | offset *= cachep->colour_off; | 2785 | offset *= cachep->colour_off; |
2909 | 2786 | ||
@@ -2940,13 +2817,13 @@ static int cache_grow(struct kmem_cache *cachep, | |||
2940 | if (local_flags & __GFP_WAIT) | 2817 | if (local_flags & __GFP_WAIT) |
2941 | local_irq_disable(); | 2818 | local_irq_disable(); |
2942 | check_irq_off(); | 2819 | check_irq_off(); |
2943 | spin_lock(&l3->list_lock); | 2820 | spin_lock(&n->list_lock); |
2944 | 2821 | ||
2945 | /* Make slab active. */ | 2822 | /* Make slab active. */ |
2946 | list_add_tail(&slabp->list, &(l3->slabs_free)); | 2823 | list_add_tail(&slabp->list, &(n->slabs_free)); |
2947 | STATS_INC_GROWN(cachep); | 2824 | STATS_INC_GROWN(cachep); |
2948 | l3->free_objects += cachep->num; | 2825 | n->free_objects += cachep->num; |
2949 | spin_unlock(&l3->list_lock); | 2826 | spin_unlock(&n->list_lock); |
2950 | return 1; | 2827 | return 1; |
2951 | opps1: | 2828 | opps1: |
2952 | kmem_freepages(cachep, objp); | 2829 | kmem_freepages(cachep, objp); |
@@ -3074,7 +2951,7 @@ static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags, | |||
3074 | bool force_refill) | 2951 | bool force_refill) |
3075 | { | 2952 | { |
3076 | int batchcount; | 2953 | int batchcount; |
3077 | struct kmem_list3 *l3; | 2954 | struct kmem_cache_node *n; |
3078 | struct array_cache *ac; | 2955 | struct array_cache *ac; |
3079 | int node; | 2956 | int node; |
3080 | 2957 | ||
@@ -3093,14 +2970,14 @@ retry: | |||
3093 | */ | 2970 | */ |
3094 | batchcount = BATCHREFILL_LIMIT; | 2971 | batchcount = BATCHREFILL_LIMIT; |
3095 | } | 2972 | } |
3096 | l3 = cachep->nodelists[node]; | 2973 | n = cachep->node[node]; |
3097 | 2974 | ||
3098 | BUG_ON(ac->avail > 0 || !l3); | 2975 | BUG_ON(ac->avail > 0 || !n); |
3099 | spin_lock(&l3->list_lock); | 2976 | spin_lock(&n->list_lock); |
3100 | 2977 | ||
3101 | /* See if we can refill from the shared array */ | 2978 | /* See if we can refill from the shared array */ |
3102 | if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) { | 2979 | if (n->shared && transfer_objects(ac, n->shared, batchcount)) { |
3103 | l3->shared->touched = 1; | 2980 | n->shared->touched = 1; |
3104 | goto alloc_done; | 2981 | goto alloc_done; |
3105 | } | 2982 | } |
3106 | 2983 | ||
@@ -3108,11 +2985,11 @@ retry: | |||
3108 | struct list_head *entry; | 2985 | struct list_head *entry; |
3109 | struct slab *slabp; | 2986 | struct slab *slabp; |
3110 | /* Get slab alloc is to come from. */ | 2987 | /* Get slab alloc is to come from. */ |
3111 | entry = l3->slabs_partial.next; | 2988 | entry = n->slabs_partial.next; |
3112 | if (entry == &l3->slabs_partial) { | 2989 | if (entry == &n->slabs_partial) { |
3113 | l3->free_touched = 1; | 2990 | n->free_touched = 1; |
3114 | entry = l3->slabs_free.next; | 2991 | entry = n->slabs_free.next; |
3115 | if (entry == &l3->slabs_free) | 2992 | if (entry == &n->slabs_free) |
3116 | goto must_grow; | 2993 | goto must_grow; |
3117 | } | 2994 | } |
3118 | 2995 | ||
@@ -3140,15 +3017,15 @@ retry: | |||
3140 | /* move slabp to correct slabp list: */ | 3017 | /* move slabp to correct slabp list: */ |
3141 | list_del(&slabp->list); | 3018 | list_del(&slabp->list); |
3142 | if (slabp->free == BUFCTL_END) | 3019 | if (slabp->free == BUFCTL_END) |
3143 | list_add(&slabp->list, &l3->slabs_full); | 3020 | list_add(&slabp->list, &n->slabs_full); |
3144 | else | 3021 | else |
3145 | list_add(&slabp->list, &l3->slabs_partial); | 3022 | list_add(&slabp->list, &n->slabs_partial); |
3146 | } | 3023 | } |
3147 | 3024 | ||
3148 | must_grow: | 3025 | must_grow: |
3149 | l3->free_objects -= ac->avail; | 3026 | n->free_objects -= ac->avail; |
3150 | alloc_done: | 3027 | alloc_done: |
3151 | spin_unlock(&l3->list_lock); | 3028 | spin_unlock(&n->list_lock); |
3152 | 3029 | ||
3153 | if (unlikely(!ac->avail)) { | 3030 | if (unlikely(!ac->avail)) { |
3154 | int x; | 3031 | int x; |
@@ -3315,7 +3192,7 @@ static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) | |||
3315 | /* | 3192 | /* |
3316 | * Fallback function if there was no memory available and no objects on a | 3193 | * Fallback function if there was no memory available and no objects on a |
3317 | * certain node and fall back is permitted. First we scan all the | 3194 | * certain node and fall back is permitted. First we scan all the |
3318 | * available nodelists for available objects. If that fails then we | 3195 | * available node for available objects. If that fails then we |
3319 | * perform an allocation without specifying a node. This allows the page | 3196 | * perform an allocation without specifying a node. This allows the page |
3320 | * allocator to do its reclaim / fallback magic. We then insert the | 3197 | * allocator to do its reclaim / fallback magic. We then insert the |
3321 | * slab into the proper nodelist and then allocate from it. | 3198 | * slab into the proper nodelist and then allocate from it. |
@@ -3349,8 +3226,8 @@ retry: | |||
3349 | nid = zone_to_nid(zone); | 3226 | nid = zone_to_nid(zone); |
3350 | 3227 | ||
3351 | if (cpuset_zone_allowed_hardwall(zone, flags) && | 3228 | if (cpuset_zone_allowed_hardwall(zone, flags) && |
3352 | cache->nodelists[nid] && | 3229 | cache->node[nid] && |
3353 | cache->nodelists[nid]->free_objects) { | 3230 | cache->node[nid]->free_objects) { |
3354 | obj = ____cache_alloc_node(cache, | 3231 | obj = ____cache_alloc_node(cache, |
3355 | flags | GFP_THISNODE, nid); | 3232 | flags | GFP_THISNODE, nid); |
3356 | if (obj) | 3233 | if (obj) |
@@ -3406,21 +3283,22 @@ static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, | |||
3406 | { | 3283 | { |
3407 | struct list_head *entry; | 3284 | struct list_head *entry; |
3408 | struct slab *slabp; | 3285 | struct slab *slabp; |
3409 | struct kmem_list3 *l3; | 3286 | struct kmem_cache_node *n; |
3410 | void *obj; | 3287 | void *obj; |
3411 | int x; | 3288 | int x; |
3412 | 3289 | ||
3413 | l3 = cachep->nodelists[nodeid]; | 3290 | VM_BUG_ON(nodeid > num_online_nodes()); |
3414 | BUG_ON(!l3); | 3291 | n = cachep->node[nodeid]; |
3292 | BUG_ON(!n); | ||
3415 | 3293 | ||
3416 | retry: | 3294 | retry: |
3417 | check_irq_off(); | 3295 | check_irq_off(); |
3418 | spin_lock(&l3->list_lock); | 3296 | spin_lock(&n->list_lock); |
3419 | entry = l3->slabs_partial.next; | 3297 | entry = n->slabs_partial.next; |
3420 | if (entry == &l3->slabs_partial) { | 3298 | if (entry == &n->slabs_partial) { |
3421 | l3->free_touched = 1; | 3299 | n->free_touched = 1; |
3422 | entry = l3->slabs_free.next; | 3300 | entry = n->slabs_free.next; |
3423 | if (entry == &l3->slabs_free) | 3301 | if (entry == &n->slabs_free) |
3424 | goto must_grow; | 3302 | goto must_grow; |
3425 | } | 3303 | } |
3426 | 3304 | ||
@@ -3436,20 +3314,20 @@ retry: | |||
3436 | 3314 | ||
3437 | obj = slab_get_obj(cachep, slabp, nodeid); | 3315 | obj = slab_get_obj(cachep, slabp, nodeid); |
3438 | check_slabp(cachep, slabp); | 3316 | check_slabp(cachep, slabp); |
3439 | l3->free_objects--; | 3317 | n->free_objects--; |
3440 | /* move slabp to correct slabp list: */ | 3318 | /* move slabp to correct slabp list: */ |
3441 | list_del(&slabp->list); | 3319 | list_del(&slabp->list); |
3442 | 3320 | ||
3443 | if (slabp->free == BUFCTL_END) | 3321 | if (slabp->free == BUFCTL_END) |
3444 | list_add(&slabp->list, &l3->slabs_full); | 3322 | list_add(&slabp->list, &n->slabs_full); |
3445 | else | 3323 | else |
3446 | list_add(&slabp->list, &l3->slabs_partial); | 3324 | list_add(&slabp->list, &n->slabs_partial); |
3447 | 3325 | ||
3448 | spin_unlock(&l3->list_lock); | 3326 | spin_unlock(&n->list_lock); |
3449 | goto done; | 3327 | goto done; |
3450 | 3328 | ||
3451 | must_grow: | 3329 | must_grow: |
3452 | spin_unlock(&l3->list_lock); | 3330 | spin_unlock(&n->list_lock); |
3453 | x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); | 3331 | x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); |
3454 | if (x) | 3332 | if (x) |
3455 | goto retry; | 3333 | goto retry; |
@@ -3495,7 +3373,7 @@ slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, | |||
3495 | if (nodeid == NUMA_NO_NODE) | 3373 | if (nodeid == NUMA_NO_NODE) |
3496 | nodeid = slab_node; | 3374 | nodeid = slab_node; |
3497 | 3375 | ||
3498 | if (unlikely(!cachep->nodelists[nodeid])) { | 3376 | if (unlikely(!cachep->node[nodeid])) { |
3499 | /* Node not bootstrapped yet */ | 3377 | /* Node not bootstrapped yet */ |
3500 | ptr = fallback_alloc(cachep, flags); | 3378 | ptr = fallback_alloc(cachep, flags); |
3501 | goto out; | 3379 | goto out; |
@@ -3601,7 +3479,7 @@ static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, | |||
3601 | int node) | 3479 | int node) |
3602 | { | 3480 | { |
3603 | int i; | 3481 | int i; |
3604 | struct kmem_list3 *l3; | 3482 | struct kmem_cache_node *n; |
3605 | 3483 | ||
3606 | for (i = 0; i < nr_objects; i++) { | 3484 | for (i = 0; i < nr_objects; i++) { |
3607 | void *objp; | 3485 | void *objp; |
@@ -3611,19 +3489,19 @@ static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, | |||
3611 | objp = objpp[i]; | 3489 | objp = objpp[i]; |
3612 | 3490 | ||
3613 | slabp = virt_to_slab(objp); | 3491 | slabp = virt_to_slab(objp); |
3614 | l3 = cachep->nodelists[node]; | 3492 | n = cachep->node[node]; |
3615 | list_del(&slabp->list); | 3493 | list_del(&slabp->list); |
3616 | check_spinlock_acquired_node(cachep, node); | 3494 | check_spinlock_acquired_node(cachep, node); |
3617 | check_slabp(cachep, slabp); | 3495 | check_slabp(cachep, slabp); |
3618 | slab_put_obj(cachep, slabp, objp, node); | 3496 | slab_put_obj(cachep, slabp, objp, node); |
3619 | STATS_DEC_ACTIVE(cachep); | 3497 | STATS_DEC_ACTIVE(cachep); |
3620 | l3->free_objects++; | 3498 | n->free_objects++; |
3621 | check_slabp(cachep, slabp); | 3499 | check_slabp(cachep, slabp); |
3622 | 3500 | ||
3623 | /* fixup slab chains */ | 3501 | /* fixup slab chains */ |
3624 | if (slabp->inuse == 0) { | 3502 | if (slabp->inuse == 0) { |
3625 | if (l3->free_objects > l3->free_limit) { | 3503 | if (n->free_objects > n->free_limit) { |
3626 | l3->free_objects -= cachep->num; | 3504 | n->free_objects -= cachep->num; |
3627 | /* No need to drop any previously held | 3505 | /* No need to drop any previously held |
3628 | * lock here, even if we have a off-slab slab | 3506 | * lock here, even if we have a off-slab slab |
3629 | * descriptor it is guaranteed to come from | 3507 | * descriptor it is guaranteed to come from |
@@ -3632,14 +3510,14 @@ static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, | |||
3632 | */ | 3510 | */ |
3633 | slab_destroy(cachep, slabp); | 3511 | slab_destroy(cachep, slabp); |
3634 | } else { | 3512 | } else { |
3635 | list_add(&slabp->list, &l3->slabs_free); | 3513 | list_add(&slabp->list, &n->slabs_free); |
3636 | } | 3514 | } |
3637 | } else { | 3515 | } else { |
3638 | /* Unconditionally move a slab to the end of the | 3516 | /* Unconditionally move a slab to the end of the |
3639 | * partial list on free - maximum time for the | 3517 | * partial list on free - maximum time for the |
3640 | * other objects to be freed, too. | 3518 | * other objects to be freed, too. |
3641 | */ | 3519 | */ |
3642 | list_add_tail(&slabp->list, &l3->slabs_partial); | 3520 | list_add_tail(&slabp->list, &n->slabs_partial); |
3643 | } | 3521 | } |
3644 | } | 3522 | } |
3645 | } | 3523 | } |
@@ -3647,7 +3525,7 @@ static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, | |||
3647 | static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) | 3525 | static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) |
3648 | { | 3526 | { |
3649 | int batchcount; | 3527 | int batchcount; |
3650 | struct kmem_list3 *l3; | 3528 | struct kmem_cache_node *n; |
3651 | int node = numa_mem_id(); | 3529 | int node = numa_mem_id(); |
3652 | 3530 | ||
3653 | batchcount = ac->batchcount; | 3531 | batchcount = ac->batchcount; |
@@ -3655,10 +3533,10 @@ static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) | |||
3655 | BUG_ON(!batchcount || batchcount > ac->avail); | 3533 | BUG_ON(!batchcount || batchcount > ac->avail); |
3656 | #endif | 3534 | #endif |
3657 | check_irq_off(); | 3535 | check_irq_off(); |
3658 | l3 = cachep->nodelists[node]; | 3536 | n = cachep->node[node]; |
3659 | spin_lock(&l3->list_lock); | 3537 | spin_lock(&n->list_lock); |
3660 | if (l3->shared) { | 3538 | if (n->shared) { |
3661 | struct array_cache *shared_array = l3->shared; | 3539 | struct array_cache *shared_array = n->shared; |
3662 | int max = shared_array->limit - shared_array->avail; | 3540 | int max = shared_array->limit - shared_array->avail; |
3663 | if (max) { | 3541 | if (max) { |
3664 | if (batchcount > max) | 3542 | if (batchcount > max) |
@@ -3677,8 +3555,8 @@ free_done: | |||
3677 | int i = 0; | 3555 | int i = 0; |
3678 | struct list_head *p; | 3556 | struct list_head *p; |
3679 | 3557 | ||
3680 | p = l3->slabs_free.next; | 3558 | p = n->slabs_free.next; |
3681 | while (p != &(l3->slabs_free)) { | 3559 | while (p != &(n->slabs_free)) { |
3682 | struct slab *slabp; | 3560 | struct slab *slabp; |
3683 | 3561 | ||
3684 | slabp = list_entry(p, struct slab, list); | 3562 | slabp = list_entry(p, struct slab, list); |
@@ -3690,7 +3568,7 @@ free_done: | |||
3690 | STATS_SET_FREEABLE(cachep, i); | 3568 | STATS_SET_FREEABLE(cachep, i); |
3691 | } | 3569 | } |
3692 | #endif | 3570 | #endif |
3693 | spin_unlock(&l3->list_lock); | 3571 | spin_unlock(&n->list_lock); |
3694 | ac->avail -= batchcount; | 3572 | ac->avail -= batchcount; |
3695 | memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); | 3573 | memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); |
3696 | } | 3574 | } |
@@ -3800,7 +3678,7 @@ __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) | |||
3800 | { | 3678 | { |
3801 | struct kmem_cache *cachep; | 3679 | struct kmem_cache *cachep; |
3802 | 3680 | ||
3803 | cachep = kmem_find_general_cachep(size, flags); | 3681 | cachep = kmalloc_slab(size, flags); |
3804 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) | 3682 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3805 | return cachep; | 3683 | return cachep; |
3806 | return kmem_cache_alloc_node_trace(cachep, flags, node, size); | 3684 | return kmem_cache_alloc_node_trace(cachep, flags, node, size); |
@@ -3845,7 +3723,7 @@ static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, | |||
3845 | * Then kmalloc uses the uninlined functions instead of the inline | 3723 | * Then kmalloc uses the uninlined functions instead of the inline |
3846 | * functions. | 3724 | * functions. |
3847 | */ | 3725 | */ |
3848 | cachep = __find_general_cachep(size, flags); | 3726 | cachep = kmalloc_slab(size, flags); |
3849 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) | 3727 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3850 | return cachep; | 3728 | return cachep; |
3851 | ret = slab_alloc(cachep, flags, caller); | 3729 | ret = slab_alloc(cachep, flags, caller); |
@@ -3934,12 +3812,12 @@ void kfree(const void *objp) | |||
3934 | EXPORT_SYMBOL(kfree); | 3812 | EXPORT_SYMBOL(kfree); |
3935 | 3813 | ||
3936 | /* | 3814 | /* |
3937 | * This initializes kmem_list3 or resizes various caches for all nodes. | 3815 | * This initializes kmem_cache_node or resizes various caches for all nodes. |
3938 | */ | 3816 | */ |
3939 | static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp) | 3817 | static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp) |
3940 | { | 3818 | { |
3941 | int node; | 3819 | int node; |
3942 | struct kmem_list3 *l3; | 3820 | struct kmem_cache_node *n; |
3943 | struct array_cache *new_shared; | 3821 | struct array_cache *new_shared; |
3944 | struct array_cache **new_alien = NULL; | 3822 | struct array_cache **new_alien = NULL; |
3945 | 3823 | ||
@@ -3962,43 +3840,43 @@ static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp) | |||
3962 | } | 3840 | } |
3963 | } | 3841 | } |
3964 | 3842 | ||
3965 | l3 = cachep->nodelists[node]; | 3843 | n = cachep->node[node]; |
3966 | if (l3) { | 3844 | if (n) { |
3967 | struct array_cache *shared = l3->shared; | 3845 | struct array_cache *shared = n->shared; |
3968 | 3846 | ||
3969 | spin_lock_irq(&l3->list_lock); | 3847 | spin_lock_irq(&n->list_lock); |
3970 | 3848 | ||
3971 | if (shared) | 3849 | if (shared) |
3972 | free_block(cachep, shared->entry, | 3850 | free_block(cachep, shared->entry, |
3973 | shared->avail, node); | 3851 | shared->avail, node); |
3974 | 3852 | ||
3975 | l3->shared = new_shared; | 3853 | n->shared = new_shared; |
3976 | if (!l3->alien) { | 3854 | if (!n->alien) { |
3977 | l3->alien = new_alien; | 3855 | n->alien = new_alien; |
3978 | new_alien = NULL; | 3856 | new_alien = NULL; |
3979 | } | 3857 | } |
3980 | l3->free_limit = (1 + nr_cpus_node(node)) * | 3858 | n->free_limit = (1 + nr_cpus_node(node)) * |
3981 | cachep->batchcount + cachep->num; | 3859 | cachep->batchcount + cachep->num; |
3982 | spin_unlock_irq(&l3->list_lock); | 3860 | spin_unlock_irq(&n->list_lock); |
3983 | kfree(shared); | 3861 | kfree(shared); |
3984 | free_alien_cache(new_alien); | 3862 | free_alien_cache(new_alien); |
3985 | continue; | 3863 | continue; |
3986 | } | 3864 | } |
3987 | l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node); | 3865 | n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); |
3988 | if (!l3) { | 3866 | if (!n) { |
3989 | free_alien_cache(new_alien); | 3867 | free_alien_cache(new_alien); |
3990 | kfree(new_shared); | 3868 | kfree(new_shared); |
3991 | goto fail; | 3869 | goto fail; |
3992 | } | 3870 | } |
3993 | 3871 | ||
3994 | kmem_list3_init(l3); | 3872 | kmem_cache_node_init(n); |
3995 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | 3873 | n->next_reap = jiffies + REAPTIMEOUT_LIST3 + |
3996 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | 3874 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; |
3997 | l3->shared = new_shared; | 3875 | n->shared = new_shared; |
3998 | l3->alien = new_alien; | 3876 | n->alien = new_alien; |
3999 | l3->free_limit = (1 + nr_cpus_node(node)) * | 3877 | n->free_limit = (1 + nr_cpus_node(node)) * |
4000 | cachep->batchcount + cachep->num; | 3878 | cachep->batchcount + cachep->num; |
4001 | cachep->nodelists[node] = l3; | 3879 | cachep->node[node] = n; |
4002 | } | 3880 | } |
4003 | return 0; | 3881 | return 0; |
4004 | 3882 | ||
@@ -4007,13 +3885,13 @@ fail: | |||
4007 | /* Cache is not active yet. Roll back what we did */ | 3885 | /* Cache is not active yet. Roll back what we did */ |
4008 | node--; | 3886 | node--; |
4009 | while (node >= 0) { | 3887 | while (node >= 0) { |
4010 | if (cachep->nodelists[node]) { | 3888 | if (cachep->node[node]) { |
4011 | l3 = cachep->nodelists[node]; | 3889 | n = cachep->node[node]; |
4012 | 3890 | ||
4013 | kfree(l3->shared); | 3891 | kfree(n->shared); |
4014 | free_alien_cache(l3->alien); | 3892 | free_alien_cache(n->alien); |
4015 | kfree(l3); | 3893 | kfree(n); |
4016 | cachep->nodelists[node] = NULL; | 3894 | cachep->node[node] = NULL; |
4017 | } | 3895 | } |
4018 | node--; | 3896 | node--; |
4019 | } | 3897 | } |
@@ -4073,9 +3951,9 @@ static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, | |||
4073 | struct array_cache *ccold = new->new[i]; | 3951 | struct array_cache *ccold = new->new[i]; |
4074 | if (!ccold) | 3952 | if (!ccold) |
4075 | continue; | 3953 | continue; |
4076 | spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock); | 3954 | spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock); |
4077 | free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i)); | 3955 | free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i)); |
4078 | spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock); | 3956 | spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock); |
4079 | kfree(ccold); | 3957 | kfree(ccold); |
4080 | } | 3958 | } |
4081 | kfree(new); | 3959 | kfree(new); |
@@ -4176,11 +4054,11 @@ skip_setup: | |||
4176 | } | 4054 | } |
4177 | 4055 | ||
4178 | /* | 4056 | /* |
4179 | * Drain an array if it contains any elements taking the l3 lock only if | 4057 | * Drain an array if it contains any elements taking the node lock only if |
4180 | * necessary. Note that the l3 listlock also protects the array_cache | 4058 | * necessary. Note that the node listlock also protects the array_cache |
4181 | * if drain_array() is used on the shared array. | 4059 | * if drain_array() is used on the shared array. |
4182 | */ | 4060 | */ |
4183 | static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, | 4061 | static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, |
4184 | struct array_cache *ac, int force, int node) | 4062 | struct array_cache *ac, int force, int node) |
4185 | { | 4063 | { |
4186 | int tofree; | 4064 | int tofree; |
@@ -4190,7 +4068,7 @@ static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, | |||
4190 | if (ac->touched && !force) { | 4068 | if (ac->touched && !force) { |
4191 | ac->touched = 0; | 4069 | ac->touched = 0; |
4192 | } else { | 4070 | } else { |
4193 | spin_lock_irq(&l3->list_lock); | 4071 | spin_lock_irq(&n->list_lock); |
4194 | if (ac->avail) { | 4072 | if (ac->avail) { |
4195 | tofree = force ? ac->avail : (ac->limit + 4) / 5; | 4073 | tofree = force ? ac->avail : (ac->limit + 4) / 5; |
4196 | if (tofree > ac->avail) | 4074 | if (tofree > ac->avail) |
@@ -4200,7 +4078,7 @@ static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, | |||
4200 | memmove(ac->entry, &(ac->entry[tofree]), | 4078 | memmove(ac->entry, &(ac->entry[tofree]), |
4201 | sizeof(void *) * ac->avail); | 4079 | sizeof(void *) * ac->avail); |
4202 | } | 4080 | } |
4203 | spin_unlock_irq(&l3->list_lock); | 4081 | spin_unlock_irq(&n->list_lock); |
4204 | } | 4082 | } |
4205 | } | 4083 | } |
4206 | 4084 | ||
@@ -4219,7 +4097,7 @@ static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, | |||
4219 | static void cache_reap(struct work_struct *w) | 4097 | static void cache_reap(struct work_struct *w) |
4220 | { | 4098 | { |
4221 | struct kmem_cache *searchp; | 4099 | struct kmem_cache *searchp; |
4222 | struct kmem_list3 *l3; | 4100 | struct kmem_cache_node *n; |
4223 | int node = numa_mem_id(); | 4101 | int node = numa_mem_id(); |
4224 | struct delayed_work *work = to_delayed_work(w); | 4102 | struct delayed_work *work = to_delayed_work(w); |
4225 | 4103 | ||
@@ -4231,33 +4109,33 @@ static void cache_reap(struct work_struct *w) | |||
4231 | check_irq_on(); | 4109 | check_irq_on(); |
4232 | 4110 | ||
4233 | /* | 4111 | /* |
4234 | * We only take the l3 lock if absolutely necessary and we | 4112 | * We only take the node lock if absolutely necessary and we |
4235 | * have established with reasonable certainty that | 4113 | * have established with reasonable certainty that |
4236 | * we can do some work if the lock was obtained. | 4114 | * we can do some work if the lock was obtained. |
4237 | */ | 4115 | */ |
4238 | l3 = searchp->nodelists[node]; | 4116 | n = searchp->node[node]; |
4239 | 4117 | ||
4240 | reap_alien(searchp, l3); | 4118 | reap_alien(searchp, n); |
4241 | 4119 | ||
4242 | drain_array(searchp, l3, cpu_cache_get(searchp), 0, node); | 4120 | drain_array(searchp, n, cpu_cache_get(searchp), 0, node); |
4243 | 4121 | ||
4244 | /* | 4122 | /* |
4245 | * These are racy checks but it does not matter | 4123 | * These are racy checks but it does not matter |
4246 | * if we skip one check or scan twice. | 4124 | * if we skip one check or scan twice. |
4247 | */ | 4125 | */ |
4248 | if (time_after(l3->next_reap, jiffies)) | 4126 | if (time_after(n->next_reap, jiffies)) |
4249 | goto next; | 4127 | goto next; |
4250 | 4128 | ||
4251 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3; | 4129 | n->next_reap = jiffies + REAPTIMEOUT_LIST3; |
4252 | 4130 | ||
4253 | drain_array(searchp, l3, l3->shared, 0, node); | 4131 | drain_array(searchp, n, n->shared, 0, node); |
4254 | 4132 | ||
4255 | if (l3->free_touched) | 4133 | if (n->free_touched) |
4256 | l3->free_touched = 0; | 4134 | n->free_touched = 0; |
4257 | else { | 4135 | else { |
4258 | int freed; | 4136 | int freed; |
4259 | 4137 | ||
4260 | freed = drain_freelist(searchp, l3, (l3->free_limit + | 4138 | freed = drain_freelist(searchp, n, (n->free_limit + |
4261 | 5 * searchp->num - 1) / (5 * searchp->num)); | 4139 | 5 * searchp->num - 1) / (5 * searchp->num)); |
4262 | STATS_ADD_REAPED(searchp, freed); | 4140 | STATS_ADD_REAPED(searchp, freed); |
4263 | } | 4141 | } |
@@ -4283,25 +4161,25 @@ void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) | |||
4283 | const char *name; | 4161 | const char *name; |
4284 | char *error = NULL; | 4162 | char *error = NULL; |
4285 | int node; | 4163 | int node; |
4286 | struct kmem_list3 *l3; | 4164 | struct kmem_cache_node *n; |
4287 | 4165 | ||
4288 | active_objs = 0; | 4166 | active_objs = 0; |
4289 | num_slabs = 0; | 4167 | num_slabs = 0; |
4290 | for_each_online_node(node) { | 4168 | for_each_online_node(node) { |
4291 | l3 = cachep->nodelists[node]; | 4169 | n = cachep->node[node]; |
4292 | if (!l3) | 4170 | if (!n) |
4293 | continue; | 4171 | continue; |
4294 | 4172 | ||
4295 | check_irq_on(); | 4173 | check_irq_on(); |
4296 | spin_lock_irq(&l3->list_lock); | 4174 | spin_lock_irq(&n->list_lock); |
4297 | 4175 | ||
4298 | list_for_each_entry(slabp, &l3->slabs_full, list) { | 4176 | list_for_each_entry(slabp, &n->slabs_full, list) { |
4299 | if (slabp->inuse != cachep->num && !error) | 4177 | if (slabp->inuse != cachep->num && !error) |
4300 | error = "slabs_full accounting error"; | 4178 | error = "slabs_full accounting error"; |
4301 | active_objs += cachep->num; | 4179 | active_objs += cachep->num; |
4302 | active_slabs++; | 4180 | active_slabs++; |
4303 | } | 4181 | } |
4304 | list_for_each_entry(slabp, &l3->slabs_partial, list) { | 4182 | list_for_each_entry(slabp, &n->slabs_partial, list) { |
4305 | if (slabp->inuse == cachep->num && !error) | 4183 | if (slabp->inuse == cachep->num && !error) |
4306 | error = "slabs_partial inuse accounting error"; | 4184 | error = "slabs_partial inuse accounting error"; |
4307 | if (!slabp->inuse && !error) | 4185 | if (!slabp->inuse && !error) |
@@ -4309,16 +4187,16 @@ void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) | |||
4309 | active_objs += slabp->inuse; | 4187 | active_objs += slabp->inuse; |
4310 | active_slabs++; | 4188 | active_slabs++; |
4311 | } | 4189 | } |
4312 | list_for_each_entry(slabp, &l3->slabs_free, list) { | 4190 | list_for_each_entry(slabp, &n->slabs_free, list) { |
4313 | if (slabp->inuse && !error) | 4191 | if (slabp->inuse && !error) |
4314 | error = "slabs_free/inuse accounting error"; | 4192 | error = "slabs_free/inuse accounting error"; |
4315 | num_slabs++; | 4193 | num_slabs++; |
4316 | } | 4194 | } |
4317 | free_objects += l3->free_objects; | 4195 | free_objects += n->free_objects; |
4318 | if (l3->shared) | 4196 | if (n->shared) |
4319 | shared_avail += l3->shared->avail; | 4197 | shared_avail += n->shared->avail; |
4320 | 4198 | ||
4321 | spin_unlock_irq(&l3->list_lock); | 4199 | spin_unlock_irq(&n->list_lock); |
4322 | } | 4200 | } |
4323 | num_slabs += active_slabs; | 4201 | num_slabs += active_slabs; |
4324 | num_objs = num_slabs * cachep->num; | 4202 | num_objs = num_slabs * cachep->num; |
@@ -4344,7 +4222,7 @@ void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) | |||
4344 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) | 4222 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) |
4345 | { | 4223 | { |
4346 | #if STATS | 4224 | #if STATS |
4347 | { /* list3 stats */ | 4225 | { /* node stats */ |
4348 | unsigned long high = cachep->high_mark; | 4226 | unsigned long high = cachep->high_mark; |
4349 | unsigned long allocs = cachep->num_allocations; | 4227 | unsigned long allocs = cachep->num_allocations; |
4350 | unsigned long grown = cachep->grown; | 4228 | unsigned long grown = cachep->grown; |
@@ -4497,9 +4375,9 @@ static int leaks_show(struct seq_file *m, void *p) | |||
4497 | { | 4375 | { |
4498 | struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); | 4376 | struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); |
4499 | struct slab *slabp; | 4377 | struct slab *slabp; |
4500 | struct kmem_list3 *l3; | 4378 | struct kmem_cache_node *n; |
4501 | const char *name; | 4379 | const char *name; |
4502 | unsigned long *n = m->private; | 4380 | unsigned long *x = m->private; |
4503 | int node; | 4381 | int node; |
4504 | int i; | 4382 | int i; |
4505 | 4383 | ||
@@ -4510,43 +4388,43 @@ static int leaks_show(struct seq_file *m, void *p) | |||
4510 | 4388 | ||
4511 | /* OK, we can do it */ | 4389 | /* OK, we can do it */ |
4512 | 4390 | ||
4513 | n[1] = 0; | 4391 | x[1] = 0; |
4514 | 4392 | ||
4515 | for_each_online_node(node) { | 4393 | for_each_online_node(node) { |
4516 | l3 = cachep->nodelists[node]; | 4394 | n = cachep->node[node]; |
4517 | if (!l3) | 4395 | if (!n) |
4518 | continue; | 4396 | continue; |
4519 | 4397 | ||
4520 | check_irq_on(); | 4398 | check_irq_on(); |
4521 | spin_lock_irq(&l3->list_lock); | 4399 | spin_lock_irq(&n->list_lock); |
4522 | 4400 | ||
4523 | list_for_each_entry(slabp, &l3->slabs_full, list) | 4401 | list_for_each_entry(slabp, &n->slabs_full, list) |
4524 | handle_slab(n, cachep, slabp); | 4402 | handle_slab(x, cachep, slabp); |
4525 | list_for_each_entry(slabp, &l3->slabs_partial, list) | 4403 | list_for_each_entry(slabp, &n->slabs_partial, list) |
4526 | handle_slab(n, cachep, slabp); | 4404 | handle_slab(x, cachep, slabp); |
4527 | spin_unlock_irq(&l3->list_lock); | 4405 | spin_unlock_irq(&n->list_lock); |
4528 | } | 4406 | } |
4529 | name = cachep->name; | 4407 | name = cachep->name; |
4530 | if (n[0] == n[1]) { | 4408 | if (x[0] == x[1]) { |
4531 | /* Increase the buffer size */ | 4409 | /* Increase the buffer size */ |
4532 | mutex_unlock(&slab_mutex); | 4410 | mutex_unlock(&slab_mutex); |
4533 | m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL); | 4411 | m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL); |
4534 | if (!m->private) { | 4412 | if (!m->private) { |
4535 | /* Too bad, we are really out */ | 4413 | /* Too bad, we are really out */ |
4536 | m->private = n; | 4414 | m->private = x; |
4537 | mutex_lock(&slab_mutex); | 4415 | mutex_lock(&slab_mutex); |
4538 | return -ENOMEM; | 4416 | return -ENOMEM; |
4539 | } | 4417 | } |
4540 | *(unsigned long *)m->private = n[0] * 2; | 4418 | *(unsigned long *)m->private = x[0] * 2; |
4541 | kfree(n); | 4419 | kfree(x); |
4542 | mutex_lock(&slab_mutex); | 4420 | mutex_lock(&slab_mutex); |
4543 | /* Now make sure this entry will be retried */ | 4421 | /* Now make sure this entry will be retried */ |
4544 | m->count = m->size; | 4422 | m->count = m->size; |
4545 | return 0; | 4423 | return 0; |
4546 | } | 4424 | } |
4547 | for (i = 0; i < n[1]; i++) { | 4425 | for (i = 0; i < x[1]; i++) { |
4548 | seq_printf(m, "%s: %lu ", name, n[2*i+3]); | 4426 | seq_printf(m, "%s: %lu ", name, x[2*i+3]); |
4549 | show_symbol(m, n[2*i+2]); | 4427 | show_symbol(m, x[2*i+2]); |
4550 | seq_putc(m, '\n'); | 4428 | seq_putc(m, '\n'); |
4551 | } | 4429 | } |
4552 | 4430 | ||
@@ -16,7 +16,7 @@ enum slab_state { | |||
16 | DOWN, /* No slab functionality yet */ | 16 | DOWN, /* No slab functionality yet */ |
17 | PARTIAL, /* SLUB: kmem_cache_node available */ | 17 | PARTIAL, /* SLUB: kmem_cache_node available */ |
18 | PARTIAL_ARRAYCACHE, /* SLAB: kmalloc size for arraycache available */ | 18 | PARTIAL_ARRAYCACHE, /* SLAB: kmalloc size for arraycache available */ |
19 | PARTIAL_L3, /* SLAB: kmalloc size for l3 struct available */ | 19 | PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */ |
20 | UP, /* Slab caches usable but not all extras yet */ | 20 | UP, /* Slab caches usable but not all extras yet */ |
21 | FULL /* Everything is working */ | 21 | FULL /* Everything is working */ |
22 | }; | 22 | }; |
@@ -35,6 +35,15 @@ extern struct kmem_cache *kmem_cache; | |||
35 | unsigned long calculate_alignment(unsigned long flags, | 35 | unsigned long calculate_alignment(unsigned long flags, |
36 | unsigned long align, unsigned long size); | 36 | unsigned long align, unsigned long size); |
37 | 37 | ||
38 | #ifndef CONFIG_SLOB | ||
39 | /* Kmalloc array related functions */ | ||
40 | void create_kmalloc_caches(unsigned long); | ||
41 | |||
42 | /* Find the kmalloc slab corresponding for a certain size */ | ||
43 | struct kmem_cache *kmalloc_slab(size_t, gfp_t); | ||
44 | #endif | ||
45 | |||
46 | |||
38 | /* Functions provided by the slab allocators */ | 47 | /* Functions provided by the slab allocators */ |
39 | extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags); | 48 | extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags); |
40 | 49 | ||
@@ -230,3 +239,35 @@ static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) | |||
230 | return s; | 239 | return s; |
231 | } | 240 | } |
232 | #endif | 241 | #endif |
242 | |||
243 | |||
244 | /* | ||
245 | * The slab lists for all objects. | ||
246 | */ | ||
247 | struct kmem_cache_node { | ||
248 | spinlock_t list_lock; | ||
249 | |||
250 | #ifdef CONFIG_SLAB | ||
251 | struct list_head slabs_partial; /* partial list first, better asm code */ | ||
252 | struct list_head slabs_full; | ||
253 | struct list_head slabs_free; | ||
254 | unsigned long free_objects; | ||
255 | unsigned int free_limit; | ||
256 | unsigned int colour_next; /* Per-node cache coloring */ | ||
257 | struct array_cache *shared; /* shared per node */ | ||
258 | struct array_cache **alien; /* on other nodes */ | ||
259 | unsigned long next_reap; /* updated without locking */ | ||
260 | int free_touched; /* updated without locking */ | ||
261 | #endif | ||
262 | |||
263 | #ifdef CONFIG_SLUB | ||
264 | unsigned long nr_partial; | ||
265 | struct list_head partial; | ||
266 | #ifdef CONFIG_SLUB_DEBUG | ||
267 | atomic_long_t nr_slabs; | ||
268 | atomic_long_t total_objects; | ||
269 | struct list_head full; | ||
270 | #endif | ||
271 | #endif | ||
272 | |||
273 | }; | ||
diff --git a/mm/slab_common.c b/mm/slab_common.c index 3f3cd97d3fdf..d2517b05d5bc 100644 --- a/mm/slab_common.c +++ b/mm/slab_common.c | |||
@@ -299,7 +299,7 @@ void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t siz | |||
299 | err = __kmem_cache_create(s, flags); | 299 | err = __kmem_cache_create(s, flags); |
300 | 300 | ||
301 | if (err) | 301 | if (err) |
302 | panic("Creation of kmalloc slab %s size=%zd failed. Reason %d\n", | 302 | panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n", |
303 | name, size, err); | 303 | name, size, err); |
304 | 304 | ||
305 | s->refcount = -1; /* Exempt from merging for now */ | 305 | s->refcount = -1; /* Exempt from merging for now */ |
@@ -319,6 +319,178 @@ struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size, | |||
319 | return s; | 319 | return s; |
320 | } | 320 | } |
321 | 321 | ||
322 | struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; | ||
323 | EXPORT_SYMBOL(kmalloc_caches); | ||
324 | |||
325 | #ifdef CONFIG_ZONE_DMA | ||
326 | struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; | ||
327 | EXPORT_SYMBOL(kmalloc_dma_caches); | ||
328 | #endif | ||
329 | |||
330 | /* | ||
331 | * Conversion table for small slabs sizes / 8 to the index in the | ||
332 | * kmalloc array. This is necessary for slabs < 192 since we have non power | ||
333 | * of two cache sizes there. The size of larger slabs can be determined using | ||
334 | * fls. | ||
335 | */ | ||
336 | static s8 size_index[24] = { | ||
337 | 3, /* 8 */ | ||
338 | 4, /* 16 */ | ||
339 | 5, /* 24 */ | ||
340 | 5, /* 32 */ | ||
341 | 6, /* 40 */ | ||
342 | 6, /* 48 */ | ||
343 | 6, /* 56 */ | ||
344 | 6, /* 64 */ | ||
345 | 1, /* 72 */ | ||
346 | 1, /* 80 */ | ||
347 | 1, /* 88 */ | ||
348 | 1, /* 96 */ | ||
349 | 7, /* 104 */ | ||
350 | 7, /* 112 */ | ||
351 | 7, /* 120 */ | ||
352 | 7, /* 128 */ | ||
353 | 2, /* 136 */ | ||
354 | 2, /* 144 */ | ||
355 | 2, /* 152 */ | ||
356 | 2, /* 160 */ | ||
357 | 2, /* 168 */ | ||
358 | 2, /* 176 */ | ||
359 | 2, /* 184 */ | ||
360 | 2 /* 192 */ | ||
361 | }; | ||
362 | |||
363 | static inline int size_index_elem(size_t bytes) | ||
364 | { | ||
365 | return (bytes - 1) / 8; | ||
366 | } | ||
367 | |||
368 | /* | ||
369 | * Find the kmem_cache structure that serves a given size of | ||
370 | * allocation | ||
371 | */ | ||
372 | struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) | ||
373 | { | ||
374 | int index; | ||
375 | |||
376 | if (WARN_ON_ONCE(size > KMALLOC_MAX_SIZE)) | ||
377 | return NULL; | ||
378 | |||
379 | if (size <= 192) { | ||
380 | if (!size) | ||
381 | return ZERO_SIZE_PTR; | ||
382 | |||
383 | index = size_index[size_index_elem(size)]; | ||
384 | } else | ||
385 | index = fls(size - 1); | ||
386 | |||
387 | #ifdef CONFIG_ZONE_DMA | ||
388 | if (unlikely((flags & GFP_DMA))) | ||
389 | return kmalloc_dma_caches[index]; | ||
390 | |||
391 | #endif | ||
392 | return kmalloc_caches[index]; | ||
393 | } | ||
394 | |||
395 | /* | ||
396 | * Create the kmalloc array. Some of the regular kmalloc arrays | ||
397 | * may already have been created because they were needed to | ||
398 | * enable allocations for slab creation. | ||
399 | */ | ||
400 | void __init create_kmalloc_caches(unsigned long flags) | ||
401 | { | ||
402 | int i; | ||
403 | |||
404 | /* | ||
405 | * Patch up the size_index table if we have strange large alignment | ||
406 | * requirements for the kmalloc array. This is only the case for | ||
407 | * MIPS it seems. The standard arches will not generate any code here. | ||
408 | * | ||
409 | * Largest permitted alignment is 256 bytes due to the way we | ||
410 | * handle the index determination for the smaller caches. | ||
411 | * | ||
412 | * Make sure that nothing crazy happens if someone starts tinkering | ||
413 | * around with ARCH_KMALLOC_MINALIGN | ||
414 | */ | ||
415 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || | ||
416 | (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); | ||
417 | |||
418 | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { | ||
419 | int elem = size_index_elem(i); | ||
420 | |||
421 | if (elem >= ARRAY_SIZE(size_index)) | ||
422 | break; | ||
423 | size_index[elem] = KMALLOC_SHIFT_LOW; | ||
424 | } | ||
425 | |||
426 | if (KMALLOC_MIN_SIZE >= 64) { | ||
427 | /* | ||
428 | * The 96 byte size cache is not used if the alignment | ||
429 | * is 64 byte. | ||
430 | */ | ||
431 | for (i = 64 + 8; i <= 96; i += 8) | ||
432 | size_index[size_index_elem(i)] = 7; | ||
433 | |||
434 | } | ||
435 | |||
436 | if (KMALLOC_MIN_SIZE >= 128) { | ||
437 | /* | ||
438 | * The 192 byte sized cache is not used if the alignment | ||
439 | * is 128 byte. Redirect kmalloc to use the 256 byte cache | ||
440 | * instead. | ||
441 | */ | ||
442 | for (i = 128 + 8; i <= 192; i += 8) | ||
443 | size_index[size_index_elem(i)] = 8; | ||
444 | } | ||
445 | for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { | ||
446 | if (!kmalloc_caches[i]) { | ||
447 | kmalloc_caches[i] = create_kmalloc_cache(NULL, | ||
448 | 1 << i, flags); | ||
449 | |||
450 | /* | ||
451 | * Caches that are not of the two-to-the-power-of size. | ||
452 | * These have to be created immediately after the | ||
453 | * earlier power of two caches | ||
454 | */ | ||
455 | if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6) | ||
456 | kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags); | ||
457 | |||
458 | if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7) | ||
459 | kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags); | ||
460 | } | ||
461 | } | ||
462 | |||
463 | /* Kmalloc array is now usable */ | ||
464 | slab_state = UP; | ||
465 | |||
466 | for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { | ||
467 | struct kmem_cache *s = kmalloc_caches[i]; | ||
468 | char *n; | ||
469 | |||
470 | if (s) { | ||
471 | n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i)); | ||
472 | |||
473 | BUG_ON(!n); | ||
474 | s->name = n; | ||
475 | } | ||
476 | } | ||
477 | |||
478 | #ifdef CONFIG_ZONE_DMA | ||
479 | for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { | ||
480 | struct kmem_cache *s = kmalloc_caches[i]; | ||
481 | |||
482 | if (s) { | ||
483 | int size = kmalloc_size(i); | ||
484 | char *n = kasprintf(GFP_NOWAIT, | ||
485 | "dma-kmalloc-%d", size); | ||
486 | |||
487 | BUG_ON(!n); | ||
488 | kmalloc_dma_caches[i] = create_kmalloc_cache(n, | ||
489 | size, SLAB_CACHE_DMA | flags); | ||
490 | } | ||
491 | } | ||
492 | #endif | ||
493 | } | ||
322 | #endif /* !CONFIG_SLOB */ | 494 | #endif /* !CONFIG_SLOB */ |
323 | 495 | ||
324 | 496 | ||
@@ -1006,7 +1006,7 @@ static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) | |||
1006 | * dilemma by deferring the increment of the count during | 1006 | * dilemma by deferring the increment of the count during |
1007 | * bootstrap (see early_kmem_cache_node_alloc). | 1007 | * bootstrap (see early_kmem_cache_node_alloc). |
1008 | */ | 1008 | */ |
1009 | if (n) { | 1009 | if (likely(n)) { |
1010 | atomic_long_inc(&n->nr_slabs); | 1010 | atomic_long_inc(&n->nr_slabs); |
1011 | atomic_long_add(objects, &n->total_objects); | 1011 | atomic_long_add(objects, &n->total_objects); |
1012 | } | 1012 | } |
@@ -1494,7 +1494,7 @@ static inline void remove_partial(struct kmem_cache_node *n, | |||
1494 | */ | 1494 | */ |
1495 | static inline void *acquire_slab(struct kmem_cache *s, | 1495 | static inline void *acquire_slab(struct kmem_cache *s, |
1496 | struct kmem_cache_node *n, struct page *page, | 1496 | struct kmem_cache_node *n, struct page *page, |
1497 | int mode) | 1497 | int mode, int *objects) |
1498 | { | 1498 | { |
1499 | void *freelist; | 1499 | void *freelist; |
1500 | unsigned long counters; | 1500 | unsigned long counters; |
@@ -1508,6 +1508,7 @@ static inline void *acquire_slab(struct kmem_cache *s, | |||
1508 | freelist = page->freelist; | 1508 | freelist = page->freelist; |
1509 | counters = page->counters; | 1509 | counters = page->counters; |
1510 | new.counters = counters; | 1510 | new.counters = counters; |
1511 | *objects = new.objects - new.inuse; | ||
1511 | if (mode) { | 1512 | if (mode) { |
1512 | new.inuse = page->objects; | 1513 | new.inuse = page->objects; |
1513 | new.freelist = NULL; | 1514 | new.freelist = NULL; |
@@ -1529,7 +1530,7 @@ static inline void *acquire_slab(struct kmem_cache *s, | |||
1529 | return freelist; | 1530 | return freelist; |
1530 | } | 1531 | } |
1531 | 1532 | ||
1532 | static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); | 1533 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); |
1533 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); | 1534 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); |
1534 | 1535 | ||
1535 | /* | 1536 | /* |
@@ -1540,6 +1541,8 @@ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, | |||
1540 | { | 1541 | { |
1541 | struct page *page, *page2; | 1542 | struct page *page, *page2; |
1542 | void *object = NULL; | 1543 | void *object = NULL; |
1544 | int available = 0; | ||
1545 | int objects; | ||
1543 | 1546 | ||
1544 | /* | 1547 | /* |
1545 | * Racy check. If we mistakenly see no partial slabs then we | 1548 | * Racy check. If we mistakenly see no partial slabs then we |
@@ -1553,22 +1556,21 @@ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, | |||
1553 | spin_lock(&n->list_lock); | 1556 | spin_lock(&n->list_lock); |
1554 | list_for_each_entry_safe(page, page2, &n->partial, lru) { | 1557 | list_for_each_entry_safe(page, page2, &n->partial, lru) { |
1555 | void *t; | 1558 | void *t; |
1556 | int available; | ||
1557 | 1559 | ||
1558 | if (!pfmemalloc_match(page, flags)) | 1560 | if (!pfmemalloc_match(page, flags)) |
1559 | continue; | 1561 | continue; |
1560 | 1562 | ||
1561 | t = acquire_slab(s, n, page, object == NULL); | 1563 | t = acquire_slab(s, n, page, object == NULL, &objects); |
1562 | if (!t) | 1564 | if (!t) |
1563 | break; | 1565 | break; |
1564 | 1566 | ||
1567 | available += objects; | ||
1565 | if (!object) { | 1568 | if (!object) { |
1566 | c->page = page; | 1569 | c->page = page; |
1567 | stat(s, ALLOC_FROM_PARTIAL); | 1570 | stat(s, ALLOC_FROM_PARTIAL); |
1568 | object = t; | 1571 | object = t; |
1569 | available = page->objects - page->inuse; | ||
1570 | } else { | 1572 | } else { |
1571 | available = put_cpu_partial(s, page, 0); | 1573 | put_cpu_partial(s, page, 0); |
1572 | stat(s, CPU_PARTIAL_NODE); | 1574 | stat(s, CPU_PARTIAL_NODE); |
1573 | } | 1575 | } |
1574 | if (kmem_cache_debug(s) || available > s->cpu_partial / 2) | 1576 | if (kmem_cache_debug(s) || available > s->cpu_partial / 2) |
@@ -1947,7 +1949,7 @@ static void unfreeze_partials(struct kmem_cache *s, | |||
1947 | * If we did not find a slot then simply move all the partials to the | 1949 | * If we did not find a slot then simply move all the partials to the |
1948 | * per node partial list. | 1950 | * per node partial list. |
1949 | */ | 1951 | */ |
1950 | static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) | 1952 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) |
1951 | { | 1953 | { |
1952 | struct page *oldpage; | 1954 | struct page *oldpage; |
1953 | int pages; | 1955 | int pages; |
@@ -1985,7 +1987,6 @@ static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) | |||
1985 | page->next = oldpage; | 1987 | page->next = oldpage; |
1986 | 1988 | ||
1987 | } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage); | 1989 | } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage); |
1988 | return pobjects; | ||
1989 | } | 1990 | } |
1990 | 1991 | ||
1991 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) | 1992 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
@@ -2042,7 +2043,7 @@ static void flush_all(struct kmem_cache *s) | |||
2042 | static inline int node_match(struct page *page, int node) | 2043 | static inline int node_match(struct page *page, int node) |
2043 | { | 2044 | { |
2044 | #ifdef CONFIG_NUMA | 2045 | #ifdef CONFIG_NUMA |
2045 | if (node != NUMA_NO_NODE && page_to_nid(page) != node) | 2046 | if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) |
2046 | return 0; | 2047 | return 0; |
2047 | #endif | 2048 | #endif |
2048 | return 1; | 2049 | return 1; |
@@ -2332,13 +2333,18 @@ static __always_inline void *slab_alloc_node(struct kmem_cache *s, | |||
2332 | 2333 | ||
2333 | s = memcg_kmem_get_cache(s, gfpflags); | 2334 | s = memcg_kmem_get_cache(s, gfpflags); |
2334 | redo: | 2335 | redo: |
2335 | |||
2336 | /* | 2336 | /* |
2337 | * Must read kmem_cache cpu data via this cpu ptr. Preemption is | 2337 | * Must read kmem_cache cpu data via this cpu ptr. Preemption is |
2338 | * enabled. We may switch back and forth between cpus while | 2338 | * enabled. We may switch back and forth between cpus while |
2339 | * reading from one cpu area. That does not matter as long | 2339 | * reading from one cpu area. That does not matter as long |
2340 | * as we end up on the original cpu again when doing the cmpxchg. | 2340 | * as we end up on the original cpu again when doing the cmpxchg. |
2341 | * | ||
2342 | * Preemption is disabled for the retrieval of the tid because that | ||
2343 | * must occur from the current processor. We cannot allow rescheduling | ||
2344 | * on a different processor between the determination of the pointer | ||
2345 | * and the retrieval of the tid. | ||
2341 | */ | 2346 | */ |
2347 | preempt_disable(); | ||
2342 | c = __this_cpu_ptr(s->cpu_slab); | 2348 | c = __this_cpu_ptr(s->cpu_slab); |
2343 | 2349 | ||
2344 | /* | 2350 | /* |
@@ -2348,7 +2354,7 @@ redo: | |||
2348 | * linked list in between. | 2354 | * linked list in between. |
2349 | */ | 2355 | */ |
2350 | tid = c->tid; | 2356 | tid = c->tid; |
2351 | barrier(); | 2357 | preempt_enable(); |
2352 | 2358 | ||
2353 | object = c->freelist; | 2359 | object = c->freelist; |
2354 | page = c->page; | 2360 | page = c->page; |
@@ -2595,10 +2601,11 @@ redo: | |||
2595 | * data is retrieved via this pointer. If we are on the same cpu | 2601 | * data is retrieved via this pointer. If we are on the same cpu |
2596 | * during the cmpxchg then the free will succedd. | 2602 | * during the cmpxchg then the free will succedd. |
2597 | */ | 2603 | */ |
2604 | preempt_disable(); | ||
2598 | c = __this_cpu_ptr(s->cpu_slab); | 2605 | c = __this_cpu_ptr(s->cpu_slab); |
2599 | 2606 | ||
2600 | tid = c->tid; | 2607 | tid = c->tid; |
2601 | barrier(); | 2608 | preempt_enable(); |
2602 | 2609 | ||
2603 | if (likely(page == c->page)) { | 2610 | if (likely(page == c->page)) { |
2604 | set_freepointer(s, object, c->freelist); | 2611 | set_freepointer(s, object, c->freelist); |
@@ -2776,7 +2783,7 @@ init_kmem_cache_node(struct kmem_cache_node *n) | |||
2776 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) | 2783 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) |
2777 | { | 2784 | { |
2778 | BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < | 2785 | BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < |
2779 | SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu)); | 2786 | KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); |
2780 | 2787 | ||
2781 | /* | 2788 | /* |
2782 | * Must align to double word boundary for the double cmpxchg | 2789 | * Must align to double word boundary for the double cmpxchg |
@@ -2983,7 +2990,7 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order) | |||
2983 | s->allocflags |= __GFP_COMP; | 2990 | s->allocflags |= __GFP_COMP; |
2984 | 2991 | ||
2985 | if (s->flags & SLAB_CACHE_DMA) | 2992 | if (s->flags & SLAB_CACHE_DMA) |
2986 | s->allocflags |= SLUB_DMA; | 2993 | s->allocflags |= GFP_DMA; |
2987 | 2994 | ||
2988 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | 2995 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
2989 | s->allocflags |= __GFP_RECLAIMABLE; | 2996 | s->allocflags |= __GFP_RECLAIMABLE; |
@@ -3175,13 +3182,6 @@ int __kmem_cache_shutdown(struct kmem_cache *s) | |||
3175 | * Kmalloc subsystem | 3182 | * Kmalloc subsystem |
3176 | *******************************************************************/ | 3183 | *******************************************************************/ |
3177 | 3184 | ||
3178 | struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT]; | ||
3179 | EXPORT_SYMBOL(kmalloc_caches); | ||
3180 | |||
3181 | #ifdef CONFIG_ZONE_DMA | ||
3182 | static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT]; | ||
3183 | #endif | ||
3184 | |||
3185 | static int __init setup_slub_min_order(char *str) | 3185 | static int __init setup_slub_min_order(char *str) |
3186 | { | 3186 | { |
3187 | get_option(&str, &slub_min_order); | 3187 | get_option(&str, &slub_min_order); |
@@ -3218,73 +3218,15 @@ static int __init setup_slub_nomerge(char *str) | |||
3218 | 3218 | ||
3219 | __setup("slub_nomerge", setup_slub_nomerge); | 3219 | __setup("slub_nomerge", setup_slub_nomerge); |
3220 | 3220 | ||
3221 | /* | ||
3222 | * Conversion table for small slabs sizes / 8 to the index in the | ||
3223 | * kmalloc array. This is necessary for slabs < 192 since we have non power | ||
3224 | * of two cache sizes there. The size of larger slabs can be determined using | ||
3225 | * fls. | ||
3226 | */ | ||
3227 | static s8 size_index[24] = { | ||
3228 | 3, /* 8 */ | ||
3229 | 4, /* 16 */ | ||
3230 | 5, /* 24 */ | ||
3231 | 5, /* 32 */ | ||
3232 | 6, /* 40 */ | ||
3233 | 6, /* 48 */ | ||
3234 | 6, /* 56 */ | ||
3235 | 6, /* 64 */ | ||
3236 | 1, /* 72 */ | ||
3237 | 1, /* 80 */ | ||
3238 | 1, /* 88 */ | ||
3239 | 1, /* 96 */ | ||
3240 | 7, /* 104 */ | ||
3241 | 7, /* 112 */ | ||
3242 | 7, /* 120 */ | ||
3243 | 7, /* 128 */ | ||
3244 | 2, /* 136 */ | ||
3245 | 2, /* 144 */ | ||
3246 | 2, /* 152 */ | ||
3247 | 2, /* 160 */ | ||
3248 | 2, /* 168 */ | ||
3249 | 2, /* 176 */ | ||
3250 | 2, /* 184 */ | ||
3251 | 2 /* 192 */ | ||
3252 | }; | ||
3253 | |||
3254 | static inline int size_index_elem(size_t bytes) | ||
3255 | { | ||
3256 | return (bytes - 1) / 8; | ||
3257 | } | ||
3258 | |||
3259 | static struct kmem_cache *get_slab(size_t size, gfp_t flags) | ||
3260 | { | ||
3261 | int index; | ||
3262 | |||
3263 | if (size <= 192) { | ||
3264 | if (!size) | ||
3265 | return ZERO_SIZE_PTR; | ||
3266 | |||
3267 | index = size_index[size_index_elem(size)]; | ||
3268 | } else | ||
3269 | index = fls(size - 1); | ||
3270 | |||
3271 | #ifdef CONFIG_ZONE_DMA | ||
3272 | if (unlikely((flags & SLUB_DMA))) | ||
3273 | return kmalloc_dma_caches[index]; | ||
3274 | |||
3275 | #endif | ||
3276 | return kmalloc_caches[index]; | ||
3277 | } | ||
3278 | |||
3279 | void *__kmalloc(size_t size, gfp_t flags) | 3221 | void *__kmalloc(size_t size, gfp_t flags) |
3280 | { | 3222 | { |
3281 | struct kmem_cache *s; | 3223 | struct kmem_cache *s; |
3282 | void *ret; | 3224 | void *ret; |
3283 | 3225 | ||
3284 | if (unlikely(size > SLUB_MAX_SIZE)) | 3226 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
3285 | return kmalloc_large(size, flags); | 3227 | return kmalloc_large(size, flags); |
3286 | 3228 | ||
3287 | s = get_slab(size, flags); | 3229 | s = kmalloc_slab(size, flags); |
3288 | 3230 | ||
3289 | if (unlikely(ZERO_OR_NULL_PTR(s))) | 3231 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
3290 | return s; | 3232 | return s; |
@@ -3317,7 +3259,7 @@ void *__kmalloc_node(size_t size, gfp_t flags, int node) | |||
3317 | struct kmem_cache *s; | 3259 | struct kmem_cache *s; |
3318 | void *ret; | 3260 | void *ret; |
3319 | 3261 | ||
3320 | if (unlikely(size > SLUB_MAX_SIZE)) { | 3262 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
3321 | ret = kmalloc_large_node(size, flags, node); | 3263 | ret = kmalloc_large_node(size, flags, node); |
3322 | 3264 | ||
3323 | trace_kmalloc_node(_RET_IP_, ret, | 3265 | trace_kmalloc_node(_RET_IP_, ret, |
@@ -3327,7 +3269,7 @@ void *__kmalloc_node(size_t size, gfp_t flags, int node) | |||
3327 | return ret; | 3269 | return ret; |
3328 | } | 3270 | } |
3329 | 3271 | ||
3330 | s = get_slab(size, flags); | 3272 | s = kmalloc_slab(size, flags); |
3331 | 3273 | ||
3332 | if (unlikely(ZERO_OR_NULL_PTR(s))) | 3274 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
3333 | return s; | 3275 | return s; |
@@ -3620,6 +3562,12 @@ static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) | |||
3620 | 3562 | ||
3621 | memcpy(s, static_cache, kmem_cache->object_size); | 3563 | memcpy(s, static_cache, kmem_cache->object_size); |
3622 | 3564 | ||
3565 | /* | ||
3566 | * This runs very early, and only the boot processor is supposed to be | ||
3567 | * up. Even if it weren't true, IRQs are not up so we couldn't fire | ||
3568 | * IPIs around. | ||
3569 | */ | ||
3570 | __flush_cpu_slab(s, smp_processor_id()); | ||
3623 | for_each_node_state(node, N_NORMAL_MEMORY) { | 3571 | for_each_node_state(node, N_NORMAL_MEMORY) { |
3624 | struct kmem_cache_node *n = get_node(s, node); | 3572 | struct kmem_cache_node *n = get_node(s, node); |
3625 | struct page *p; | 3573 | struct page *p; |
@@ -3642,8 +3590,6 @@ void __init kmem_cache_init(void) | |||
3642 | { | 3590 | { |
3643 | static __initdata struct kmem_cache boot_kmem_cache, | 3591 | static __initdata struct kmem_cache boot_kmem_cache, |
3644 | boot_kmem_cache_node; | 3592 | boot_kmem_cache_node; |
3645 | int i; | ||
3646 | int caches = 2; | ||
3647 | 3593 | ||
3648 | if (debug_guardpage_minorder()) | 3594 | if (debug_guardpage_minorder()) |
3649 | slub_max_order = 0; | 3595 | slub_max_order = 0; |
@@ -3674,103 +3620,16 @@ void __init kmem_cache_init(void) | |||
3674 | kmem_cache_node = bootstrap(&boot_kmem_cache_node); | 3620 | kmem_cache_node = bootstrap(&boot_kmem_cache_node); |
3675 | 3621 | ||
3676 | /* Now we can use the kmem_cache to allocate kmalloc slabs */ | 3622 | /* Now we can use the kmem_cache to allocate kmalloc slabs */ |
3677 | 3623 | create_kmalloc_caches(0); | |
3678 | /* | ||
3679 | * Patch up the size_index table if we have strange large alignment | ||
3680 | * requirements for the kmalloc array. This is only the case for | ||
3681 | * MIPS it seems. The standard arches will not generate any code here. | ||
3682 | * | ||
3683 | * Largest permitted alignment is 256 bytes due to the way we | ||
3684 | * handle the index determination for the smaller caches. | ||
3685 | * | ||
3686 | * Make sure that nothing crazy happens if someone starts tinkering | ||
3687 | * around with ARCH_KMALLOC_MINALIGN | ||
3688 | */ | ||
3689 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || | ||
3690 | (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); | ||
3691 | |||
3692 | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { | ||
3693 | int elem = size_index_elem(i); | ||
3694 | if (elem >= ARRAY_SIZE(size_index)) | ||
3695 | break; | ||
3696 | size_index[elem] = KMALLOC_SHIFT_LOW; | ||
3697 | } | ||
3698 | |||
3699 | if (KMALLOC_MIN_SIZE == 64) { | ||
3700 | /* | ||
3701 | * The 96 byte size cache is not used if the alignment | ||
3702 | * is 64 byte. | ||
3703 | */ | ||
3704 | for (i = 64 + 8; i <= 96; i += 8) | ||
3705 | size_index[size_index_elem(i)] = 7; | ||
3706 | } else if (KMALLOC_MIN_SIZE == 128) { | ||
3707 | /* | ||
3708 | * The 192 byte sized cache is not used if the alignment | ||
3709 | * is 128 byte. Redirect kmalloc to use the 256 byte cache | ||
3710 | * instead. | ||
3711 | */ | ||
3712 | for (i = 128 + 8; i <= 192; i += 8) | ||
3713 | size_index[size_index_elem(i)] = 8; | ||
3714 | } | ||
3715 | |||
3716 | /* Caches that are not of the two-to-the-power-of size */ | ||
3717 | if (KMALLOC_MIN_SIZE <= 32) { | ||
3718 | kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0); | ||
3719 | caches++; | ||
3720 | } | ||
3721 | |||
3722 | if (KMALLOC_MIN_SIZE <= 64) { | ||
3723 | kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0); | ||
3724 | caches++; | ||
3725 | } | ||
3726 | |||
3727 | for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { | ||
3728 | kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0); | ||
3729 | caches++; | ||
3730 | } | ||
3731 | |||
3732 | slab_state = UP; | ||
3733 | |||
3734 | /* Provide the correct kmalloc names now that the caches are up */ | ||
3735 | if (KMALLOC_MIN_SIZE <= 32) { | ||
3736 | kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT); | ||
3737 | BUG_ON(!kmalloc_caches[1]->name); | ||
3738 | } | ||
3739 | |||
3740 | if (KMALLOC_MIN_SIZE <= 64) { | ||
3741 | kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT); | ||
3742 | BUG_ON(!kmalloc_caches[2]->name); | ||
3743 | } | ||
3744 | |||
3745 | for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { | ||
3746 | char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i); | ||
3747 | |||
3748 | BUG_ON(!s); | ||
3749 | kmalloc_caches[i]->name = s; | ||
3750 | } | ||
3751 | 3624 | ||
3752 | #ifdef CONFIG_SMP | 3625 | #ifdef CONFIG_SMP |
3753 | register_cpu_notifier(&slab_notifier); | 3626 | register_cpu_notifier(&slab_notifier); |
3754 | #endif | 3627 | #endif |
3755 | 3628 | ||
3756 | #ifdef CONFIG_ZONE_DMA | ||
3757 | for (i = 0; i < SLUB_PAGE_SHIFT; i++) { | ||
3758 | struct kmem_cache *s = kmalloc_caches[i]; | ||
3759 | |||
3760 | if (s && s->size) { | ||
3761 | char *name = kasprintf(GFP_NOWAIT, | ||
3762 | "dma-kmalloc-%d", s->object_size); | ||
3763 | |||
3764 | BUG_ON(!name); | ||
3765 | kmalloc_dma_caches[i] = create_kmalloc_cache(name, | ||
3766 | s->object_size, SLAB_CACHE_DMA); | ||
3767 | } | ||
3768 | } | ||
3769 | #endif | ||
3770 | printk(KERN_INFO | 3629 | printk(KERN_INFO |
3771 | "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," | 3630 | "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d," |
3772 | " CPUs=%d, Nodes=%d\n", | 3631 | " CPUs=%d, Nodes=%d\n", |
3773 | caches, cache_line_size(), | 3632 | cache_line_size(), |
3774 | slub_min_order, slub_max_order, slub_min_objects, | 3633 | slub_min_order, slub_max_order, slub_min_objects, |
3775 | nr_cpu_ids, nr_node_ids); | 3634 | nr_cpu_ids, nr_node_ids); |
3776 | } | 3635 | } |
@@ -3933,10 +3792,10 @@ void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) | |||
3933 | struct kmem_cache *s; | 3792 | struct kmem_cache *s; |
3934 | void *ret; | 3793 | void *ret; |
3935 | 3794 | ||
3936 | if (unlikely(size > SLUB_MAX_SIZE)) | 3795 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
3937 | return kmalloc_large(size, gfpflags); | 3796 | return kmalloc_large(size, gfpflags); |
3938 | 3797 | ||
3939 | s = get_slab(size, gfpflags); | 3798 | s = kmalloc_slab(size, gfpflags); |
3940 | 3799 | ||
3941 | if (unlikely(ZERO_OR_NULL_PTR(s))) | 3800 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
3942 | return s; | 3801 | return s; |
@@ -3956,7 +3815,7 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, | |||
3956 | struct kmem_cache *s; | 3815 | struct kmem_cache *s; |
3957 | void *ret; | 3816 | void *ret; |
3958 | 3817 | ||
3959 | if (unlikely(size > SLUB_MAX_SIZE)) { | 3818 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
3960 | ret = kmalloc_large_node(size, gfpflags, node); | 3819 | ret = kmalloc_large_node(size, gfpflags, node); |
3961 | 3820 | ||
3962 | trace_kmalloc_node(caller, ret, | 3821 | trace_kmalloc_node(caller, ret, |
@@ -3966,7 +3825,7 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, | |||
3966 | return ret; | 3825 | return ret; |
3967 | } | 3826 | } |
3968 | 3827 | ||
3969 | s = get_slab(size, gfpflags); | 3828 | s = kmalloc_slab(size, gfpflags); |
3970 | 3829 | ||
3971 | if (unlikely(ZERO_OR_NULL_PTR(s))) | 3830 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
3972 | return s; | 3831 | return s; |
@@ -4315,7 +4174,7 @@ static void resiliency_test(void) | |||
4315 | { | 4174 | { |
4316 | u8 *p; | 4175 | u8 *p; |
4317 | 4176 | ||
4318 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10); | 4177 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); |
4319 | 4178 | ||
4320 | printk(KERN_ERR "SLUB resiliency testing\n"); | 4179 | printk(KERN_ERR "SLUB resiliency testing\n"); |
4321 | printk(KERN_ERR "-----------------------\n"); | 4180 | printk(KERN_ERR "-----------------------\n"); |