diff options
author | Hans de Goede <j.w.r.degoede@hhs.nl> | 2006-06-04 14:22:24 -0400 |
---|---|---|
committer | Greg Kroah-Hartman <gregkh@suse.de> | 2006-06-22 14:10:34 -0400 |
commit | f2b84bbcebfdbe4855bab532909eef6621999f9f (patch) | |
tree | 9e0112af923b56af771708505b69e792c4bc9f2f | |
parent | bed730821b74be4c7d135098842219473f7c8f2c (diff) |
[PATCH] abituguru: New hardware monitoring driver
New hardware monitoring driver for the Abit uGuru
Signed-off-by: Hans de Goede <j.w.r.degoede@hhs.nl>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
-rw-r--r-- | Documentation/hwmon/abituguru | 59 | ||||
-rw-r--r-- | Documentation/hwmon/abituguru-datasheet | 312 | ||||
-rw-r--r-- | MAINTAINERS | 6 | ||||
-rw-r--r-- | drivers/hwmon/Kconfig | 12 | ||||
-rw-r--r-- | drivers/hwmon/Makefile | 1 | ||||
-rw-r--r-- | drivers/hwmon/abituguru.c | 1391 |
6 files changed, 1781 insertions, 0 deletions
diff --git a/Documentation/hwmon/abituguru b/Documentation/hwmon/abituguru new file mode 100644 index 000000000000..69cdb527d58f --- /dev/null +++ b/Documentation/hwmon/abituguru | |||
@@ -0,0 +1,59 @@ | |||
1 | Kernel driver abituguru | ||
2 | ======================= | ||
3 | |||
4 | Supported chips: | ||
5 | * Abit uGuru (Hardware Monitor part only) | ||
6 | Prefix: 'abituguru' | ||
7 | Addresses scanned: ISA 0x0E0 | ||
8 | Datasheet: Not available, this driver is based on reverse engineering. | ||
9 | A "Datasheet" has been written based on the reverse engineering it | ||
10 | should be available in the same dir as this file under the name | ||
11 | abituguru-datasheet. | ||
12 | |||
13 | Authors: | ||
14 | Hans de Goede <j.w.r.degoede@hhs.nl>, | ||
15 | (Initial reverse engineering done by Olle Sandberg | ||
16 | <ollebull@gmail.com>) | ||
17 | |||
18 | |||
19 | Module Parameters | ||
20 | ----------------- | ||
21 | |||
22 | * force: bool Force detection. Note this parameter only causes the | ||
23 | detection to be skipped, if the uGuru can't be read | ||
24 | the module initialization (insmod) will still fail. | ||
25 | * fan_sensors: int Tell the driver how many fan speed sensors there are | ||
26 | on your motherboard. Default: 0 (autodetect). | ||
27 | * pwms: int Tell the driver how many fan speed controls (fan | ||
28 | pwms) your motherboard has. Default: 0 (autodetect). | ||
29 | * verbose: int How verbose should the driver be? (0-3): | ||
30 | 0 normal output | ||
31 | 1 + verbose error reporting | ||
32 | 2 + sensors type probing info\n" | ||
33 | 3 + retryable error reporting | ||
34 | Default: 2 (the driver is still in the testing phase) | ||
35 | |||
36 | Notice if you need any of the first three options above please insmod the | ||
37 | driver with verbose set to 3 and mail me <j.w.r.degoede@hhs.nl> the output of: | ||
38 | dmesg | grep abituguru | ||
39 | |||
40 | |||
41 | Description | ||
42 | ----------- | ||
43 | |||
44 | This driver supports the hardware monitoring features of the Abit uGuru chip | ||
45 | found on Abit uGuru featuring motherboards (most modern Abit motherboards). | ||
46 | |||
47 | The uGuru chip in reality is a Winbond W83L950D in disguise (despite Abit | ||
48 | claiming it is "a new microprocessor designed by the ABIT Engineers"). | ||
49 | Unfortunatly this doesn't help since the W83L950D is a generic | ||
50 | microcontroller with a custom Abit application running on it. | ||
51 | |||
52 | Despite Abit not releasing any information regarding the uGuru, Olle | ||
53 | Sandberg <ollebull@gmail.com> has managed to reverse engineer the sensor part | ||
54 | of the uGuru. Without his work this driver would not have been possible. | ||
55 | |||
56 | Known Issues | ||
57 | ------------ | ||
58 | |||
59 | The voltage and frequency control parts of the Abit uGuru are not supported. | ||
diff --git a/Documentation/hwmon/abituguru-datasheet b/Documentation/hwmon/abituguru-datasheet new file mode 100644 index 000000000000..aef5a9b36846 --- /dev/null +++ b/Documentation/hwmon/abituguru-datasheet | |||
@@ -0,0 +1,312 @@ | |||
1 | uGuru datasheet | ||
2 | =============== | ||
3 | |||
4 | First of all, what I know about uGuru is no fact based on any help, hints or | ||
5 | datasheet from Abit. The data I have got on uGuru have I assembled through | ||
6 | my weak knowledge in "backwards engineering". | ||
7 | And just for the record, you may have noticed uGuru isn't a chip developed by | ||
8 | Abit, as they claim it to be. It's realy just an microprocessor (uC) created by | ||
9 | Winbond (W83L950D). And no, reading the manual for this specific uC or | ||
10 | mailing Windbond for help won't give any usefull data about uGuru, as it is | ||
11 | the program inside the uC that is responding to calls. | ||
12 | |||
13 | Olle Sandberg <ollebull@gmail.com>, 2005-05-25 | ||
14 | |||
15 | |||
16 | Original version by Olle Sandberg who did the heavy lifting of the initial | ||
17 | reverse engineering. This version has been almost fully rewritten for clarity | ||
18 | and extended with write support and info on more databanks, the write support | ||
19 | is once again reverse engineered by Olle the additional databanks have been | ||
20 | reverse engineered by me. I would like to express my thanks to Olle, this | ||
21 | document and the Linux driver could not have been written without his efforts. | ||
22 | |||
23 | Note: because of the lack of specs only the sensors part of the uGuru is | ||
24 | described here and not the CPU / RAM / etc voltage & frequency control. | ||
25 | |||
26 | Hans de Goede <j.w.r.degoede@hhs.nl>, 28-01-2006 | ||
27 | |||
28 | |||
29 | Detection | ||
30 | ========= | ||
31 | |||
32 | As far as known the uGuru is always placed at and using the (ISA) I/O-ports | ||
33 | 0xE0 and 0xE4, so we don't have to scan any port-range, just check what the two | ||
34 | ports are holding for detection. We will refer to 0xE0 as CMD (command-port) | ||
35 | and 0xE4 as DATA because Abit refers to them with these names. | ||
36 | |||
37 | If DATA holds 0x00 or 0x08 and CMD holds 0x00 or 0xAC an uGuru could be | ||
38 | present. We have to check for two different values at data-port, because | ||
39 | after a reboot uGuru will hold 0x00 here, but if the driver is removed and | ||
40 | later on attached again data-port will hold 0x08, more about this later. | ||
41 | |||
42 | After wider testing of the Linux kernel driver some variants of the uGuru have | ||
43 | turned up which will hold 0x00 instead of 0xAC at the CMD port, thus we also | ||
44 | have to test CMD for two different values. On these uGuru's DATA will initally | ||
45 | hold 0x09 and will only hold 0x08 after reading CMD first, so CMD must be read | ||
46 | first! | ||
47 | |||
48 | To be really sure an uGuru is present a test read of one or more register | ||
49 | sets should be done. | ||
50 | |||
51 | |||
52 | Reading / Writing | ||
53 | ================= | ||
54 | |||
55 | Addressing | ||
56 | ---------- | ||
57 | |||
58 | The uGuru has a number of different addressing levels. The first addressing | ||
59 | level we will call banks. A bank holds data for one or more sensors. The data | ||
60 | in a bank for a sensor is one or more bytes large. | ||
61 | |||
62 | The number of bytes is fixed for a given bank, you should always read or write | ||
63 | that many bytes, reading / writing more will fail, the results when writing | ||
64 | less then the number of bytes for a given bank are undetermined. | ||
65 | |||
66 | See below for all known bank addresses, numbers of sensors in that bank, | ||
67 | number of bytes data per sensor and contents/meaning of those bytes. | ||
68 | |||
69 | Although both this document and the kernel driver have kept the sensor | ||
70 | terminoligy for the addressing within a bank this is not 100% correct, in | ||
71 | bank 0x24 for example the addressing within the bank selects a PWM output not | ||
72 | a sensor. | ||
73 | |||
74 | Notice that some banks have both a read and a write address this is how the | ||
75 | uGuru determines if a read from or a write to the bank is taking place, thus | ||
76 | when reading you should always use the read address and when writing the | ||
77 | write address. The write address is always one (1) more then the read address. | ||
78 | |||
79 | |||
80 | uGuru ready | ||
81 | ----------- | ||
82 | |||
83 | Before you can read from or write to the uGuru you must first put the uGuru | ||
84 | in "ready" mode. | ||
85 | |||
86 | To put the uGuru in ready mode first write 0x00 to DATA and then wait for DATA | ||
87 | to hold 0x09, DATA should read 0x09 within 250 read cycles. | ||
88 | |||
89 | Next CMD _must_ be read and should hold 0xAC, usually CMD will hold 0xAC the | ||
90 | first read but sometimes it takes a while before CMD holds 0xAC and thus it | ||
91 | has to be read a number of times (max 50). | ||
92 | |||
93 | After reading CMD, DATA should hold 0x08 which means that the uGuru is ready | ||
94 | for input. As above DATA will usually hold 0x08 the first read but not always. | ||
95 | This step can be skipped, but it is undetermined what happens if the uGuru has | ||
96 | not yet reported 0x08 at DATA and you proceed with writing a bank address. | ||
97 | |||
98 | |||
99 | Sending bank and sensor addresses to the uGuru | ||
100 | ---------------------------------------------- | ||
101 | |||
102 | First the uGuru must be in "ready" mode as described above, DATA should hold | ||
103 | 0x08 indicating that the uGuru wants input, in this case the bank address. | ||
104 | |||
105 | Next write the bank address to DATA. After the bank address has been written | ||
106 | wait for to DATA to hold 0x08 again indicating that it wants / is ready for | ||
107 | more input (max 250 reads). | ||
108 | |||
109 | Once DATA holds 0x08 again write the sensor address to CMD. | ||
110 | |||
111 | |||
112 | Reading | ||
113 | ------- | ||
114 | |||
115 | First send the bank and sensor addresses as described above. | ||
116 | Then for each byte of data you want to read wait for DATA to hold 0x01 | ||
117 | which indicates that the uGuru is ready to be read (max 250 reads) and once | ||
118 | DATA holds 0x01 read the byte from CMD. | ||
119 | |||
120 | Once all bytes have been read data will hold 0x09, but there is no reason to | ||
121 | test for this. Notice that the number of bytes is bank address dependent see | ||
122 | above and below. | ||
123 | |||
124 | After completing a successfull read it is advised to put the uGuru back in | ||
125 | ready mode, so that it is ready for the next read / write cycle. This way | ||
126 | if your program / driver is unloaded and later loaded again the detection | ||
127 | algorithm described above will still work. | ||
128 | |||
129 | |||
130 | |||
131 | Writing | ||
132 | ------- | ||
133 | |||
134 | First send the bank and sensor addresses as described above. | ||
135 | Then for each byte of data you want to write wait for DATA to hold 0x00 | ||
136 | which indicates that the uGuru is ready to be written (max 250 reads) and | ||
137 | once DATA holds 0x00 write the byte to CMD. | ||
138 | |||
139 | Once all bytes have been written wait for DATA to hold 0x01 (max 250 reads) | ||
140 | don't ask why this is the way it is. | ||
141 | |||
142 | Once DATA holds 0x01 read CMD it should hold 0xAC now. | ||
143 | |||
144 | After completing a successfull write it is advised to put the uGuru back in | ||
145 | ready mode, so that it is ready for the next read / write cycle. This way | ||
146 | if your program / driver is unloaded and later loaded again the detection | ||
147 | algorithm described above will still work. | ||
148 | |||
149 | |||
150 | Gotchas | ||
151 | ------- | ||
152 | |||
153 | After wider testing of the Linux kernel driver some variants of the uGuru have | ||
154 | turned up which do not hold 0x08 at DATA within 250 reads after writing the | ||
155 | bank address. With these versions this happens quite frequent, using larger | ||
156 | timeouts doesn't help, they just go offline for a second or 2, doing some | ||
157 | internal callibration or whatever. Your code should be prepared to handle | ||
158 | this and in case of no response in this specific case just goto sleep for a | ||
159 | while and then retry. | ||
160 | |||
161 | |||
162 | Address Map | ||
163 | =========== | ||
164 | |||
165 | Bank 0x20 Alarms (R) | ||
166 | -------------------- | ||
167 | This bank contains 0 sensors, iow the sensor address is ignored (but must be | ||
168 | written) just use 0. Bank 0x20 contains 3 bytes: | ||
169 | |||
170 | Byte 0: | ||
171 | This byte holds the alarm flags for sensor 0-7 of Sensor Bank1, with bit 0 | ||
172 | corresponding to sensor 0, 1 to 1, etc. | ||
173 | |||
174 | Byte 1: | ||
175 | This byte holds the alarm flags for sensor 8-15 of Sensor Bank1, with bit 0 | ||
176 | corresponding to sensor 8, 1 to 9, etc. | ||
177 | |||
178 | Byte 2: | ||
179 | This byte holds the alarm flags for sensor 0-5 of Sensor Bank2, with bit 0 | ||
180 | corresponding to sensor 0, 1 to 1, etc. | ||
181 | |||
182 | |||
183 | Bank 0x21 Sensor Bank1 Values / Readings (R) | ||
184 | -------------------------------------------- | ||
185 | This bank contains 16 sensors, for each sensor it contains 1 byte. | ||
186 | So far the following sensors are known to be available on all motherboards: | ||
187 | Sensor 0 CPU temp | ||
188 | Sensor 1 SYS temp | ||
189 | Sensor 3 CPU core volt | ||
190 | Sensor 4 DDR volt | ||
191 | Sensor 10 DDR Vtt volt | ||
192 | Sensor 15 PWM temp | ||
193 | |||
194 | Byte 0: | ||
195 | This byte holds the reading from the sensor. Sensors in Bank1 can be both | ||
196 | volt and temp sensors, this is motherboard specific. The uGuru however does | ||
197 | seem to know (be programmed with) what kindoff sensor is attached see Sensor | ||
198 | Bank1 Settings description. | ||
199 | |||
200 | Volt sensors use a linear scale, a reading 0 corresponds with 0 volt and a | ||
201 | reading of 255 with 3494 mV. The sensors for higher voltages however are | ||
202 | connected through a division circuit. The currently known division circuits | ||
203 | in use result in ranges of: 0-4361mV, 0-6248mV or 0-14510mV. 3.3 volt sources | ||
204 | use the 0-4361mV range, 5 volt the 0-6248mV and 12 volt the 0-14510mV . | ||
205 | |||
206 | Temp sensors also use a linear scale, a reading of 0 corresponds with 0 degree | ||
207 | Celsius and a reading of 255 with a reading of 255 degrees Celsius. | ||
208 | |||
209 | |||
210 | Bank 0x22 Sensor Bank1 Settings (R) | ||
211 | Bank 0x23 Sensor Bank1 Settings (W) | ||
212 | ----------------------------------- | ||
213 | |||
214 | This bank contains 16 sensors, for each sensor it contains 3 bytes. Each | ||
215 | set of 3 bytes contains the settings for the sensor with the same sensor | ||
216 | address in Bank 0x21 . | ||
217 | |||
218 | Byte 0: | ||
219 | Alarm behaviour for the selected sensor. A 1 enables the described behaviour. | ||
220 | Bit 0: Give an alarm if measured temp is over the warning threshold (RW) * | ||
221 | Bit 1: Give an alarm if measured volt is over the max threshold (RW) ** | ||
222 | Bit 2: Give an alarm if measured volt is under the min threshold (RW) ** | ||
223 | Bit 3: Beep if alarm (RW) | ||
224 | Bit 4: 1 if alarm cause measured temp is over the warning threshold (R) | ||
225 | Bit 5: 1 if alarm cause measured volt is over the max threshold (R) | ||
226 | Bit 6: 1 if alarm cause measured volt is under the min threshold (R) | ||
227 | Bit 7: Volt sensor: Shutdown if alarm persist for more then 4 seconds (RW) | ||
228 | Temp sensor: Shutdown if temp is over the shutdown threshold (RW) | ||
229 | |||
230 | * This bit is only honored/used by the uGuru if a temp sensor is connected | ||
231 | ** This bit is only honored/used by the uGuru if a volt sensor is connected | ||
232 | Note with some trickery this can be used to find out what kinda sensor is | ||
233 | detected see the Linux kernel driver for an example with many comments on | ||
234 | how todo this. | ||
235 | |||
236 | Byte 1: | ||
237 | Temp sensor: warning threshold (scale as bank 0x21) | ||
238 | Volt sensor: min threshold (scale as bank 0x21) | ||
239 | |||
240 | Byte 2: | ||
241 | Temp sensor: shutdown threshold (scale as bank 0x21) | ||
242 | Volt sensor: max threshold (scale as bank 0x21) | ||
243 | |||
244 | |||
245 | Bank 0x24 PWM outputs for FAN's (R) | ||
246 | Bank 0x25 PWM outputs for FAN's (W) | ||
247 | ----------------------------------- | ||
248 | |||
249 | This bank contains 3 "sensors", for each sensor it contains 5 bytes. | ||
250 | Sensor 0 usually controls the CPU fan | ||
251 | Sensor 1 usually controls the NB (or chipset for single chip) fan | ||
252 | Sensor 2 usually controls the System fan | ||
253 | |||
254 | Byte 0: | ||
255 | Flag 0x80 to enable control, Fan runs at 100% when disabled. | ||
256 | low nibble (temp)sensor address at bank 0x21 used for control. | ||
257 | |||
258 | Byte 1: | ||
259 | 0-255 = 0-12v (linear), specify voltage at which fan will rotate when under | ||
260 | low threshold temp (specified in byte 3) | ||
261 | |||
262 | Byte 2: | ||
263 | 0-255 = 0-12v (linear), specify voltage at which fan will rotate when above | ||
264 | high threshold temp (specified in byte 4) | ||
265 | |||
266 | Byte 3: | ||
267 | Low threshold temp (scale as bank 0x21) | ||
268 | |||
269 | byte 4: | ||
270 | High threshold temp (scale as bank 0x21) | ||
271 | |||
272 | |||
273 | Bank 0x26 Sensors Bank2 Values / Readings (R) | ||
274 | --------------------------------------------- | ||
275 | |||
276 | This bank contains 6 sensors (AFAIK), for each sensor it contains 1 byte. | ||
277 | So far the following sensors are known to be available on all motherboards: | ||
278 | Sensor 0: CPU fan speed | ||
279 | Sensor 1: NB (or chipset for single chip) fan speed | ||
280 | Sensor 2: SYS fan speed | ||
281 | |||
282 | Byte 0: | ||
283 | This byte holds the reading from the sensor. 0-255 = 0-15300 (linear) | ||
284 | |||
285 | |||
286 | Bank 0x27 Sensors Bank2 Settings (R) | ||
287 | Bank 0x28 Sensors Bank2 Settings (W) | ||
288 | ------------------------------------ | ||
289 | |||
290 | This bank contains 6 sensors (AFAIK), for each sensor it contains 2 bytes. | ||
291 | |||
292 | Byte 0: | ||
293 | Alarm behaviour for the selected sensor. A 1 enables the described behaviour. | ||
294 | Bit 0: Give an alarm if measured rpm is under the min threshold (RW) | ||
295 | Bit 3: Beep if alarm (RW) | ||
296 | Bit 7: Shutdown if alarm persist for more then 4 seconds (RW) | ||
297 | |||
298 | Byte 1: | ||
299 | min threshold (scale as bank 0x26) | ||
300 | |||
301 | |||
302 | Warning for the adventerous | ||
303 | =========================== | ||
304 | |||
305 | A word of caution to those who want to experiment and see if they can figure | ||
306 | the voltage / clock programming out, I tried reading and only reading banks | ||
307 | 0-0x30 with the reading code used for the sensor banks (0x20-0x28) and this | ||
308 | resulted in a _permanent_ reprogramming of the voltages, luckily I had the | ||
309 | sensors part configured so that it would shutdown my system on any out of spec | ||
310 | voltages which proprably safed my computer (after a reboot I managed to | ||
311 | immediatly enter the bios and reload the defaults). This probably means that | ||
312 | the read/write cycle for the non sensor part is different from the sensor part. | ||
diff --git a/MAINTAINERS b/MAINTAINERS index 58d181d050c4..7e3a38eeccbf 100644 --- a/MAINTAINERS +++ b/MAINTAINERS | |||
@@ -181,6 +181,12 @@ M: bcrl@kvack.org | |||
181 | L: linux-aio@kvack.org | 181 | L: linux-aio@kvack.org |
182 | S: Supported | 182 | S: Supported |
183 | 183 | ||
184 | ABIT UGURU HARDWARE MONITOR DRIVER | ||
185 | P: Hans de Goede | ||
186 | M: j.w.r.degoede@hhs.nl | ||
187 | L: lm-sensors@lm-sensors.org | ||
188 | S: Maintained | ||
189 | |||
184 | ACENIC DRIVER | 190 | ACENIC DRIVER |
185 | P: Jes Sorensen | 191 | P: Jes Sorensen |
186 | M: jes@trained-monkey.org | 192 | M: jes@trained-monkey.org |
diff --git a/drivers/hwmon/Kconfig b/drivers/hwmon/Kconfig index 164760df1233..6fb93d63bd8c 100644 --- a/drivers/hwmon/Kconfig +++ b/drivers/hwmon/Kconfig | |||
@@ -27,6 +27,18 @@ config HWMON_VID | |||
27 | tristate | 27 | tristate |
28 | default n | 28 | default n |
29 | 29 | ||
30 | config SENSORS_ABITUGURU | ||
31 | tristate "Abit uGuru" | ||
32 | depends on HWMON && EXPERIMENTAL | ||
33 | help | ||
34 | If you say yes here you get support for the Abit uGuru chips | ||
35 | sensor part. The voltage and frequency control parts of the Abit | ||
36 | uGuru are not supported. The Abit uGuru chip can be found on Abit | ||
37 | uGuru featuring motherboards (most modern Abit motherboards). | ||
38 | |||
39 | This driver can also be built as a module. If so, the module | ||
40 | will be called abituguru. | ||
41 | |||
30 | config SENSORS_ADM1021 | 42 | config SENSORS_ADM1021 |
31 | tristate "Analog Devices ADM1021 and compatibles" | 43 | tristate "Analog Devices ADM1021 and compatibles" |
32 | depends on HWMON && I2C | 44 | depends on HWMON && I2C |
diff --git a/drivers/hwmon/Makefile b/drivers/hwmon/Makefile index db72b1415e7f..5092999deb7b 100644 --- a/drivers/hwmon/Makefile +++ b/drivers/hwmon/Makefile | |||
@@ -12,6 +12,7 @@ obj-$(CONFIG_SENSORS_W83792D) += w83792d.o | |||
12 | obj-$(CONFIG_SENSORS_W83781D) += w83781d.o | 12 | obj-$(CONFIG_SENSORS_W83781D) += w83781d.o |
13 | obj-$(CONFIG_SENSORS_W83791D) += w83791d.o | 13 | obj-$(CONFIG_SENSORS_W83791D) += w83791d.o |
14 | 14 | ||
15 | obj-$(CONFIG_SENSORS_ABITUGURU) += abituguru.o | ||
15 | obj-$(CONFIG_SENSORS_ADM1021) += adm1021.o | 16 | obj-$(CONFIG_SENSORS_ADM1021) += adm1021.o |
16 | obj-$(CONFIG_SENSORS_ADM1025) += adm1025.o | 17 | obj-$(CONFIG_SENSORS_ADM1025) += adm1025.o |
17 | obj-$(CONFIG_SENSORS_ADM1026) += adm1026.o | 18 | obj-$(CONFIG_SENSORS_ADM1026) += adm1026.o |
diff --git a/drivers/hwmon/abituguru.c b/drivers/hwmon/abituguru.c new file mode 100644 index 000000000000..bf2cb0aa69b4 --- /dev/null +++ b/drivers/hwmon/abituguru.c | |||
@@ -0,0 +1,1391 @@ | |||
1 | /* | ||
2 | abituguru.c Copyright (c) 2005-2006 Hans de Goede <j.w.r.degoede@hhs.nl> | ||
3 | |||
4 | This program is free software; you can redistribute it and/or modify | ||
5 | it under the terms of the GNU General Public License as published by | ||
6 | the Free Software Foundation; either version 2 of the License, or | ||
7 | (at your option) any later version. | ||
8 | |||
9 | This program is distributed in the hope that it will be useful, | ||
10 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | GNU General Public License for more details. | ||
13 | |||
14 | You should have received a copy of the GNU General Public License | ||
15 | along with this program; if not, write to the Free Software | ||
16 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
17 | */ | ||
18 | /* | ||
19 | This driver supports the sensor part of the custom Abit uGuru chip found | ||
20 | on Abit uGuru motherboards. Note: because of lack of specs the CPU / RAM / | ||
21 | etc voltage & frequency control is not supported! | ||
22 | */ | ||
23 | #include <linux/module.h> | ||
24 | #include <linux/init.h> | ||
25 | #include <linux/slab.h> | ||
26 | #include <linux/jiffies.h> | ||
27 | #include <linux/mutex.h> | ||
28 | #include <linux/err.h> | ||
29 | #include <linux/platform_device.h> | ||
30 | #include <linux/hwmon.h> | ||
31 | #include <linux/hwmon-sysfs.h> | ||
32 | #include <asm/io.h> | ||
33 | |||
34 | /* Banks */ | ||
35 | #define ABIT_UGURU_ALARM_BANK 0x20 /* 1x 3 bytes */ | ||
36 | #define ABIT_UGURU_SENSOR_BANK1 0x21 /* 16x volt and temp */ | ||
37 | #define ABIT_UGURU_FAN_PWM 0x24 /* 3x 5 bytes */ | ||
38 | #define ABIT_UGURU_SENSOR_BANK2 0x26 /* fans */ | ||
39 | /* max nr of sensors in bank2, currently mb's with max 6 fans are known */ | ||
40 | #define ABIT_UGURU_MAX_BANK2_SENSORS 6 | ||
41 | /* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */ | ||
42 | #define ABIT_UGURU_MAX_PWMS 5 | ||
43 | /* uGuru sensor bank 1 flags */ /* Alarm if: */ | ||
44 | #define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE 0x01 /* temp over warn */ | ||
45 | #define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE 0x02 /* volt over max */ | ||
46 | #define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE 0x04 /* volt under min */ | ||
47 | #define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG 0x10 /* temp is over warn */ | ||
48 | #define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG 0x20 /* volt is over max */ | ||
49 | #define ABIT_UGURU_VOLT_LOW_ALARM_FLAG 0x40 /* volt is under min */ | ||
50 | /* uGuru sensor bank 2 flags */ /* Alarm if: */ | ||
51 | #define ABIT_UGURU_FAN_LOW_ALARM_ENABLE 0x01 /* fan under min */ | ||
52 | /* uGuru sensor bank common flags */ | ||
53 | #define ABIT_UGURU_BEEP_ENABLE 0x08 /* beep if alarm */ | ||
54 | #define ABIT_UGURU_SHUTDOWN_ENABLE 0x80 /* shutdown if alarm */ | ||
55 | /* uGuru fan PWM (speed control) flags */ | ||
56 | #define ABIT_UGURU_FAN_PWM_ENABLE 0x80 /* enable speed control */ | ||
57 | /* Values used for conversion */ | ||
58 | #define ABIT_UGURU_FAN_MAX 15300 /* RPM */ | ||
59 | /* Bank1 sensor types */ | ||
60 | #define ABIT_UGURU_IN_SENSOR 0 | ||
61 | #define ABIT_UGURU_TEMP_SENSOR 1 | ||
62 | #define ABIT_UGURU_NC 2 | ||
63 | /* Timeouts / Retries, if these turn out to need a lot of fiddling we could | ||
64 | convert them to params. */ | ||
65 | /* 250 was determined by trial and error, 200 works most of the time, but not | ||
66 | always. I assume this is cpu-speed independent, since the ISA-bus and not | ||
67 | the CPU should be the bottleneck. Note that 250 sometimes is still not | ||
68 | enough (only reported on AN7 mb) this is handled by a higher layer. */ | ||
69 | #define ABIT_UGURU_WAIT_TIMEOUT 250 | ||
70 | /* Normally all expected status in abituguru_ready, are reported after the | ||
71 | first read, but sometimes not and we need to poll, 5 polls was not enough | ||
72 | 50 sofar is. */ | ||
73 | #define ABIT_UGURU_READY_TIMEOUT 50 | ||
74 | /* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */ | ||
75 | #define ABIT_UGURU_MAX_RETRIES 3 | ||
76 | #define ABIT_UGURU_RETRY_DELAY (HZ/5) | ||
77 | /* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is a error */ | ||
78 | #define ABIT_UGURU_MAX_TIMEOUTS 2 | ||
79 | |||
80 | /* All the variables below are named identical to the oguru and oguru2 programs | ||
81 | reverse engineered by Olle Sandberg, hence the names might not be 100% | ||
82 | logical. I could come up with better names, but I prefer keeping the names | ||
83 | identical so that this driver can be compared with his work more easily. */ | ||
84 | /* Two i/o-ports are used by uGuru */ | ||
85 | #define ABIT_UGURU_BASE 0x00E0 | ||
86 | /* Used to tell uGuru what to read and to read the actual data */ | ||
87 | #define ABIT_UGURU_CMD 0x00 | ||
88 | /* Mostly used to check if uGuru is busy */ | ||
89 | #define ABIT_UGURU_DATA 0x04 | ||
90 | #define ABIT_UGURU_REGION_LENGTH 5 | ||
91 | /* uGuru status' */ | ||
92 | #define ABIT_UGURU_STATUS_WRITE 0x00 /* Ready to be written */ | ||
93 | #define ABIT_UGURU_STATUS_READ 0x01 /* Ready to be read */ | ||
94 | #define ABIT_UGURU_STATUS_INPUT 0x08 /* More input */ | ||
95 | #define ABIT_UGURU_STATUS_READY 0x09 /* Ready to be written */ | ||
96 | /* utility macros */ | ||
97 | #define ABIT_UGURU_NAME "abituguru" | ||
98 | #define ABIT_UGURU_DEBUG(level, format, arg...) \ | ||
99 | if (level <= verbose) \ | ||
100 | printk(KERN_DEBUG ABIT_UGURU_NAME ": " format , ## arg) | ||
101 | |||
102 | /* Constants */ | ||
103 | /* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */ | ||
104 | static const int abituguru_bank1_max_value[2] = { 3494, 255000 }; | ||
105 | /* Min / Max allowed values for sensor2 (fan) alarm threshold, these values | ||
106 | correspond to 300-3000 RPM */ | ||
107 | static const u8 abituguru_bank2_min_threshold = 5; | ||
108 | static const u8 abituguru_bank2_max_threshold = 50; | ||
109 | /* Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4 | ||
110 | are temperature trip points. */ | ||
111 | static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 }; | ||
112 | /* Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a | ||
113 | special case the minium allowed pwm% setting for this is 30% (77) on | ||
114 | some MB's this special case is handled in the code! */ | ||
115 | static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 }; | ||
116 | static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 }; | ||
117 | |||
118 | |||
119 | /* Insmod parameters */ | ||
120 | static int force; | ||
121 | module_param(force, bool, 0); | ||
122 | MODULE_PARM_DESC(force, "Set to one to force detection."); | ||
123 | static int fan_sensors; | ||
124 | module_param(fan_sensors, int, 0); | ||
125 | MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru " | ||
126 | "(0 = autodetect)"); | ||
127 | static int pwms; | ||
128 | module_param(pwms, int, 0); | ||
129 | MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru " | ||
130 | "(0 = autodetect)"); | ||
131 | |||
132 | /* Default verbose is 2, since this driver is still in the testing phase */ | ||
133 | static int verbose = 2; | ||
134 | module_param(verbose, int, 0644); | ||
135 | MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n" | ||
136 | " 0 normal output\n" | ||
137 | " 1 + verbose error reporting\n" | ||
138 | " 2 + sensors type probing info\n" | ||
139 | " 3 + retryable error reporting"); | ||
140 | |||
141 | |||
142 | /* For the Abit uGuru, we need to keep some data in memory. | ||
143 | The structure is dynamically allocated, at the same time when a new | ||
144 | abituguru device is allocated. */ | ||
145 | struct abituguru_data { | ||
146 | struct class_device *class_dev; /* hwmon registered device */ | ||
147 | struct mutex update_lock; /* protect access to data and uGuru */ | ||
148 | unsigned long last_updated; /* In jiffies */ | ||
149 | unsigned short addr; /* uguru base address */ | ||
150 | char uguru_ready; /* is the uguru in ready state? */ | ||
151 | unsigned char update_timeouts; /* number of update timeouts since last | ||
152 | successful update */ | ||
153 | |||
154 | /* The sysfs attr and their names are generated automatically, for bank1 | ||
155 | we cannot use a predefined array because we don't know beforehand | ||
156 | of a sensor is a volt or a temp sensor, for bank2 and the pwms its | ||
157 | easier todo things the same way. For in sensors we have 9 (temp 7) | ||
158 | sysfs entries per sensor, for bank2 and pwms 6. */ | ||
159 | struct sensor_device_attribute_2 sysfs_attr[16 * 9 + | ||
160 | ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6]; | ||
161 | /* Buffer to store the dynamically generated sysfs names, we need 2120 | ||
162 | bytes for bank1 (worst case scenario of 16 in sensors), 444 bytes | ||
163 | for fan1-6 and 738 bytes for pwm1-6 + some room to spare in case I | ||
164 | miscounted :) */ | ||
165 | char bank1_names[3400]; | ||
166 | |||
167 | /* Bank 1 data */ | ||
168 | u8 bank1_sensors[2]; /* number of [0] in, [1] temp sensors */ | ||
169 | u8 bank1_address[2][16];/* addresses of [0] in, [1] temp sensors */ | ||
170 | u8 bank1_value[16]; | ||
171 | /* This array holds 16 x 3 entries for all the bank 1 sensor settings | ||
172 | (flags, min, max for voltage / flags, warn, shutdown for temp). */ | ||
173 | u8 bank1_settings[16][3]; | ||
174 | /* Maximum value for each sensor used for scaling in mV/millidegrees | ||
175 | Celsius. */ | ||
176 | int bank1_max_value[16]; | ||
177 | |||
178 | /* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */ | ||
179 | u8 bank2_sensors; /* actual number of bank2 sensors found */ | ||
180 | u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS]; | ||
181 | u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */ | ||
182 | |||
183 | /* Alarms 2 bytes for bank1, 1 byte for bank2 */ | ||
184 | u8 alarms[3]; | ||
185 | |||
186 | /* Fan PWM (speed control) 5 bytes per PWM */ | ||
187 | u8 pwms; /* actual number of pwms found */ | ||
188 | u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5]; | ||
189 | }; | ||
190 | |||
191 | /* wait till the uguru is in the specified state */ | ||
192 | static int abituguru_wait(struct abituguru_data *data, u8 state) | ||
193 | { | ||
194 | int timeout = ABIT_UGURU_WAIT_TIMEOUT; | ||
195 | |||
196 | while (inb_p(data->addr + ABIT_UGURU_DATA) != state) { | ||
197 | timeout--; | ||
198 | if (timeout == 0) | ||
199 | return -EBUSY; | ||
200 | } | ||
201 | return 0; | ||
202 | } | ||
203 | |||
204 | /* Put the uguru in ready for input state */ | ||
205 | static int abituguru_ready(struct abituguru_data *data) | ||
206 | { | ||
207 | int timeout = ABIT_UGURU_READY_TIMEOUT; | ||
208 | |||
209 | if (data->uguru_ready) | ||
210 | return 0; | ||
211 | |||
212 | /* Reset? / Prepare for next read/write cycle */ | ||
213 | outb(0x00, data->addr + ABIT_UGURU_DATA); | ||
214 | |||
215 | /* Wait till the uguru is ready */ | ||
216 | if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) { | ||
217 | ABIT_UGURU_DEBUG(1, | ||
218 | "timeout exceeded waiting for ready state\n"); | ||
219 | return -EIO; | ||
220 | } | ||
221 | |||
222 | /* Cmd port MUST be read now and should contain 0xAC */ | ||
223 | while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) { | ||
224 | timeout--; | ||
225 | if (timeout == 0) { | ||
226 | ABIT_UGURU_DEBUG(1, | ||
227 | "CMD reg does not hold 0xAC after ready command\n"); | ||
228 | return -EIO; | ||
229 | } | ||
230 | } | ||
231 | |||
232 | /* After this the ABIT_UGURU_DATA port should contain | ||
233 | ABIT_UGURU_STATUS_INPUT */ | ||
234 | timeout = ABIT_UGURU_READY_TIMEOUT; | ||
235 | while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) { | ||
236 | timeout--; | ||
237 | if (timeout == 0) { | ||
238 | ABIT_UGURU_DEBUG(1, | ||
239 | "state != more input after ready command\n"); | ||
240 | return -EIO; | ||
241 | } | ||
242 | } | ||
243 | |||
244 | data->uguru_ready = 1; | ||
245 | return 0; | ||
246 | } | ||
247 | |||
248 | /* Send the bank and then sensor address to the uGuru for the next read/write | ||
249 | cycle. This function gets called as the first part of a read/write by | ||
250 | abituguru_read and abituguru_write. This function should never be | ||
251 | called by any other function. */ | ||
252 | static int abituguru_send_address(struct abituguru_data *data, | ||
253 | u8 bank_addr, u8 sensor_addr, int retries) | ||
254 | { | ||
255 | /* assume the caller does error handling itself if it has not requested | ||
256 | any retries, and thus be quiet. */ | ||
257 | int report_errors = retries; | ||
258 | |||
259 | for (;;) { | ||
260 | /* Make sure the uguru is ready and then send the bank address, | ||
261 | after this the uguru is no longer "ready". */ | ||
262 | if (abituguru_ready(data) != 0) | ||
263 | return -EIO; | ||
264 | outb(bank_addr, data->addr + ABIT_UGURU_DATA); | ||
265 | data->uguru_ready = 0; | ||
266 | |||
267 | /* Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again | ||
268 | and send the sensor addr */ | ||
269 | if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) { | ||
270 | if (retries) { | ||
271 | ABIT_UGURU_DEBUG(3, "timeout exceeded " | ||
272 | "waiting for more input state, %d " | ||
273 | "tries remaining\n", retries); | ||
274 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
275 | schedule_timeout(ABIT_UGURU_RETRY_DELAY); | ||
276 | retries--; | ||
277 | continue; | ||
278 | } | ||
279 | if (report_errors) | ||
280 | ABIT_UGURU_DEBUG(1, "timeout exceeded " | ||
281 | "waiting for more input state " | ||
282 | "(bank: %d)\n", (int)bank_addr); | ||
283 | return -EBUSY; | ||
284 | } | ||
285 | outb(sensor_addr, data->addr + ABIT_UGURU_CMD); | ||
286 | return 0; | ||
287 | } | ||
288 | } | ||
289 | |||
290 | /* Read count bytes from sensor sensor_addr in bank bank_addr and store the | ||
291 | result in buf, retry the send address part of the read retries times. */ | ||
292 | static int abituguru_read(struct abituguru_data *data, | ||
293 | u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries) | ||
294 | { | ||
295 | int i; | ||
296 | |||
297 | /* Send the address */ | ||
298 | i = abituguru_send_address(data, bank_addr, sensor_addr, retries); | ||
299 | if (i) | ||
300 | return i; | ||
301 | |||
302 | /* And read the data */ | ||
303 | for (i = 0; i < count; i++) { | ||
304 | if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) { | ||
305 | ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for " | ||
306 | "read state (bank: %d, sensor: %d)\n", | ||
307 | (int)bank_addr, (int)sensor_addr); | ||
308 | break; | ||
309 | } | ||
310 | buf[i] = inb(data->addr + ABIT_UGURU_CMD); | ||
311 | } | ||
312 | |||
313 | /* Last put the chip back in ready state */ | ||
314 | abituguru_ready(data); | ||
315 | |||
316 | return i; | ||
317 | } | ||
318 | |||
319 | /* Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send | ||
320 | address part of the write is always retried ABIT_UGURU_MAX_RETRIES times. */ | ||
321 | static int abituguru_write(struct abituguru_data *data, | ||
322 | u8 bank_addr, u8 sensor_addr, u8 *buf, int count) | ||
323 | { | ||
324 | int i; | ||
325 | |||
326 | /* Send the address */ | ||
327 | i = abituguru_send_address(data, bank_addr, sensor_addr, | ||
328 | ABIT_UGURU_MAX_RETRIES); | ||
329 | if (i) | ||
330 | return i; | ||
331 | |||
332 | /* And write the data */ | ||
333 | for (i = 0; i < count; i++) { | ||
334 | if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) { | ||
335 | ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for " | ||
336 | "write state (bank: %d, sensor: %d)\n", | ||
337 | (int)bank_addr, (int)sensor_addr); | ||
338 | break; | ||
339 | } | ||
340 | outb(buf[i], data->addr + ABIT_UGURU_CMD); | ||
341 | } | ||
342 | |||
343 | /* Now we need to wait till the chip is ready to be read again, | ||
344 | don't ask why */ | ||
345 | if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) { | ||
346 | ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state " | ||
347 | "after write (bank: %d, sensor: %d)\n", (int)bank_addr, | ||
348 | (int)sensor_addr); | ||
349 | return -EIO; | ||
350 | } | ||
351 | |||
352 | /* Cmd port MUST be read now and should contain 0xAC */ | ||
353 | if (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) { | ||
354 | ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after write " | ||
355 | "(bank: %d, sensor: %d)\n", (int)bank_addr, | ||
356 | (int)sensor_addr); | ||
357 | return -EIO; | ||
358 | } | ||
359 | |||
360 | /* Last put the chip back in ready state */ | ||
361 | abituguru_ready(data); | ||
362 | |||
363 | return i; | ||
364 | } | ||
365 | |||
366 | /* Detect sensor type. Temp and Volt sensors are enabled with | ||
367 | different masks and will ignore enable masks not meant for them. | ||
368 | This enables us to test what kind of sensor we're dealing with. | ||
369 | By setting the alarm thresholds so that we will always get an | ||
370 | alarm for sensor type X and then enabling the sensor as sensor type | ||
371 | X, if we then get an alarm it is a sensor of type X. */ | ||
372 | static int __devinit | ||
373 | abituguru_detect_bank1_sensor_type(struct abituguru_data *data, | ||
374 | u8 sensor_addr) | ||
375 | { | ||
376 | u8 val, buf[3]; | ||
377 | int ret = ABIT_UGURU_NC; | ||
378 | |||
379 | /* First read the sensor and the current settings */ | ||
380 | if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val, | ||
381 | 1, ABIT_UGURU_MAX_RETRIES) != 1) | ||
382 | return -EIO; | ||
383 | |||
384 | /* Test val is sane / usable for sensor type detection. */ | ||
385 | if ((val < 10u) || (val > 240u)) { | ||
386 | printk(KERN_WARNING ABIT_UGURU_NAME | ||
387 | ": bank1-sensor: %d reading (%d) too close to limits, " | ||
388 | "unable to determine sensor type, skipping sensor\n", | ||
389 | (int)sensor_addr, (int)val); | ||
390 | /* assume no sensor is there for sensors for which we can't | ||
391 | determine the sensor type because their reading is too close | ||
392 | to their limits, this usually means no sensor is there. */ | ||
393 | return ABIT_UGURU_NC; | ||
394 | } | ||
395 | |||
396 | ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr); | ||
397 | /* Volt sensor test, enable volt low alarm, set min value ridicously | ||
398 | high. If its a volt sensor this should always give us an alarm. */ | ||
399 | buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE; | ||
400 | buf[1] = 245; | ||
401 | buf[2] = 250; | ||
402 | if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, | ||
403 | buf, 3) != 3) | ||
404 | return -EIO; | ||
405 | /* Now we need 20 ms to give the uguru time to read the sensors | ||
406 | and raise a voltage alarm */ | ||
407 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
408 | schedule_timeout(HZ/50); | ||
409 | /* Check for alarm and check the alarm is a volt low alarm. */ | ||
410 | if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3, | ||
411 | ABIT_UGURU_MAX_RETRIES) != 3) | ||
412 | return -EIO; | ||
413 | if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) { | ||
414 | if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, | ||
415 | sensor_addr, buf, 3, | ||
416 | ABIT_UGURU_MAX_RETRIES) != 3) | ||
417 | return -EIO; | ||
418 | if (buf[0] & ABIT_UGURU_VOLT_LOW_ALARM_FLAG) { | ||
419 | /* Restore original settings */ | ||
420 | if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, | ||
421 | sensor_addr, | ||
422 | data->bank1_settings[sensor_addr], | ||
423 | 3) != 3) | ||
424 | return -EIO; | ||
425 | ABIT_UGURU_DEBUG(2, " found volt sensor\n"); | ||
426 | return ABIT_UGURU_IN_SENSOR; | ||
427 | } else | ||
428 | ABIT_UGURU_DEBUG(2, " alarm raised during volt " | ||
429 | "sensor test, but volt low flag not set\n"); | ||
430 | } else | ||
431 | ABIT_UGURU_DEBUG(2, " alarm not raised during volt sensor " | ||
432 | "test\n"); | ||
433 | |||
434 | /* Temp sensor test, enable sensor as a temp sensor, set beep value | ||
435 | ridicously low (but not too low, otherwise uguru ignores it). | ||
436 | If its a temp sensor this should always give us an alarm. */ | ||
437 | buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE; | ||
438 | buf[1] = 5; | ||
439 | buf[2] = 10; | ||
440 | if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, | ||
441 | buf, 3) != 3) | ||
442 | return -EIO; | ||
443 | /* Now we need 50 ms to give the uguru time to read the sensors | ||
444 | and raise a temp alarm */ | ||
445 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
446 | schedule_timeout(HZ/20); | ||
447 | /* Check for alarm and check the alarm is a temp high alarm. */ | ||
448 | if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3, | ||
449 | ABIT_UGURU_MAX_RETRIES) != 3) | ||
450 | return -EIO; | ||
451 | if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) { | ||
452 | if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, | ||
453 | sensor_addr, buf, 3, | ||
454 | ABIT_UGURU_MAX_RETRIES) != 3) | ||
455 | return -EIO; | ||
456 | if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) { | ||
457 | ret = ABIT_UGURU_TEMP_SENSOR; | ||
458 | ABIT_UGURU_DEBUG(2, " found temp sensor\n"); | ||
459 | } else | ||
460 | ABIT_UGURU_DEBUG(2, " alarm raised during temp " | ||
461 | "sensor test, but temp high flag not set\n"); | ||
462 | } else | ||
463 | ABIT_UGURU_DEBUG(2, " alarm not raised during temp sensor " | ||
464 | "test\n"); | ||
465 | |||
466 | /* Restore original settings */ | ||
467 | if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, | ||
468 | data->bank1_settings[sensor_addr], 3) != 3) | ||
469 | return -EIO; | ||
470 | |||
471 | return ret; | ||
472 | } | ||
473 | |||
474 | /* These functions try to find out how many sensors there are in bank2 and how | ||
475 | many pwms there are. The purpose of this is to make sure that we don't give | ||
476 | the user the possibility to change settings for non-existent sensors / pwm. | ||
477 | The uGuru will happily read / write whatever memory happens to be after the | ||
478 | memory storing the PWM settings when reading/writing to a PWM which is not | ||
479 | there. Notice even if we detect a PWM which doesn't exist we normally won't | ||
480 | write to it, unless the user tries to change the settings. | ||
481 | |||
482 | Although the uGuru allows reading (settings) from non existing bank2 | ||
483 | sensors, my version of the uGuru does seem to stop writing to them, the | ||
484 | write function above aborts in this case with: | ||
485 | "CMD reg does not hold 0xAC after write" | ||
486 | |||
487 | Notice these 2 tests are non destructive iow read-only tests, otherwise | ||
488 | they would defeat their purpose. Although for the bank2_sensors detection a | ||
489 | read/write test would be feasible because of the reaction above, I've | ||
490 | however opted to stay on the safe side. */ | ||
491 | static void __devinit | ||
492 | abituguru_detect_no_bank2_sensors(struct abituguru_data *data) | ||
493 | { | ||
494 | int i; | ||
495 | |||
496 | if (fan_sensors) { | ||
497 | data->bank2_sensors = fan_sensors; | ||
498 | ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of " | ||
499 | "\"fan_sensors\" module param\n", | ||
500 | (int)data->bank2_sensors); | ||
501 | return; | ||
502 | } | ||
503 | |||
504 | ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n"); | ||
505 | for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) { | ||
506 | /* 0x89 are the known used bits: | ||
507 | -0x80 enable shutdown | ||
508 | -0x08 enable beep | ||
509 | -0x01 enable alarm | ||
510 | All other bits should be 0, but on some motherboards | ||
511 | 0x40 (bit 6) is also high, at least for fan1 */ | ||
512 | if ((!i && (data->bank2_settings[i][0] & ~0xC9)) || | ||
513 | (i && (data->bank2_settings[i][0] & ~0x89))) { | ||
514 | ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " | ||
515 | "to be a fan sensor: settings[0] = %02X\n", | ||
516 | i, (unsigned int)data->bank2_settings[i][0]); | ||
517 | break; | ||
518 | } | ||
519 | |||
520 | /* check if the threshold is within the allowed range */ | ||
521 | if (data->bank2_settings[i][1] < | ||
522 | abituguru_bank2_min_threshold) { | ||
523 | ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " | ||
524 | "to be a fan sensor: the threshold (%d) is " | ||
525 | "below the minimum (%d)\n", i, | ||
526 | (int)data->bank2_settings[i][1], | ||
527 | (int)abituguru_bank2_min_threshold); | ||
528 | break; | ||
529 | } | ||
530 | if (data->bank2_settings[i][1] > | ||
531 | abituguru_bank2_max_threshold) { | ||
532 | ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " | ||
533 | "to be a fan sensor: the threshold (%d) is " | ||
534 | "above the maximum (%d)\n", i, | ||
535 | (int)data->bank2_settings[i][1], | ||
536 | (int)abituguru_bank2_max_threshold); | ||
537 | break; | ||
538 | } | ||
539 | } | ||
540 | |||
541 | data->bank2_sensors = i; | ||
542 | ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n", | ||
543 | (int)data->bank2_sensors); | ||
544 | } | ||
545 | |||
546 | static void __devinit | ||
547 | abituguru_detect_no_pwms(struct abituguru_data *data) | ||
548 | { | ||
549 | int i, j; | ||
550 | |||
551 | if (pwms) { | ||
552 | data->pwms = pwms; | ||
553 | ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of " | ||
554 | "\"pwms\" module param\n", (int)data->pwms); | ||
555 | return; | ||
556 | } | ||
557 | |||
558 | ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n"); | ||
559 | for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) { | ||
560 | /* 0x80 is the enable bit and the low | ||
561 | nibble is which temp sensor to use, | ||
562 | the other bits should be 0 */ | ||
563 | if (data->pwm_settings[i][0] & ~0x8F) { | ||
564 | ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " | ||
565 | "to be a pwm channel: settings[0] = %02X\n", | ||
566 | i, (unsigned int)data->pwm_settings[i][0]); | ||
567 | break; | ||
568 | } | ||
569 | |||
570 | /* the low nibble must correspond to one of the temp sensors | ||
571 | we've found */ | ||
572 | for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; | ||
573 | j++) { | ||
574 | if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] == | ||
575 | (data->pwm_settings[i][0] & 0x0F)) | ||
576 | break; | ||
577 | } | ||
578 | if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) { | ||
579 | ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " | ||
580 | "to be a pwm channel: %d is not a valid temp " | ||
581 | "sensor address\n", i, | ||
582 | data->pwm_settings[i][0] & 0x0F); | ||
583 | break; | ||
584 | } | ||
585 | |||
586 | /* check if all other settings are within the allowed range */ | ||
587 | for (j = 1; j < 5; j++) { | ||
588 | u8 min; | ||
589 | /* special case pwm1 min pwm% */ | ||
590 | if ((i == 0) && ((j == 1) || (j == 2))) | ||
591 | min = 77; | ||
592 | else | ||
593 | min = abituguru_pwm_min[j]; | ||
594 | if (data->pwm_settings[i][j] < min) { | ||
595 | ABIT_UGURU_DEBUG(2, " pwm channel %d does " | ||
596 | "not seem to be a pwm channel: " | ||
597 | "setting %d (%d) is below the minimum " | ||
598 | "value (%d)\n", i, j, | ||
599 | (int)data->pwm_settings[i][j], | ||
600 | (int)min); | ||
601 | goto abituguru_detect_no_pwms_exit; | ||
602 | } | ||
603 | if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) { | ||
604 | ABIT_UGURU_DEBUG(2, " pwm channel %d does " | ||
605 | "not seem to be a pwm channel: " | ||
606 | "setting %d (%d) is above the maximum " | ||
607 | "value (%d)\n", i, j, | ||
608 | (int)data->pwm_settings[i][j], | ||
609 | (int)abituguru_pwm_max[j]); | ||
610 | goto abituguru_detect_no_pwms_exit; | ||
611 | } | ||
612 | } | ||
613 | |||
614 | /* check that min temp < max temp and min pwm < max pwm */ | ||
615 | if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) { | ||
616 | ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " | ||
617 | "to be a pwm channel: min pwm (%d) >= " | ||
618 | "max pwm (%d)\n", i, | ||
619 | (int)data->pwm_settings[i][1], | ||
620 | (int)data->pwm_settings[i][2]); | ||
621 | break; | ||
622 | } | ||
623 | if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) { | ||
624 | ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " | ||
625 | "to be a pwm channel: min temp (%d) >= " | ||
626 | "max temp (%d)\n", i, | ||
627 | (int)data->pwm_settings[i][3], | ||
628 | (int)data->pwm_settings[i][4]); | ||
629 | break; | ||
630 | } | ||
631 | } | ||
632 | |||
633 | abituguru_detect_no_pwms_exit: | ||
634 | data->pwms = i; | ||
635 | ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms); | ||
636 | } | ||
637 | |||
638 | /* Following are the sysfs callback functions. These functions expect: | ||
639 | sensor_device_attribute_2->index: sensor address/offset in the bank | ||
640 | sensor_device_attribute_2->nr: register offset, bitmask or NA. */ | ||
641 | static struct abituguru_data *abituguru_update_device(struct device *dev); | ||
642 | |||
643 | static ssize_t show_bank1_value(struct device *dev, | ||
644 | struct device_attribute *devattr, char *buf) | ||
645 | { | ||
646 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
647 | struct abituguru_data *data = abituguru_update_device(dev); | ||
648 | if (!data) | ||
649 | return -EIO; | ||
650 | return sprintf(buf, "%d\n", (data->bank1_value[attr->index] * | ||
651 | data->bank1_max_value[attr->index] + 128) / 255); | ||
652 | } | ||
653 | |||
654 | static ssize_t show_bank1_setting(struct device *dev, | ||
655 | struct device_attribute *devattr, char *buf) | ||
656 | { | ||
657 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
658 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
659 | return sprintf(buf, "%d\n", | ||
660 | (data->bank1_settings[attr->index][attr->nr] * | ||
661 | data->bank1_max_value[attr->index] + 128) / 255); | ||
662 | } | ||
663 | |||
664 | static ssize_t show_bank2_value(struct device *dev, | ||
665 | struct device_attribute *devattr, char *buf) | ||
666 | { | ||
667 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
668 | struct abituguru_data *data = abituguru_update_device(dev); | ||
669 | if (!data) | ||
670 | return -EIO; | ||
671 | return sprintf(buf, "%d\n", (data->bank2_value[attr->index] * | ||
672 | ABIT_UGURU_FAN_MAX + 128) / 255); | ||
673 | } | ||
674 | |||
675 | static ssize_t show_bank2_setting(struct device *dev, | ||
676 | struct device_attribute *devattr, char *buf) | ||
677 | { | ||
678 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
679 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
680 | return sprintf(buf, "%d\n", | ||
681 | (data->bank2_settings[attr->index][attr->nr] * | ||
682 | ABIT_UGURU_FAN_MAX + 128) / 255); | ||
683 | } | ||
684 | |||
685 | static ssize_t store_bank1_setting(struct device *dev, struct device_attribute | ||
686 | *devattr, const char *buf, size_t count) | ||
687 | { | ||
688 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
689 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
690 | u8 val = (simple_strtoul(buf, NULL, 10) * 255 + | ||
691 | data->bank1_max_value[attr->index]/2) / | ||
692 | data->bank1_max_value[attr->index]; | ||
693 | ssize_t ret = count; | ||
694 | |||
695 | mutex_lock(&data->update_lock); | ||
696 | if (data->bank1_settings[attr->index][attr->nr] != val) { | ||
697 | u8 orig_val = data->bank1_settings[attr->index][attr->nr]; | ||
698 | data->bank1_settings[attr->index][attr->nr] = val; | ||
699 | if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, | ||
700 | attr->index, data->bank1_settings[attr->index], | ||
701 | 3) <= attr->nr) { | ||
702 | data->bank1_settings[attr->index][attr->nr] = orig_val; | ||
703 | ret = -EIO; | ||
704 | } | ||
705 | } | ||
706 | mutex_unlock(&data->update_lock); | ||
707 | return ret; | ||
708 | } | ||
709 | |||
710 | static ssize_t store_bank2_setting(struct device *dev, struct device_attribute | ||
711 | *devattr, const char *buf, size_t count) | ||
712 | { | ||
713 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
714 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
715 | u8 val = (simple_strtoul(buf, NULL, 10)*255 + ABIT_UGURU_FAN_MAX/2) / | ||
716 | ABIT_UGURU_FAN_MAX; | ||
717 | ssize_t ret = count; | ||
718 | |||
719 | /* this check can be done before taking the lock */ | ||
720 | if ((val < abituguru_bank2_min_threshold) || | ||
721 | (val > abituguru_bank2_max_threshold)) | ||
722 | return -EINVAL; | ||
723 | |||
724 | mutex_lock(&data->update_lock); | ||
725 | if (data->bank2_settings[attr->index][attr->nr] != val) { | ||
726 | u8 orig_val = data->bank2_settings[attr->index][attr->nr]; | ||
727 | data->bank2_settings[attr->index][attr->nr] = val; | ||
728 | if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2, | ||
729 | attr->index, data->bank2_settings[attr->index], | ||
730 | 2) <= attr->nr) { | ||
731 | data->bank2_settings[attr->index][attr->nr] = orig_val; | ||
732 | ret = -EIO; | ||
733 | } | ||
734 | } | ||
735 | mutex_unlock(&data->update_lock); | ||
736 | return ret; | ||
737 | } | ||
738 | |||
739 | static ssize_t show_bank1_alarm(struct device *dev, | ||
740 | struct device_attribute *devattr, char *buf) | ||
741 | { | ||
742 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
743 | struct abituguru_data *data = abituguru_update_device(dev); | ||
744 | if (!data) | ||
745 | return -EIO; | ||
746 | /* See if the alarm bit for this sensor is set, and if the | ||
747 | alarm matches the type of alarm we're looking for (for volt | ||
748 | it can be either low or high). The type is stored in a few | ||
749 | readonly bits in the settings part of the relevant sensor. | ||
750 | The bitmask of the type is passed to us in attr->nr. */ | ||
751 | if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) && | ||
752 | (data->bank1_settings[attr->index][0] & attr->nr)) | ||
753 | return sprintf(buf, "1\n"); | ||
754 | else | ||
755 | return sprintf(buf, "0\n"); | ||
756 | } | ||
757 | |||
758 | static ssize_t show_bank2_alarm(struct device *dev, | ||
759 | struct device_attribute *devattr, char *buf) | ||
760 | { | ||
761 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
762 | struct abituguru_data *data = abituguru_update_device(dev); | ||
763 | if (!data) | ||
764 | return -EIO; | ||
765 | if (data->alarms[2] & (0x01 << attr->index)) | ||
766 | return sprintf(buf, "1\n"); | ||
767 | else | ||
768 | return sprintf(buf, "0\n"); | ||
769 | } | ||
770 | |||
771 | static ssize_t show_bank1_mask(struct device *dev, | ||
772 | struct device_attribute *devattr, char *buf) | ||
773 | { | ||
774 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
775 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
776 | if (data->bank1_settings[attr->index][0] & attr->nr) | ||
777 | return sprintf(buf, "1\n"); | ||
778 | else | ||
779 | return sprintf(buf, "0\n"); | ||
780 | } | ||
781 | |||
782 | static ssize_t show_bank2_mask(struct device *dev, | ||
783 | struct device_attribute *devattr, char *buf) | ||
784 | { | ||
785 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
786 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
787 | if (data->bank2_settings[attr->index][0] & attr->nr) | ||
788 | return sprintf(buf, "1\n"); | ||
789 | else | ||
790 | return sprintf(buf, "0\n"); | ||
791 | } | ||
792 | |||
793 | static ssize_t store_bank1_mask(struct device *dev, | ||
794 | struct device_attribute *devattr, const char *buf, size_t count) | ||
795 | { | ||
796 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
797 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
798 | int mask = simple_strtoul(buf, NULL, 10); | ||
799 | ssize_t ret = count; | ||
800 | u8 orig_val; | ||
801 | |||
802 | mutex_lock(&data->update_lock); | ||
803 | orig_val = data->bank1_settings[attr->index][0]; | ||
804 | |||
805 | if (mask) | ||
806 | data->bank1_settings[attr->index][0] |= attr->nr; | ||
807 | else | ||
808 | data->bank1_settings[attr->index][0] &= ~attr->nr; | ||
809 | |||
810 | if ((data->bank1_settings[attr->index][0] != orig_val) && | ||
811 | (abituguru_write(data, | ||
812 | ABIT_UGURU_SENSOR_BANK1 + 2, attr->index, | ||
813 | data->bank1_settings[attr->index], 3) < 1)) { | ||
814 | data->bank1_settings[attr->index][0] = orig_val; | ||
815 | ret = -EIO; | ||
816 | } | ||
817 | mutex_unlock(&data->update_lock); | ||
818 | return ret; | ||
819 | } | ||
820 | |||
821 | static ssize_t store_bank2_mask(struct device *dev, | ||
822 | struct device_attribute *devattr, const char *buf, size_t count) | ||
823 | { | ||
824 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
825 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
826 | int mask = simple_strtoul(buf, NULL, 10); | ||
827 | ssize_t ret = count; | ||
828 | u8 orig_val; | ||
829 | |||
830 | mutex_lock(&data->update_lock); | ||
831 | orig_val = data->bank2_settings[attr->index][0]; | ||
832 | |||
833 | if (mask) | ||
834 | data->bank2_settings[attr->index][0] |= attr->nr; | ||
835 | else | ||
836 | data->bank2_settings[attr->index][0] &= ~attr->nr; | ||
837 | |||
838 | if ((data->bank2_settings[attr->index][0] != orig_val) && | ||
839 | (abituguru_write(data, | ||
840 | ABIT_UGURU_SENSOR_BANK2 + 2, attr->index, | ||
841 | data->bank2_settings[attr->index], 2) < 1)) { | ||
842 | data->bank2_settings[attr->index][0] = orig_val; | ||
843 | ret = -EIO; | ||
844 | } | ||
845 | mutex_unlock(&data->update_lock); | ||
846 | return ret; | ||
847 | } | ||
848 | |||
849 | /* Fan PWM (speed control) */ | ||
850 | static ssize_t show_pwm_setting(struct device *dev, | ||
851 | struct device_attribute *devattr, char *buf) | ||
852 | { | ||
853 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
854 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
855 | return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] * | ||
856 | abituguru_pwm_settings_multiplier[attr->nr]); | ||
857 | } | ||
858 | |||
859 | static ssize_t store_pwm_setting(struct device *dev, struct device_attribute | ||
860 | *devattr, const char *buf, size_t count) | ||
861 | { | ||
862 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
863 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
864 | u8 min, val = (simple_strtoul(buf, NULL, 10) + | ||
865 | abituguru_pwm_settings_multiplier[attr->nr]/2) / | ||
866 | abituguru_pwm_settings_multiplier[attr->nr]; | ||
867 | ssize_t ret = count; | ||
868 | |||
869 | /* special case pwm1 min pwm% */ | ||
870 | if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2))) | ||
871 | min = 77; | ||
872 | else | ||
873 | min = abituguru_pwm_min[attr->nr]; | ||
874 | |||
875 | /* this check can be done before taking the lock */ | ||
876 | if ((val < min) || (val > abituguru_pwm_max[attr->nr])) | ||
877 | return -EINVAL; | ||
878 | |||
879 | mutex_lock(&data->update_lock); | ||
880 | /* this check needs to be done after taking the lock */ | ||
881 | if ((attr->nr & 1) && | ||
882 | (val >= data->pwm_settings[attr->index][attr->nr + 1])) | ||
883 | ret = -EINVAL; | ||
884 | else if (!(attr->nr & 1) && | ||
885 | (val <= data->pwm_settings[attr->index][attr->nr - 1])) | ||
886 | ret = -EINVAL; | ||
887 | else if (data->pwm_settings[attr->index][attr->nr] != val) { | ||
888 | u8 orig_val = data->pwm_settings[attr->index][attr->nr]; | ||
889 | data->pwm_settings[attr->index][attr->nr] = val; | ||
890 | if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, | ||
891 | attr->index, data->pwm_settings[attr->index], | ||
892 | 5) <= attr->nr) { | ||
893 | data->pwm_settings[attr->index][attr->nr] = | ||
894 | orig_val; | ||
895 | ret = -EIO; | ||
896 | } | ||
897 | } | ||
898 | mutex_unlock(&data->update_lock); | ||
899 | return ret; | ||
900 | } | ||
901 | |||
902 | static ssize_t show_pwm_sensor(struct device *dev, | ||
903 | struct device_attribute *devattr, char *buf) | ||
904 | { | ||
905 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
906 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
907 | int i; | ||
908 | /* We need to walk to the temp sensor addresses to find what | ||
909 | the userspace id of the configured temp sensor is. */ | ||
910 | for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++) | ||
911 | if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] == | ||
912 | (data->pwm_settings[attr->index][0] & 0x0F)) | ||
913 | return sprintf(buf, "%d\n", i+1); | ||
914 | |||
915 | return -ENXIO; | ||
916 | } | ||
917 | |||
918 | static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute | ||
919 | *devattr, const char *buf, size_t count) | ||
920 | { | ||
921 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
922 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
923 | unsigned long val = simple_strtoul(buf, NULL, 10) - 1; | ||
924 | ssize_t ret = count; | ||
925 | |||
926 | mutex_lock(&data->update_lock); | ||
927 | if (val < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) { | ||
928 | u8 orig_val = data->pwm_settings[attr->index][0]; | ||
929 | u8 address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val]; | ||
930 | data->pwm_settings[attr->index][0] &= 0xF0; | ||
931 | data->pwm_settings[attr->index][0] |= address; | ||
932 | if (data->pwm_settings[attr->index][0] != orig_val) { | ||
933 | if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, | ||
934 | attr->index, | ||
935 | data->pwm_settings[attr->index], | ||
936 | 5) < 1) { | ||
937 | data->pwm_settings[attr->index][0] = orig_val; | ||
938 | ret = -EIO; | ||
939 | } | ||
940 | } | ||
941 | } | ||
942 | else | ||
943 | ret = -EINVAL; | ||
944 | mutex_unlock(&data->update_lock); | ||
945 | return ret; | ||
946 | } | ||
947 | |||
948 | static ssize_t show_pwm_enable(struct device *dev, | ||
949 | struct device_attribute *devattr, char *buf) | ||
950 | { | ||
951 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
952 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
953 | int res = 0; | ||
954 | if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE) | ||
955 | res = 2; | ||
956 | return sprintf(buf, "%d\n", res); | ||
957 | } | ||
958 | |||
959 | static ssize_t store_pwm_enable(struct device *dev, struct device_attribute | ||
960 | *devattr, const char *buf, size_t count) | ||
961 | { | ||
962 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
963 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
964 | u8 orig_val, user_val = simple_strtoul(buf, NULL, 10); | ||
965 | ssize_t ret = count; | ||
966 | |||
967 | mutex_lock(&data->update_lock); | ||
968 | orig_val = data->pwm_settings[attr->index][0]; | ||
969 | switch (user_val) { | ||
970 | case 0: | ||
971 | data->pwm_settings[attr->index][0] &= | ||
972 | ~ABIT_UGURU_FAN_PWM_ENABLE; | ||
973 | break; | ||
974 | case 2: | ||
975 | data->pwm_settings[attr->index][0] |= | ||
976 | ABIT_UGURU_FAN_PWM_ENABLE; | ||
977 | break; | ||
978 | default: | ||
979 | ret = -EINVAL; | ||
980 | } | ||
981 | if ((data->pwm_settings[attr->index][0] != orig_val) && | ||
982 | (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, | ||
983 | attr->index, data->pwm_settings[attr->index], | ||
984 | 5) < 1)) { | ||
985 | data->pwm_settings[attr->index][0] = orig_val; | ||
986 | ret = -EIO; | ||
987 | } | ||
988 | mutex_unlock(&data->update_lock); | ||
989 | return ret; | ||
990 | } | ||
991 | |||
992 | static ssize_t show_name(struct device *dev, | ||
993 | struct device_attribute *devattr, char *buf) | ||
994 | { | ||
995 | return sprintf(buf, "%s\n", ABIT_UGURU_NAME); | ||
996 | } | ||
997 | |||
998 | /* Sysfs attr templates, the real entries are generated automatically. */ | ||
999 | static const | ||
1000 | struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = { | ||
1001 | { | ||
1002 | SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0), | ||
1003 | SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting, | ||
1004 | store_bank1_setting, 1, 0), | ||
1005 | SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL, | ||
1006 | ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0), | ||
1007 | SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting, | ||
1008 | store_bank1_setting, 2, 0), | ||
1009 | SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL, | ||
1010 | ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0), | ||
1011 | SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask, | ||
1012 | store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0), | ||
1013 | SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask, | ||
1014 | store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), | ||
1015 | SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask, | ||
1016 | store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0), | ||
1017 | SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask, | ||
1018 | store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0), | ||
1019 | }, { | ||
1020 | SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0), | ||
1021 | SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL, | ||
1022 | ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0), | ||
1023 | SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting, | ||
1024 | store_bank1_setting, 1, 0), | ||
1025 | SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting, | ||
1026 | store_bank1_setting, 2, 0), | ||
1027 | SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask, | ||
1028 | store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0), | ||
1029 | SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask, | ||
1030 | store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), | ||
1031 | SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask, | ||
1032 | store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0), | ||
1033 | } | ||
1034 | }; | ||
1035 | |||
1036 | static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = { | ||
1037 | SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0), | ||
1038 | SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0), | ||
1039 | SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting, | ||
1040 | store_bank2_setting, 1, 0), | ||
1041 | SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask, | ||
1042 | store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0), | ||
1043 | SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask, | ||
1044 | store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), | ||
1045 | SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask, | ||
1046 | store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0), | ||
1047 | }; | ||
1048 | |||
1049 | static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = { | ||
1050 | SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable, | ||
1051 | store_pwm_enable, 0, 0), | ||
1052 | SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor, | ||
1053 | store_pwm_sensor, 0, 0), | ||
1054 | SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting, | ||
1055 | store_pwm_setting, 1, 0), | ||
1056 | SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting, | ||
1057 | store_pwm_setting, 2, 0), | ||
1058 | SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting, | ||
1059 | store_pwm_setting, 3, 0), | ||
1060 | SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting, | ||
1061 | store_pwm_setting, 4, 0), | ||
1062 | }; | ||
1063 | |||
1064 | static const struct sensor_device_attribute_2 abituguru_sysfs_attr[] = { | ||
1065 | SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0), | ||
1066 | }; | ||
1067 | |||
1068 | static int __devinit abituguru_probe(struct platform_device *pdev) | ||
1069 | { | ||
1070 | struct abituguru_data *data; | ||
1071 | int i, j, res; | ||
1072 | char *sysfs_filename; | ||
1073 | int sysfs_attr_i = 0; | ||
1074 | |||
1075 | /* El weirdo probe order, to keep the sysfs order identical to the | ||
1076 | BIOS and window-appliction listing order. */ | ||
1077 | const u8 probe_order[16] = { 0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, | ||
1078 | 0x02, 0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C }; | ||
1079 | |||
1080 | if (!(data = kzalloc(sizeof(struct abituguru_data), GFP_KERNEL))) | ||
1081 | return -ENOMEM; | ||
1082 | |||
1083 | data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start; | ||
1084 | mutex_init(&data->update_lock); | ||
1085 | platform_set_drvdata(pdev, data); | ||
1086 | |||
1087 | /* See if the uGuru is ready */ | ||
1088 | if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT) | ||
1089 | data->uguru_ready = 1; | ||
1090 | |||
1091 | /* Completely read the uGuru this has 2 purposes: | ||
1092 | - testread / see if one really is there. | ||
1093 | - make an in memory copy of all the uguru settings for future use. */ | ||
1094 | if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, | ||
1095 | data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3) { | ||
1096 | kfree(data); | ||
1097 | return -ENODEV; | ||
1098 | } | ||
1099 | |||
1100 | for (i = 0; i < 16; i++) { | ||
1101 | if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i, | ||
1102 | &data->bank1_value[i], 1, | ||
1103 | ABIT_UGURU_MAX_RETRIES) != 1) { | ||
1104 | kfree(data); | ||
1105 | return -ENODEV; | ||
1106 | } | ||
1107 | if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i, | ||
1108 | data->bank1_settings[i], 3, | ||
1109 | ABIT_UGURU_MAX_RETRIES) != 3) { | ||
1110 | kfree(data); | ||
1111 | return -ENODEV; | ||
1112 | } | ||
1113 | } | ||
1114 | /* Note: We don't know how many bank2 sensors / pwms there really are, | ||
1115 | but in order to "detect" this we need to read the maximum amount | ||
1116 | anyways. If we read sensors/pwms not there we'll just read crap | ||
1117 | this can't hurt. We need the detection because we don't want | ||
1118 | unwanted writes, which will hurt! */ | ||
1119 | for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) { | ||
1120 | if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i, | ||
1121 | &data->bank2_value[i], 1, | ||
1122 | ABIT_UGURU_MAX_RETRIES) != 1) { | ||
1123 | kfree(data); | ||
1124 | return -ENODEV; | ||
1125 | } | ||
1126 | if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i, | ||
1127 | data->bank2_settings[i], 2, | ||
1128 | ABIT_UGURU_MAX_RETRIES) != 2) { | ||
1129 | kfree(data); | ||
1130 | return -ENODEV; | ||
1131 | } | ||
1132 | } | ||
1133 | for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) { | ||
1134 | if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i, | ||
1135 | data->pwm_settings[i], 5, | ||
1136 | ABIT_UGURU_MAX_RETRIES) != 5) { | ||
1137 | kfree(data); | ||
1138 | return -ENODEV; | ||
1139 | } | ||
1140 | } | ||
1141 | data->last_updated = jiffies; | ||
1142 | |||
1143 | /* Detect sensor types and fill the sysfs attr for bank1 */ | ||
1144 | sysfs_filename = data->bank1_names; | ||
1145 | for (i = 0; i < 16; i++) { | ||
1146 | res = abituguru_detect_bank1_sensor_type(data, probe_order[i]); | ||
1147 | if (res < 0) { | ||
1148 | kfree(data); | ||
1149 | return -ENODEV; | ||
1150 | } | ||
1151 | if (res == ABIT_UGURU_NC) | ||
1152 | continue; | ||
1153 | |||
1154 | for (j = 0; j < (res ? 7 : 9); j++) { | ||
1155 | const char *name_templ = abituguru_sysfs_bank1_templ[ | ||
1156 | res][j].dev_attr.attr.name; | ||
1157 | data->sysfs_attr[sysfs_attr_i] = | ||
1158 | abituguru_sysfs_bank1_templ[res][j]; | ||
1159 | data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = | ||
1160 | sysfs_filename; | ||
1161 | sysfs_filename += sprintf(sysfs_filename, name_templ, | ||
1162 | data->bank1_sensors[res] + res) + 1; | ||
1163 | data->sysfs_attr[sysfs_attr_i].index = probe_order[i]; | ||
1164 | sysfs_attr_i++; | ||
1165 | } | ||
1166 | data->bank1_max_value[probe_order[i]] = | ||
1167 | abituguru_bank1_max_value[res]; | ||
1168 | data->bank1_address[res][data->bank1_sensors[res]] = | ||
1169 | probe_order[i]; | ||
1170 | data->bank1_sensors[res]++; | ||
1171 | } | ||
1172 | /* Detect number of sensors and fill the sysfs attr for bank2 (fans) */ | ||
1173 | abituguru_detect_no_bank2_sensors(data); | ||
1174 | for (i = 0; i < data->bank2_sensors; i++) { | ||
1175 | for (j = 0; j < 6; j++) { | ||
1176 | const char *name_templ = abituguru_sysfs_fan_templ[j]. | ||
1177 | dev_attr.attr.name; | ||
1178 | data->sysfs_attr[sysfs_attr_i] = | ||
1179 | abituguru_sysfs_fan_templ[j]; | ||
1180 | data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = | ||
1181 | sysfs_filename; | ||
1182 | sysfs_filename += sprintf(sysfs_filename, name_templ, | ||
1183 | i + 1) + 1; | ||
1184 | data->sysfs_attr[sysfs_attr_i].index = i; | ||
1185 | sysfs_attr_i++; | ||
1186 | } | ||
1187 | } | ||
1188 | /* Detect number of sensors and fill the sysfs attr for pwms */ | ||
1189 | abituguru_detect_no_pwms(data); | ||
1190 | for (i = 0; i < data->pwms; i++) { | ||
1191 | for (j = 0; j < 6; j++) { | ||
1192 | const char *name_templ = abituguru_sysfs_pwm_templ[j]. | ||
1193 | dev_attr.attr.name; | ||
1194 | data->sysfs_attr[sysfs_attr_i] = | ||
1195 | abituguru_sysfs_pwm_templ[j]; | ||
1196 | data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = | ||
1197 | sysfs_filename; | ||
1198 | sysfs_filename += sprintf(sysfs_filename, name_templ, | ||
1199 | i + 1) + 1; | ||
1200 | data->sysfs_attr[sysfs_attr_i].index = i; | ||
1201 | sysfs_attr_i++; | ||
1202 | } | ||
1203 | } | ||
1204 | /* Last add any "generic" entries to sysfs */ | ||
1205 | for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) { | ||
1206 | data->sysfs_attr[sysfs_attr_i] = abituguru_sysfs_attr[i]; | ||
1207 | sysfs_attr_i++; | ||
1208 | } | ||
1209 | printk(KERN_INFO ABIT_UGURU_NAME ": found Abit uGuru\n"); | ||
1210 | |||
1211 | /* Register sysfs hooks */ | ||
1212 | data->class_dev = hwmon_device_register(&pdev->dev); | ||
1213 | if (IS_ERR(data->class_dev)) { | ||
1214 | kfree(data); | ||
1215 | return PTR_ERR(data->class_dev); | ||
1216 | } | ||
1217 | for (i = 0; i < sysfs_attr_i; i++) | ||
1218 | device_create_file(&pdev->dev, &data->sysfs_attr[i].dev_attr); | ||
1219 | |||
1220 | return 0; | ||
1221 | } | ||
1222 | |||
1223 | static int __devexit abituguru_remove(struct platform_device *pdev) | ||
1224 | { | ||
1225 | struct abituguru_data *data = platform_get_drvdata(pdev); | ||
1226 | |||
1227 | platform_set_drvdata(pdev, NULL); | ||
1228 | hwmon_device_unregister(data->class_dev); | ||
1229 | kfree(data); | ||
1230 | |||
1231 | return 0; | ||
1232 | } | ||
1233 | |||
1234 | static struct abituguru_data *abituguru_update_device(struct device *dev) | ||
1235 | { | ||
1236 | int i, err; | ||
1237 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
1238 | /* fake a complete successful read if no update necessary. */ | ||
1239 | char success = 1; | ||
1240 | |||
1241 | mutex_lock(&data->update_lock); | ||
1242 | if (time_after(jiffies, data->last_updated + HZ)) { | ||
1243 | success = 0; | ||
1244 | if ((err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, | ||
1245 | data->alarms, 3, 0)) != 3) | ||
1246 | goto LEAVE_UPDATE; | ||
1247 | for (i = 0; i < 16; i++) { | ||
1248 | if ((err = abituguru_read(data, | ||
1249 | ABIT_UGURU_SENSOR_BANK1, i, | ||
1250 | &data->bank1_value[i], 1, 0)) != 1) | ||
1251 | goto LEAVE_UPDATE; | ||
1252 | if ((err = abituguru_read(data, | ||
1253 | ABIT_UGURU_SENSOR_BANK1 + 1, i, | ||
1254 | data->bank1_settings[i], 3, 0)) != 3) | ||
1255 | goto LEAVE_UPDATE; | ||
1256 | } | ||
1257 | for (i = 0; i < data->bank2_sensors; i++) | ||
1258 | if ((err = abituguru_read(data, | ||
1259 | ABIT_UGURU_SENSOR_BANK2, i, | ||
1260 | &data->bank2_value[i], 1, 0)) != 1) | ||
1261 | goto LEAVE_UPDATE; | ||
1262 | /* success! */ | ||
1263 | success = 1; | ||
1264 | data->update_timeouts = 0; | ||
1265 | LEAVE_UPDATE: | ||
1266 | /* handle timeout condition */ | ||
1267 | if (err == -EBUSY) { | ||
1268 | /* No overflow please */ | ||
1269 | if (data->update_timeouts < 255u) | ||
1270 | data->update_timeouts++; | ||
1271 | if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) { | ||
1272 | ABIT_UGURU_DEBUG(3, "timeout exceeded, will " | ||
1273 | "try again next update\n"); | ||
1274 | /* Just a timeout, fake a successful read */ | ||
1275 | success = 1; | ||
1276 | } else | ||
1277 | ABIT_UGURU_DEBUG(1, "timeout exceeded %d " | ||
1278 | "times waiting for more input state\n", | ||
1279 | (int)data->update_timeouts); | ||
1280 | } | ||
1281 | /* On success set last_updated */ | ||
1282 | if (success) | ||
1283 | data->last_updated = jiffies; | ||
1284 | } | ||
1285 | mutex_unlock(&data->update_lock); | ||
1286 | |||
1287 | if (success) | ||
1288 | return data; | ||
1289 | else | ||
1290 | return NULL; | ||
1291 | } | ||
1292 | |||
1293 | static struct platform_driver abituguru_driver = { | ||
1294 | .driver = { | ||
1295 | .owner = THIS_MODULE, | ||
1296 | .name = ABIT_UGURU_NAME, | ||
1297 | }, | ||
1298 | .probe = abituguru_probe, | ||
1299 | .remove = __devexit_p(abituguru_remove), | ||
1300 | }; | ||
1301 | |||
1302 | static int __init abituguru_detect(void) | ||
1303 | { | ||
1304 | /* See if there is an uguru there. After a reboot uGuru will hold 0x00 | ||
1305 | at DATA and 0xAC, when this driver has already been loaded once | ||
1306 | DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either | ||
1307 | scenario but some will hold 0x00. | ||
1308 | Some uGuru's initally hold 0x09 at DATA and will only hold 0x08 | ||
1309 | after reading CMD first, so CMD must be read first! */ | ||
1310 | u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD); | ||
1311 | u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA); | ||
1312 | if (((data_val == 0x00) || (data_val == 0x08)) && | ||
1313 | ((cmd_val == 0x00) || (cmd_val == 0xAC))) | ||
1314 | return ABIT_UGURU_BASE; | ||
1315 | |||
1316 | ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = " | ||
1317 | "0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val); | ||
1318 | |||
1319 | if (force) { | ||
1320 | printk(KERN_INFO ABIT_UGURU_NAME ": Assuming Abit uGuru is " | ||
1321 | "present because of \"force\" parameter\n"); | ||
1322 | return ABIT_UGURU_BASE; | ||
1323 | } | ||
1324 | |||
1325 | /* No uGuru found */ | ||
1326 | return -ENODEV; | ||
1327 | } | ||
1328 | |||
1329 | static struct platform_device *abituguru_pdev; | ||
1330 | |||
1331 | static int __init abituguru_init(void) | ||
1332 | { | ||
1333 | int address, err; | ||
1334 | struct resource res = { .flags = IORESOURCE_IO }; | ||
1335 | |||
1336 | address = abituguru_detect(); | ||
1337 | if (address < 0) | ||
1338 | return address; | ||
1339 | |||
1340 | err = platform_driver_register(&abituguru_driver); | ||
1341 | if (err) | ||
1342 | goto exit; | ||
1343 | |||
1344 | abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address); | ||
1345 | if (!abituguru_pdev) { | ||
1346 | printk(KERN_ERR ABIT_UGURU_NAME | ||
1347 | ": Device allocation failed\n"); | ||
1348 | err = -ENOMEM; | ||
1349 | goto exit_driver_unregister; | ||
1350 | } | ||
1351 | |||
1352 | res.start = address; | ||
1353 | res.end = address + ABIT_UGURU_REGION_LENGTH - 1; | ||
1354 | res.name = ABIT_UGURU_NAME; | ||
1355 | |||
1356 | err = platform_device_add_resources(abituguru_pdev, &res, 1); | ||
1357 | if (err) { | ||
1358 | printk(KERN_ERR ABIT_UGURU_NAME | ||
1359 | ": Device resource addition failed (%d)\n", err); | ||
1360 | goto exit_device_put; | ||
1361 | } | ||
1362 | |||
1363 | err = platform_device_add(abituguru_pdev); | ||
1364 | if (err) { | ||
1365 | printk(KERN_ERR ABIT_UGURU_NAME | ||
1366 | ": Device addition failed (%d)\n", err); | ||
1367 | goto exit_device_put; | ||
1368 | } | ||
1369 | |||
1370 | return 0; | ||
1371 | |||
1372 | exit_device_put: | ||
1373 | platform_device_put(abituguru_pdev); | ||
1374 | exit_driver_unregister: | ||
1375 | platform_driver_unregister(&abituguru_driver); | ||
1376 | exit: | ||
1377 | return err; | ||
1378 | } | ||
1379 | |||
1380 | static void __exit abituguru_exit(void) | ||
1381 | { | ||
1382 | platform_device_unregister(abituguru_pdev); | ||
1383 | platform_driver_unregister(&abituguru_driver); | ||
1384 | } | ||
1385 | |||
1386 | MODULE_AUTHOR("Hans de Goede <j.w.r.degoede@hhs.nl>"); | ||
1387 | MODULE_DESCRIPTION("Abit uGuru Sensor device"); | ||
1388 | MODULE_LICENSE("GPL"); | ||
1389 | |||
1390 | module_init(abituguru_init); | ||
1391 | module_exit(abituguru_exit); | ||