diff options
author | Felipe Cerqueira <felipec@mpi-sws.org> | 2013-02-12 13:16:03 -0500 |
---|---|---|
committer | Bjoern Brandenburg <bbb@mpi-sws.org> | 2013-08-07 03:47:05 -0400 |
commit | 9a169caf2081e6281e3f60ff86e1ea4af6faf78e (patch) | |
tree | 922d91d9af5317d03e922f623039966b451177a3 | |
parent | 9c664c8b006327927693cd2a6e151b4cbb55a291 (diff) |
Add GSN-EDF scheduler plugin
-rw-r--r-- | litmus/Makefile | 1 | ||||
-rw-r--r-- | litmus/sched_gsn_edf.c | 1023 |
2 files changed, 1024 insertions, 0 deletions
diff --git a/litmus/Makefile b/litmus/Makefile index 5b38295b992d..8428360eca09 100644 --- a/litmus/Makefile +++ b/litmus/Makefile | |||
@@ -18,6 +18,7 @@ obj-y = sched_plugin.o litmus.o \ | |||
18 | bheap.o \ | 18 | bheap.o \ |
19 | binheap.o \ | 19 | binheap.o \ |
20 | ctrldev.o \ | 20 | ctrldev.o \ |
21 | sched_gsn_edf.o \ | ||
21 | sched_psn_edf.o | 22 | sched_psn_edf.o |
22 | 23 | ||
23 | obj-$(CONFIG_SCHED_CPU_AFFINITY) += affinity.o | 24 | obj-$(CONFIG_SCHED_CPU_AFFINITY) += affinity.o |
diff --git a/litmus/sched_gsn_edf.c b/litmus/sched_gsn_edf.c new file mode 100644 index 000000000000..90ff6f639461 --- /dev/null +++ b/litmus/sched_gsn_edf.c | |||
@@ -0,0 +1,1023 @@ | |||
1 | /* | ||
2 | * litmus/sched_gsn_edf.c | ||
3 | * | ||
4 | * Implementation of the GSN-EDF scheduling algorithm. | ||
5 | * | ||
6 | * This version uses the simple approach and serializes all scheduling | ||
7 | * decisions by the use of a queue lock. This is probably not the | ||
8 | * best way to do it, but it should suffice for now. | ||
9 | */ | ||
10 | |||
11 | #include <linux/spinlock.h> | ||
12 | #include <linux/percpu.h> | ||
13 | #include <linux/sched.h> | ||
14 | #include <linux/slab.h> | ||
15 | |||
16 | #include <litmus/litmus.h> | ||
17 | #include <litmus/jobs.h> | ||
18 | #include <litmus/sched_plugin.h> | ||
19 | #include <litmus/edf_common.h> | ||
20 | #include <litmus/sched_trace.h> | ||
21 | #include <litmus/trace.h> | ||
22 | |||
23 | #include <litmus/preempt.h> | ||
24 | #include <litmus/budget.h> | ||
25 | |||
26 | #include <litmus/bheap.h> | ||
27 | |||
28 | #ifdef CONFIG_SCHED_CPU_AFFINITY | ||
29 | #include <litmus/affinity.h> | ||
30 | #endif | ||
31 | |||
32 | #include <linux/module.h> | ||
33 | |||
34 | /* Overview of GSN-EDF operations. | ||
35 | * | ||
36 | * For a detailed explanation of GSN-EDF have a look at the FMLP paper. This | ||
37 | * description only covers how the individual operations are implemented in | ||
38 | * LITMUS. | ||
39 | * | ||
40 | * link_task_to_cpu(T, cpu) - Low-level operation to update the linkage | ||
41 | * structure (NOT the actually scheduled | ||
42 | * task). If there is another linked task To | ||
43 | * already it will set To->linked_on = NO_CPU | ||
44 | * (thereby removing its association with this | ||
45 | * CPU). However, it will not requeue the | ||
46 | * previously linked task (if any). It will set | ||
47 | * T's state to not completed and check whether | ||
48 | * it is already running somewhere else. If T | ||
49 | * is scheduled somewhere else it will link | ||
50 | * it to that CPU instead (and pull the linked | ||
51 | * task to cpu). T may be NULL. | ||
52 | * | ||
53 | * unlink(T) - Unlink removes T from all scheduler data | ||
54 | * structures. If it is linked to some CPU it | ||
55 | * will link NULL to that CPU. If it is | ||
56 | * currently queued in the gsnedf queue it will | ||
57 | * be removed from the rt_domain. It is safe to | ||
58 | * call unlink(T) if T is not linked. T may not | ||
59 | * be NULL. | ||
60 | * | ||
61 | * requeue(T) - Requeue will insert T into the appropriate | ||
62 | * queue. If the system is in real-time mode and | ||
63 | * the T is released already, it will go into the | ||
64 | * ready queue. If the system is not in | ||
65 | * real-time mode is T, then T will go into the | ||
66 | * release queue. If T's release time is in the | ||
67 | * future, it will go into the release | ||
68 | * queue. That means that T's release time/job | ||
69 | * no/etc. has to be updated before requeu(T) is | ||
70 | * called. It is not safe to call requeue(T) | ||
71 | * when T is already queued. T may not be NULL. | ||
72 | * | ||
73 | * gsnedf_job_arrival(T) - This is the catch all function when T enters | ||
74 | * the system after either a suspension or at a | ||
75 | * job release. It will queue T (which means it | ||
76 | * is not safe to call gsnedf_job_arrival(T) if | ||
77 | * T is already queued) and then check whether a | ||
78 | * preemption is necessary. If a preemption is | ||
79 | * necessary it will update the linkage | ||
80 | * accordingly and cause scheduled to be called | ||
81 | * (either with an IPI or need_resched). It is | ||
82 | * safe to call gsnedf_job_arrival(T) if T's | ||
83 | * next job has not been actually released yet | ||
84 | * (releast time in the future). T will be put | ||
85 | * on the release queue in that case. | ||
86 | * | ||
87 | * job_completion(T) - Take care of everything that needs to be done | ||
88 | * to prepare T for its next release and place | ||
89 | * it in the right queue with | ||
90 | * gsnedf_job_arrival(). | ||
91 | * | ||
92 | * | ||
93 | * When we now that T is linked to CPU then link_task_to_cpu(NULL, CPU) is | ||
94 | * equivalent to unlink(T). Note that if you unlink a task from a CPU none of | ||
95 | * the functions will automatically propagate pending task from the ready queue | ||
96 | * to a linked task. This is the job of the calling function ( by means of | ||
97 | * __take_ready). | ||
98 | */ | ||
99 | |||
100 | |||
101 | /* cpu_entry_t - maintain the linked and scheduled state | ||
102 | */ | ||
103 | typedef struct { | ||
104 | int cpu; | ||
105 | struct task_struct* linked; /* only RT tasks */ | ||
106 | struct task_struct* scheduled; /* only RT tasks */ | ||
107 | struct bheap_node* hn; | ||
108 | } cpu_entry_t; | ||
109 | DEFINE_PER_CPU(cpu_entry_t, gsnedf_cpu_entries); | ||
110 | |||
111 | cpu_entry_t* gsnedf_cpus[NR_CPUS]; | ||
112 | |||
113 | /* the cpus queue themselves according to priority in here */ | ||
114 | static struct bheap_node gsnedf_heap_node[NR_CPUS]; | ||
115 | static struct bheap gsnedf_cpu_heap; | ||
116 | |||
117 | static rt_domain_t gsnedf; | ||
118 | #define gsnedf_lock (gsnedf.ready_lock) | ||
119 | |||
120 | |||
121 | /* Uncomment this if you want to see all scheduling decisions in the | ||
122 | * TRACE() log. | ||
123 | #define WANT_ALL_SCHED_EVENTS | ||
124 | */ | ||
125 | |||
126 | static int cpu_lower_prio(struct bheap_node *_a, struct bheap_node *_b) | ||
127 | { | ||
128 | cpu_entry_t *a, *b; | ||
129 | a = _a->value; | ||
130 | b = _b->value; | ||
131 | /* Note that a and b are inverted: we want the lowest-priority CPU at | ||
132 | * the top of the heap. | ||
133 | */ | ||
134 | return edf_higher_prio(b->linked, a->linked); | ||
135 | } | ||
136 | |||
137 | /* update_cpu_position - Move the cpu entry to the correct place to maintain | ||
138 | * order in the cpu queue. Caller must hold gsnedf lock. | ||
139 | */ | ||
140 | static void update_cpu_position(cpu_entry_t *entry) | ||
141 | { | ||
142 | if (likely(bheap_node_in_heap(entry->hn))) | ||
143 | bheap_delete(cpu_lower_prio, &gsnedf_cpu_heap, entry->hn); | ||
144 | bheap_insert(cpu_lower_prio, &gsnedf_cpu_heap, entry->hn); | ||
145 | } | ||
146 | |||
147 | /* caller must hold gsnedf lock */ | ||
148 | static cpu_entry_t* lowest_prio_cpu(void) | ||
149 | { | ||
150 | struct bheap_node* hn; | ||
151 | hn = bheap_peek(cpu_lower_prio, &gsnedf_cpu_heap); | ||
152 | return hn->value; | ||
153 | } | ||
154 | |||
155 | |||
156 | /* link_task_to_cpu - Update the link of a CPU. | ||
157 | * Handles the case where the to-be-linked task is already | ||
158 | * scheduled on a different CPU. | ||
159 | */ | ||
160 | static noinline void link_task_to_cpu(struct task_struct* linked, | ||
161 | cpu_entry_t *entry) | ||
162 | { | ||
163 | cpu_entry_t *sched; | ||
164 | struct task_struct* tmp; | ||
165 | int on_cpu; | ||
166 | |||
167 | BUG_ON(linked && !is_realtime(linked)); | ||
168 | |||
169 | /* Currently linked task is set to be unlinked. */ | ||
170 | if (entry->linked) { | ||
171 | entry->linked->rt_param.linked_on = NO_CPU; | ||
172 | } | ||
173 | |||
174 | /* Link new task to CPU. */ | ||
175 | if (linked) { | ||
176 | /* handle task is already scheduled somewhere! */ | ||
177 | on_cpu = linked->rt_param.scheduled_on; | ||
178 | if (on_cpu != NO_CPU) { | ||
179 | sched = &per_cpu(gsnedf_cpu_entries, on_cpu); | ||
180 | /* this should only happen if not linked already */ | ||
181 | BUG_ON(sched->linked == linked); | ||
182 | |||
183 | /* If we are already scheduled on the CPU to which we | ||
184 | * wanted to link, we don't need to do the swap -- | ||
185 | * we just link ourselves to the CPU and depend on | ||
186 | * the caller to get things right. | ||
187 | */ | ||
188 | if (entry != sched) { | ||
189 | TRACE_TASK(linked, | ||
190 | "already scheduled on %d, updating link.\n", | ||
191 | sched->cpu); | ||
192 | tmp = sched->linked; | ||
193 | linked->rt_param.linked_on = sched->cpu; | ||
194 | sched->linked = linked; | ||
195 | update_cpu_position(sched); | ||
196 | linked = tmp; | ||
197 | } | ||
198 | } | ||
199 | if (linked) /* might be NULL due to swap */ | ||
200 | linked->rt_param.linked_on = entry->cpu; | ||
201 | } | ||
202 | entry->linked = linked; | ||
203 | #ifdef WANT_ALL_SCHED_EVENTS | ||
204 | if (linked) | ||
205 | TRACE_TASK(linked, "linked to %d.\n", entry->cpu); | ||
206 | else | ||
207 | TRACE("NULL linked to %d.\n", entry->cpu); | ||
208 | #endif | ||
209 | update_cpu_position(entry); | ||
210 | } | ||
211 | |||
212 | /* unlink - Make sure a task is not linked any longer to an entry | ||
213 | * where it was linked before. Must hold gsnedf_lock. | ||
214 | */ | ||
215 | static noinline void unlink(struct task_struct* t) | ||
216 | { | ||
217 | cpu_entry_t *entry; | ||
218 | |||
219 | if (t->rt_param.linked_on != NO_CPU) { | ||
220 | /* unlink */ | ||
221 | entry = &per_cpu(gsnedf_cpu_entries, t->rt_param.linked_on); | ||
222 | t->rt_param.linked_on = NO_CPU; | ||
223 | link_task_to_cpu(NULL, entry); | ||
224 | } else if (is_queued(t)) { | ||
225 | /* This is an interesting situation: t is scheduled, | ||
226 | * but was just recently unlinked. It cannot be | ||
227 | * linked anywhere else (because then it would have | ||
228 | * been relinked to this CPU), thus it must be in some | ||
229 | * queue. We must remove it from the list in this | ||
230 | * case. | ||
231 | */ | ||
232 | remove(&gsnedf, t); | ||
233 | } | ||
234 | } | ||
235 | |||
236 | |||
237 | /* preempt - force a CPU to reschedule | ||
238 | */ | ||
239 | static void preempt(cpu_entry_t *entry) | ||
240 | { | ||
241 | preempt_if_preemptable(entry->scheduled, entry->cpu); | ||
242 | } | ||
243 | |||
244 | /* requeue - Put an unlinked task into gsn-edf domain. | ||
245 | * Caller must hold gsnedf_lock. | ||
246 | */ | ||
247 | static noinline void requeue(struct task_struct* task) | ||
248 | { | ||
249 | BUG_ON(!task); | ||
250 | /* sanity check before insertion */ | ||
251 | BUG_ON(is_queued(task)); | ||
252 | |||
253 | if (is_early_releasing(task) || is_released(task, litmus_clock())) | ||
254 | __add_ready(&gsnedf, task); | ||
255 | else { | ||
256 | /* it has got to wait */ | ||
257 | add_release(&gsnedf, task); | ||
258 | } | ||
259 | } | ||
260 | |||
261 | #ifdef CONFIG_SCHED_CPU_AFFINITY | ||
262 | static cpu_entry_t* gsnedf_get_nearest_available_cpu(cpu_entry_t *start) | ||
263 | { | ||
264 | cpu_entry_t *affinity; | ||
265 | |||
266 | get_nearest_available_cpu(affinity, start, gsnedf_cpu_entries, | ||
267 | #ifdef CONFIG_RELEASE_MASTER | ||
268 | gsnedf.release_master | ||
269 | #else | ||
270 | NO_CPU | ||
271 | #endif | ||
272 | ); | ||
273 | |||
274 | return(affinity); | ||
275 | } | ||
276 | #endif | ||
277 | |||
278 | /* check for any necessary preemptions */ | ||
279 | static void check_for_preemptions(void) | ||
280 | { | ||
281 | struct task_struct *task; | ||
282 | cpu_entry_t *last; | ||
283 | |||
284 | for (last = lowest_prio_cpu(); | ||
285 | edf_preemption_needed(&gsnedf, last->linked); | ||
286 | last = lowest_prio_cpu()) { | ||
287 | /* preemption necessary */ | ||
288 | task = __take_ready(&gsnedf); | ||
289 | TRACE("check_for_preemptions: attempting to link task %d to %d\n", | ||
290 | task->pid, last->cpu); | ||
291 | |||
292 | #ifdef CONFIG_SCHED_CPU_AFFINITY | ||
293 | { | ||
294 | cpu_entry_t *affinity = | ||
295 | gsnedf_get_nearest_available_cpu( | ||
296 | &per_cpu(gsnedf_cpu_entries, task_cpu(task))); | ||
297 | if (affinity) | ||
298 | last = affinity; | ||
299 | else if (requeue_preempted_job(last->linked)) | ||
300 | requeue(last->linked); | ||
301 | } | ||
302 | #else | ||
303 | if (requeue_preempted_job(last->linked)) | ||
304 | requeue(last->linked); | ||
305 | #endif | ||
306 | |||
307 | link_task_to_cpu(task, last); | ||
308 | preempt(last); | ||
309 | } | ||
310 | } | ||
311 | |||
312 | /* gsnedf_job_arrival: task is either resumed or released */ | ||
313 | static noinline void gsnedf_job_arrival(struct task_struct* task) | ||
314 | { | ||
315 | BUG_ON(!task); | ||
316 | |||
317 | requeue(task); | ||
318 | check_for_preemptions(); | ||
319 | } | ||
320 | |||
321 | static void gsnedf_release_jobs(rt_domain_t* rt, struct bheap* tasks) | ||
322 | { | ||
323 | unsigned long flags; | ||
324 | |||
325 | raw_spin_lock_irqsave(&gsnedf_lock, flags); | ||
326 | |||
327 | __merge_ready(rt, tasks); | ||
328 | check_for_preemptions(); | ||
329 | |||
330 | raw_spin_unlock_irqrestore(&gsnedf_lock, flags); | ||
331 | } | ||
332 | |||
333 | /* caller holds gsnedf_lock */ | ||
334 | static noinline void job_completion(struct task_struct *t, int forced) | ||
335 | { | ||
336 | BUG_ON(!t); | ||
337 | |||
338 | sched_trace_task_completion(t, forced); | ||
339 | |||
340 | TRACE_TASK(t, "job_completion().\n"); | ||
341 | |||
342 | /* set flags */ | ||
343 | tsk_rt(t)->completed = 0; | ||
344 | /* prepare for next period */ | ||
345 | prepare_for_next_period(t); | ||
346 | if (is_early_releasing(t) || is_released(t, litmus_clock())) | ||
347 | sched_trace_task_release(t); | ||
348 | /* unlink */ | ||
349 | unlink(t); | ||
350 | /* requeue | ||
351 | * But don't requeue a blocking task. */ | ||
352 | if (is_running(t)) | ||
353 | gsnedf_job_arrival(t); | ||
354 | } | ||
355 | |||
356 | /* gsnedf_tick - this function is called for every local timer | ||
357 | * interrupt. | ||
358 | * | ||
359 | * checks whether the current task has expired and checks | ||
360 | * whether we need to preempt it if it has not expired | ||
361 | */ | ||
362 | static void gsnedf_tick(struct task_struct* t) | ||
363 | { | ||
364 | if (is_realtime(t) && budget_enforced(t) && budget_exhausted(t)) { | ||
365 | if (!is_np(t)) { | ||
366 | /* np tasks will be preempted when they become | ||
367 | * preemptable again | ||
368 | */ | ||
369 | litmus_reschedule_local(); | ||
370 | TRACE("gsnedf_scheduler_tick: " | ||
371 | "%d is preemptable " | ||
372 | " => FORCE_RESCHED\n", t->pid); | ||
373 | } else if (is_user_np(t)) { | ||
374 | TRACE("gsnedf_scheduler_tick: " | ||
375 | "%d is non-preemptable, " | ||
376 | "preemption delayed.\n", t->pid); | ||
377 | request_exit_np(t); | ||
378 | } | ||
379 | } | ||
380 | } | ||
381 | |||
382 | /* Getting schedule() right is a bit tricky. schedule() may not make any | ||
383 | * assumptions on the state of the current task since it may be called for a | ||
384 | * number of reasons. The reasons include a scheduler_tick() determined that it | ||
385 | * was necessary, because sys_exit_np() was called, because some Linux | ||
386 | * subsystem determined so, or even (in the worst case) because there is a bug | ||
387 | * hidden somewhere. Thus, we must take extreme care to determine what the | ||
388 | * current state is. | ||
389 | * | ||
390 | * The CPU could currently be scheduling a task (or not), be linked (or not). | ||
391 | * | ||
392 | * The following assertions for the scheduled task could hold: | ||
393 | * | ||
394 | * - !is_running(scheduled) // the job blocks | ||
395 | * - scheduled->timeslice == 0 // the job completed (forcefully) | ||
396 | * - is_completed() // the job completed (by syscall) | ||
397 | * - linked != scheduled // we need to reschedule (for any reason) | ||
398 | * - is_np(scheduled) // rescheduling must be delayed, | ||
399 | * sys_exit_np must be requested | ||
400 | * | ||
401 | * Any of these can occur together. | ||
402 | */ | ||
403 | static struct task_struct* gsnedf_schedule(struct task_struct * prev) | ||
404 | { | ||
405 | cpu_entry_t* entry = &__get_cpu_var(gsnedf_cpu_entries); | ||
406 | int out_of_time, sleep, preempt, np, exists, blocks; | ||
407 | struct task_struct* next = NULL; | ||
408 | |||
409 | #ifdef CONFIG_RELEASE_MASTER | ||
410 | /* Bail out early if we are the release master. | ||
411 | * The release master never schedules any real-time tasks. | ||
412 | */ | ||
413 | if (unlikely(gsnedf.release_master == entry->cpu)) { | ||
414 | sched_state_task_picked(); | ||
415 | return NULL; | ||
416 | } | ||
417 | #endif | ||
418 | |||
419 | raw_spin_lock(&gsnedf_lock); | ||
420 | |||
421 | /* sanity checking */ | ||
422 | BUG_ON(entry->scheduled && entry->scheduled != prev); | ||
423 | BUG_ON(entry->scheduled && !is_realtime(prev)); | ||
424 | BUG_ON(is_realtime(prev) && !entry->scheduled); | ||
425 | |||
426 | /* (0) Determine state */ | ||
427 | exists = entry->scheduled != NULL; | ||
428 | blocks = exists && !is_running(entry->scheduled); | ||
429 | out_of_time = exists && budget_enforced(entry->scheduled) | ||
430 | && budget_exhausted(entry->scheduled); | ||
431 | np = exists && is_np(entry->scheduled); | ||
432 | sleep = exists && is_completed(entry->scheduled); | ||
433 | preempt = entry->scheduled != entry->linked; | ||
434 | |||
435 | #ifdef WANT_ALL_SCHED_EVENTS | ||
436 | TRACE_TASK(prev, "invoked gsnedf_schedule.\n"); | ||
437 | #endif | ||
438 | |||
439 | if (exists) | ||
440 | TRACE_TASK(prev, | ||
441 | "blocks:%d out_of_time:%d np:%d sleep:%d preempt:%d " | ||
442 | "state:%d sig:%d\n", | ||
443 | blocks, out_of_time, np, sleep, preempt, | ||
444 | prev->state, signal_pending(prev)); | ||
445 | if (entry->linked && preempt) | ||
446 | TRACE_TASK(prev, "will be preempted by %s/%d\n", | ||
447 | entry->linked->comm, entry->linked->pid); | ||
448 | |||
449 | |||
450 | /* If a task blocks we have no choice but to reschedule. | ||
451 | */ | ||
452 | if (blocks) | ||
453 | unlink(entry->scheduled); | ||
454 | |||
455 | /* Request a sys_exit_np() call if we would like to preempt but cannot. | ||
456 | * We need to make sure to update the link structure anyway in case | ||
457 | * that we are still linked. Multiple calls to request_exit_np() don't | ||
458 | * hurt. | ||
459 | */ | ||
460 | if (np && (out_of_time || preempt || sleep)) { | ||
461 | unlink(entry->scheduled); | ||
462 | request_exit_np(entry->scheduled); | ||
463 | } | ||
464 | |||
465 | /* Any task that is preemptable and either exhausts its execution | ||
466 | * budget or wants to sleep completes. We may have to reschedule after | ||
467 | * this. Don't do a job completion if we block (can't have timers running | ||
468 | * for blocked jobs). | ||
469 | */ | ||
470 | if (!np && (out_of_time || sleep) && !blocks) | ||
471 | job_completion(entry->scheduled, !sleep); | ||
472 | |||
473 | /* Link pending task if we became unlinked. | ||
474 | */ | ||
475 | if (!entry->linked) | ||
476 | link_task_to_cpu(__take_ready(&gsnedf), entry); | ||
477 | |||
478 | /* The final scheduling decision. Do we need to switch for some reason? | ||
479 | * If linked is different from scheduled, then select linked as next. | ||
480 | */ | ||
481 | if ((!np || blocks) && | ||
482 | entry->linked != entry->scheduled) { | ||
483 | /* Schedule a linked job? */ | ||
484 | if (entry->linked) { | ||
485 | entry->linked->rt_param.scheduled_on = entry->cpu; | ||
486 | next = entry->linked; | ||
487 | TRACE_TASK(next, "scheduled_on = P%d\n", smp_processor_id()); | ||
488 | } | ||
489 | if (entry->scheduled) { | ||
490 | /* not gonna be scheduled soon */ | ||
491 | entry->scheduled->rt_param.scheduled_on = NO_CPU; | ||
492 | TRACE_TASK(entry->scheduled, "scheduled_on = NO_CPU\n"); | ||
493 | } | ||
494 | } else | ||
495 | /* Only override Linux scheduler if we have a real-time task | ||
496 | * scheduled that needs to continue. | ||
497 | */ | ||
498 | if (exists) | ||
499 | next = prev; | ||
500 | |||
501 | sched_state_task_picked(); | ||
502 | |||
503 | raw_spin_unlock(&gsnedf_lock); | ||
504 | |||
505 | #ifdef WANT_ALL_SCHED_EVENTS | ||
506 | TRACE("gsnedf_lock released, next=0x%p\n", next); | ||
507 | |||
508 | if (next) | ||
509 | TRACE_TASK(next, "scheduled at %llu\n", litmus_clock()); | ||
510 | else if (exists && !next) | ||
511 | TRACE("becomes idle at %llu.\n", litmus_clock()); | ||
512 | #endif | ||
513 | |||
514 | |||
515 | return next; | ||
516 | } | ||
517 | |||
518 | |||
519 | /* _finish_switch - we just finished the switch away from prev | ||
520 | */ | ||
521 | static void gsnedf_finish_switch(struct task_struct *prev) | ||
522 | { | ||
523 | cpu_entry_t* entry = &__get_cpu_var(gsnedf_cpu_entries); | ||
524 | |||
525 | entry->scheduled = is_realtime(current) ? current : NULL; | ||
526 | #ifdef WANT_ALL_SCHED_EVENTS | ||
527 | TRACE_TASK(prev, "switched away from\n"); | ||
528 | #endif | ||
529 | } | ||
530 | |||
531 | |||
532 | /* Prepare a task for running in RT mode | ||
533 | */ | ||
534 | static void gsnedf_task_new(struct task_struct * t, int on_rq, int is_scheduled) | ||
535 | { | ||
536 | unsigned long flags; | ||
537 | cpu_entry_t* entry; | ||
538 | |||
539 | TRACE("gsn edf: task new %d\n", t->pid); | ||
540 | |||
541 | raw_spin_lock_irqsave(&gsnedf_lock, flags); | ||
542 | |||
543 | /* setup job params */ | ||
544 | release_at(t, litmus_clock()); | ||
545 | |||
546 | if (is_scheduled) { | ||
547 | entry = &per_cpu(gsnedf_cpu_entries, task_cpu(t)); | ||
548 | BUG_ON(entry->scheduled); | ||
549 | |||
550 | #ifdef CONFIG_RELEASE_MASTER | ||
551 | if (entry->cpu != gsnedf.release_master) { | ||
552 | #endif | ||
553 | entry->scheduled = t; | ||
554 | tsk_rt(t)->scheduled_on = task_cpu(t); | ||
555 | #ifdef CONFIG_RELEASE_MASTER | ||
556 | } else { | ||
557 | /* do not schedule on release master */ | ||
558 | preempt(entry); /* force resched */ | ||
559 | tsk_rt(t)->scheduled_on = NO_CPU; | ||
560 | } | ||
561 | #endif | ||
562 | } else { | ||
563 | t->rt_param.scheduled_on = NO_CPU; | ||
564 | } | ||
565 | t->rt_param.linked_on = NO_CPU; | ||
566 | |||
567 | if (is_running(t)) | ||
568 | gsnedf_job_arrival(t); | ||
569 | raw_spin_unlock_irqrestore(&gsnedf_lock, flags); | ||
570 | } | ||
571 | |||
572 | static void gsnedf_task_wake_up(struct task_struct *task) | ||
573 | { | ||
574 | unsigned long flags; | ||
575 | lt_t now; | ||
576 | |||
577 | TRACE_TASK(task, "wake_up at %llu\n", litmus_clock()); | ||
578 | |||
579 | raw_spin_lock_irqsave(&gsnedf_lock, flags); | ||
580 | now = litmus_clock(); | ||
581 | if (is_sporadic(task) && is_tardy(task, now)) { | ||
582 | /* new sporadic release */ | ||
583 | release_at(task, now); | ||
584 | sched_trace_task_release(task); | ||
585 | } | ||
586 | gsnedf_job_arrival(task); | ||
587 | raw_spin_unlock_irqrestore(&gsnedf_lock, flags); | ||
588 | } | ||
589 | |||
590 | static void gsnedf_task_block(struct task_struct *t) | ||
591 | { | ||
592 | unsigned long flags; | ||
593 | |||
594 | TRACE_TASK(t, "block at %llu\n", litmus_clock()); | ||
595 | |||
596 | /* unlink if necessary */ | ||
597 | raw_spin_lock_irqsave(&gsnedf_lock, flags); | ||
598 | unlink(t); | ||
599 | raw_spin_unlock_irqrestore(&gsnedf_lock, flags); | ||
600 | |||
601 | BUG_ON(!is_realtime(t)); | ||
602 | } | ||
603 | |||
604 | |||
605 | static void gsnedf_task_exit(struct task_struct * t) | ||
606 | { | ||
607 | unsigned long flags; | ||
608 | |||
609 | /* unlink if necessary */ | ||
610 | raw_spin_lock_irqsave(&gsnedf_lock, flags); | ||
611 | unlink(t); | ||
612 | if (tsk_rt(t)->scheduled_on != NO_CPU) { | ||
613 | gsnedf_cpus[tsk_rt(t)->scheduled_on]->scheduled = NULL; | ||
614 | tsk_rt(t)->scheduled_on = NO_CPU; | ||
615 | } | ||
616 | raw_spin_unlock_irqrestore(&gsnedf_lock, flags); | ||
617 | |||
618 | BUG_ON(!is_realtime(t)); | ||
619 | TRACE_TASK(t, "RIP\n"); | ||
620 | } | ||
621 | |||
622 | |||
623 | static long gsnedf_admit_task(struct task_struct* tsk) | ||
624 | { | ||
625 | return 0; | ||
626 | } | ||
627 | |||
628 | #ifdef CONFIG_LITMUS_LOCKING | ||
629 | |||
630 | #include <litmus/fdso.h> | ||
631 | |||
632 | /* called with IRQs off */ | ||
633 | static void set_priority_inheritance(struct task_struct* t, struct task_struct* prio_inh) | ||
634 | { | ||
635 | int linked_on; | ||
636 | int check_preempt = 0; | ||
637 | |||
638 | raw_spin_lock(&gsnedf_lock); | ||
639 | |||
640 | TRACE_TASK(t, "inherits priority from %s/%d\n", prio_inh->comm, prio_inh->pid); | ||
641 | tsk_rt(t)->inh_task = prio_inh; | ||
642 | |||
643 | linked_on = tsk_rt(t)->linked_on; | ||
644 | |||
645 | /* If it is scheduled, then we need to reorder the CPU heap. */ | ||
646 | if (linked_on != NO_CPU) { | ||
647 | TRACE_TASK(t, "%s: linked on %d\n", | ||
648 | __FUNCTION__, linked_on); | ||
649 | /* Holder is scheduled; need to re-order CPUs. | ||
650 | * We can't use heap_decrease() here since | ||
651 | * the cpu_heap is ordered in reverse direction, so | ||
652 | * it is actually an increase. */ | ||
653 | bheap_delete(cpu_lower_prio, &gsnedf_cpu_heap, | ||
654 | gsnedf_cpus[linked_on]->hn); | ||
655 | bheap_insert(cpu_lower_prio, &gsnedf_cpu_heap, | ||
656 | gsnedf_cpus[linked_on]->hn); | ||
657 | } else { | ||
658 | /* holder may be queued: first stop queue changes */ | ||
659 | raw_spin_lock(&gsnedf.release_lock); | ||
660 | if (is_queued(t)) { | ||
661 | TRACE_TASK(t, "%s: is queued\n", | ||
662 | __FUNCTION__); | ||
663 | /* We need to update the position of holder in some | ||
664 | * heap. Note that this could be a release heap if we | ||
665 | * budget enforcement is used and this job overran. */ | ||
666 | check_preempt = | ||
667 | !bheap_decrease(edf_ready_order, | ||
668 | tsk_rt(t)->heap_node); | ||
669 | } else { | ||
670 | /* Nothing to do: if it is not queued and not linked | ||
671 | * then it is either sleeping or currently being moved | ||
672 | * by other code (e.g., a timer interrupt handler) that | ||
673 | * will use the correct priority when enqueuing the | ||
674 | * task. */ | ||
675 | TRACE_TASK(t, "%s: is NOT queued => Done.\n", | ||
676 | __FUNCTION__); | ||
677 | } | ||
678 | raw_spin_unlock(&gsnedf.release_lock); | ||
679 | |||
680 | /* If holder was enqueued in a release heap, then the following | ||
681 | * preemption check is pointless, but we can't easily detect | ||
682 | * that case. If you want to fix this, then consider that | ||
683 | * simply adding a state flag requires O(n) time to update when | ||
684 | * releasing n tasks, which conflicts with the goal to have | ||
685 | * O(log n) merges. */ | ||
686 | if (check_preempt) { | ||
687 | /* heap_decrease() hit the top level of the heap: make | ||
688 | * sure preemption checks get the right task, not the | ||
689 | * potentially stale cache. */ | ||
690 | bheap_uncache_min(edf_ready_order, | ||
691 | &gsnedf.ready_queue); | ||
692 | check_for_preemptions(); | ||
693 | } | ||
694 | } | ||
695 | |||
696 | raw_spin_unlock(&gsnedf_lock); | ||
697 | } | ||
698 | |||
699 | /* called with IRQs off */ | ||
700 | static void clear_priority_inheritance(struct task_struct* t) | ||
701 | { | ||
702 | raw_spin_lock(&gsnedf_lock); | ||
703 | |||
704 | /* A job only stops inheriting a priority when it releases a | ||
705 | * resource. Thus we can make the following assumption.*/ | ||
706 | BUG_ON(tsk_rt(t)->scheduled_on == NO_CPU); | ||
707 | |||
708 | TRACE_TASK(t, "priority restored\n"); | ||
709 | tsk_rt(t)->inh_task = NULL; | ||
710 | |||
711 | /* Check if rescheduling is necessary. We can't use heap_decrease() | ||
712 | * since the priority was effectively lowered. */ | ||
713 | unlink(t); | ||
714 | gsnedf_job_arrival(t); | ||
715 | |||
716 | raw_spin_unlock(&gsnedf_lock); | ||
717 | } | ||
718 | |||
719 | |||
720 | /* ******************** FMLP support ********************** */ | ||
721 | |||
722 | /* struct for semaphore with priority inheritance */ | ||
723 | struct fmlp_semaphore { | ||
724 | struct litmus_lock litmus_lock; | ||
725 | |||
726 | /* current resource holder */ | ||
727 | struct task_struct *owner; | ||
728 | |||
729 | /* highest-priority waiter */ | ||
730 | struct task_struct *hp_waiter; | ||
731 | |||
732 | /* FIFO queue of waiting tasks */ | ||
733 | wait_queue_head_t wait; | ||
734 | }; | ||
735 | |||
736 | static inline struct fmlp_semaphore* fmlp_from_lock(struct litmus_lock* lock) | ||
737 | { | ||
738 | return container_of(lock, struct fmlp_semaphore, litmus_lock); | ||
739 | } | ||
740 | |||
741 | /* caller is responsible for locking */ | ||
742 | struct task_struct* find_hp_waiter(struct fmlp_semaphore *sem, | ||
743 | struct task_struct* skip) | ||
744 | { | ||
745 | struct list_head *pos; | ||
746 | struct task_struct *queued, *found = NULL; | ||
747 | |||
748 | list_for_each(pos, &sem->wait.task_list) { | ||
749 | queued = (struct task_struct*) list_entry(pos, wait_queue_t, | ||
750 | task_list)->private; | ||
751 | |||
752 | /* Compare task prios, find high prio task. */ | ||
753 | if (queued != skip && edf_higher_prio(queued, found)) | ||
754 | found = queued; | ||
755 | } | ||
756 | return found; | ||
757 | } | ||
758 | |||
759 | int gsnedf_fmlp_lock(struct litmus_lock* l) | ||
760 | { | ||
761 | struct task_struct* t = current; | ||
762 | struct fmlp_semaphore *sem = fmlp_from_lock(l); | ||
763 | wait_queue_t wait; | ||
764 | unsigned long flags; | ||
765 | |||
766 | if (!is_realtime(t)) | ||
767 | return -EPERM; | ||
768 | |||
769 | /* prevent nested lock acquisition --- not supported by FMLP */ | ||
770 | if (tsk_rt(t)->num_locks_held) | ||
771 | return -EBUSY; | ||
772 | |||
773 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
774 | |||
775 | if (sem->owner) { | ||
776 | /* resource is not free => must suspend and wait */ | ||
777 | |||
778 | init_waitqueue_entry(&wait, t); | ||
779 | |||
780 | /* FIXME: interruptible would be nice some day */ | ||
781 | set_task_state(t, TASK_UNINTERRUPTIBLE); | ||
782 | |||
783 | __add_wait_queue_tail_exclusive(&sem->wait, &wait); | ||
784 | |||
785 | /* check if we need to activate priority inheritance */ | ||
786 | if (edf_higher_prio(t, sem->hp_waiter)) { | ||
787 | sem->hp_waiter = t; | ||
788 | if (edf_higher_prio(t, sem->owner)) | ||
789 | set_priority_inheritance(sem->owner, sem->hp_waiter); | ||
790 | } | ||
791 | |||
792 | TS_LOCK_SUSPEND; | ||
793 | |||
794 | /* release lock before sleeping */ | ||
795 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
796 | |||
797 | /* We depend on the FIFO order. Thus, we don't need to recheck | ||
798 | * when we wake up; we are guaranteed to have the lock since | ||
799 | * there is only one wake up per release. | ||
800 | */ | ||
801 | |||
802 | schedule(); | ||
803 | |||
804 | TS_LOCK_RESUME; | ||
805 | |||
806 | /* Since we hold the lock, no other task will change | ||
807 | * ->owner. We can thus check it without acquiring the spin | ||
808 | * lock. */ | ||
809 | BUG_ON(sem->owner != t); | ||
810 | } else { | ||
811 | /* it's ours now */ | ||
812 | sem->owner = t; | ||
813 | |||
814 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
815 | } | ||
816 | |||
817 | tsk_rt(t)->num_locks_held++; | ||
818 | |||
819 | return 0; | ||
820 | } | ||
821 | |||
822 | int gsnedf_fmlp_unlock(struct litmus_lock* l) | ||
823 | { | ||
824 | struct task_struct *t = current, *next; | ||
825 | struct fmlp_semaphore *sem = fmlp_from_lock(l); | ||
826 | unsigned long flags; | ||
827 | int err = 0; | ||
828 | |||
829 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
830 | |||
831 | if (sem->owner != t) { | ||
832 | err = -EINVAL; | ||
833 | goto out; | ||
834 | } | ||
835 | |||
836 | tsk_rt(t)->num_locks_held--; | ||
837 | |||
838 | /* check if there are jobs waiting for this resource */ | ||
839 | next = __waitqueue_remove_first(&sem->wait); | ||
840 | if (next) { | ||
841 | /* next becomes the resouce holder */ | ||
842 | sem->owner = next; | ||
843 | TRACE_CUR("lock ownership passed to %s/%d\n", next->comm, next->pid); | ||
844 | |||
845 | /* determine new hp_waiter if necessary */ | ||
846 | if (next == sem->hp_waiter) { | ||
847 | TRACE_TASK(next, "was highest-prio waiter\n"); | ||
848 | /* next has the highest priority --- it doesn't need to | ||
849 | * inherit. However, we need to make sure that the | ||
850 | * next-highest priority in the queue is reflected in | ||
851 | * hp_waiter. */ | ||
852 | sem->hp_waiter = find_hp_waiter(sem, next); | ||
853 | if (sem->hp_waiter) | ||
854 | TRACE_TASK(sem->hp_waiter, "is new highest-prio waiter\n"); | ||
855 | else | ||
856 | TRACE("no further waiters\n"); | ||
857 | } else { | ||
858 | /* Well, if next is not the highest-priority waiter, | ||
859 | * then it ought to inherit the highest-priority | ||
860 | * waiter's priority. */ | ||
861 | set_priority_inheritance(next, sem->hp_waiter); | ||
862 | } | ||
863 | |||
864 | /* wake up next */ | ||
865 | wake_up_process(next); | ||
866 | } else | ||
867 | /* becomes available */ | ||
868 | sem->owner = NULL; | ||
869 | |||
870 | /* we lose the benefit of priority inheritance (if any) */ | ||
871 | if (tsk_rt(t)->inh_task) | ||
872 | clear_priority_inheritance(t); | ||
873 | |||
874 | out: | ||
875 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
876 | |||
877 | return err; | ||
878 | } | ||
879 | |||
880 | int gsnedf_fmlp_close(struct litmus_lock* l) | ||
881 | { | ||
882 | struct task_struct *t = current; | ||
883 | struct fmlp_semaphore *sem = fmlp_from_lock(l); | ||
884 | unsigned long flags; | ||
885 | |||
886 | int owner; | ||
887 | |||
888 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
889 | |||
890 | owner = sem->owner == t; | ||
891 | |||
892 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
893 | |||
894 | if (owner) | ||
895 | gsnedf_fmlp_unlock(l); | ||
896 | |||
897 | return 0; | ||
898 | } | ||
899 | |||
900 | void gsnedf_fmlp_free(struct litmus_lock* lock) | ||
901 | { | ||
902 | kfree(fmlp_from_lock(lock)); | ||
903 | } | ||
904 | |||
905 | static struct litmus_lock_ops gsnedf_fmlp_lock_ops = { | ||
906 | .close = gsnedf_fmlp_close, | ||
907 | .lock = gsnedf_fmlp_lock, | ||
908 | .unlock = gsnedf_fmlp_unlock, | ||
909 | .deallocate = gsnedf_fmlp_free, | ||
910 | }; | ||
911 | |||
912 | static struct litmus_lock* gsnedf_new_fmlp(void) | ||
913 | { | ||
914 | struct fmlp_semaphore* sem; | ||
915 | |||
916 | sem = kmalloc(sizeof(*sem), GFP_KERNEL); | ||
917 | if (!sem) | ||
918 | return NULL; | ||
919 | |||
920 | sem->owner = NULL; | ||
921 | sem->hp_waiter = NULL; | ||
922 | init_waitqueue_head(&sem->wait); | ||
923 | sem->litmus_lock.ops = &gsnedf_fmlp_lock_ops; | ||
924 | |||
925 | return &sem->litmus_lock; | ||
926 | } | ||
927 | |||
928 | /* **** lock constructor **** */ | ||
929 | |||
930 | |||
931 | static long gsnedf_allocate_lock(struct litmus_lock **lock, int type, | ||
932 | void* __user unused) | ||
933 | { | ||
934 | int err = -ENXIO; | ||
935 | |||
936 | /* GSN-EDF currently only supports the FMLP for global resources. */ | ||
937 | switch (type) { | ||
938 | |||
939 | case FMLP_SEM: | ||
940 | /* Flexible Multiprocessor Locking Protocol */ | ||
941 | *lock = gsnedf_new_fmlp(); | ||
942 | if (*lock) | ||
943 | err = 0; | ||
944 | else | ||
945 | err = -ENOMEM; | ||
946 | break; | ||
947 | |||
948 | }; | ||
949 | |||
950 | return err; | ||
951 | } | ||
952 | |||
953 | #endif | ||
954 | |||
955 | |||
956 | static long gsnedf_activate_plugin(void) | ||
957 | { | ||
958 | int cpu; | ||
959 | cpu_entry_t *entry; | ||
960 | |||
961 | bheap_init(&gsnedf_cpu_heap); | ||
962 | #ifdef CONFIG_RELEASE_MASTER | ||
963 | gsnedf.release_master = atomic_read(&release_master_cpu); | ||
964 | #endif | ||
965 | |||
966 | for_each_online_cpu(cpu) { | ||
967 | entry = &per_cpu(gsnedf_cpu_entries, cpu); | ||
968 | bheap_node_init(&entry->hn, entry); | ||
969 | entry->linked = NULL; | ||
970 | entry->scheduled = NULL; | ||
971 | #ifdef CONFIG_RELEASE_MASTER | ||
972 | if (cpu != gsnedf.release_master) { | ||
973 | #endif | ||
974 | TRACE("GSN-EDF: Initializing CPU #%d.\n", cpu); | ||
975 | update_cpu_position(entry); | ||
976 | #ifdef CONFIG_RELEASE_MASTER | ||
977 | } else { | ||
978 | TRACE("GSN-EDF: CPU %d is release master.\n", cpu); | ||
979 | } | ||
980 | #endif | ||
981 | } | ||
982 | return 0; | ||
983 | } | ||
984 | |||
985 | /* Plugin object */ | ||
986 | static struct sched_plugin gsn_edf_plugin __cacheline_aligned_in_smp = { | ||
987 | .plugin_name = "GSN-EDF", | ||
988 | .finish_switch = gsnedf_finish_switch, | ||
989 | .tick = gsnedf_tick, | ||
990 | .task_new = gsnedf_task_new, | ||
991 | .complete_job = complete_job, | ||
992 | .task_exit = gsnedf_task_exit, | ||
993 | .schedule = gsnedf_schedule, | ||
994 | .task_wake_up = gsnedf_task_wake_up, | ||
995 | .task_block = gsnedf_task_block, | ||
996 | .admit_task = gsnedf_admit_task, | ||
997 | .activate_plugin = gsnedf_activate_plugin, | ||
998 | #ifdef CONFIG_LITMUS_LOCKING | ||
999 | .allocate_lock = gsnedf_allocate_lock, | ||
1000 | #endif | ||
1001 | }; | ||
1002 | |||
1003 | |||
1004 | static int __init init_gsn_edf(void) | ||
1005 | { | ||
1006 | int cpu; | ||
1007 | cpu_entry_t *entry; | ||
1008 | |||
1009 | bheap_init(&gsnedf_cpu_heap); | ||
1010 | /* initialize CPU state */ | ||
1011 | for (cpu = 0; cpu < NR_CPUS; cpu++) { | ||
1012 | entry = &per_cpu(gsnedf_cpu_entries, cpu); | ||
1013 | gsnedf_cpus[cpu] = entry; | ||
1014 | entry->cpu = cpu; | ||
1015 | entry->hn = &gsnedf_heap_node[cpu]; | ||
1016 | bheap_node_init(&entry->hn, entry); | ||
1017 | } | ||
1018 | edf_domain_init(&gsnedf, NULL, gsnedf_release_jobs); | ||
1019 | return register_sched_plugin(&gsn_edf_plugin); | ||
1020 | } | ||
1021 | |||
1022 | |||
1023 | module_init(init_gsn_edf); | ||