diff options
author | Sebastian Siewior <sebastian@breakpoint.cc> | 2008-04-01 09:24:50 -0400 |
---|---|---|
committer | Herbert Xu <herbert@gondor.apana.org.au> | 2008-04-20 22:19:34 -0400 |
commit | 7dc748e4e720c1a98185363096ad7582e9113092 (patch) | |
tree | 664b4b77581c6b77ebd9d0535e7bfdb1ddd041c8 | |
parent | 5427663f498e19b441277de72ce7a685511f247c (diff) |
[CRYPTO] padlock-aes: Use generic setkey function
The Padlock AES setkey routine is the same as exported by the generic
implementation. So we could use it.
Signed-off-by: Sebastian Siewior <sebastian@breakpoint.cc>
Cc: Michal Ludvig <michal@logix.cz>
Tested-by: Stefan Hellermann <stefan@the2masters.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-rw-r--r-- | drivers/crypto/Kconfig | 1 | ||||
-rw-r--r-- | drivers/crypto/padlock-aes.c | 320 |
2 files changed, 20 insertions, 301 deletions
diff --git a/drivers/crypto/Kconfig b/drivers/crypto/Kconfig index e15dbc61f20f..43b71b69daa5 100644 --- a/drivers/crypto/Kconfig +++ b/drivers/crypto/Kconfig | |||
@@ -27,6 +27,7 @@ config CRYPTO_DEV_PADLOCK_AES | |||
27 | tristate "PadLock driver for AES algorithm" | 27 | tristate "PadLock driver for AES algorithm" |
28 | depends on CRYPTO_DEV_PADLOCK | 28 | depends on CRYPTO_DEV_PADLOCK |
29 | select CRYPTO_BLKCIPHER | 29 | select CRYPTO_BLKCIPHER |
30 | select CRYPTO_AES | ||
30 | help | 31 | help |
31 | Use VIA PadLock for AES algorithm. | 32 | Use VIA PadLock for AES algorithm. |
32 | 33 | ||
diff --git a/drivers/crypto/padlock-aes.c b/drivers/crypto/padlock-aes.c index 2f3ad3f7dfea..bb30eb9b93ef 100644 --- a/drivers/crypto/padlock-aes.c +++ b/drivers/crypto/padlock-aes.c | |||
@@ -5,42 +5,6 @@ | |||
5 | * | 5 | * |
6 | * Copyright (c) 2004 Michal Ludvig <michal@logix.cz> | 6 | * Copyright (c) 2004 Michal Ludvig <michal@logix.cz> |
7 | * | 7 | * |
8 | * Key expansion routine taken from crypto/aes_generic.c | ||
9 | * | ||
10 | * This program is free software; you can redistribute it and/or modify | ||
11 | * it under the terms of the GNU General Public License as published by | ||
12 | * the Free Software Foundation; either version 2 of the License, or | ||
13 | * (at your option) any later version. | ||
14 | * | ||
15 | * --------------------------------------------------------------------------- | ||
16 | * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK. | ||
17 | * All rights reserved. | ||
18 | * | ||
19 | * LICENSE TERMS | ||
20 | * | ||
21 | * The free distribution and use of this software in both source and binary | ||
22 | * form is allowed (with or without changes) provided that: | ||
23 | * | ||
24 | * 1. distributions of this source code include the above copyright | ||
25 | * notice, this list of conditions and the following disclaimer; | ||
26 | * | ||
27 | * 2. distributions in binary form include the above copyright | ||
28 | * notice, this list of conditions and the following disclaimer | ||
29 | * in the documentation and/or other associated materials; | ||
30 | * | ||
31 | * 3. the copyright holder's name is not used to endorse products | ||
32 | * built using this software without specific written permission. | ||
33 | * | ||
34 | * ALTERNATIVELY, provided that this notice is retained in full, this product | ||
35 | * may be distributed under the terms of the GNU General Public License (GPL), | ||
36 | * in which case the provisions of the GPL apply INSTEAD OF those given above. | ||
37 | * | ||
38 | * DISCLAIMER | ||
39 | * | ||
40 | * This software is provided 'as is' with no explicit or implied warranties | ||
41 | * in respect of its properties, including, but not limited to, correctness | ||
42 | * and/or fitness for purpose. | ||
43 | * --------------------------------------------------------------------------- | ||
44 | */ | 8 | */ |
45 | 9 | ||
46 | #include <crypto/algapi.h> | 10 | #include <crypto/algapi.h> |
@@ -54,9 +18,6 @@ | |||
54 | #include <asm/byteorder.h> | 18 | #include <asm/byteorder.h> |
55 | #include "padlock.h" | 19 | #include "padlock.h" |
56 | 20 | ||
57 | #define AES_EXTENDED_KEY_SIZE 64 /* in uint32_t units */ | ||
58 | #define AES_EXTENDED_KEY_SIZE_B (AES_EXTENDED_KEY_SIZE * sizeof(uint32_t)) | ||
59 | |||
60 | /* Control word. */ | 21 | /* Control word. */ |
61 | struct cword { | 22 | struct cword { |
62 | unsigned int __attribute__ ((__packed__)) | 23 | unsigned int __attribute__ ((__packed__)) |
@@ -70,218 +31,23 @@ struct cword { | |||
70 | 31 | ||
71 | /* Whenever making any changes to the following | 32 | /* Whenever making any changes to the following |
72 | * structure *make sure* you keep E, d_data | 33 | * structure *make sure* you keep E, d_data |
73 | * and cword aligned on 16 Bytes boundaries!!! */ | 34 | * and cword aligned on 16 Bytes boundaries and |
35 | * the Hardware can access 16 * 16 bytes of E and d_data | ||
36 | * (only the first 15 * 16 bytes matter but the HW reads | ||
37 | * more). | ||
38 | */ | ||
74 | struct aes_ctx { | 39 | struct aes_ctx { |
40 | u32 E[AES_MAX_KEYLENGTH_U32] | ||
41 | __attribute__ ((__aligned__(PADLOCK_ALIGNMENT))); | ||
42 | u32 d_data[AES_MAX_KEYLENGTH_U32] | ||
43 | __attribute__ ((__aligned__(PADLOCK_ALIGNMENT))); | ||
75 | struct { | 44 | struct { |
76 | struct cword encrypt; | 45 | struct cword encrypt; |
77 | struct cword decrypt; | 46 | struct cword decrypt; |
78 | } cword; | 47 | } cword; |
79 | u32 *D; | 48 | u32 *D; |
80 | int key_length; | ||
81 | u32 E[AES_EXTENDED_KEY_SIZE] | ||
82 | __attribute__ ((__aligned__(PADLOCK_ALIGNMENT))); | ||
83 | u32 d_data[AES_EXTENDED_KEY_SIZE] | ||
84 | __attribute__ ((__aligned__(PADLOCK_ALIGNMENT))); | ||
85 | }; | 49 | }; |
86 | 50 | ||
87 | /* ====== Key management routines ====== */ | ||
88 | |||
89 | static inline uint32_t | ||
90 | generic_rotr32 (const uint32_t x, const unsigned bits) | ||
91 | { | ||
92 | const unsigned n = bits % 32; | ||
93 | return (x >> n) | (x << (32 - n)); | ||
94 | } | ||
95 | |||
96 | static inline uint32_t | ||
97 | generic_rotl32 (const uint32_t x, const unsigned bits) | ||
98 | { | ||
99 | const unsigned n = bits % 32; | ||
100 | return (x << n) | (x >> (32 - n)); | ||
101 | } | ||
102 | |||
103 | #define rotl generic_rotl32 | ||
104 | #define rotr generic_rotr32 | ||
105 | |||
106 | /* | ||
107 | * #define byte(x, nr) ((unsigned char)((x) >> (nr*8))) | ||
108 | */ | ||
109 | static inline uint8_t | ||
110 | byte(const uint32_t x, const unsigned n) | ||
111 | { | ||
112 | return x >> (n << 3); | ||
113 | } | ||
114 | |||
115 | #define E_KEY ctx->E | ||
116 | #define D_KEY ctx->D | ||
117 | |||
118 | static uint8_t pow_tab[256]; | ||
119 | static uint8_t log_tab[256]; | ||
120 | static uint8_t sbx_tab[256]; | ||
121 | static uint8_t isb_tab[256]; | ||
122 | static uint32_t rco_tab[10]; | ||
123 | static uint32_t ft_tab[4][256]; | ||
124 | static uint32_t it_tab[4][256]; | ||
125 | |||
126 | static uint32_t fl_tab[4][256]; | ||
127 | static uint32_t il_tab[4][256]; | ||
128 | |||
129 | static inline uint8_t | ||
130 | f_mult (uint8_t a, uint8_t b) | ||
131 | { | ||
132 | uint8_t aa = log_tab[a], cc = aa + log_tab[b]; | ||
133 | |||
134 | return pow_tab[cc + (cc < aa ? 1 : 0)]; | ||
135 | } | ||
136 | |||
137 | #define ff_mult(a,b) (a && b ? f_mult(a, b) : 0) | ||
138 | |||
139 | #define f_rn(bo, bi, n, k) \ | ||
140 | bo[n] = ft_tab[0][byte(bi[n],0)] ^ \ | ||
141 | ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \ | ||
142 | ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ | ||
143 | ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) | ||
144 | |||
145 | #define i_rn(bo, bi, n, k) \ | ||
146 | bo[n] = it_tab[0][byte(bi[n],0)] ^ \ | ||
147 | it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \ | ||
148 | it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ | ||
149 | it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) | ||
150 | |||
151 | #define ls_box(x) \ | ||
152 | ( fl_tab[0][byte(x, 0)] ^ \ | ||
153 | fl_tab[1][byte(x, 1)] ^ \ | ||
154 | fl_tab[2][byte(x, 2)] ^ \ | ||
155 | fl_tab[3][byte(x, 3)] ) | ||
156 | |||
157 | #define f_rl(bo, bi, n, k) \ | ||
158 | bo[n] = fl_tab[0][byte(bi[n],0)] ^ \ | ||
159 | fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \ | ||
160 | fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ | ||
161 | fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) | ||
162 | |||
163 | #define i_rl(bo, bi, n, k) \ | ||
164 | bo[n] = il_tab[0][byte(bi[n],0)] ^ \ | ||
165 | il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \ | ||
166 | il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ | ||
167 | il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) | ||
168 | |||
169 | static void | ||
170 | gen_tabs (void) | ||
171 | { | ||
172 | uint32_t i, t; | ||
173 | uint8_t p, q; | ||
174 | |||
175 | /* log and power tables for GF(2**8) finite field with | ||
176 | 0x011b as modular polynomial - the simplest prmitive | ||
177 | root is 0x03, used here to generate the tables */ | ||
178 | |||
179 | for (i = 0, p = 1; i < 256; ++i) { | ||
180 | pow_tab[i] = (uint8_t) p; | ||
181 | log_tab[p] = (uint8_t) i; | ||
182 | |||
183 | p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0); | ||
184 | } | ||
185 | |||
186 | log_tab[1] = 0; | ||
187 | |||
188 | for (i = 0, p = 1; i < 10; ++i) { | ||
189 | rco_tab[i] = p; | ||
190 | |||
191 | p = (p << 1) ^ (p & 0x80 ? 0x01b : 0); | ||
192 | } | ||
193 | |||
194 | for (i = 0; i < 256; ++i) { | ||
195 | p = (i ? pow_tab[255 - log_tab[i]] : 0); | ||
196 | q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2)); | ||
197 | p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2)); | ||
198 | sbx_tab[i] = p; | ||
199 | isb_tab[p] = (uint8_t) i; | ||
200 | } | ||
201 | |||
202 | for (i = 0; i < 256; ++i) { | ||
203 | p = sbx_tab[i]; | ||
204 | |||
205 | t = p; | ||
206 | fl_tab[0][i] = t; | ||
207 | fl_tab[1][i] = rotl (t, 8); | ||
208 | fl_tab[2][i] = rotl (t, 16); | ||
209 | fl_tab[3][i] = rotl (t, 24); | ||
210 | |||
211 | t = ((uint32_t) ff_mult (2, p)) | | ||
212 | ((uint32_t) p << 8) | | ||
213 | ((uint32_t) p << 16) | ((uint32_t) ff_mult (3, p) << 24); | ||
214 | |||
215 | ft_tab[0][i] = t; | ||
216 | ft_tab[1][i] = rotl (t, 8); | ||
217 | ft_tab[2][i] = rotl (t, 16); | ||
218 | ft_tab[3][i] = rotl (t, 24); | ||
219 | |||
220 | p = isb_tab[i]; | ||
221 | |||
222 | t = p; | ||
223 | il_tab[0][i] = t; | ||
224 | il_tab[1][i] = rotl (t, 8); | ||
225 | il_tab[2][i] = rotl (t, 16); | ||
226 | il_tab[3][i] = rotl (t, 24); | ||
227 | |||
228 | t = ((uint32_t) ff_mult (14, p)) | | ||
229 | ((uint32_t) ff_mult (9, p) << 8) | | ||
230 | ((uint32_t) ff_mult (13, p) << 16) | | ||
231 | ((uint32_t) ff_mult (11, p) << 24); | ||
232 | |||
233 | it_tab[0][i] = t; | ||
234 | it_tab[1][i] = rotl (t, 8); | ||
235 | it_tab[2][i] = rotl (t, 16); | ||
236 | it_tab[3][i] = rotl (t, 24); | ||
237 | } | ||
238 | } | ||
239 | |||
240 | #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b) | ||
241 | |||
242 | #define imix_col(y,x) \ | ||
243 | u = star_x(x); \ | ||
244 | v = star_x(u); \ | ||
245 | w = star_x(v); \ | ||
246 | t = w ^ (x); \ | ||
247 | (y) = u ^ v ^ w; \ | ||
248 | (y) ^= rotr(u ^ t, 8) ^ \ | ||
249 | rotr(v ^ t, 16) ^ \ | ||
250 | rotr(t,24) | ||
251 | |||
252 | /* initialise the key schedule from the user supplied key */ | ||
253 | |||
254 | #define loop4(i) \ | ||
255 | { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \ | ||
256 | t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \ | ||
257 | t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \ | ||
258 | t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \ | ||
259 | t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \ | ||
260 | } | ||
261 | |||
262 | #define loop6(i) \ | ||
263 | { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \ | ||
264 | t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \ | ||
265 | t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \ | ||
266 | t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \ | ||
267 | t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \ | ||
268 | t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \ | ||
269 | t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \ | ||
270 | } | ||
271 | |||
272 | #define loop8(i) \ | ||
273 | { t = rotr(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \ | ||
274 | t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \ | ||
275 | t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \ | ||
276 | t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \ | ||
277 | t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \ | ||
278 | t = E_KEY[8 * i + 4] ^ ls_box(t); \ | ||
279 | E_KEY[8 * i + 12] = t; \ | ||
280 | t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \ | ||
281 | t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \ | ||
282 | t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \ | ||
283 | } | ||
284 | |||
285 | /* Tells whether the ACE is capable to generate | 51 | /* Tells whether the ACE is capable to generate |
286 | the extended key for a given key_len. */ | 52 | the extended key for a given key_len. */ |
287 | static inline int | 53 | static inline int |
@@ -321,17 +87,13 @@ static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, | |||
321 | struct aes_ctx *ctx = aes_ctx(tfm); | 87 | struct aes_ctx *ctx = aes_ctx(tfm); |
322 | const __le32 *key = (const __le32 *)in_key; | 88 | const __le32 *key = (const __le32 *)in_key; |
323 | u32 *flags = &tfm->crt_flags; | 89 | u32 *flags = &tfm->crt_flags; |
324 | uint32_t i, t, u, v, w; | 90 | struct crypto_aes_ctx gen_aes; |
325 | uint32_t P[AES_EXTENDED_KEY_SIZE]; | ||
326 | uint32_t rounds; | ||
327 | 91 | ||
328 | if (key_len % 8) { | 92 | if (key_len % 8) { |
329 | *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; | 93 | *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; |
330 | return -EINVAL; | 94 | return -EINVAL; |
331 | } | 95 | } |
332 | 96 | ||
333 | ctx->key_length = key_len; | ||
334 | |||
335 | /* | 97 | /* |
336 | * If the hardware is capable of generating the extended key | 98 | * If the hardware is capable of generating the extended key |
337 | * itself we must supply the plain key for both encryption | 99 | * itself we must supply the plain key for both encryption |
@@ -339,10 +101,10 @@ static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, | |||
339 | */ | 101 | */ |
340 | ctx->D = ctx->E; | 102 | ctx->D = ctx->E; |
341 | 103 | ||
342 | E_KEY[0] = le32_to_cpu(key[0]); | 104 | ctx->E[0] = le32_to_cpu(key[0]); |
343 | E_KEY[1] = le32_to_cpu(key[1]); | 105 | ctx->E[1] = le32_to_cpu(key[1]); |
344 | E_KEY[2] = le32_to_cpu(key[2]); | 106 | ctx->E[2] = le32_to_cpu(key[2]); |
345 | E_KEY[3] = le32_to_cpu(key[3]); | 107 | ctx->E[3] = le32_to_cpu(key[3]); |
346 | 108 | ||
347 | /* Prepare control words. */ | 109 | /* Prepare control words. */ |
348 | memset(&ctx->cword, 0, sizeof(ctx->cword)); | 110 | memset(&ctx->cword, 0, sizeof(ctx->cword)); |
@@ -361,56 +123,13 @@ static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, | |||
361 | ctx->cword.encrypt.keygen = 1; | 123 | ctx->cword.encrypt.keygen = 1; |
362 | ctx->cword.decrypt.keygen = 1; | 124 | ctx->cword.decrypt.keygen = 1; |
363 | 125 | ||
364 | switch (key_len) { | 126 | if (crypto_aes_expand_key(&gen_aes, in_key, key_len)) { |
365 | case 16: | 127 | *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; |
366 | t = E_KEY[3]; | 128 | return -EINVAL; |
367 | for (i = 0; i < 10; ++i) | ||
368 | loop4 (i); | ||
369 | break; | ||
370 | |||
371 | case 24: | ||
372 | E_KEY[4] = le32_to_cpu(key[4]); | ||
373 | t = E_KEY[5] = le32_to_cpu(key[5]); | ||
374 | for (i = 0; i < 8; ++i) | ||
375 | loop6 (i); | ||
376 | break; | ||
377 | |||
378 | case 32: | ||
379 | E_KEY[4] = le32_to_cpu(key[4]); | ||
380 | E_KEY[5] = le32_to_cpu(key[5]); | ||
381 | E_KEY[6] = le32_to_cpu(key[6]); | ||
382 | t = E_KEY[7] = le32_to_cpu(key[7]); | ||
383 | for (i = 0; i < 7; ++i) | ||
384 | loop8 (i); | ||
385 | break; | ||
386 | } | ||
387 | |||
388 | D_KEY[0] = E_KEY[0]; | ||
389 | D_KEY[1] = E_KEY[1]; | ||
390 | D_KEY[2] = E_KEY[2]; | ||
391 | D_KEY[3] = E_KEY[3]; | ||
392 | |||
393 | for (i = 4; i < key_len + 24; ++i) { | ||
394 | imix_col (D_KEY[i], E_KEY[i]); | ||
395 | } | ||
396 | |||
397 | /* PadLock needs a different format of the decryption key. */ | ||
398 | rounds = 10 + (key_len - 16) / 4; | ||
399 | |||
400 | for (i = 0; i < rounds; i++) { | ||
401 | P[((i + 1) * 4) + 0] = D_KEY[((rounds - i - 1) * 4) + 0]; | ||
402 | P[((i + 1) * 4) + 1] = D_KEY[((rounds - i - 1) * 4) + 1]; | ||
403 | P[((i + 1) * 4) + 2] = D_KEY[((rounds - i - 1) * 4) + 2]; | ||
404 | P[((i + 1) * 4) + 3] = D_KEY[((rounds - i - 1) * 4) + 3]; | ||
405 | } | 129 | } |
406 | 130 | ||
407 | P[0] = E_KEY[(rounds * 4) + 0]; | 131 | memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH); |
408 | P[1] = E_KEY[(rounds * 4) + 1]; | 132 | memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH); |
409 | P[2] = E_KEY[(rounds * 4) + 2]; | ||
410 | P[3] = E_KEY[(rounds * 4) + 3]; | ||
411 | |||
412 | memcpy(D_KEY, P, AES_EXTENDED_KEY_SIZE_B); | ||
413 | |||
414 | return 0; | 133 | return 0; |
415 | } | 134 | } |
416 | 135 | ||
@@ -675,7 +394,6 @@ static int __init padlock_init(void) | |||
675 | return -ENODEV; | 394 | return -ENODEV; |
676 | } | 395 | } |
677 | 396 | ||
678 | gen_tabs(); | ||
679 | if ((ret = crypto_register_alg(&aes_alg))) | 397 | if ((ret = crypto_register_alg(&aes_alg))) |
680 | goto aes_err; | 398 | goto aes_err; |
681 | 399 | ||