diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2008-10-20 12:03:12 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2008-10-20 12:03:12 -0400 |
commit | 2be508d847392e431759e370d21cea9412848758 (patch) | |
tree | be5e00a4d7be4ef353ffe4d550fb80a251d321c3 | |
parent | 01e8ef11bc1a74e65678ed55795f59266d4add01 (diff) | |
parent | 8a1a6272057e2ad90ab531a70330165888866e60 (diff) |
Merge git://git.infradead.org/mtd-2.6
* git://git.infradead.org/mtd-2.6: (69 commits)
Revert "[MTD] m25p80.c code cleanup"
[MTD] [NAND] GPIO driver depends on ARM... for now.
[MTD] [NAND] sh_flctl: fix compile error
[MTD] [NOR] AT49BV6416 has swapped erase regions
[MTD] [NAND] GPIO NAND flash driver
[MTD] cmdlineparts documentation change - explain where mtd-id comes from
[MTD] cfi_cmdset_0002.c: Add Macronix CFI V1.0 TopBottom detection
[MTD] [NAND] Fix compilation warnings in drivers/mtd/nand/cs553x_nand.c
[JFFS2] Write buffer offset adjustment for NOR-ECC (Sibley) flash
[MTD] mtdoops: Fix a bug where block may not be erased
[MTD] mtdoops: Add a magic number to logged kernel oops
[MTD] mtdoops: Fix an off by one error
[JFFS2] Correct parameter names of jffs2_compress() in comments
[MTD] [NAND] sh_flctl: add support for Renesas SuperH FLCTL
[MTD] [NAND] Bug on atmel_nand HW ECC : OOB info not correctly written
[MTD] [MAPS] Remove unused variable after ROM API cleanup.
[MTD] m25p80.c extended jedec support (v2)
[MTD] remove unused mtd parameter in of_mtd_parse_partitions()
[MTD] [NAND] remove dead Kconfig associated with !CONFIG_PPC_MERGE
[MTD] [NAND] driver extension to support NAND on TQM85xx modules
...
69 files changed, 5441 insertions, 1507 deletions
diff --git a/Documentation/mtd/nand_ecc.txt b/Documentation/mtd/nand_ecc.txt new file mode 100644 index 000000000000..bdf93b7f0f24 --- /dev/null +++ b/Documentation/mtd/nand_ecc.txt | |||
@@ -0,0 +1,714 @@ | |||
1 | Introduction | ||
2 | ============ | ||
3 | |||
4 | Having looked at the linux mtd/nand driver and more specific at nand_ecc.c | ||
5 | I felt there was room for optimisation. I bashed the code for a few hours | ||
6 | performing tricks like table lookup removing superfluous code etc. | ||
7 | After that the speed was increased by 35-40%. | ||
8 | Still I was not too happy as I felt there was additional room for improvement. | ||
9 | |||
10 | Bad! I was hooked. | ||
11 | I decided to annotate my steps in this file. Perhaps it is useful to someone | ||
12 | or someone learns something from it. | ||
13 | |||
14 | |||
15 | The problem | ||
16 | =========== | ||
17 | |||
18 | NAND flash (at least SLC one) typically has sectors of 256 bytes. | ||
19 | However NAND flash is not extremely reliable so some error detection | ||
20 | (and sometimes correction) is needed. | ||
21 | |||
22 | This is done by means of a Hamming code. I'll try to explain it in | ||
23 | laymans terms (and apologies to all the pro's in the field in case I do | ||
24 | not use the right terminology, my coding theory class was almost 30 | ||
25 | years ago, and I must admit it was not one of my favourites). | ||
26 | |||
27 | As I said before the ecc calculation is performed on sectors of 256 | ||
28 | bytes. This is done by calculating several parity bits over the rows and | ||
29 | columns. The parity used is even parity which means that the parity bit = 1 | ||
30 | if the data over which the parity is calculated is 1 and the parity bit = 0 | ||
31 | if the data over which the parity is calculated is 0. So the total | ||
32 | number of bits over the data over which the parity is calculated + the | ||
33 | parity bit is even. (see wikipedia if you can't follow this). | ||
34 | Parity is often calculated by means of an exclusive or operation, | ||
35 | sometimes also referred to as xor. In C the operator for xor is ^ | ||
36 | |||
37 | Back to ecc. | ||
38 | Let's give a small figure: | ||
39 | |||
40 | byte 0: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp2 rp4 ... rp14 | ||
41 | byte 1: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp2 rp4 ... rp14 | ||
42 | byte 2: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp3 rp4 ... rp14 | ||
43 | byte 3: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp3 rp4 ... rp14 | ||
44 | byte 4: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp2 rp5 ... rp14 | ||
45 | .... | ||
46 | byte 254: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp3 rp5 ... rp15 | ||
47 | byte 255: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp3 rp5 ... rp15 | ||
48 | cp1 cp0 cp1 cp0 cp1 cp0 cp1 cp0 | ||
49 | cp3 cp3 cp2 cp2 cp3 cp3 cp2 cp2 | ||
50 | cp5 cp5 cp5 cp5 cp4 cp4 cp4 cp4 | ||
51 | |||
52 | This figure represents a sector of 256 bytes. | ||
53 | cp is my abbreviaton for column parity, rp for row parity. | ||
54 | |||
55 | Let's start to explain column parity. | ||
56 | cp0 is the parity that belongs to all bit0, bit2, bit4, bit6. | ||
57 | so the sum of all bit0, bit2, bit4 and bit6 values + cp0 itself is even. | ||
58 | Similarly cp1 is the sum of all bit1, bit3, bit5 and bit7. | ||
59 | cp2 is the parity over bit0, bit1, bit4 and bit5 | ||
60 | cp3 is the parity over bit2, bit3, bit6 and bit7. | ||
61 | cp4 is the parity over bit0, bit1, bit2 and bit3. | ||
62 | cp5 is the parity over bit4, bit5, bit6 and bit7. | ||
63 | Note that each of cp0 .. cp5 is exactly one bit. | ||
64 | |||
65 | Row parity actually works almost the same. | ||
66 | rp0 is the parity of all even bytes (0, 2, 4, 6, ... 252, 254) | ||
67 | rp1 is the parity of all odd bytes (1, 3, 5, 7, ..., 253, 255) | ||
68 | rp2 is the parity of all bytes 0, 1, 4, 5, 8, 9, ... | ||
69 | (so handle two bytes, then skip 2 bytes). | ||
70 | rp3 is covers the half rp2 does not cover (bytes 2, 3, 6, 7, 10, 11, ...) | ||
71 | for rp4 the rule is cover 4 bytes, skip 4 bytes, cover 4 bytes, skip 4 etc. | ||
72 | so rp4 calculates parity over bytes 0, 1, 2, 3, 8, 9, 10, 11, 16, ...) | ||
73 | and rp5 covers the other half, so bytes 4, 5, 6, 7, 12, 13, 14, 15, 20, .. | ||
74 | The story now becomes quite boring. I guess you get the idea. | ||
75 | rp6 covers 8 bytes then skips 8 etc | ||
76 | rp7 skips 8 bytes then covers 8 etc | ||
77 | rp8 covers 16 bytes then skips 16 etc | ||
78 | rp9 skips 16 bytes then covers 16 etc | ||
79 | rp10 covers 32 bytes then skips 32 etc | ||
80 | rp11 skips 32 bytes then covers 32 etc | ||
81 | rp12 covers 64 bytes then skips 64 etc | ||
82 | rp13 skips 64 bytes then covers 64 etc | ||
83 | rp14 covers 128 bytes then skips 128 | ||
84 | rp15 skips 128 bytes then covers 128 | ||
85 | |||
86 | In the end the parity bits are grouped together in three bytes as | ||
87 | follows: | ||
88 | ECC Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 | ||
89 | ECC 0 rp07 rp06 rp05 rp04 rp03 rp02 rp01 rp00 | ||
90 | ECC 1 rp15 rp14 rp13 rp12 rp11 rp10 rp09 rp08 | ||
91 | ECC 2 cp5 cp4 cp3 cp2 cp1 cp0 1 1 | ||
92 | |||
93 | I detected after writing this that ST application note AN1823 | ||
94 | (http://www.st.com/stonline/books/pdf/docs/10123.pdf) gives a much | ||
95 | nicer picture.(but they use line parity as term where I use row parity) | ||
96 | Oh well, I'm graphically challenged, so suffer with me for a moment :-) | ||
97 | And I could not reuse the ST picture anyway for copyright reasons. | ||
98 | |||
99 | |||
100 | Attempt 0 | ||
101 | ========= | ||
102 | |||
103 | Implementing the parity calculation is pretty simple. | ||
104 | In C pseudocode: | ||
105 | for (i = 0; i < 256; i++) | ||
106 | { | ||
107 | if (i & 0x01) | ||
108 | rp1 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp1; | ||
109 | else | ||
110 | rp0 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp1; | ||
111 | if (i & 0x02) | ||
112 | rp3 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp3; | ||
113 | else | ||
114 | rp2 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp2; | ||
115 | if (i & 0x04) | ||
116 | rp5 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp5; | ||
117 | else | ||
118 | rp4 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp4; | ||
119 | if (i & 0x08) | ||
120 | rp7 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp7; | ||
121 | else | ||
122 | rp6 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp6; | ||
123 | if (i & 0x10) | ||
124 | rp9 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp9; | ||
125 | else | ||
126 | rp8 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp8; | ||
127 | if (i & 0x20) | ||
128 | rp11 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp11; | ||
129 | else | ||
130 | rp10 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp10; | ||
131 | if (i & 0x40) | ||
132 | rp13 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp13; | ||
133 | else | ||
134 | rp12 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp12; | ||
135 | if (i & 0x80) | ||
136 | rp15 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp15; | ||
137 | else | ||
138 | rp14 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp14; | ||
139 | cp0 = bit6 ^ bit4 ^ bit2 ^ bit0 ^ cp0; | ||
140 | cp1 = bit7 ^ bit5 ^ bit3 ^ bit1 ^ cp1; | ||
141 | cp2 = bit5 ^ bit4 ^ bit1 ^ bit0 ^ cp2; | ||
142 | cp3 = bit7 ^ bit6 ^ bit3 ^ bit2 ^ cp3 | ||
143 | cp4 = bit3 ^ bit2 ^ bit1 ^ bit0 ^ cp4 | ||
144 | cp5 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ cp5 | ||
145 | } | ||
146 | |||
147 | |||
148 | Analysis 0 | ||
149 | ========== | ||
150 | |||
151 | C does have bitwise operators but not really operators to do the above | ||
152 | efficiently (and most hardware has no such instructions either). | ||
153 | Therefore without implementing this it was clear that the code above was | ||
154 | not going to bring me a Nobel prize :-) | ||
155 | |||
156 | Fortunately the exclusive or operation is commutative, so we can combine | ||
157 | the values in any order. So instead of calculating all the bits | ||
158 | individually, let us try to rearrange things. | ||
159 | For the column parity this is easy. We can just xor the bytes and in the | ||
160 | end filter out the relevant bits. This is pretty nice as it will bring | ||
161 | all cp calculation out of the if loop. | ||
162 | |||
163 | Similarly we can first xor the bytes for the various rows. | ||
164 | This leads to: | ||
165 | |||
166 | |||
167 | Attempt 1 | ||
168 | ========= | ||
169 | |||
170 | const char parity[256] = { | ||
171 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | ||
172 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | ||
173 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | ||
174 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | ||
175 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | ||
176 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | ||
177 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | ||
178 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | ||
179 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | ||
180 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | ||
181 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | ||
182 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | ||
183 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | ||
184 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | ||
185 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | ||
186 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 | ||
187 | }; | ||
188 | |||
189 | void ecc1(const unsigned char *buf, unsigned char *code) | ||
190 | { | ||
191 | int i; | ||
192 | const unsigned char *bp = buf; | ||
193 | unsigned char cur; | ||
194 | unsigned char rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7; | ||
195 | unsigned char rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15; | ||
196 | unsigned char par; | ||
197 | |||
198 | par = 0; | ||
199 | rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0; | ||
200 | rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0; | ||
201 | rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0; | ||
202 | rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0; | ||
203 | |||
204 | for (i = 0; i < 256; i++) | ||
205 | { | ||
206 | cur = *bp++; | ||
207 | par ^= cur; | ||
208 | if (i & 0x01) rp1 ^= cur; else rp0 ^= cur; | ||
209 | if (i & 0x02) rp3 ^= cur; else rp2 ^= cur; | ||
210 | if (i & 0x04) rp5 ^= cur; else rp4 ^= cur; | ||
211 | if (i & 0x08) rp7 ^= cur; else rp6 ^= cur; | ||
212 | if (i & 0x10) rp9 ^= cur; else rp8 ^= cur; | ||
213 | if (i & 0x20) rp11 ^= cur; else rp10 ^= cur; | ||
214 | if (i & 0x40) rp13 ^= cur; else rp12 ^= cur; | ||
215 | if (i & 0x80) rp15 ^= cur; else rp14 ^= cur; | ||
216 | } | ||
217 | code[0] = | ||
218 | (parity[rp7] << 7) | | ||
219 | (parity[rp6] << 6) | | ||
220 | (parity[rp5] << 5) | | ||
221 | (parity[rp4] << 4) | | ||
222 | (parity[rp3] << 3) | | ||
223 | (parity[rp2] << 2) | | ||
224 | (parity[rp1] << 1) | | ||
225 | (parity[rp0]); | ||
226 | code[1] = | ||
227 | (parity[rp15] << 7) | | ||
228 | (parity[rp14] << 6) | | ||
229 | (parity[rp13] << 5) | | ||
230 | (parity[rp12] << 4) | | ||
231 | (parity[rp11] << 3) | | ||
232 | (parity[rp10] << 2) | | ||
233 | (parity[rp9] << 1) | | ||
234 | (parity[rp8]); | ||
235 | code[2] = | ||
236 | (parity[par & 0xf0] << 7) | | ||
237 | (parity[par & 0x0f] << 6) | | ||
238 | (parity[par & 0xcc] << 5) | | ||
239 | (parity[par & 0x33] << 4) | | ||
240 | (parity[par & 0xaa] << 3) | | ||
241 | (parity[par & 0x55] << 2); | ||
242 | code[0] = ~code[0]; | ||
243 | code[1] = ~code[1]; | ||
244 | code[2] = ~code[2]; | ||
245 | } | ||
246 | |||
247 | Still pretty straightforward. The last three invert statements are there to | ||
248 | give a checksum of 0xff 0xff 0xff for an empty flash. In an empty flash | ||
249 | all data is 0xff, so the checksum then matches. | ||
250 | |||
251 | I also introduced the parity lookup. I expected this to be the fastest | ||
252 | way to calculate the parity, but I will investigate alternatives later | ||
253 | on. | ||
254 | |||
255 | |||
256 | Analysis 1 | ||
257 | ========== | ||
258 | |||
259 | The code works, but is not terribly efficient. On my system it took | ||
260 | almost 4 times as much time as the linux driver code. But hey, if it was | ||
261 | *that* easy this would have been done long before. | ||
262 | No pain. no gain. | ||
263 | |||
264 | Fortunately there is plenty of room for improvement. | ||
265 | |||
266 | In step 1 we moved from bit-wise calculation to byte-wise calculation. | ||
267 | However in C we can also use the unsigned long data type and virtually | ||
268 | every modern microprocessor supports 32 bit operations, so why not try | ||
269 | to write our code in such a way that we process data in 32 bit chunks. | ||
270 | |||
271 | Of course this means some modification as the row parity is byte by | ||
272 | byte. A quick analysis: | ||
273 | for the column parity we use the par variable. When extending to 32 bits | ||
274 | we can in the end easily calculate p0 and p1 from it. | ||
275 | (because par now consists of 4 bytes, contributing to rp1, rp0, rp1, rp0 | ||
276 | respectively) | ||
277 | also rp2 and rp3 can be easily retrieved from par as rp3 covers the | ||
278 | first two bytes and rp2 the last two bytes. | ||
279 | |||
280 | Note that of course now the loop is executed only 64 times (256/4). | ||
281 | And note that care must taken wrt byte ordering. The way bytes are | ||
282 | ordered in a long is machine dependent, and might affect us. | ||
283 | Anyway, if there is an issue: this code is developed on x86 (to be | ||
284 | precise: a DELL PC with a D920 Intel CPU) | ||
285 | |||
286 | And of course the performance might depend on alignment, but I expect | ||
287 | that the I/O buffers in the nand driver are aligned properly (and | ||
288 | otherwise that should be fixed to get maximum performance). | ||
289 | |||
290 | Let's give it a try... | ||
291 | |||
292 | |||
293 | Attempt 2 | ||
294 | ========= | ||
295 | |||
296 | extern const char parity[256]; | ||
297 | |||
298 | void ecc2(const unsigned char *buf, unsigned char *code) | ||
299 | { | ||
300 | int i; | ||
301 | const unsigned long *bp = (unsigned long *)buf; | ||
302 | unsigned long cur; | ||
303 | unsigned long rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7; | ||
304 | unsigned long rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15; | ||
305 | unsigned long par; | ||
306 | |||
307 | par = 0; | ||
308 | rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0; | ||
309 | rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0; | ||
310 | rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0; | ||
311 | rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0; | ||
312 | |||
313 | for (i = 0; i < 64; i++) | ||
314 | { | ||
315 | cur = *bp++; | ||
316 | par ^= cur; | ||
317 | if (i & 0x01) rp5 ^= cur; else rp4 ^= cur; | ||
318 | if (i & 0x02) rp7 ^= cur; else rp6 ^= cur; | ||
319 | if (i & 0x04) rp9 ^= cur; else rp8 ^= cur; | ||
320 | if (i & 0x08) rp11 ^= cur; else rp10 ^= cur; | ||
321 | if (i & 0x10) rp13 ^= cur; else rp12 ^= cur; | ||
322 | if (i & 0x20) rp15 ^= cur; else rp14 ^= cur; | ||
323 | } | ||
324 | /* | ||
325 | we need to adapt the code generation for the fact that rp vars are now | ||
326 | long; also the column parity calculation needs to be changed. | ||
327 | we'll bring rp4 to 15 back to single byte entities by shifting and | ||
328 | xoring | ||
329 | */ | ||
330 | rp4 ^= (rp4 >> 16); rp4 ^= (rp4 >> 8); rp4 &= 0xff; | ||
331 | rp5 ^= (rp5 >> 16); rp5 ^= (rp5 >> 8); rp5 &= 0xff; | ||
332 | rp6 ^= (rp6 >> 16); rp6 ^= (rp6 >> 8); rp6 &= 0xff; | ||
333 | rp7 ^= (rp7 >> 16); rp7 ^= (rp7 >> 8); rp7 &= 0xff; | ||
334 | rp8 ^= (rp8 >> 16); rp8 ^= (rp8 >> 8); rp8 &= 0xff; | ||
335 | rp9 ^= (rp9 >> 16); rp9 ^= (rp9 >> 8); rp9 &= 0xff; | ||
336 | rp10 ^= (rp10 >> 16); rp10 ^= (rp10 >> 8); rp10 &= 0xff; | ||
337 | rp11 ^= (rp11 >> 16); rp11 ^= (rp11 >> 8); rp11 &= 0xff; | ||
338 | rp12 ^= (rp12 >> 16); rp12 ^= (rp12 >> 8); rp12 &= 0xff; | ||
339 | rp13 ^= (rp13 >> 16); rp13 ^= (rp13 >> 8); rp13 &= 0xff; | ||
340 | rp14 ^= (rp14 >> 16); rp14 ^= (rp14 >> 8); rp14 &= 0xff; | ||
341 | rp15 ^= (rp15 >> 16); rp15 ^= (rp15 >> 8); rp15 &= 0xff; | ||
342 | rp3 = (par >> 16); rp3 ^= (rp3 >> 8); rp3 &= 0xff; | ||
343 | rp2 = par & 0xffff; rp2 ^= (rp2 >> 8); rp2 &= 0xff; | ||
344 | par ^= (par >> 16); | ||
345 | rp1 = (par >> 8); rp1 &= 0xff; | ||
346 | rp0 = (par & 0xff); | ||
347 | par ^= (par >> 8); par &= 0xff; | ||
348 | |||
349 | code[0] = | ||
350 | (parity[rp7] << 7) | | ||
351 | (parity[rp6] << 6) | | ||
352 | (parity[rp5] << 5) | | ||
353 | (parity[rp4] << 4) | | ||
354 | (parity[rp3] << 3) | | ||
355 | (parity[rp2] << 2) | | ||
356 | (parity[rp1] << 1) | | ||
357 | (parity[rp0]); | ||
358 | code[1] = | ||
359 | (parity[rp15] << 7) | | ||
360 | (parity[rp14] << 6) | | ||
361 | (parity[rp13] << 5) | | ||
362 | (parity[rp12] << 4) | | ||
363 | (parity[rp11] << 3) | | ||
364 | (parity[rp10] << 2) | | ||
365 | (parity[rp9] << 1) | | ||
366 | (parity[rp8]); | ||
367 | code[2] = | ||
368 | (parity[par & 0xf0] << 7) | | ||
369 | (parity[par & 0x0f] << 6) | | ||
370 | (parity[par & 0xcc] << 5) | | ||
371 | (parity[par & 0x33] << 4) | | ||
372 | (parity[par & 0xaa] << 3) | | ||
373 | (parity[par & 0x55] << 2); | ||
374 | code[0] = ~code[0]; | ||
375 | code[1] = ~code[1]; | ||
376 | code[2] = ~code[2]; | ||
377 | } | ||
378 | |||
379 | The parity array is not shown any more. Note also that for these | ||
380 | examples I kinda deviated from my regular programming style by allowing | ||
381 | multiple statements on a line, not using { } in then and else blocks | ||
382 | with only a single statement and by using operators like ^= | ||
383 | |||
384 | |||
385 | Analysis 2 | ||
386 | ========== | ||
387 | |||
388 | The code (of course) works, and hurray: we are a little bit faster than | ||
389 | the linux driver code (about 15%). But wait, don't cheer too quickly. | ||
390 | THere is more to be gained. | ||
391 | If we look at e.g. rp14 and rp15 we see that we either xor our data with | ||
392 | rp14 or with rp15. However we also have par which goes over all data. | ||
393 | This means there is no need to calculate rp14 as it can be calculated from | ||
394 | rp15 through rp14 = par ^ rp15; | ||
395 | (or if desired we can avoid calculating rp15 and calculate it from | ||
396 | rp14). That is why some places refer to inverse parity. | ||
397 | Of course the same thing holds for rp4/5, rp6/7, rp8/9, rp10/11 and rp12/13. | ||
398 | Effectively this means we can eliminate the else clause from the if | ||
399 | statements. Also we can optimise the calculation in the end a little bit | ||
400 | by going from long to byte first. Actually we can even avoid the table | ||
401 | lookups | ||
402 | |||
403 | Attempt 3 | ||
404 | ========= | ||
405 | |||
406 | Odd replaced: | ||
407 | if (i & 0x01) rp5 ^= cur; else rp4 ^= cur; | ||
408 | if (i & 0x02) rp7 ^= cur; else rp6 ^= cur; | ||
409 | if (i & 0x04) rp9 ^= cur; else rp8 ^= cur; | ||
410 | if (i & 0x08) rp11 ^= cur; else rp10 ^= cur; | ||
411 | if (i & 0x10) rp13 ^= cur; else rp12 ^= cur; | ||
412 | if (i & 0x20) rp15 ^= cur; else rp14 ^= cur; | ||
413 | with | ||
414 | if (i & 0x01) rp5 ^= cur; | ||
415 | if (i & 0x02) rp7 ^= cur; | ||
416 | if (i & 0x04) rp9 ^= cur; | ||
417 | if (i & 0x08) rp11 ^= cur; | ||
418 | if (i & 0x10) rp13 ^= cur; | ||
419 | if (i & 0x20) rp15 ^= cur; | ||
420 | |||
421 | and outside the loop added: | ||
422 | rp4 = par ^ rp5; | ||
423 | rp6 = par ^ rp7; | ||
424 | rp8 = par ^ rp9; | ||
425 | rp10 = par ^ rp11; | ||
426 | rp12 = par ^ rp13; | ||
427 | rp14 = par ^ rp15; | ||
428 | |||
429 | And after that the code takes about 30% more time, although the number of | ||
430 | statements is reduced. This is also reflected in the assembly code. | ||
431 | |||
432 | |||
433 | Analysis 3 | ||
434 | ========== | ||
435 | |||
436 | Very weird. Guess it has to do with caching or instruction parallellism | ||
437 | or so. I also tried on an eeePC (Celeron, clocked at 900 Mhz). Interesting | ||
438 | observation was that this one is only 30% slower (according to time) | ||
439 | executing the code as my 3Ghz D920 processor. | ||
440 | |||
441 | Well, it was expected not to be easy so maybe instead move to a | ||
442 | different track: let's move back to the code from attempt2 and do some | ||
443 | loop unrolling. This will eliminate a few if statements. I'll try | ||
444 | different amounts of unrolling to see what works best. | ||
445 | |||
446 | |||
447 | Attempt 4 | ||
448 | ========= | ||
449 | |||
450 | Unrolled the loop 1, 2, 3 and 4 times. | ||
451 | For 4 the code starts with: | ||
452 | |||
453 | for (i = 0; i < 4; i++) | ||
454 | { | ||
455 | cur = *bp++; | ||
456 | par ^= cur; | ||
457 | rp4 ^= cur; | ||
458 | rp6 ^= cur; | ||
459 | rp8 ^= cur; | ||
460 | rp10 ^= cur; | ||
461 | if (i & 0x1) rp13 ^= cur; else rp12 ^= cur; | ||
462 | if (i & 0x2) rp15 ^= cur; else rp14 ^= cur; | ||
463 | cur = *bp++; | ||
464 | par ^= cur; | ||
465 | rp5 ^= cur; | ||
466 | rp6 ^= cur; | ||
467 | ... | ||
468 | |||
469 | |||
470 | Analysis 4 | ||
471 | ========== | ||
472 | |||
473 | Unrolling once gains about 15% | ||
474 | Unrolling twice keeps the gain at about 15% | ||
475 | Unrolling three times gives a gain of 30% compared to attempt 2. | ||
476 | Unrolling four times gives a marginal improvement compared to unrolling | ||
477 | three times. | ||
478 | |||
479 | I decided to proceed with a four time unrolled loop anyway. It was my gut | ||
480 | feeling that in the next steps I would obtain additional gain from it. | ||
481 | |||
482 | The next step was triggered by the fact that par contains the xor of all | ||
483 | bytes and rp4 and rp5 each contain the xor of half of the bytes. | ||
484 | So in effect par = rp4 ^ rp5. But as xor is commutative we can also say | ||
485 | that rp5 = par ^ rp4. So no need to keep both rp4 and rp5 around. We can | ||
486 | eliminate rp5 (or rp4, but I already foresaw another optimisation). | ||
487 | The same holds for rp6/7, rp8/9, rp10/11 rp12/13 and rp14/15. | ||
488 | |||
489 | |||
490 | Attempt 5 | ||
491 | ========= | ||
492 | |||
493 | Effectively so all odd digit rp assignments in the loop were removed. | ||
494 | This included the else clause of the if statements. | ||
495 | Of course after the loop we need to correct things by adding code like: | ||
496 | rp5 = par ^ rp4; | ||
497 | Also the initial assignments (rp5 = 0; etc) could be removed. | ||
498 | Along the line I also removed the initialisation of rp0/1/2/3. | ||
499 | |||
500 | |||
501 | Analysis 5 | ||
502 | ========== | ||
503 | |||
504 | Measurements showed this was a good move. The run-time roughly halved | ||
505 | compared with attempt 4 with 4 times unrolled, and we only require 1/3rd | ||
506 | of the processor time compared to the current code in the linux kernel. | ||
507 | |||
508 | However, still I thought there was more. I didn't like all the if | ||
509 | statements. Why not keep a running parity and only keep the last if | ||
510 | statement. Time for yet another version! | ||
511 | |||
512 | |||
513 | Attempt 6 | ||
514 | ========= | ||
515 | |||
516 | THe code within the for loop was changed to: | ||
517 | |||
518 | for (i = 0; i < 4; i++) | ||
519 | { | ||
520 | cur = *bp++; tmppar = cur; rp4 ^= cur; | ||
521 | cur = *bp++; tmppar ^= cur; rp6 ^= tmppar; | ||
522 | cur = *bp++; tmppar ^= cur; rp4 ^= cur; | ||
523 | cur = *bp++; tmppar ^= cur; rp8 ^= tmppar; | ||
524 | |||
525 | cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur; | ||
526 | cur = *bp++; tmppar ^= cur; rp6 ^= cur; | ||
527 | cur = *bp++; tmppar ^= cur; rp4 ^= cur; | ||
528 | cur = *bp++; tmppar ^= cur; rp10 ^= tmppar; | ||
529 | |||
530 | cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur; rp8 ^= cur; | ||
531 | cur = *bp++; tmppar ^= cur; rp6 ^= cur; rp8 ^= cur; | ||
532 | cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp8 ^= cur; | ||
533 | cur = *bp++; tmppar ^= cur; rp8 ^= cur; | ||
534 | |||
535 | cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur; | ||
536 | cur = *bp++; tmppar ^= cur; rp6 ^= cur; | ||
537 | cur = *bp++; tmppar ^= cur; rp4 ^= cur; | ||
538 | cur = *bp++; tmppar ^= cur; | ||
539 | |||
540 | par ^= tmppar; | ||
541 | if ((i & 0x1) == 0) rp12 ^= tmppar; | ||
542 | if ((i & 0x2) == 0) rp14 ^= tmppar; | ||
543 | } | ||
544 | |||
545 | As you can see tmppar is used to accumulate the parity within a for | ||
546 | iteration. In the last 3 statements is is added to par and, if needed, | ||
547 | to rp12 and rp14. | ||
548 | |||
549 | While making the changes I also found that I could exploit that tmppar | ||
550 | contains the running parity for this iteration. So instead of having: | ||
551 | rp4 ^= cur; rp6 = cur; | ||
552 | I removed the rp6 = cur; statement and did rp6 ^= tmppar; on next | ||
553 | statement. A similar change was done for rp8 and rp10 | ||
554 | |||
555 | |||
556 | Analysis 6 | ||
557 | ========== | ||
558 | |||
559 | Measuring this code again showed big gain. When executing the original | ||
560 | linux code 1 million times, this took about 1 second on my system. | ||
561 | (using time to measure the performance). After this iteration I was back | ||
562 | to 0.075 sec. Actually I had to decide to start measuring over 10 | ||
563 | million interations in order not to loose too much accuracy. This one | ||
564 | definitely seemed to be the jackpot! | ||
565 | |||
566 | There is a little bit more room for improvement though. There are three | ||
567 | places with statements: | ||
568 | rp4 ^= cur; rp6 ^= cur; | ||
569 | It seems more efficient to also maintain a variable rp4_6 in the while | ||
570 | loop; This eliminates 3 statements per loop. Of course after the loop we | ||
571 | need to correct by adding: | ||
572 | rp4 ^= rp4_6; | ||
573 | rp6 ^= rp4_6 | ||
574 | Furthermore there are 4 sequential assingments to rp8. This can be | ||
575 | encoded slightly more efficient by saving tmppar before those 4 lines | ||
576 | and later do rp8 = rp8 ^ tmppar ^ notrp8; | ||
577 | (where notrp8 is the value of rp8 before those 4 lines). | ||
578 | Again a use of the commutative property of xor. | ||
579 | Time for a new test! | ||
580 | |||
581 | |||
582 | Attempt 7 | ||
583 | ========= | ||
584 | |||
585 | The new code now looks like: | ||
586 | |||
587 | for (i = 0; i < 4; i++) | ||
588 | { | ||
589 | cur = *bp++; tmppar = cur; rp4 ^= cur; | ||
590 | cur = *bp++; tmppar ^= cur; rp6 ^= tmppar; | ||
591 | cur = *bp++; tmppar ^= cur; rp4 ^= cur; | ||
592 | cur = *bp++; tmppar ^= cur; rp8 ^= tmppar; | ||
593 | |||
594 | cur = *bp++; tmppar ^= cur; rp4_6 ^= cur; | ||
595 | cur = *bp++; tmppar ^= cur; rp6 ^= cur; | ||
596 | cur = *bp++; tmppar ^= cur; rp4 ^= cur; | ||
597 | cur = *bp++; tmppar ^= cur; rp10 ^= tmppar; | ||
598 | |||
599 | notrp8 = tmppar; | ||
600 | cur = *bp++; tmppar ^= cur; rp4_6 ^= cur; | ||
601 | cur = *bp++; tmppar ^= cur; rp6 ^= cur; | ||
602 | cur = *bp++; tmppar ^= cur; rp4 ^= cur; | ||
603 | cur = *bp++; tmppar ^= cur; | ||
604 | rp8 = rp8 ^ tmppar ^ notrp8; | ||
605 | |||
606 | cur = *bp++; tmppar ^= cur; rp4_6 ^= cur; | ||
607 | cur = *bp++; tmppar ^= cur; rp6 ^= cur; | ||
608 | cur = *bp++; tmppar ^= cur; rp4 ^= cur; | ||
609 | cur = *bp++; tmppar ^= cur; | ||
610 | |||
611 | par ^= tmppar; | ||
612 | if ((i & 0x1) == 0) rp12 ^= tmppar; | ||
613 | if ((i & 0x2) == 0) rp14 ^= tmppar; | ||
614 | } | ||
615 | rp4 ^= rp4_6; | ||
616 | rp6 ^= rp4_6; | ||
617 | |||
618 | |||
619 | Not a big change, but every penny counts :-) | ||
620 | |||
621 | |||
622 | Analysis 7 | ||
623 | ========== | ||
624 | |||
625 | Acutally this made things worse. Not very much, but I don't want to move | ||
626 | into the wrong direction. Maybe something to investigate later. Could | ||
627 | have to do with caching again. | ||
628 | |||
629 | Guess that is what there is to win within the loop. Maybe unrolling one | ||
630 | more time will help. I'll keep the optimisations from 7 for now. | ||
631 | |||
632 | |||
633 | Attempt 8 | ||
634 | ========= | ||
635 | |||
636 | Unrolled the loop one more time. | ||
637 | |||
638 | |||
639 | Analysis 8 | ||
640 | ========== | ||
641 | |||
642 | This makes things worse. Let's stick with attempt 6 and continue from there. | ||
643 | Although it seems that the code within the loop cannot be optimised | ||
644 | further there is still room to optimize the generation of the ecc codes. | ||
645 | We can simply calcualate the total parity. If this is 0 then rp4 = rp5 | ||
646 | etc. If the parity is 1, then rp4 = !rp5; | ||
647 | But if rp4 = rp5 we do not need rp5 etc. We can just write the even bits | ||
648 | in the result byte and then do something like | ||
649 | code[0] |= (code[0] << 1); | ||
650 | Lets test this. | ||
651 | |||
652 | |||
653 | Attempt 9 | ||
654 | ========= | ||
655 | |||
656 | Changed the code but again this slightly degrades performance. Tried all | ||
657 | kind of other things, like having dedicated parity arrays to avoid the | ||
658 | shift after parity[rp7] << 7; No gain. | ||
659 | Change the lookup using the parity array by using shift operators (e.g. | ||
660 | replace parity[rp7] << 7 with: | ||
661 | rp7 ^= (rp7 << 4); | ||
662 | rp7 ^= (rp7 << 2); | ||
663 | rp7 ^= (rp7 << 1); | ||
664 | rp7 &= 0x80; | ||
665 | No gain. | ||
666 | |||
667 | The only marginal change was inverting the parity bits, so we can remove | ||
668 | the last three invert statements. | ||
669 | |||
670 | Ah well, pity this does not deliver more. Then again 10 million | ||
671 | iterations using the linux driver code takes between 13 and 13.5 | ||
672 | seconds, whereas my code now takes about 0.73 seconds for those 10 | ||
673 | million iterations. So basically I've improved the performance by a | ||
674 | factor 18 on my system. Not that bad. Of course on different hardware | ||
675 | you will get different results. No warranties! | ||
676 | |||
677 | But of course there is no such thing as a free lunch. The codesize almost | ||
678 | tripled (from 562 bytes to 1434 bytes). Then again, it is not that much. | ||
679 | |||
680 | |||
681 | Correcting errors | ||
682 | ================= | ||
683 | |||
684 | For correcting errors I again used the ST application note as a starter, | ||
685 | but I also peeked at the existing code. | ||
686 | The algorithm itself is pretty straightforward. Just xor the given and | ||
687 | the calculated ecc. If all bytes are 0 there is no problem. If 11 bits | ||
688 | are 1 we have one correctable bit error. If there is 1 bit 1, we have an | ||
689 | error in the given ecc code. | ||
690 | It proved to be fastest to do some table lookups. Performance gain | ||
691 | introduced by this is about a factor 2 on my system when a repair had to | ||
692 | be done, and 1% or so if no repair had to be done. | ||
693 | Code size increased from 330 bytes to 686 bytes for this function. | ||
694 | (gcc 4.2, -O3) | ||
695 | |||
696 | |||
697 | Conclusion | ||
698 | ========== | ||
699 | |||
700 | The gain when calculating the ecc is tremendous. Om my development hardware | ||
701 | a speedup of a factor of 18 for ecc calculation was achieved. On a test on an | ||
702 | embedded system with a MIPS core a factor 7 was obtained. | ||
703 | On a test with a Linksys NSLU2 (ARMv5TE processor) the speedup was a factor | ||
704 | 5 (big endian mode, gcc 4.1.2, -O3) | ||
705 | For correction not much gain could be obtained (as bitflips are rare). Then | ||
706 | again there are also much less cycles spent there. | ||
707 | |||
708 | It seems there is not much more gain possible in this, at least when | ||
709 | programmed in C. Of course it might be possible to squeeze something more | ||
710 | out of it with an assembler program, but due to pipeline behaviour etc | ||
711 | this is very tricky (at least for intel hw). | ||
712 | |||
713 | Author: Frans Meulenbroeks | ||
714 | Copyright (C) 2008 Koninklijke Philips Electronics NV. | ||
diff --git a/arch/arm/mach-pxa/include/mach/pxa3xx_nand.h b/arch/arm/mach-pxa/include/mach/pxa3xx_nand.h index eb4b190b6657..eb35fca9aea5 100644 --- a/arch/arm/mach-pxa/include/mach/pxa3xx_nand.h +++ b/arch/arm/mach-pxa/include/mach/pxa3xx_nand.h | |||
@@ -4,6 +4,43 @@ | |||
4 | #include <linux/mtd/mtd.h> | 4 | #include <linux/mtd/mtd.h> |
5 | #include <linux/mtd/partitions.h> | 5 | #include <linux/mtd/partitions.h> |
6 | 6 | ||
7 | struct pxa3xx_nand_timing { | ||
8 | unsigned int tCH; /* Enable signal hold time */ | ||
9 | unsigned int tCS; /* Enable signal setup time */ | ||
10 | unsigned int tWH; /* ND_nWE high duration */ | ||
11 | unsigned int tWP; /* ND_nWE pulse time */ | ||
12 | unsigned int tRH; /* ND_nRE high duration */ | ||
13 | unsigned int tRP; /* ND_nRE pulse width */ | ||
14 | unsigned int tR; /* ND_nWE high to ND_nRE low for read */ | ||
15 | unsigned int tWHR; /* ND_nWE high to ND_nRE low for status read */ | ||
16 | unsigned int tAR; /* ND_ALE low to ND_nRE low delay */ | ||
17 | }; | ||
18 | |||
19 | struct pxa3xx_nand_cmdset { | ||
20 | uint16_t read1; | ||
21 | uint16_t read2; | ||
22 | uint16_t program; | ||
23 | uint16_t read_status; | ||
24 | uint16_t read_id; | ||
25 | uint16_t erase; | ||
26 | uint16_t reset; | ||
27 | uint16_t lock; | ||
28 | uint16_t unlock; | ||
29 | uint16_t lock_status; | ||
30 | }; | ||
31 | |||
32 | struct pxa3xx_nand_flash { | ||
33 | const struct pxa3xx_nand_timing *timing; /* NAND Flash timing */ | ||
34 | const struct pxa3xx_nand_cmdset *cmdset; | ||
35 | |||
36 | uint32_t page_per_block;/* Pages per block (PG_PER_BLK) */ | ||
37 | uint32_t page_size; /* Page size in bytes (PAGE_SZ) */ | ||
38 | uint32_t flash_width; /* Width of Flash memory (DWIDTH_M) */ | ||
39 | uint32_t dfc_width; /* Width of flash controller(DWIDTH_C) */ | ||
40 | uint32_t num_blocks; /* Number of physical blocks in Flash */ | ||
41 | uint32_t chip_id; | ||
42 | }; | ||
43 | |||
7 | struct pxa3xx_nand_platform_data { | 44 | struct pxa3xx_nand_platform_data { |
8 | 45 | ||
9 | /* the data flash bus is shared between the Static Memory | 46 | /* the data flash bus is shared between the Static Memory |
@@ -12,8 +49,11 @@ struct pxa3xx_nand_platform_data { | |||
12 | */ | 49 | */ |
13 | int enable_arbiter; | 50 | int enable_arbiter; |
14 | 51 | ||
15 | struct mtd_partition *parts; | 52 | const struct mtd_partition *parts; |
16 | unsigned int nr_parts; | 53 | unsigned int nr_parts; |
54 | |||
55 | const struct pxa3xx_nand_flash * flash; | ||
56 | size_t num_flash; | ||
17 | }; | 57 | }; |
18 | 58 | ||
19 | extern void pxa3xx_set_nand_info(struct pxa3xx_nand_platform_data *info); | 59 | extern void pxa3xx_set_nand_info(struct pxa3xx_nand_platform_data *info); |
diff --git a/arch/arm/plat-mxc/include/mach/mxc_nand.h b/arch/arm/plat-mxc/include/mach/mxc_nand.h new file mode 100644 index 000000000000..2b972df22d12 --- /dev/null +++ b/arch/arm/plat-mxc/include/mach/mxc_nand.h | |||
@@ -0,0 +1,27 @@ | |||
1 | /* | ||
2 | * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. | ||
3 | * Copyright 2008 Sascha Hauer, kernel@pengutronix.de | ||
4 | * | ||
5 | * This program is free software; you can redistribute it and/or | ||
6 | * modify it under the terms of the GNU General Public License | ||
7 | * as published by the Free Software Foundation; either version 2 | ||
8 | * of the License, or (at your option) any later version. | ||
9 | * This program is distributed in the hope that it will be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | * GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License | ||
15 | * along with this program; if not, write to the Free Software | ||
16 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, | ||
17 | * MA 02110-1301, USA. | ||
18 | */ | ||
19 | |||
20 | #ifndef __ASM_ARCH_NAND_H | ||
21 | #define __ASM_ARCH_NAND_H | ||
22 | |||
23 | struct mxc_nand_platform_data { | ||
24 | int width; /* data bus width in bytes */ | ||
25 | int hw_ecc; /* 0 if supress hardware ECC */ | ||
26 | }; | ||
27 | #endif /* __ASM_ARCH_NAND_H */ | ||
diff --git a/arch/arm/plat-omap/include/mach/onenand.h b/arch/arm/plat-omap/include/mach/onenand.h index d57f20226b28..4649d302c263 100644 --- a/arch/arm/plat-omap/include/mach/onenand.h +++ b/arch/arm/plat-omap/include/mach/onenand.h | |||
@@ -16,6 +16,10 @@ struct omap_onenand_platform_data { | |||
16 | int gpio_irq; | 16 | int gpio_irq; |
17 | struct mtd_partition *parts; | 17 | struct mtd_partition *parts; |
18 | int nr_parts; | 18 | int nr_parts; |
19 | int (*onenand_setup)(void __iomem *); | 19 | int (*onenand_setup)(void __iomem *, int freq); |
20 | int dma_channel; | 20 | int dma_channel; |
21 | }; | 21 | }; |
22 | |||
23 | int omap2_onenand_rephase(void); | ||
24 | |||
25 | #define ONENAND_MAX_PARTITIONS 8 | ||
diff --git a/drivers/mtd/Kconfig b/drivers/mtd/Kconfig index 14f11f8b9e5f..a90d50c2c3e5 100644 --- a/drivers/mtd/Kconfig +++ b/drivers/mtd/Kconfig | |||
@@ -172,6 +172,11 @@ config MTD_CHAR | |||
172 | memory chips, and also use ioctl() to obtain information about | 172 | memory chips, and also use ioctl() to obtain information about |
173 | the device, or to erase parts of it. | 173 | the device, or to erase parts of it. |
174 | 174 | ||
175 | config HAVE_MTD_OTP | ||
176 | bool | ||
177 | help | ||
178 | Enable access to OTP regions using MTD_CHAR. | ||
179 | |||
175 | config MTD_BLKDEVS | 180 | config MTD_BLKDEVS |
176 | tristate "Common interface to block layer for MTD 'translation layers'" | 181 | tristate "Common interface to block layer for MTD 'translation layers'" |
177 | depends on BLOCK | 182 | depends on BLOCK |
diff --git a/drivers/mtd/chips/Kconfig b/drivers/mtd/chips/Kconfig index 479d32b57a1e..9408099eec48 100644 --- a/drivers/mtd/chips/Kconfig +++ b/drivers/mtd/chips/Kconfig | |||
@@ -6,6 +6,7 @@ menu "RAM/ROM/Flash chip drivers" | |||
6 | config MTD_CFI | 6 | config MTD_CFI |
7 | tristate "Detect flash chips by Common Flash Interface (CFI) probe" | 7 | tristate "Detect flash chips by Common Flash Interface (CFI) probe" |
8 | select MTD_GEN_PROBE | 8 | select MTD_GEN_PROBE |
9 | select MTD_CFI_UTIL | ||
9 | help | 10 | help |
10 | The Common Flash Interface specification was developed by Intel, | 11 | The Common Flash Interface specification was developed by Intel, |
11 | AMD and other flash manufactures that provides a universal method | 12 | AMD and other flash manufactures that provides a universal method |
@@ -154,6 +155,7 @@ config MTD_CFI_I8 | |||
154 | config MTD_OTP | 155 | config MTD_OTP |
155 | bool "Protection Registers aka one-time programmable (OTP) bits" | 156 | bool "Protection Registers aka one-time programmable (OTP) bits" |
156 | depends on MTD_CFI_ADV_OPTIONS | 157 | depends on MTD_CFI_ADV_OPTIONS |
158 | select HAVE_MTD_OTP | ||
157 | default n | 159 | default n |
158 | help | 160 | help |
159 | This enables support for reading, writing and locking so called | 161 | This enables support for reading, writing and locking so called |
@@ -187,7 +189,7 @@ config MTD_CFI_INTELEXT | |||
187 | StrataFlash and other parts. | 189 | StrataFlash and other parts. |
188 | 190 | ||
189 | config MTD_CFI_AMDSTD | 191 | config MTD_CFI_AMDSTD |
190 | tristate "Support for AMD/Fujitsu flash chips" | 192 | tristate "Support for AMD/Fujitsu/Spansion flash chips" |
191 | depends on MTD_GEN_PROBE | 193 | depends on MTD_GEN_PROBE |
192 | select MTD_CFI_UTIL | 194 | select MTD_CFI_UTIL |
193 | help | 195 | help |
diff --git a/drivers/mtd/chips/cfi_cmdset_0001.c b/drivers/mtd/chips/cfi_cmdset_0001.c index 5f1b472137a0..c93a8be5d5f1 100644 --- a/drivers/mtd/chips/cfi_cmdset_0001.c +++ b/drivers/mtd/chips/cfi_cmdset_0001.c | |||
@@ -478,6 +478,28 @@ struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary) | |||
478 | else | 478 | else |
479 | cfi->chips[i].erase_time = 2000000; | 479 | cfi->chips[i].erase_time = 2000000; |
480 | 480 | ||
481 | if (cfi->cfiq->WordWriteTimeoutTyp && | ||
482 | cfi->cfiq->WordWriteTimeoutMax) | ||
483 | cfi->chips[i].word_write_time_max = | ||
484 | 1<<(cfi->cfiq->WordWriteTimeoutTyp + | ||
485 | cfi->cfiq->WordWriteTimeoutMax); | ||
486 | else | ||
487 | cfi->chips[i].word_write_time_max = 50000 * 8; | ||
488 | |||
489 | if (cfi->cfiq->BufWriteTimeoutTyp && | ||
490 | cfi->cfiq->BufWriteTimeoutMax) | ||
491 | cfi->chips[i].buffer_write_time_max = | ||
492 | 1<<(cfi->cfiq->BufWriteTimeoutTyp + | ||
493 | cfi->cfiq->BufWriteTimeoutMax); | ||
494 | |||
495 | if (cfi->cfiq->BlockEraseTimeoutTyp && | ||
496 | cfi->cfiq->BlockEraseTimeoutMax) | ||
497 | cfi->chips[i].erase_time_max = | ||
498 | 1000<<(cfi->cfiq->BlockEraseTimeoutTyp + | ||
499 | cfi->cfiq->BlockEraseTimeoutMax); | ||
500 | else | ||
501 | cfi->chips[i].erase_time_max = 2000000 * 8; | ||
502 | |||
481 | cfi->chips[i].ref_point_counter = 0; | 503 | cfi->chips[i].ref_point_counter = 0; |
482 | init_waitqueue_head(&(cfi->chips[i].wq)); | 504 | init_waitqueue_head(&(cfi->chips[i].wq)); |
483 | } | 505 | } |
@@ -703,6 +725,10 @@ static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long | |||
703 | struct cfi_pri_intelext *cfip = cfi->cmdset_priv; | 725 | struct cfi_pri_intelext *cfip = cfi->cmdset_priv; |
704 | unsigned long timeo = jiffies + HZ; | 726 | unsigned long timeo = jiffies + HZ; |
705 | 727 | ||
728 | /* Prevent setting state FL_SYNCING for chip in suspended state. */ | ||
729 | if (mode == FL_SYNCING && chip->oldstate != FL_READY) | ||
730 | goto sleep; | ||
731 | |||
706 | switch (chip->state) { | 732 | switch (chip->state) { |
707 | 733 | ||
708 | case FL_STATUS: | 734 | case FL_STATUS: |
@@ -808,8 +834,9 @@ static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr | |||
808 | DECLARE_WAITQUEUE(wait, current); | 834 | DECLARE_WAITQUEUE(wait, current); |
809 | 835 | ||
810 | retry: | 836 | retry: |
811 | if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING | 837 | if (chip->priv && |
812 | || mode == FL_OTP_WRITE || mode == FL_SHUTDOWN)) { | 838 | (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE |
839 | || mode == FL_SHUTDOWN) && chip->state != FL_SYNCING) { | ||
813 | /* | 840 | /* |
814 | * OK. We have possibility for contention on the write/erase | 841 | * OK. We have possibility for contention on the write/erase |
815 | * operations which are global to the real chip and not per | 842 | * operations which are global to the real chip and not per |
@@ -859,6 +886,14 @@ static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr | |||
859 | return ret; | 886 | return ret; |
860 | } | 887 | } |
861 | spin_lock(&shared->lock); | 888 | spin_lock(&shared->lock); |
889 | |||
890 | /* We should not own chip if it is already | ||
891 | * in FL_SYNCING state. Put contender and retry. */ | ||
892 | if (chip->state == FL_SYNCING) { | ||
893 | put_chip(map, contender, contender->start); | ||
894 | spin_unlock(contender->mutex); | ||
895 | goto retry; | ||
896 | } | ||
862 | spin_unlock(contender->mutex); | 897 | spin_unlock(contender->mutex); |
863 | } | 898 | } |
864 | 899 | ||
@@ -1012,7 +1047,7 @@ static void __xipram xip_enable(struct map_info *map, struct flchip *chip, | |||
1012 | 1047 | ||
1013 | static int __xipram xip_wait_for_operation( | 1048 | static int __xipram xip_wait_for_operation( |
1014 | struct map_info *map, struct flchip *chip, | 1049 | struct map_info *map, struct flchip *chip, |
1015 | unsigned long adr, unsigned int chip_op_time ) | 1050 | unsigned long adr, unsigned int chip_op_time_max) |
1016 | { | 1051 | { |
1017 | struct cfi_private *cfi = map->fldrv_priv; | 1052 | struct cfi_private *cfi = map->fldrv_priv; |
1018 | struct cfi_pri_intelext *cfip = cfi->cmdset_priv; | 1053 | struct cfi_pri_intelext *cfip = cfi->cmdset_priv; |
@@ -1021,7 +1056,7 @@ static int __xipram xip_wait_for_operation( | |||
1021 | flstate_t oldstate, newstate; | 1056 | flstate_t oldstate, newstate; |
1022 | 1057 | ||
1023 | start = xip_currtime(); | 1058 | start = xip_currtime(); |
1024 | usec = chip_op_time * 8; | 1059 | usec = chip_op_time_max; |
1025 | if (usec == 0) | 1060 | if (usec == 0) |
1026 | usec = 500000; | 1061 | usec = 500000; |
1027 | done = 0; | 1062 | done = 0; |
@@ -1131,8 +1166,8 @@ static int __xipram xip_wait_for_operation( | |||
1131 | #define XIP_INVAL_CACHED_RANGE(map, from, size) \ | 1166 | #define XIP_INVAL_CACHED_RANGE(map, from, size) \ |
1132 | INVALIDATE_CACHED_RANGE(map, from, size) | 1167 | INVALIDATE_CACHED_RANGE(map, from, size) |
1133 | 1168 | ||
1134 | #define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec) \ | 1169 | #define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec, usec_max) \ |
1135 | xip_wait_for_operation(map, chip, cmd_adr, usec) | 1170 | xip_wait_for_operation(map, chip, cmd_adr, usec_max) |
1136 | 1171 | ||
1137 | #else | 1172 | #else |
1138 | 1173 | ||
@@ -1144,7 +1179,7 @@ static int __xipram xip_wait_for_operation( | |||
1144 | static int inval_cache_and_wait_for_operation( | 1179 | static int inval_cache_and_wait_for_operation( |
1145 | struct map_info *map, struct flchip *chip, | 1180 | struct map_info *map, struct flchip *chip, |
1146 | unsigned long cmd_adr, unsigned long inval_adr, int inval_len, | 1181 | unsigned long cmd_adr, unsigned long inval_adr, int inval_len, |
1147 | unsigned int chip_op_time) | 1182 | unsigned int chip_op_time, unsigned int chip_op_time_max) |
1148 | { | 1183 | { |
1149 | struct cfi_private *cfi = map->fldrv_priv; | 1184 | struct cfi_private *cfi = map->fldrv_priv; |
1150 | map_word status, status_OK = CMD(0x80); | 1185 | map_word status, status_OK = CMD(0x80); |
@@ -1156,8 +1191,7 @@ static int inval_cache_and_wait_for_operation( | |||
1156 | INVALIDATE_CACHED_RANGE(map, inval_adr, inval_len); | 1191 | INVALIDATE_CACHED_RANGE(map, inval_adr, inval_len); |
1157 | spin_lock(chip->mutex); | 1192 | spin_lock(chip->mutex); |
1158 | 1193 | ||
1159 | /* set our timeout to 8 times the expected delay */ | 1194 | timeo = chip_op_time_max; |
1160 | timeo = chip_op_time * 8; | ||
1161 | if (!timeo) | 1195 | if (!timeo) |
1162 | timeo = 500000; | 1196 | timeo = 500000; |
1163 | reset_timeo = timeo; | 1197 | reset_timeo = timeo; |
@@ -1217,8 +1251,8 @@ static int inval_cache_and_wait_for_operation( | |||
1217 | 1251 | ||
1218 | #endif | 1252 | #endif |
1219 | 1253 | ||
1220 | #define WAIT_TIMEOUT(map, chip, adr, udelay) \ | 1254 | #define WAIT_TIMEOUT(map, chip, adr, udelay, udelay_max) \ |
1221 | INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay); | 1255 | INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay, udelay_max); |
1222 | 1256 | ||
1223 | 1257 | ||
1224 | static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len) | 1258 | static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len) |
@@ -1452,7 +1486,8 @@ static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, | |||
1452 | 1486 | ||
1453 | ret = INVAL_CACHE_AND_WAIT(map, chip, adr, | 1487 | ret = INVAL_CACHE_AND_WAIT(map, chip, adr, |
1454 | adr, map_bankwidth(map), | 1488 | adr, map_bankwidth(map), |
1455 | chip->word_write_time); | 1489 | chip->word_write_time, |
1490 | chip->word_write_time_max); | ||
1456 | if (ret) { | 1491 | if (ret) { |
1457 | xip_enable(map, chip, adr); | 1492 | xip_enable(map, chip, adr); |
1458 | printk(KERN_ERR "%s: word write error (status timeout)\n", map->name); | 1493 | printk(KERN_ERR "%s: word write error (status timeout)\n", map->name); |
@@ -1623,7 +1658,7 @@ static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, | |||
1623 | 1658 | ||
1624 | chip->state = FL_WRITING_TO_BUFFER; | 1659 | chip->state = FL_WRITING_TO_BUFFER; |
1625 | map_write(map, write_cmd, cmd_adr); | 1660 | map_write(map, write_cmd, cmd_adr); |
1626 | ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0); | 1661 | ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0, 0); |
1627 | if (ret) { | 1662 | if (ret) { |
1628 | /* Argh. Not ready for write to buffer */ | 1663 | /* Argh. Not ready for write to buffer */ |
1629 | map_word Xstatus = map_read(map, cmd_adr); | 1664 | map_word Xstatus = map_read(map, cmd_adr); |
@@ -1640,7 +1675,7 @@ static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, | |||
1640 | 1675 | ||
1641 | /* Figure out the number of words to write */ | 1676 | /* Figure out the number of words to write */ |
1642 | word_gap = (-adr & (map_bankwidth(map)-1)); | 1677 | word_gap = (-adr & (map_bankwidth(map)-1)); |
1643 | words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map); | 1678 | words = DIV_ROUND_UP(len - word_gap, map_bankwidth(map)); |
1644 | if (!word_gap) { | 1679 | if (!word_gap) { |
1645 | words--; | 1680 | words--; |
1646 | } else { | 1681 | } else { |
@@ -1692,7 +1727,8 @@ static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, | |||
1692 | 1727 | ||
1693 | ret = INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, | 1728 | ret = INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, |
1694 | initial_adr, initial_len, | 1729 | initial_adr, initial_len, |
1695 | chip->buffer_write_time); | 1730 | chip->buffer_write_time, |
1731 | chip->buffer_write_time_max); | ||
1696 | if (ret) { | 1732 | if (ret) { |
1697 | map_write(map, CMD(0x70), cmd_adr); | 1733 | map_write(map, CMD(0x70), cmd_adr); |
1698 | chip->state = FL_STATUS; | 1734 | chip->state = FL_STATUS; |
@@ -1827,7 +1863,8 @@ static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, | |||
1827 | 1863 | ||
1828 | ret = INVAL_CACHE_AND_WAIT(map, chip, adr, | 1864 | ret = INVAL_CACHE_AND_WAIT(map, chip, adr, |
1829 | adr, len, | 1865 | adr, len, |
1830 | chip->erase_time); | 1866 | chip->erase_time, |
1867 | chip->erase_time_max); | ||
1831 | if (ret) { | 1868 | if (ret) { |
1832 | map_write(map, CMD(0x70), adr); | 1869 | map_write(map, CMD(0x70), adr); |
1833 | chip->state = FL_STATUS; | 1870 | chip->state = FL_STATUS; |
@@ -2006,7 +2043,7 @@ static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip | |||
2006 | */ | 2043 | */ |
2007 | udelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1000000/HZ : 0; | 2044 | udelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1000000/HZ : 0; |
2008 | 2045 | ||
2009 | ret = WAIT_TIMEOUT(map, chip, adr, udelay); | 2046 | ret = WAIT_TIMEOUT(map, chip, adr, udelay, udelay * 100); |
2010 | if (ret) { | 2047 | if (ret) { |
2011 | map_write(map, CMD(0x70), adr); | 2048 | map_write(map, CMD(0x70), adr); |
2012 | chip->state = FL_STATUS; | 2049 | chip->state = FL_STATUS; |
diff --git a/drivers/mtd/chips/cfi_cmdset_0002.c b/drivers/mtd/chips/cfi_cmdset_0002.c index a972cc6be436..3e6f5d8609e8 100644 --- a/drivers/mtd/chips/cfi_cmdset_0002.c +++ b/drivers/mtd/chips/cfi_cmdset_0002.c | |||
@@ -13,6 +13,8 @@ | |||
13 | * XIP support hooks by Vitaly Wool (based on code for Intel flash | 13 | * XIP support hooks by Vitaly Wool (based on code for Intel flash |
14 | * by Nicolas Pitre) | 14 | * by Nicolas Pitre) |
15 | * | 15 | * |
16 | * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0 | ||
17 | * | ||
16 | * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com | 18 | * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com |
17 | * | 19 | * |
18 | * This code is GPL | 20 | * This code is GPL |
@@ -43,6 +45,7 @@ | |||
43 | 45 | ||
44 | #define MANUFACTURER_AMD 0x0001 | 46 | #define MANUFACTURER_AMD 0x0001 |
45 | #define MANUFACTURER_ATMEL 0x001F | 47 | #define MANUFACTURER_ATMEL 0x001F |
48 | #define MANUFACTURER_MACRONIX 0x00C2 | ||
46 | #define MANUFACTURER_SST 0x00BF | 49 | #define MANUFACTURER_SST 0x00BF |
47 | #define SST49LF004B 0x0060 | 50 | #define SST49LF004B 0x0060 |
48 | #define SST49LF040B 0x0050 | 51 | #define SST49LF040B 0x0050 |
@@ -144,12 +147,44 @@ static void fixup_amd_bootblock(struct mtd_info *mtd, void* param) | |||
144 | 147 | ||
145 | if (((major << 8) | minor) < 0x3131) { | 148 | if (((major << 8) | minor) < 0x3131) { |
146 | /* CFI version 1.0 => don't trust bootloc */ | 149 | /* CFI version 1.0 => don't trust bootloc */ |
150 | |||
151 | DEBUG(MTD_DEBUG_LEVEL1, | ||
152 | "%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n", | ||
153 | map->name, cfi->mfr, cfi->id); | ||
154 | |||
155 | /* AFAICS all 29LV400 with a bottom boot block have a device ID | ||
156 | * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode. | ||
157 | * These were badly detected as they have the 0x80 bit set | ||
158 | * so treat them as a special case. | ||
159 | */ | ||
160 | if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) && | ||
161 | |||
162 | /* Macronix added CFI to their 2nd generation | ||
163 | * MX29LV400C B/T but AFAICS no other 29LV400 (AMD, | ||
164 | * Fujitsu, Spansion, EON, ESI and older Macronix) | ||
165 | * has CFI. | ||
166 | * | ||
167 | * Therefore also check the manufacturer. | ||
168 | * This reduces the risk of false detection due to | ||
169 | * the 8-bit device ID. | ||
170 | */ | ||
171 | (cfi->mfr == MANUFACTURER_MACRONIX)) { | ||
172 | DEBUG(MTD_DEBUG_LEVEL1, | ||
173 | "%s: Macronix MX29LV400C with bottom boot block" | ||
174 | " detected\n", map->name); | ||
175 | extp->TopBottom = 2; /* bottom boot */ | ||
176 | } else | ||
147 | if (cfi->id & 0x80) { | 177 | if (cfi->id & 0x80) { |
148 | printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id); | 178 | printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id); |
149 | extp->TopBottom = 3; /* top boot */ | 179 | extp->TopBottom = 3; /* top boot */ |
150 | } else { | 180 | } else { |
151 | extp->TopBottom = 2; /* bottom boot */ | 181 | extp->TopBottom = 2; /* bottom boot */ |
152 | } | 182 | } |
183 | |||
184 | DEBUG(MTD_DEBUG_LEVEL1, | ||
185 | "%s: AMD CFI PRI V%c.%c has no boot block field;" | ||
186 | " deduced %s from Device ID\n", map->name, major, minor, | ||
187 | extp->TopBottom == 2 ? "bottom" : "top"); | ||
153 | } | 188 | } |
154 | } | 189 | } |
155 | #endif | 190 | #endif |
@@ -178,10 +213,18 @@ static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param) | |||
178 | if (atmel_pri.Features & 0x02) | 213 | if (atmel_pri.Features & 0x02) |
179 | extp->EraseSuspend = 2; | 214 | extp->EraseSuspend = 2; |
180 | 215 | ||
181 | if (atmel_pri.BottomBoot) | 216 | /* Some chips got it backwards... */ |
182 | extp->TopBottom = 2; | 217 | if (cfi->id == AT49BV6416) { |
183 | else | 218 | if (atmel_pri.BottomBoot) |
184 | extp->TopBottom = 3; | 219 | extp->TopBottom = 3; |
220 | else | ||
221 | extp->TopBottom = 2; | ||
222 | } else { | ||
223 | if (atmel_pri.BottomBoot) | ||
224 | extp->TopBottom = 2; | ||
225 | else | ||
226 | extp->TopBottom = 3; | ||
227 | } | ||
185 | 228 | ||
186 | /* burst write mode not supported */ | 229 | /* burst write mode not supported */ |
187 | cfi->cfiq->BufWriteTimeoutTyp = 0; | 230 | cfi->cfiq->BufWriteTimeoutTyp = 0; |
@@ -243,6 +286,7 @@ static struct cfi_fixup cfi_fixup_table[] = { | |||
243 | { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri, NULL }, | 286 | { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri, NULL }, |
244 | #ifdef AMD_BOOTLOC_BUG | 287 | #ifdef AMD_BOOTLOC_BUG |
245 | { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock, NULL }, | 288 | { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock, NULL }, |
289 | { MANUFACTURER_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock, NULL }, | ||
246 | #endif | 290 | #endif |
247 | { CFI_MFR_AMD, 0x0050, fixup_use_secsi, NULL, }, | 291 | { CFI_MFR_AMD, 0x0050, fixup_use_secsi, NULL, }, |
248 | { CFI_MFR_AMD, 0x0053, fixup_use_secsi, NULL, }, | 292 | { CFI_MFR_AMD, 0x0053, fixup_use_secsi, NULL, }, |
diff --git a/drivers/mtd/chips/cfi_probe.c b/drivers/mtd/chips/cfi_probe.c index c418e92e1d92..e63e6749429a 100644 --- a/drivers/mtd/chips/cfi_probe.c +++ b/drivers/mtd/chips/cfi_probe.c | |||
@@ -44,17 +44,14 @@ do { \ | |||
44 | 44 | ||
45 | #define xip_enable(base, map, cfi) \ | 45 | #define xip_enable(base, map, cfi) \ |
46 | do { \ | 46 | do { \ |
47 | cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); \ | 47 | cfi_qry_mode_off(base, map, cfi); \ |
48 | cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); \ | ||
49 | xip_allowed(base, map); \ | 48 | xip_allowed(base, map); \ |
50 | } while (0) | 49 | } while (0) |
51 | 50 | ||
52 | #define xip_disable_qry(base, map, cfi) \ | 51 | #define xip_disable_qry(base, map, cfi) \ |
53 | do { \ | 52 | do { \ |
54 | xip_disable(); \ | 53 | xip_disable(); \ |
55 | cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); \ | 54 | cfi_qry_mode_on(base, map, cfi); \ |
56 | cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); \ | ||
57 | cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL); \ | ||
58 | } while (0) | 55 | } while (0) |
59 | 56 | ||
60 | #else | 57 | #else |
@@ -70,32 +67,6 @@ do { \ | |||
70 | in: interleave,type,mode | 67 | in: interleave,type,mode |
71 | ret: table index, <0 for error | 68 | ret: table index, <0 for error |
72 | */ | 69 | */ |
73 | static int __xipram qry_present(struct map_info *map, __u32 base, | ||
74 | struct cfi_private *cfi) | ||
75 | { | ||
76 | int osf = cfi->interleave * cfi->device_type; // scale factor | ||
77 | map_word val[3]; | ||
78 | map_word qry[3]; | ||
79 | |||
80 | qry[0] = cfi_build_cmd('Q', map, cfi); | ||
81 | qry[1] = cfi_build_cmd('R', map, cfi); | ||
82 | qry[2] = cfi_build_cmd('Y', map, cfi); | ||
83 | |||
84 | val[0] = map_read(map, base + osf*0x10); | ||
85 | val[1] = map_read(map, base + osf*0x11); | ||
86 | val[2] = map_read(map, base + osf*0x12); | ||
87 | |||
88 | if (!map_word_equal(map, qry[0], val[0])) | ||
89 | return 0; | ||
90 | |||
91 | if (!map_word_equal(map, qry[1], val[1])) | ||
92 | return 0; | ||
93 | |||
94 | if (!map_word_equal(map, qry[2], val[2])) | ||
95 | return 0; | ||
96 | |||
97 | return 1; // "QRY" found | ||
98 | } | ||
99 | 70 | ||
100 | static int __xipram cfi_probe_chip(struct map_info *map, __u32 base, | 71 | static int __xipram cfi_probe_chip(struct map_info *map, __u32 base, |
101 | unsigned long *chip_map, struct cfi_private *cfi) | 72 | unsigned long *chip_map, struct cfi_private *cfi) |
@@ -116,11 +87,7 @@ static int __xipram cfi_probe_chip(struct map_info *map, __u32 base, | |||
116 | } | 87 | } |
117 | 88 | ||
118 | xip_disable(); | 89 | xip_disable(); |
119 | cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); | 90 | if (!cfi_qry_mode_on(base, map, cfi)) { |
120 | cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); | ||
121 | cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL); | ||
122 | |||
123 | if (!qry_present(map,base,cfi)) { | ||
124 | xip_enable(base, map, cfi); | 91 | xip_enable(base, map, cfi); |
125 | return 0; | 92 | return 0; |
126 | } | 93 | } |
@@ -141,14 +108,13 @@ static int __xipram cfi_probe_chip(struct map_info *map, __u32 base, | |||
141 | start = i << cfi->chipshift; | 108 | start = i << cfi->chipshift; |
142 | /* This chip should be in read mode if it's one | 109 | /* This chip should be in read mode if it's one |
143 | we've already touched. */ | 110 | we've already touched. */ |
144 | if (qry_present(map, start, cfi)) { | 111 | if (cfi_qry_present(map, start, cfi)) { |
145 | /* Eep. This chip also had the QRY marker. | 112 | /* Eep. This chip also had the QRY marker. |
146 | * Is it an alias for the new one? */ | 113 | * Is it an alias for the new one? */ |
147 | cfi_send_gen_cmd(0xF0, 0, start, map, cfi, cfi->device_type, NULL); | 114 | cfi_qry_mode_off(start, map, cfi); |
148 | cfi_send_gen_cmd(0xFF, 0, start, map, cfi, cfi->device_type, NULL); | ||
149 | 115 | ||
150 | /* If the QRY marker goes away, it's an alias */ | 116 | /* If the QRY marker goes away, it's an alias */ |
151 | if (!qry_present(map, start, cfi)) { | 117 | if (!cfi_qry_present(map, start, cfi)) { |
152 | xip_allowed(base, map); | 118 | xip_allowed(base, map); |
153 | printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", | 119 | printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", |
154 | map->name, base, start); | 120 | map->name, base, start); |
@@ -158,10 +124,9 @@ static int __xipram cfi_probe_chip(struct map_info *map, __u32 base, | |||
158 | * unfortunate. Stick the new chip in read mode | 124 | * unfortunate. Stick the new chip in read mode |
159 | * too and if it's the same, assume it's an alias. */ | 125 | * too and if it's the same, assume it's an alias. */ |
160 | /* FIXME: Use other modes to do a proper check */ | 126 | /* FIXME: Use other modes to do a proper check */ |
161 | cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); | 127 | cfi_qry_mode_off(base, map, cfi); |
162 | cfi_send_gen_cmd(0xFF, 0, start, map, cfi, cfi->device_type, NULL); | ||
163 | 128 | ||
164 | if (qry_present(map, base, cfi)) { | 129 | if (cfi_qry_present(map, base, cfi)) { |
165 | xip_allowed(base, map); | 130 | xip_allowed(base, map); |
166 | printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", | 131 | printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", |
167 | map->name, base, start); | 132 | map->name, base, start); |
@@ -176,8 +141,7 @@ static int __xipram cfi_probe_chip(struct map_info *map, __u32 base, | |||
176 | cfi->numchips++; | 141 | cfi->numchips++; |
177 | 142 | ||
178 | /* Put it back into Read Mode */ | 143 | /* Put it back into Read Mode */ |
179 | cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); | 144 | cfi_qry_mode_off(base, map, cfi); |
180 | cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); | ||
181 | xip_allowed(base, map); | 145 | xip_allowed(base, map); |
182 | 146 | ||
183 | printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank\n", | 147 | printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank\n", |
@@ -237,9 +201,7 @@ static int __xipram cfi_chip_setup(struct map_info *map, | |||
237 | cfi_read_query(map, base + 0xf * ofs_factor); | 201 | cfi_read_query(map, base + 0xf * ofs_factor); |
238 | 202 | ||
239 | /* Put it back into Read Mode */ | 203 | /* Put it back into Read Mode */ |
240 | cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); | 204 | cfi_qry_mode_off(base, map, cfi); |
241 | /* ... even if it's an Intel chip */ | ||
242 | cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); | ||
243 | xip_allowed(base, map); | 205 | xip_allowed(base, map); |
244 | 206 | ||
245 | /* Do any necessary byteswapping */ | 207 | /* Do any necessary byteswapping */ |
diff --git a/drivers/mtd/chips/cfi_util.c b/drivers/mtd/chips/cfi_util.c index 0ee457018016..34d40e25d312 100644 --- a/drivers/mtd/chips/cfi_util.c +++ b/drivers/mtd/chips/cfi_util.c | |||
@@ -24,6 +24,66 @@ | |||
24 | #include <linux/mtd/cfi.h> | 24 | #include <linux/mtd/cfi.h> |
25 | #include <linux/mtd/compatmac.h> | 25 | #include <linux/mtd/compatmac.h> |
26 | 26 | ||
27 | int __xipram cfi_qry_present(struct map_info *map, __u32 base, | ||
28 | struct cfi_private *cfi) | ||
29 | { | ||
30 | int osf = cfi->interleave * cfi->device_type; /* scale factor */ | ||
31 | map_word val[3]; | ||
32 | map_word qry[3]; | ||
33 | |||
34 | qry[0] = cfi_build_cmd('Q', map, cfi); | ||
35 | qry[1] = cfi_build_cmd('R', map, cfi); | ||
36 | qry[2] = cfi_build_cmd('Y', map, cfi); | ||
37 | |||
38 | val[0] = map_read(map, base + osf*0x10); | ||
39 | val[1] = map_read(map, base + osf*0x11); | ||
40 | val[2] = map_read(map, base + osf*0x12); | ||
41 | |||
42 | if (!map_word_equal(map, qry[0], val[0])) | ||
43 | return 0; | ||
44 | |||
45 | if (!map_word_equal(map, qry[1], val[1])) | ||
46 | return 0; | ||
47 | |||
48 | if (!map_word_equal(map, qry[2], val[2])) | ||
49 | return 0; | ||
50 | |||
51 | return 1; /* "QRY" found */ | ||
52 | } | ||
53 | EXPORT_SYMBOL_GPL(cfi_qry_present); | ||
54 | |||
55 | int __xipram cfi_qry_mode_on(uint32_t base, struct map_info *map, | ||
56 | struct cfi_private *cfi) | ||
57 | { | ||
58 | cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); | ||
59 | cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL); | ||
60 | if (cfi_qry_present(map, base, cfi)) | ||
61 | return 1; | ||
62 | /* QRY not found probably we deal with some odd CFI chips */ | ||
63 | /* Some revisions of some old Intel chips? */ | ||
64 | cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); | ||
65 | cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); | ||
66 | cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL); | ||
67 | if (cfi_qry_present(map, base, cfi)) | ||
68 | return 1; | ||
69 | /* ST M29DW chips */ | ||
70 | cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); | ||
71 | cfi_send_gen_cmd(0x98, 0x555, base, map, cfi, cfi->device_type, NULL); | ||
72 | if (cfi_qry_present(map, base, cfi)) | ||
73 | return 1; | ||
74 | /* QRY not found */ | ||
75 | return 0; | ||
76 | } | ||
77 | EXPORT_SYMBOL_GPL(cfi_qry_mode_on); | ||
78 | |||
79 | void __xipram cfi_qry_mode_off(uint32_t base, struct map_info *map, | ||
80 | struct cfi_private *cfi) | ||
81 | { | ||
82 | cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); | ||
83 | cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); | ||
84 | } | ||
85 | EXPORT_SYMBOL_GPL(cfi_qry_mode_off); | ||
86 | |||
27 | struct cfi_extquery * | 87 | struct cfi_extquery * |
28 | __xipram cfi_read_pri(struct map_info *map, __u16 adr, __u16 size, const char* name) | 88 | __xipram cfi_read_pri(struct map_info *map, __u16 adr, __u16 size, const char* name) |
29 | { | 89 | { |
@@ -48,8 +108,7 @@ __xipram cfi_read_pri(struct map_info *map, __u16 adr, __u16 size, const char* n | |||
48 | #endif | 108 | #endif |
49 | 109 | ||
50 | /* Switch it into Query Mode */ | 110 | /* Switch it into Query Mode */ |
51 | cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL); | 111 | cfi_qry_mode_on(base, map, cfi); |
52 | |||
53 | /* Read in the Extended Query Table */ | 112 | /* Read in the Extended Query Table */ |
54 | for (i=0; i<size; i++) { | 113 | for (i=0; i<size; i++) { |
55 | ((unsigned char *)extp)[i] = | 114 | ((unsigned char *)extp)[i] = |
@@ -57,8 +116,7 @@ __xipram cfi_read_pri(struct map_info *map, __u16 adr, __u16 size, const char* n | |||
57 | } | 116 | } |
58 | 117 | ||
59 | /* Make sure it returns to read mode */ | 118 | /* Make sure it returns to read mode */ |
60 | cfi_send_gen_cmd(0xf0, 0, base, map, cfi, cfi->device_type, NULL); | 119 | cfi_qry_mode_off(base, map, cfi); |
61 | cfi_send_gen_cmd(0xff, 0, base, map, cfi, cfi->device_type, NULL); | ||
62 | 120 | ||
63 | #ifdef CONFIG_MTD_XIP | 121 | #ifdef CONFIG_MTD_XIP |
64 | (void) map_read(map, base); | 122 | (void) map_read(map, base); |
diff --git a/drivers/mtd/chips/gen_probe.c b/drivers/mtd/chips/gen_probe.c index f061885b2812..e2dc96441e05 100644 --- a/drivers/mtd/chips/gen_probe.c +++ b/drivers/mtd/chips/gen_probe.c | |||
@@ -111,7 +111,7 @@ static struct cfi_private *genprobe_ident_chips(struct map_info *map, struct chi | |||
111 | max_chips = 1; | 111 | max_chips = 1; |
112 | } | 112 | } |
113 | 113 | ||
114 | mapsize = sizeof(long) * ( (max_chips + BITS_PER_LONG-1) / BITS_PER_LONG ); | 114 | mapsize = sizeof(long) * DIV_ROUND_UP(max_chips, BITS_PER_LONG); |
115 | chip_map = kzalloc(mapsize, GFP_KERNEL); | 115 | chip_map = kzalloc(mapsize, GFP_KERNEL); |
116 | if (!chip_map) { | 116 | if (!chip_map) { |
117 | printk(KERN_WARNING "%s: kmalloc failed for CFI chip map\n", map->name); | 117 | printk(KERN_WARNING "%s: kmalloc failed for CFI chip map\n", map->name); |
diff --git a/drivers/mtd/cmdlinepart.c b/drivers/mtd/cmdlinepart.c index 71bc07f149b7..50a340388e74 100644 --- a/drivers/mtd/cmdlinepart.c +++ b/drivers/mtd/cmdlinepart.c | |||
@@ -7,6 +7,7 @@ | |||
7 | * | 7 | * |
8 | * mtdparts=<mtddef>[;<mtddef] | 8 | * mtdparts=<mtddef>[;<mtddef] |
9 | * <mtddef> := <mtd-id>:<partdef>[,<partdef>] | 9 | * <mtddef> := <mtd-id>:<partdef>[,<partdef>] |
10 | * where <mtd-id> is the name from the "cat /proc/mtd" command | ||
10 | * <partdef> := <size>[@offset][<name>][ro][lk] | 11 | * <partdef> := <size>[@offset][<name>][ro][lk] |
11 | * <mtd-id> := unique name used in mapping driver/device (mtd->name) | 12 | * <mtd-id> := unique name used in mapping driver/device (mtd->name) |
12 | * <size> := standard linux memsize OR "-" to denote all remaining space | 13 | * <size> := standard linux memsize OR "-" to denote all remaining space |
diff --git a/drivers/mtd/devices/Kconfig b/drivers/mtd/devices/Kconfig index 9c613f06623c..6fde0a2e3567 100644 --- a/drivers/mtd/devices/Kconfig +++ b/drivers/mtd/devices/Kconfig | |||
@@ -59,6 +59,27 @@ config MTD_DATAFLASH | |||
59 | Sometimes DataFlash chips are packaged inside MMC-format | 59 | Sometimes DataFlash chips are packaged inside MMC-format |
60 | cards; at this writing, the MMC stack won't handle those. | 60 | cards; at this writing, the MMC stack won't handle those. |
61 | 61 | ||
62 | config MTD_DATAFLASH_WRITE_VERIFY | ||
63 | bool "Verify DataFlash page writes" | ||
64 | depends on MTD_DATAFLASH | ||
65 | help | ||
66 | This adds an extra check when data is written to the flash. | ||
67 | It may help if you are verifying chip setup (timings etc) on | ||
68 | your board. There is a rare possibility that even though the | ||
69 | device thinks the write was successful, a bit could have been | ||
70 | flipped accidentally due to device wear or something else. | ||
71 | |||
72 | config MTD_DATAFLASH_OTP | ||
73 | bool "DataFlash OTP support (Security Register)" | ||
74 | depends on MTD_DATAFLASH | ||
75 | select HAVE_MTD_OTP | ||
76 | help | ||
77 | Newer DataFlash chips (revisions C and D) support 128 bytes of | ||
78 | one-time-programmable (OTP) data. The first half may be written | ||
79 | (once) with up to 64 bytes of data, such as a serial number or | ||
80 | other key product data. The second half is programmed with a | ||
81 | unique-to-each-chip bit pattern at the factory. | ||
82 | |||
62 | config MTD_M25P80 | 83 | config MTD_M25P80 |
63 | tristate "Support most SPI Flash chips (AT26DF, M25P, W25X, ...)" | 84 | tristate "Support most SPI Flash chips (AT26DF, M25P, W25X, ...)" |
64 | depends on SPI_MASTER && EXPERIMENTAL | 85 | depends on SPI_MASTER && EXPERIMENTAL |
diff --git a/drivers/mtd/devices/m25p80.c b/drivers/mtd/devices/m25p80.c index b35c3333e210..76a76751da36 100644 --- a/drivers/mtd/devices/m25p80.c +++ b/drivers/mtd/devices/m25p80.c | |||
@@ -39,6 +39,7 @@ | |||
39 | #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */ | 39 | #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */ |
40 | #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */ | 40 | #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */ |
41 | #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */ | 41 | #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */ |
42 | #define OPCODE_BE 0xc7 /* Erase whole flash block */ | ||
42 | #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */ | 43 | #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */ |
43 | #define OPCODE_RDID 0x9f /* Read JEDEC ID */ | 44 | #define OPCODE_RDID 0x9f /* Read JEDEC ID */ |
44 | 45 | ||
@@ -161,6 +162,31 @@ static int wait_till_ready(struct m25p *flash) | |||
161 | return 1; | 162 | return 1; |
162 | } | 163 | } |
163 | 164 | ||
165 | /* | ||
166 | * Erase the whole flash memory | ||
167 | * | ||
168 | * Returns 0 if successful, non-zero otherwise. | ||
169 | */ | ||
170 | static int erase_block(struct m25p *flash) | ||
171 | { | ||
172 | DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB\n", | ||
173 | flash->spi->dev.bus_id, __func__, | ||
174 | flash->mtd.size / 1024); | ||
175 | |||
176 | /* Wait until finished previous write command. */ | ||
177 | if (wait_till_ready(flash)) | ||
178 | return 1; | ||
179 | |||
180 | /* Send write enable, then erase commands. */ | ||
181 | write_enable(flash); | ||
182 | |||
183 | /* Set up command buffer. */ | ||
184 | flash->command[0] = OPCODE_BE; | ||
185 | |||
186 | spi_write(flash->spi, flash->command, 1); | ||
187 | |||
188 | return 0; | ||
189 | } | ||
164 | 190 | ||
165 | /* | 191 | /* |
166 | * Erase one sector of flash memory at offset ``offset'' which is any | 192 | * Erase one sector of flash memory at offset ``offset'' which is any |
@@ -229,15 +255,21 @@ static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr) | |||
229 | */ | 255 | */ |
230 | 256 | ||
231 | /* now erase those sectors */ | 257 | /* now erase those sectors */ |
232 | while (len) { | 258 | if (len == flash->mtd.size && erase_block(flash)) { |
233 | if (erase_sector(flash, addr)) { | 259 | instr->state = MTD_ERASE_FAILED; |
234 | instr->state = MTD_ERASE_FAILED; | 260 | mutex_unlock(&flash->lock); |
235 | mutex_unlock(&flash->lock); | 261 | return -EIO; |
236 | return -EIO; | 262 | } else { |
237 | } | 263 | while (len) { |
264 | if (erase_sector(flash, addr)) { | ||
265 | instr->state = MTD_ERASE_FAILED; | ||
266 | mutex_unlock(&flash->lock); | ||
267 | return -EIO; | ||
268 | } | ||
238 | 269 | ||
239 | addr += mtd->erasesize; | 270 | addr += mtd->erasesize; |
240 | len -= mtd->erasesize; | 271 | len -= mtd->erasesize; |
272 | } | ||
241 | } | 273 | } |
242 | 274 | ||
243 | mutex_unlock(&flash->lock); | 275 | mutex_unlock(&flash->lock); |
@@ -437,6 +469,7 @@ struct flash_info { | |||
437 | * then a two byte device id. | 469 | * then a two byte device id. |
438 | */ | 470 | */ |
439 | u32 jedec_id; | 471 | u32 jedec_id; |
472 | u16 ext_id; | ||
440 | 473 | ||
441 | /* The size listed here is what works with OPCODE_SE, which isn't | 474 | /* The size listed here is what works with OPCODE_SE, which isn't |
442 | * necessarily called a "sector" by the vendor. | 475 | * necessarily called a "sector" by the vendor. |
@@ -456,72 +489,75 @@ struct flash_info { | |||
456 | static struct flash_info __devinitdata m25p_data [] = { | 489 | static struct flash_info __devinitdata m25p_data [] = { |
457 | 490 | ||
458 | /* Atmel -- some are (confusingly) marketed as "DataFlash" */ | 491 | /* Atmel -- some are (confusingly) marketed as "DataFlash" */ |
459 | { "at25fs010", 0x1f6601, 32 * 1024, 4, SECT_4K, }, | 492 | { "at25fs010", 0x1f6601, 0, 32 * 1024, 4, SECT_4K, }, |
460 | { "at25fs040", 0x1f6604, 64 * 1024, 8, SECT_4K, }, | 493 | { "at25fs040", 0x1f6604, 0, 64 * 1024, 8, SECT_4K, }, |
461 | 494 | ||
462 | { "at25df041a", 0x1f4401, 64 * 1024, 8, SECT_4K, }, | 495 | { "at25df041a", 0x1f4401, 0, 64 * 1024, 8, SECT_4K, }, |
463 | { "at25df641", 0x1f4800, 64 * 1024, 128, SECT_4K, }, | 496 | { "at25df641", 0x1f4800, 0, 64 * 1024, 128, SECT_4K, }, |
464 | 497 | ||
465 | { "at26f004", 0x1f0400, 64 * 1024, 8, SECT_4K, }, | 498 | { "at26f004", 0x1f0400, 0, 64 * 1024, 8, SECT_4K, }, |
466 | { "at26df081a", 0x1f4501, 64 * 1024, 16, SECT_4K, }, | 499 | { "at26df081a", 0x1f4501, 0, 64 * 1024, 16, SECT_4K, }, |
467 | { "at26df161a", 0x1f4601, 64 * 1024, 32, SECT_4K, }, | 500 | { "at26df161a", 0x1f4601, 0, 64 * 1024, 32, SECT_4K, }, |
468 | { "at26df321", 0x1f4701, 64 * 1024, 64, SECT_4K, }, | 501 | { "at26df321", 0x1f4701, 0, 64 * 1024, 64, SECT_4K, }, |
469 | 502 | ||
470 | /* Spansion -- single (large) sector size only, at least | 503 | /* Spansion -- single (large) sector size only, at least |
471 | * for the chips listed here (without boot sectors). | 504 | * for the chips listed here (without boot sectors). |
472 | */ | 505 | */ |
473 | { "s25sl004a", 0x010212, 64 * 1024, 8, }, | 506 | { "s25sl004a", 0x010212, 0, 64 * 1024, 8, }, |
474 | { "s25sl008a", 0x010213, 64 * 1024, 16, }, | 507 | { "s25sl008a", 0x010213, 0, 64 * 1024, 16, }, |
475 | { "s25sl016a", 0x010214, 64 * 1024, 32, }, | 508 | { "s25sl016a", 0x010214, 0, 64 * 1024, 32, }, |
476 | { "s25sl032a", 0x010215, 64 * 1024, 64, }, | 509 | { "s25sl032a", 0x010215, 0, 64 * 1024, 64, }, |
477 | { "s25sl064a", 0x010216, 64 * 1024, 128, }, | 510 | { "s25sl064a", 0x010216, 0, 64 * 1024, 128, }, |
511 | { "s25sl12800", 0x012018, 0x0300, 256 * 1024, 64, }, | ||
512 | { "s25sl12801", 0x012018, 0x0301, 64 * 1024, 256, }, | ||
478 | 513 | ||
479 | /* SST -- large erase sizes are "overlays", "sectors" are 4K */ | 514 | /* SST -- large erase sizes are "overlays", "sectors" are 4K */ |
480 | { "sst25vf040b", 0xbf258d, 64 * 1024, 8, SECT_4K, }, | 515 | { "sst25vf040b", 0xbf258d, 0, 64 * 1024, 8, SECT_4K, }, |
481 | { "sst25vf080b", 0xbf258e, 64 * 1024, 16, SECT_4K, }, | 516 | { "sst25vf080b", 0xbf258e, 0, 64 * 1024, 16, SECT_4K, }, |
482 | { "sst25vf016b", 0xbf2541, 64 * 1024, 32, SECT_4K, }, | 517 | { "sst25vf016b", 0xbf2541, 0, 64 * 1024, 32, SECT_4K, }, |
483 | { "sst25vf032b", 0xbf254a, 64 * 1024, 64, SECT_4K, }, | 518 | { "sst25vf032b", 0xbf254a, 0, 64 * 1024, 64, SECT_4K, }, |
484 | 519 | ||
485 | /* ST Microelectronics -- newer production may have feature updates */ | 520 | /* ST Microelectronics -- newer production may have feature updates */ |
486 | { "m25p05", 0x202010, 32 * 1024, 2, }, | 521 | { "m25p05", 0x202010, 0, 32 * 1024, 2, }, |
487 | { "m25p10", 0x202011, 32 * 1024, 4, }, | 522 | { "m25p10", 0x202011, 0, 32 * 1024, 4, }, |
488 | { "m25p20", 0x202012, 64 * 1024, 4, }, | 523 | { "m25p20", 0x202012, 0, 64 * 1024, 4, }, |
489 | { "m25p40", 0x202013, 64 * 1024, 8, }, | 524 | { "m25p40", 0x202013, 0, 64 * 1024, 8, }, |
490 | { "m25p80", 0, 64 * 1024, 16, }, | 525 | { "m25p80", 0, 0, 64 * 1024, 16, }, |
491 | { "m25p16", 0x202015, 64 * 1024, 32, }, | 526 | { "m25p16", 0x202015, 0, 64 * 1024, 32, }, |
492 | { "m25p32", 0x202016, 64 * 1024, 64, }, | 527 | { "m25p32", 0x202016, 0, 64 * 1024, 64, }, |
493 | { "m25p64", 0x202017, 64 * 1024, 128, }, | 528 | { "m25p64", 0x202017, 0, 64 * 1024, 128, }, |
494 | { "m25p128", 0x202018, 256 * 1024, 64, }, | 529 | { "m25p128", 0x202018, 0, 256 * 1024, 64, }, |
495 | 530 | ||
496 | { "m45pe80", 0x204014, 64 * 1024, 16, }, | 531 | { "m45pe80", 0x204014, 0, 64 * 1024, 16, }, |
497 | { "m45pe16", 0x204015, 64 * 1024, 32, }, | 532 | { "m45pe16", 0x204015, 0, 64 * 1024, 32, }, |
498 | 533 | ||
499 | { "m25pe80", 0x208014, 64 * 1024, 16, }, | 534 | { "m25pe80", 0x208014, 0, 64 * 1024, 16, }, |
500 | { "m25pe16", 0x208015, 64 * 1024, 32, SECT_4K, }, | 535 | { "m25pe16", 0x208015, 0, 64 * 1024, 32, SECT_4K, }, |
501 | 536 | ||
502 | /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ | 537 | /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ |
503 | { "w25x10", 0xef3011, 64 * 1024, 2, SECT_4K, }, | 538 | { "w25x10", 0xef3011, 0, 64 * 1024, 2, SECT_4K, }, |
504 | { "w25x20", 0xef3012, 64 * 1024, 4, SECT_4K, }, | 539 | { "w25x20", 0xef3012, 0, 64 * 1024, 4, SECT_4K, }, |
505 | { "w25x40", 0xef3013, 64 * 1024, 8, SECT_4K, }, | 540 | { "w25x40", 0xef3013, 0, 64 * 1024, 8, SECT_4K, }, |
506 | { "w25x80", 0xef3014, 64 * 1024, 16, SECT_4K, }, | 541 | { "w25x80", 0xef3014, 0, 64 * 1024, 16, SECT_4K, }, |
507 | { "w25x16", 0xef3015, 64 * 1024, 32, SECT_4K, }, | 542 | { "w25x16", 0xef3015, 0, 64 * 1024, 32, SECT_4K, }, |
508 | { "w25x32", 0xef3016, 64 * 1024, 64, SECT_4K, }, | 543 | { "w25x32", 0xef3016, 0, 64 * 1024, 64, SECT_4K, }, |
509 | { "w25x64", 0xef3017, 64 * 1024, 128, SECT_4K, }, | 544 | { "w25x64", 0xef3017, 0, 64 * 1024, 128, SECT_4K, }, |
510 | }; | 545 | }; |
511 | 546 | ||
512 | static struct flash_info *__devinit jedec_probe(struct spi_device *spi) | 547 | static struct flash_info *__devinit jedec_probe(struct spi_device *spi) |
513 | { | 548 | { |
514 | int tmp; | 549 | int tmp; |
515 | u8 code = OPCODE_RDID; | 550 | u8 code = OPCODE_RDID; |
516 | u8 id[3]; | 551 | u8 id[5]; |
517 | u32 jedec; | 552 | u32 jedec; |
553 | u16 ext_jedec; | ||
518 | struct flash_info *info; | 554 | struct flash_info *info; |
519 | 555 | ||
520 | /* JEDEC also defines an optional "extended device information" | 556 | /* JEDEC also defines an optional "extended device information" |
521 | * string for after vendor-specific data, after the three bytes | 557 | * string for after vendor-specific data, after the three bytes |
522 | * we use here. Supporting some chips might require using it. | 558 | * we use here. Supporting some chips might require using it. |
523 | */ | 559 | */ |
524 | tmp = spi_write_then_read(spi, &code, 1, id, 3); | 560 | tmp = spi_write_then_read(spi, &code, 1, id, 5); |
525 | if (tmp < 0) { | 561 | if (tmp < 0) { |
526 | DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n", | 562 | DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n", |
527 | spi->dev.bus_id, tmp); | 563 | spi->dev.bus_id, tmp); |
@@ -533,10 +569,14 @@ static struct flash_info *__devinit jedec_probe(struct spi_device *spi) | |||
533 | jedec = jedec << 8; | 569 | jedec = jedec << 8; |
534 | jedec |= id[2]; | 570 | jedec |= id[2]; |
535 | 571 | ||
572 | ext_jedec = id[3] << 8 | id[4]; | ||
573 | |||
536 | for (tmp = 0, info = m25p_data; | 574 | for (tmp = 0, info = m25p_data; |
537 | tmp < ARRAY_SIZE(m25p_data); | 575 | tmp < ARRAY_SIZE(m25p_data); |
538 | tmp++, info++) { | 576 | tmp++, info++) { |
539 | if (info->jedec_id == jedec) | 577 | if (info->jedec_id == jedec) |
578 | if (ext_jedec != 0 && info->ext_id != ext_jedec) | ||
579 | continue; | ||
540 | return info; | 580 | return info; |
541 | } | 581 | } |
542 | dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec); | 582 | dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec); |
diff --git a/drivers/mtd/devices/mtd_dataflash.c b/drivers/mtd/devices/mtd_dataflash.c index 8bd0dea6885f..6dd9aff8bb2d 100644 --- a/drivers/mtd/devices/mtd_dataflash.c +++ b/drivers/mtd/devices/mtd_dataflash.c | |||
@@ -30,12 +30,10 @@ | |||
30 | * doesn't (yet) use these for any kind of i/o overlap or prefetching. | 30 | * doesn't (yet) use these for any kind of i/o overlap or prefetching. |
31 | * | 31 | * |
32 | * Sometimes DataFlash is packaged in MMC-format cards, although the | 32 | * Sometimes DataFlash is packaged in MMC-format cards, although the |
33 | * MMC stack can't use SPI (yet), or distinguish between MMC and DataFlash | 33 | * MMC stack can't (yet?) distinguish between MMC and DataFlash |
34 | * protocols during enumeration. | 34 | * protocols during enumeration. |
35 | */ | 35 | */ |
36 | 36 | ||
37 | #define CONFIG_DATAFLASH_WRITE_VERIFY | ||
38 | |||
39 | /* reads can bypass the buffers */ | 37 | /* reads can bypass the buffers */ |
40 | #define OP_READ_CONTINUOUS 0xE8 | 38 | #define OP_READ_CONTINUOUS 0xE8 |
41 | #define OP_READ_PAGE 0xD2 | 39 | #define OP_READ_PAGE 0xD2 |
@@ -80,7 +78,8 @@ | |||
80 | */ | 78 | */ |
81 | #define OP_READ_ID 0x9F | 79 | #define OP_READ_ID 0x9F |
82 | #define OP_READ_SECURITY 0x77 | 80 | #define OP_READ_SECURITY 0x77 |
83 | #define OP_WRITE_SECURITY 0x9A /* OTP bits */ | 81 | #define OP_WRITE_SECURITY_REVC 0x9A |
82 | #define OP_WRITE_SECURITY 0x9B /* revision D */ | ||
84 | 83 | ||
85 | 84 | ||
86 | struct dataflash { | 85 | struct dataflash { |
@@ -402,7 +401,7 @@ static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len, | |||
402 | (void) dataflash_waitready(priv->spi); | 401 | (void) dataflash_waitready(priv->spi); |
403 | 402 | ||
404 | 403 | ||
405 | #ifdef CONFIG_DATAFLASH_WRITE_VERIFY | 404 | #ifdef CONFIG_MTD_DATAFLASH_VERIFY_WRITE |
406 | 405 | ||
407 | /* (3) Compare to Buffer1 */ | 406 | /* (3) Compare to Buffer1 */ |
408 | addr = pageaddr << priv->page_offset; | 407 | addr = pageaddr << priv->page_offset; |
@@ -431,7 +430,7 @@ static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len, | |||
431 | } else | 430 | } else |
432 | status = 0; | 431 | status = 0; |
433 | 432 | ||
434 | #endif /* CONFIG_DATAFLASH_WRITE_VERIFY */ | 433 | #endif /* CONFIG_MTD_DATAFLASH_VERIFY_WRITE */ |
435 | 434 | ||
436 | remaining = remaining - writelen; | 435 | remaining = remaining - writelen; |
437 | pageaddr++; | 436 | pageaddr++; |
@@ -451,16 +450,192 @@ static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len, | |||
451 | 450 | ||
452 | /* ......................................................................... */ | 451 | /* ......................................................................... */ |
453 | 452 | ||
453 | #ifdef CONFIG_MTD_DATAFLASH_OTP | ||
454 | |||
455 | static int dataflash_get_otp_info(struct mtd_info *mtd, | ||
456 | struct otp_info *info, size_t len) | ||
457 | { | ||
458 | /* Report both blocks as identical: bytes 0..64, locked. | ||
459 | * Unless the user block changed from all-ones, we can't | ||
460 | * tell whether it's still writable; so we assume it isn't. | ||
461 | */ | ||
462 | info->start = 0; | ||
463 | info->length = 64; | ||
464 | info->locked = 1; | ||
465 | return sizeof(*info); | ||
466 | } | ||
467 | |||
468 | static ssize_t otp_read(struct spi_device *spi, unsigned base, | ||
469 | uint8_t *buf, loff_t off, size_t len) | ||
470 | { | ||
471 | struct spi_message m; | ||
472 | size_t l; | ||
473 | uint8_t *scratch; | ||
474 | struct spi_transfer t; | ||
475 | int status; | ||
476 | |||
477 | if (off > 64) | ||
478 | return -EINVAL; | ||
479 | |||
480 | if ((off + len) > 64) | ||
481 | len = 64 - off; | ||
482 | if (len == 0) | ||
483 | return len; | ||
484 | |||
485 | spi_message_init(&m); | ||
486 | |||
487 | l = 4 + base + off + len; | ||
488 | scratch = kzalloc(l, GFP_KERNEL); | ||
489 | if (!scratch) | ||
490 | return -ENOMEM; | ||
491 | |||
492 | /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes | ||
493 | * IN: ignore 4 bytes, data bytes 0..N (max 127) | ||
494 | */ | ||
495 | scratch[0] = OP_READ_SECURITY; | ||
496 | |||
497 | memset(&t, 0, sizeof t); | ||
498 | t.tx_buf = scratch; | ||
499 | t.rx_buf = scratch; | ||
500 | t.len = l; | ||
501 | spi_message_add_tail(&t, &m); | ||
502 | |||
503 | dataflash_waitready(spi); | ||
504 | |||
505 | status = spi_sync(spi, &m); | ||
506 | if (status >= 0) { | ||
507 | memcpy(buf, scratch + 4 + base + off, len); | ||
508 | status = len; | ||
509 | } | ||
510 | |||
511 | kfree(scratch); | ||
512 | return status; | ||
513 | } | ||
514 | |||
515 | static int dataflash_read_fact_otp(struct mtd_info *mtd, | ||
516 | loff_t from, size_t len, size_t *retlen, u_char *buf) | ||
517 | { | ||
518 | struct dataflash *priv = (struct dataflash *)mtd->priv; | ||
519 | int status; | ||
520 | |||
521 | /* 64 bytes, from 0..63 ... start at 64 on-chip */ | ||
522 | mutex_lock(&priv->lock); | ||
523 | status = otp_read(priv->spi, 64, buf, from, len); | ||
524 | mutex_unlock(&priv->lock); | ||
525 | |||
526 | if (status < 0) | ||
527 | return status; | ||
528 | *retlen = status; | ||
529 | return 0; | ||
530 | } | ||
531 | |||
532 | static int dataflash_read_user_otp(struct mtd_info *mtd, | ||
533 | loff_t from, size_t len, size_t *retlen, u_char *buf) | ||
534 | { | ||
535 | struct dataflash *priv = (struct dataflash *)mtd->priv; | ||
536 | int status; | ||
537 | |||
538 | /* 64 bytes, from 0..63 ... start at 0 on-chip */ | ||
539 | mutex_lock(&priv->lock); | ||
540 | status = otp_read(priv->spi, 0, buf, from, len); | ||
541 | mutex_unlock(&priv->lock); | ||
542 | |||
543 | if (status < 0) | ||
544 | return status; | ||
545 | *retlen = status; | ||
546 | return 0; | ||
547 | } | ||
548 | |||
549 | static int dataflash_write_user_otp(struct mtd_info *mtd, | ||
550 | loff_t from, size_t len, size_t *retlen, u_char *buf) | ||
551 | { | ||
552 | struct spi_message m; | ||
553 | const size_t l = 4 + 64; | ||
554 | uint8_t *scratch; | ||
555 | struct spi_transfer t; | ||
556 | struct dataflash *priv = (struct dataflash *)mtd->priv; | ||
557 | int status; | ||
558 | |||
559 | if (len > 64) | ||
560 | return -EINVAL; | ||
561 | |||
562 | /* Strictly speaking, we *could* truncate the write ... but | ||
563 | * let's not do that for the only write that's ever possible. | ||
564 | */ | ||
565 | if ((from + len) > 64) | ||
566 | return -EINVAL; | ||
567 | |||
568 | /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes | ||
569 | * IN: ignore all | ||
570 | */ | ||
571 | scratch = kzalloc(l, GFP_KERNEL); | ||
572 | if (!scratch) | ||
573 | return -ENOMEM; | ||
574 | scratch[0] = OP_WRITE_SECURITY; | ||
575 | memcpy(scratch + 4 + from, buf, len); | ||
576 | |||
577 | spi_message_init(&m); | ||
578 | |||
579 | memset(&t, 0, sizeof t); | ||
580 | t.tx_buf = scratch; | ||
581 | t.len = l; | ||
582 | spi_message_add_tail(&t, &m); | ||
583 | |||
584 | /* Write the OTP bits, if they've not yet been written. | ||
585 | * This modifies SRAM buffer1. | ||
586 | */ | ||
587 | mutex_lock(&priv->lock); | ||
588 | dataflash_waitready(priv->spi); | ||
589 | status = spi_sync(priv->spi, &m); | ||
590 | mutex_unlock(&priv->lock); | ||
591 | |||
592 | kfree(scratch); | ||
593 | |||
594 | if (status >= 0) { | ||
595 | status = 0; | ||
596 | *retlen = len; | ||
597 | } | ||
598 | return status; | ||
599 | } | ||
600 | |||
601 | static char *otp_setup(struct mtd_info *device, char revision) | ||
602 | { | ||
603 | device->get_fact_prot_info = dataflash_get_otp_info; | ||
604 | device->read_fact_prot_reg = dataflash_read_fact_otp; | ||
605 | device->get_user_prot_info = dataflash_get_otp_info; | ||
606 | device->read_user_prot_reg = dataflash_read_user_otp; | ||
607 | |||
608 | /* rev c parts (at45db321c and at45db1281 only!) use a | ||
609 | * different write procedure; not (yet?) implemented. | ||
610 | */ | ||
611 | if (revision > 'c') | ||
612 | device->write_user_prot_reg = dataflash_write_user_otp; | ||
613 | |||
614 | return ", OTP"; | ||
615 | } | ||
616 | |||
617 | #else | ||
618 | |||
619 | static char *otp_setup(struct mtd_info *device, char revision) | ||
620 | { | ||
621 | return " (OTP)"; | ||
622 | } | ||
623 | |||
624 | #endif | ||
625 | |||
626 | /* ......................................................................... */ | ||
627 | |||
454 | /* | 628 | /* |
455 | * Register DataFlash device with MTD subsystem. | 629 | * Register DataFlash device with MTD subsystem. |
456 | */ | 630 | */ |
457 | static int __devinit | 631 | static int __devinit |
458 | add_dataflash(struct spi_device *spi, char *name, | 632 | add_dataflash_otp(struct spi_device *spi, char *name, |
459 | int nr_pages, int pagesize, int pageoffset) | 633 | int nr_pages, int pagesize, int pageoffset, char revision) |
460 | { | 634 | { |
461 | struct dataflash *priv; | 635 | struct dataflash *priv; |
462 | struct mtd_info *device; | 636 | struct mtd_info *device; |
463 | struct flash_platform_data *pdata = spi->dev.platform_data; | 637 | struct flash_platform_data *pdata = spi->dev.platform_data; |
638 | char *otp_tag = ""; | ||
464 | 639 | ||
465 | priv = kzalloc(sizeof *priv, GFP_KERNEL); | 640 | priv = kzalloc(sizeof *priv, GFP_KERNEL); |
466 | if (!priv) | 641 | if (!priv) |
@@ -489,8 +664,12 @@ add_dataflash(struct spi_device *spi, char *name, | |||
489 | device->write = dataflash_write; | 664 | device->write = dataflash_write; |
490 | device->priv = priv; | 665 | device->priv = priv; |
491 | 666 | ||
492 | dev_info(&spi->dev, "%s (%d KBytes) pagesize %d bytes\n", | 667 | if (revision >= 'c') |
493 | name, DIV_ROUND_UP(device->size, 1024), pagesize); | 668 | otp_tag = otp_setup(device, revision); |
669 | |||
670 | dev_info(&spi->dev, "%s (%d KBytes) pagesize %d bytes%s\n", | ||
671 | name, DIV_ROUND_UP(device->size, 1024), | ||
672 | pagesize, otp_tag); | ||
494 | dev_set_drvdata(&spi->dev, priv); | 673 | dev_set_drvdata(&spi->dev, priv); |
495 | 674 | ||
496 | if (mtd_has_partitions()) { | 675 | if (mtd_has_partitions()) { |
@@ -519,6 +698,14 @@ add_dataflash(struct spi_device *spi, char *name, | |||
519 | return add_mtd_device(device) == 1 ? -ENODEV : 0; | 698 | return add_mtd_device(device) == 1 ? -ENODEV : 0; |
520 | } | 699 | } |
521 | 700 | ||
701 | static inline int __devinit | ||
702 | add_dataflash(struct spi_device *spi, char *name, | ||
703 | int nr_pages, int pagesize, int pageoffset) | ||
704 | { | ||
705 | return add_dataflash_otp(spi, name, nr_pages, pagesize, | ||
706 | pageoffset, 0); | ||
707 | } | ||
708 | |||
522 | struct flash_info { | 709 | struct flash_info { |
523 | char *name; | 710 | char *name; |
524 | 711 | ||
@@ -664,13 +851,16 @@ static int __devinit dataflash_probe(struct spi_device *spi) | |||
664 | * Try to detect dataflash by JEDEC ID. | 851 | * Try to detect dataflash by JEDEC ID. |
665 | * If it succeeds we know we have either a C or D part. | 852 | * If it succeeds we know we have either a C or D part. |
666 | * D will support power of 2 pagesize option. | 853 | * D will support power of 2 pagesize option. |
854 | * Both support the security register, though with different | ||
855 | * write procedures. | ||
667 | */ | 856 | */ |
668 | info = jedec_probe(spi); | 857 | info = jedec_probe(spi); |
669 | if (IS_ERR(info)) | 858 | if (IS_ERR(info)) |
670 | return PTR_ERR(info); | 859 | return PTR_ERR(info); |
671 | if (info != NULL) | 860 | if (info != NULL) |
672 | return add_dataflash(spi, info->name, info->nr_pages, | 861 | return add_dataflash_otp(spi, info->name, info->nr_pages, |
673 | info->pagesize, info->pageoffset); | 862 | info->pagesize, info->pageoffset, |
863 | (info->flags & SUP_POW2PS) ? 'd' : 'c'); | ||
674 | 864 | ||
675 | /* | 865 | /* |
676 | * Older chips support only legacy commands, identifing | 866 | * Older chips support only legacy commands, identifing |
diff --git a/drivers/mtd/inftlcore.c b/drivers/mtd/inftlcore.c index c4f9d3378b24..50ce13887f63 100644 --- a/drivers/mtd/inftlcore.c +++ b/drivers/mtd/inftlcore.c | |||
@@ -388,6 +388,10 @@ static u16 INFTL_foldchain(struct INFTLrecord *inftl, unsigned thisVUC, unsigned | |||
388 | if (thisEUN == targetEUN) | 388 | if (thisEUN == targetEUN) |
389 | break; | 389 | break; |
390 | 390 | ||
391 | /* Unlink the last block from the chain. */ | ||
392 | inftl->PUtable[prevEUN] = BLOCK_NIL; | ||
393 | |||
394 | /* Now try to erase it. */ | ||
391 | if (INFTL_formatblock(inftl, thisEUN) < 0) { | 395 | if (INFTL_formatblock(inftl, thisEUN) < 0) { |
392 | /* | 396 | /* |
393 | * Could not erase : mark block as reserved. | 397 | * Could not erase : mark block as reserved. |
@@ -396,7 +400,6 @@ static u16 INFTL_foldchain(struct INFTLrecord *inftl, unsigned thisVUC, unsigned | |||
396 | } else { | 400 | } else { |
397 | /* Correctly erased : mark it as free */ | 401 | /* Correctly erased : mark it as free */ |
398 | inftl->PUtable[thisEUN] = BLOCK_FREE; | 402 | inftl->PUtable[thisEUN] = BLOCK_FREE; |
399 | inftl->PUtable[prevEUN] = BLOCK_NIL; | ||
400 | inftl->numfreeEUNs++; | 403 | inftl->numfreeEUNs++; |
401 | } | 404 | } |
402 | } | 405 | } |
diff --git a/drivers/mtd/maps/Kconfig b/drivers/mtd/maps/Kconfig index df8e00bba07b..5ea169362164 100644 --- a/drivers/mtd/maps/Kconfig +++ b/drivers/mtd/maps/Kconfig | |||
@@ -332,30 +332,6 @@ config MTD_CFI_FLAGADM | |||
332 | Mapping for the Flaga digital module. If you don't have one, ignore | 332 | Mapping for the Flaga digital module. If you don't have one, ignore |
333 | this setting. | 333 | this setting. |
334 | 334 | ||
335 | config MTD_WALNUT | ||
336 | tristate "Flash device mapped on IBM 405GP Walnut" | ||
337 | depends on MTD_JEDECPROBE && WALNUT && !PPC_MERGE | ||
338 | help | ||
339 | This enables access routines for the flash chips on the IBM 405GP | ||
340 | Walnut board. If you have one of these boards and would like to | ||
341 | use the flash chips on it, say 'Y'. | ||
342 | |||
343 | config MTD_EBONY | ||
344 | tristate "Flash devices mapped on IBM 440GP Ebony" | ||
345 | depends on MTD_JEDECPROBE && EBONY && !PPC_MERGE | ||
346 | help | ||
347 | This enables access routines for the flash chips on the IBM 440GP | ||
348 | Ebony board. If you have one of these boards and would like to | ||
349 | use the flash chips on it, say 'Y'. | ||
350 | |||
351 | config MTD_OCOTEA | ||
352 | tristate "Flash devices mapped on IBM 440GX Ocotea" | ||
353 | depends on MTD_CFI && OCOTEA && !PPC_MERGE | ||
354 | help | ||
355 | This enables access routines for the flash chips on the IBM 440GX | ||
356 | Ocotea board. If you have one of these boards and would like to | ||
357 | use the flash chips on it, say 'Y'. | ||
358 | |||
359 | config MTD_REDWOOD | 335 | config MTD_REDWOOD |
360 | tristate "CFI Flash devices mapped on IBM Redwood" | 336 | tristate "CFI Flash devices mapped on IBM Redwood" |
361 | depends on MTD_CFI && ( REDWOOD_4 || REDWOOD_5 || REDWOOD_6 ) | 337 | depends on MTD_CFI && ( REDWOOD_4 || REDWOOD_5 || REDWOOD_6 ) |
@@ -458,13 +434,6 @@ config MTD_CEIVA | |||
458 | PhotoMax Digital Picture Frame. | 434 | PhotoMax Digital Picture Frame. |
459 | If you have such a device, say 'Y'. | 435 | If you have such a device, say 'Y'. |
460 | 436 | ||
461 | config MTD_NOR_TOTO | ||
462 | tristate "NOR Flash device on TOTO board" | ||
463 | depends on ARCH_OMAP && OMAP_TOTO | ||
464 | help | ||
465 | This enables access to the NOR flash on the Texas Instruments | ||
466 | TOTO board. | ||
467 | |||
468 | config MTD_H720X | 437 | config MTD_H720X |
469 | tristate "Hynix evaluation board mappings" | 438 | tristate "Hynix evaluation board mappings" |
470 | depends on MTD_CFI && ( ARCH_H7201 || ARCH_H7202 ) | 439 | depends on MTD_CFI && ( ARCH_H7201 || ARCH_H7202 ) |
@@ -522,7 +491,7 @@ config MTD_BFIN_ASYNC | |||
522 | 491 | ||
523 | config MTD_UCLINUX | 492 | config MTD_UCLINUX |
524 | tristate "Generic uClinux RAM/ROM filesystem support" | 493 | tristate "Generic uClinux RAM/ROM filesystem support" |
525 | depends on MTD_PARTITIONS && !MMU | 494 | depends on MTD_PARTITIONS && MTD_RAM && !MMU |
526 | help | 495 | help |
527 | Map driver to support image based filesystems for uClinux. | 496 | Map driver to support image based filesystems for uClinux. |
528 | 497 | ||
diff --git a/drivers/mtd/maps/Makefile b/drivers/mtd/maps/Makefile index 6cda6df973e5..6d9ba35caf11 100644 --- a/drivers/mtd/maps/Makefile +++ b/drivers/mtd/maps/Makefile | |||
@@ -50,12 +50,8 @@ obj-$(CONFIG_MTD_REDWOOD) += redwood.o | |||
50 | obj-$(CONFIG_MTD_UCLINUX) += uclinux.o | 50 | obj-$(CONFIG_MTD_UCLINUX) += uclinux.o |
51 | obj-$(CONFIG_MTD_NETtel) += nettel.o | 51 | obj-$(CONFIG_MTD_NETtel) += nettel.o |
52 | obj-$(CONFIG_MTD_SCB2_FLASH) += scb2_flash.o | 52 | obj-$(CONFIG_MTD_SCB2_FLASH) += scb2_flash.o |
53 | obj-$(CONFIG_MTD_EBONY) += ebony.o | ||
54 | obj-$(CONFIG_MTD_OCOTEA) += ocotea.o | ||
55 | obj-$(CONFIG_MTD_WALNUT) += walnut.o | ||
56 | obj-$(CONFIG_MTD_H720X) += h720x-flash.o | 53 | obj-$(CONFIG_MTD_H720X) += h720x-flash.o |
57 | obj-$(CONFIG_MTD_SBC8240) += sbc8240.o | 54 | obj-$(CONFIG_MTD_SBC8240) += sbc8240.o |
58 | obj-$(CONFIG_MTD_NOR_TOTO) += omap-toto-flash.o | ||
59 | obj-$(CONFIG_MTD_IXP4XX) += ixp4xx.o | 55 | obj-$(CONFIG_MTD_IXP4XX) += ixp4xx.o |
60 | obj-$(CONFIG_MTD_IXP2000) += ixp2000.o | 56 | obj-$(CONFIG_MTD_IXP2000) += ixp2000.o |
61 | obj-$(CONFIG_MTD_WRSBC8260) += wr_sbc82xx_flash.o | 57 | obj-$(CONFIG_MTD_WRSBC8260) += wr_sbc82xx_flash.o |
diff --git a/drivers/mtd/maps/ebony.c b/drivers/mtd/maps/ebony.c deleted file mode 100644 index d92b7c70d3ed..000000000000 --- a/drivers/mtd/maps/ebony.c +++ /dev/null | |||
@@ -1,163 +0,0 @@ | |||
1 | /* | ||
2 | * Mapping for Ebony user flash | ||
3 | * | ||
4 | * Matt Porter <mporter@kernel.crashing.org> | ||
5 | * | ||
6 | * Copyright 2002-2004 MontaVista Software Inc. | ||
7 | * | ||
8 | * This program is free software; you can redistribute it and/or modify it | ||
9 | * under the terms of the GNU General Public License as published by the | ||
10 | * Free Software Foundation; either version 2 of the License, or (at your | ||
11 | * option) any later version. | ||
12 | */ | ||
13 | |||
14 | #include <linux/module.h> | ||
15 | #include <linux/types.h> | ||
16 | #include <linux/kernel.h> | ||
17 | #include <linux/init.h> | ||
18 | #include <linux/mtd/mtd.h> | ||
19 | #include <linux/mtd/map.h> | ||
20 | #include <linux/mtd/partitions.h> | ||
21 | #include <asm/io.h> | ||
22 | #include <asm/ibm44x.h> | ||
23 | #include <platforms/4xx/ebony.h> | ||
24 | |||
25 | static struct mtd_info *flash; | ||
26 | |||
27 | static struct map_info ebony_small_map = { | ||
28 | .name = "Ebony small flash", | ||
29 | .size = EBONY_SMALL_FLASH_SIZE, | ||
30 | .bankwidth = 1, | ||
31 | }; | ||
32 | |||
33 | static struct map_info ebony_large_map = { | ||
34 | .name = "Ebony large flash", | ||
35 | .size = EBONY_LARGE_FLASH_SIZE, | ||
36 | .bankwidth = 1, | ||
37 | }; | ||
38 | |||
39 | static struct mtd_partition ebony_small_partitions[] = { | ||
40 | { | ||
41 | .name = "OpenBIOS", | ||
42 | .offset = 0x0, | ||
43 | .size = 0x80000, | ||
44 | } | ||
45 | }; | ||
46 | |||
47 | static struct mtd_partition ebony_large_partitions[] = { | ||
48 | { | ||
49 | .name = "fs", | ||
50 | .offset = 0, | ||
51 | .size = 0x380000, | ||
52 | }, | ||
53 | { | ||
54 | .name = "firmware", | ||
55 | .offset = 0x380000, | ||
56 | .size = 0x80000, | ||
57 | } | ||
58 | }; | ||
59 | |||
60 | int __init init_ebony(void) | ||
61 | { | ||
62 | u8 fpga0_reg; | ||
63 | u8 __iomem *fpga0_adr; | ||
64 | unsigned long long small_flash_base, large_flash_base; | ||
65 | |||
66 | fpga0_adr = ioremap64(EBONY_FPGA_ADDR, 16); | ||
67 | if (!fpga0_adr) | ||
68 | return -ENOMEM; | ||
69 | |||
70 | fpga0_reg = readb(fpga0_adr); | ||
71 | iounmap(fpga0_adr); | ||
72 | |||
73 | if (EBONY_BOOT_SMALL_FLASH(fpga0_reg) && | ||
74 | !EBONY_FLASH_SEL(fpga0_reg)) | ||
75 | small_flash_base = EBONY_SMALL_FLASH_HIGH2; | ||
76 | else if (EBONY_BOOT_SMALL_FLASH(fpga0_reg) && | ||
77 | EBONY_FLASH_SEL(fpga0_reg)) | ||
78 | small_flash_base = EBONY_SMALL_FLASH_HIGH1; | ||
79 | else if (!EBONY_BOOT_SMALL_FLASH(fpga0_reg) && | ||
80 | !EBONY_FLASH_SEL(fpga0_reg)) | ||
81 | small_flash_base = EBONY_SMALL_FLASH_LOW2; | ||
82 | else | ||
83 | small_flash_base = EBONY_SMALL_FLASH_LOW1; | ||
84 | |||
85 | if (EBONY_BOOT_SMALL_FLASH(fpga0_reg) && | ||
86 | !EBONY_ONBRD_FLASH_EN(fpga0_reg)) | ||
87 | large_flash_base = EBONY_LARGE_FLASH_LOW; | ||
88 | else | ||
89 | large_flash_base = EBONY_LARGE_FLASH_HIGH; | ||
90 | |||
91 | ebony_small_map.phys = small_flash_base; | ||
92 | ebony_small_map.virt = ioremap64(small_flash_base, | ||
93 | ebony_small_map.size); | ||
94 | |||
95 | if (!ebony_small_map.virt) { | ||
96 | printk("Failed to ioremap flash\n"); | ||
97 | return -EIO; | ||
98 | } | ||
99 | |||
100 | simple_map_init(&ebony_small_map); | ||
101 | |||
102 | flash = do_map_probe("jedec_probe", &ebony_small_map); | ||
103 | if (flash) { | ||
104 | flash->owner = THIS_MODULE; | ||
105 | add_mtd_partitions(flash, ebony_small_partitions, | ||
106 | ARRAY_SIZE(ebony_small_partitions)); | ||
107 | } else { | ||
108 | printk("map probe failed for flash\n"); | ||
109 | iounmap(ebony_small_map.virt); | ||
110 | return -ENXIO; | ||
111 | } | ||
112 | |||
113 | ebony_large_map.phys = large_flash_base; | ||
114 | ebony_large_map.virt = ioremap64(large_flash_base, | ||
115 | ebony_large_map.size); | ||
116 | |||
117 | if (!ebony_large_map.virt) { | ||
118 | printk("Failed to ioremap flash\n"); | ||
119 | iounmap(ebony_small_map.virt); | ||
120 | return -EIO; | ||
121 | } | ||
122 | |||
123 | simple_map_init(&ebony_large_map); | ||
124 | |||
125 | flash = do_map_probe("jedec_probe", &ebony_large_map); | ||
126 | if (flash) { | ||
127 | flash->owner = THIS_MODULE; | ||
128 | add_mtd_partitions(flash, ebony_large_partitions, | ||
129 | ARRAY_SIZE(ebony_large_partitions)); | ||
130 | } else { | ||
131 | printk("map probe failed for flash\n"); | ||
132 | iounmap(ebony_small_map.virt); | ||
133 | iounmap(ebony_large_map.virt); | ||
134 | return -ENXIO; | ||
135 | } | ||
136 | |||
137 | return 0; | ||
138 | } | ||
139 | |||
140 | static void __exit cleanup_ebony(void) | ||
141 | { | ||
142 | if (flash) { | ||
143 | del_mtd_partitions(flash); | ||
144 | map_destroy(flash); | ||
145 | } | ||
146 | |||
147 | if (ebony_small_map.virt) { | ||
148 | iounmap(ebony_small_map.virt); | ||
149 | ebony_small_map.virt = NULL; | ||
150 | } | ||
151 | |||
152 | if (ebony_large_map.virt) { | ||
153 | iounmap(ebony_large_map.virt); | ||
154 | ebony_large_map.virt = NULL; | ||
155 | } | ||
156 | } | ||
157 | |||
158 | module_init(init_ebony); | ||
159 | module_exit(cleanup_ebony); | ||
160 | |||
161 | MODULE_LICENSE("GPL"); | ||
162 | MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>"); | ||
163 | MODULE_DESCRIPTION("MTD map and partitions for IBM 440GP Ebony boards"); | ||
diff --git a/drivers/mtd/maps/ocotea.c b/drivers/mtd/maps/ocotea.c deleted file mode 100644 index 5522eac8c980..000000000000 --- a/drivers/mtd/maps/ocotea.c +++ /dev/null | |||
@@ -1,154 +0,0 @@ | |||
1 | /* | ||
2 | * Mapping for Ocotea user flash | ||
3 | * | ||
4 | * Matt Porter <mporter@kernel.crashing.org> | ||
5 | * | ||
6 | * Copyright 2002-2004 MontaVista Software Inc. | ||
7 | * | ||
8 | * This program is free software; you can redistribute it and/or modify it | ||
9 | * under the terms of the GNU General Public License as published by the | ||
10 | * Free Software Foundation; either version 2 of the License, or (at your | ||
11 | * option) any later version. | ||
12 | */ | ||
13 | |||
14 | #include <linux/module.h> | ||
15 | #include <linux/types.h> | ||
16 | #include <linux/kernel.h> | ||
17 | #include <linux/init.h> | ||
18 | #include <linux/mtd/mtd.h> | ||
19 | #include <linux/mtd/map.h> | ||
20 | #include <linux/mtd/partitions.h> | ||
21 | #include <asm/io.h> | ||
22 | #include <asm/ibm44x.h> | ||
23 | #include <platforms/4xx/ocotea.h> | ||
24 | |||
25 | static struct mtd_info *flash; | ||
26 | |||
27 | static struct map_info ocotea_small_map = { | ||
28 | .name = "Ocotea small flash", | ||
29 | .size = OCOTEA_SMALL_FLASH_SIZE, | ||
30 | .buswidth = 1, | ||
31 | }; | ||
32 | |||
33 | static struct map_info ocotea_large_map = { | ||
34 | .name = "Ocotea large flash", | ||
35 | .size = OCOTEA_LARGE_FLASH_SIZE, | ||
36 | .buswidth = 1, | ||
37 | }; | ||
38 | |||
39 | static struct mtd_partition ocotea_small_partitions[] = { | ||
40 | { | ||
41 | .name = "pibs", | ||
42 | .offset = 0x0, | ||
43 | .size = 0x100000, | ||
44 | } | ||
45 | }; | ||
46 | |||
47 | static struct mtd_partition ocotea_large_partitions[] = { | ||
48 | { | ||
49 | .name = "fs", | ||
50 | .offset = 0, | ||
51 | .size = 0x300000, | ||
52 | }, | ||
53 | { | ||
54 | .name = "firmware", | ||
55 | .offset = 0x300000, | ||
56 | .size = 0x100000, | ||
57 | } | ||
58 | }; | ||
59 | |||
60 | int __init init_ocotea(void) | ||
61 | { | ||
62 | u8 fpga0_reg; | ||
63 | u8 *fpga0_adr; | ||
64 | unsigned long long small_flash_base, large_flash_base; | ||
65 | |||
66 | fpga0_adr = ioremap64(OCOTEA_FPGA_ADDR, 16); | ||
67 | if (!fpga0_adr) | ||
68 | return -ENOMEM; | ||
69 | |||
70 | fpga0_reg = readb((unsigned long)fpga0_adr); | ||
71 | iounmap(fpga0_adr); | ||
72 | |||
73 | if (OCOTEA_BOOT_LARGE_FLASH(fpga0_reg)) { | ||
74 | small_flash_base = OCOTEA_SMALL_FLASH_HIGH; | ||
75 | large_flash_base = OCOTEA_LARGE_FLASH_LOW; | ||
76 | } | ||
77 | else { | ||
78 | small_flash_base = OCOTEA_SMALL_FLASH_LOW; | ||
79 | large_flash_base = OCOTEA_LARGE_FLASH_HIGH; | ||
80 | } | ||
81 | |||
82 | ocotea_small_map.phys = small_flash_base; | ||
83 | ocotea_small_map.virt = ioremap64(small_flash_base, | ||
84 | ocotea_small_map.size); | ||
85 | |||
86 | if (!ocotea_small_map.virt) { | ||
87 | printk("Failed to ioremap flash\n"); | ||
88 | return -EIO; | ||
89 | } | ||
90 | |||
91 | simple_map_init(&ocotea_small_map); | ||
92 | |||
93 | flash = do_map_probe("map_rom", &ocotea_small_map); | ||
94 | if (flash) { | ||
95 | flash->owner = THIS_MODULE; | ||
96 | add_mtd_partitions(flash, ocotea_small_partitions, | ||
97 | ARRAY_SIZE(ocotea_small_partitions)); | ||
98 | } else { | ||
99 | printk("map probe failed for flash\n"); | ||
100 | iounmap(ocotea_small_map.virt); | ||
101 | return -ENXIO; | ||
102 | } | ||
103 | |||
104 | ocotea_large_map.phys = large_flash_base; | ||
105 | ocotea_large_map.virt = ioremap64(large_flash_base, | ||
106 | ocotea_large_map.size); | ||
107 | |||
108 | if (!ocotea_large_map.virt) { | ||
109 | printk("Failed to ioremap flash\n"); | ||
110 | iounmap(ocotea_small_map.virt); | ||
111 | return -EIO; | ||
112 | } | ||
113 | |||
114 | simple_map_init(&ocotea_large_map); | ||
115 | |||
116 | flash = do_map_probe("cfi_probe", &ocotea_large_map); | ||
117 | if (flash) { | ||
118 | flash->owner = THIS_MODULE; | ||
119 | add_mtd_partitions(flash, ocotea_large_partitions, | ||
120 | ARRAY_SIZE(ocotea_large_partitions)); | ||
121 | } else { | ||
122 | printk("map probe failed for flash\n"); | ||
123 | iounmap(ocotea_small_map.virt); | ||
124 | iounmap(ocotea_large_map.virt); | ||
125 | return -ENXIO; | ||
126 | } | ||
127 | |||
128 | return 0; | ||
129 | } | ||
130 | |||
131 | static void __exit cleanup_ocotea(void) | ||
132 | { | ||
133 | if (flash) { | ||
134 | del_mtd_partitions(flash); | ||
135 | map_destroy(flash); | ||
136 | } | ||
137 | |||
138 | if (ocotea_small_map.virt) { | ||
139 | iounmap((void *)ocotea_small_map.virt); | ||
140 | ocotea_small_map.virt = 0; | ||
141 | } | ||
142 | |||
143 | if (ocotea_large_map.virt) { | ||
144 | iounmap((void *)ocotea_large_map.virt); | ||
145 | ocotea_large_map.virt = 0; | ||
146 | } | ||
147 | } | ||
148 | |||
149 | module_init(init_ocotea); | ||
150 | module_exit(cleanup_ocotea); | ||
151 | |||
152 | MODULE_LICENSE("GPL"); | ||
153 | MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>"); | ||
154 | MODULE_DESCRIPTION("MTD map and partitions for IBM 440GX Ocotea boards"); | ||
diff --git a/drivers/mtd/maps/omap-toto-flash.c b/drivers/mtd/maps/omap-toto-flash.c deleted file mode 100644 index 0a60ebbc2175..000000000000 --- a/drivers/mtd/maps/omap-toto-flash.c +++ /dev/null | |||
@@ -1,133 +0,0 @@ | |||
1 | /* | ||
2 | * NOR Flash memory access on TI Toto board | ||
3 | * | ||
4 | * jzhang@ti.com (C) 2003 Texas Instruments. | ||
5 | * | ||
6 | * (C) 2002 MontVista Software, Inc. | ||
7 | */ | ||
8 | |||
9 | #include <linux/module.h> | ||
10 | #include <linux/types.h> | ||
11 | #include <linux/kernel.h> | ||
12 | #include <linux/errno.h> | ||
13 | #include <linux/init.h> | ||
14 | #include <linux/slab.h> | ||
15 | |||
16 | #include <linux/mtd/mtd.h> | ||
17 | #include <linux/mtd/map.h> | ||
18 | #include <linux/mtd/partitions.h> | ||
19 | |||
20 | #include <asm/hardware.h> | ||
21 | #include <asm/io.h> | ||
22 | |||
23 | |||
24 | #ifndef CONFIG_ARCH_OMAP | ||
25 | #error This is for OMAP architecture only | ||
26 | #endif | ||
27 | |||
28 | //these lines need be moved to a hardware header file | ||
29 | #define OMAP_TOTO_FLASH_BASE 0xd8000000 | ||
30 | #define OMAP_TOTO_FLASH_SIZE 0x80000 | ||
31 | |||
32 | static struct map_info omap_toto_map_flash = { | ||
33 | .name = "OMAP Toto flash", | ||
34 | .bankwidth = 2, | ||
35 | .virt = (void __iomem *)OMAP_TOTO_FLASH_BASE, | ||
36 | }; | ||
37 | |||
38 | |||
39 | static struct mtd_partition toto_flash_partitions[] = { | ||
40 | { | ||
41 | .name = "BootLoader", | ||
42 | .size = 0x00040000, /* hopefully u-boot will stay 128k + 128*/ | ||
43 | .offset = 0, | ||
44 | .mask_flags = MTD_WRITEABLE, /* force read-only */ | ||
45 | }, { | ||
46 | .name = "ReservedSpace", | ||
47 | .size = 0x00030000, | ||
48 | .offset = MTDPART_OFS_APPEND, | ||
49 | //mask_flags: MTD_WRITEABLE, /* force read-only */ | ||
50 | }, { | ||
51 | .name = "EnvArea", /* bottom 64KiB for env vars */ | ||
52 | .size = MTDPART_SIZ_FULL, | ||
53 | .offset = MTDPART_OFS_APPEND, | ||
54 | } | ||
55 | }; | ||
56 | |||
57 | static struct mtd_partition *parsed_parts; | ||
58 | |||
59 | static struct mtd_info *flash_mtd; | ||
60 | |||
61 | static int __init init_flash (void) | ||
62 | { | ||
63 | |||
64 | struct mtd_partition *parts; | ||
65 | int nb_parts = 0; | ||
66 | int parsed_nr_parts = 0; | ||
67 | const char *part_type; | ||
68 | |||
69 | /* | ||
70 | * Static partition definition selection | ||
71 | */ | ||
72 | part_type = "static"; | ||
73 | |||
74 | parts = toto_flash_partitions; | ||
75 | nb_parts = ARRAY_SIZE(toto_flash_partitions); | ||
76 | omap_toto_map_flash.size = OMAP_TOTO_FLASH_SIZE; | ||
77 | omap_toto_map_flash.phys = virt_to_phys(OMAP_TOTO_FLASH_BASE); | ||
78 | |||
79 | simple_map_init(&omap_toto_map_flash); | ||
80 | /* | ||
81 | * Now let's probe for the actual flash. Do it here since | ||
82 | * specific machine settings might have been set above. | ||
83 | */ | ||
84 | printk(KERN_NOTICE "OMAP toto flash: probing %d-bit flash bus\n", | ||
85 | omap_toto_map_flash.bankwidth*8); | ||
86 | flash_mtd = do_map_probe("jedec_probe", &omap_toto_map_flash); | ||
87 | if (!flash_mtd) | ||
88 | return -ENXIO; | ||
89 | |||
90 | if (parsed_nr_parts > 0) { | ||
91 | parts = parsed_parts; | ||
92 | nb_parts = parsed_nr_parts; | ||
93 | } | ||
94 | |||
95 | if (nb_parts == 0) { | ||
96 | printk(KERN_NOTICE "OMAP toto flash: no partition info available," | ||
97 | "registering whole flash at once\n"); | ||
98 | if (add_mtd_device(flash_mtd)){ | ||
99 | return -ENXIO; | ||
100 | } | ||
101 | } else { | ||
102 | printk(KERN_NOTICE "Using %s partition definition\n", | ||
103 | part_type); | ||
104 | return add_mtd_partitions(flash_mtd, parts, nb_parts); | ||
105 | } | ||
106 | return 0; | ||
107 | } | ||
108 | |||
109 | int __init omap_toto_mtd_init(void) | ||
110 | { | ||
111 | int status; | ||
112 | |||
113 | if (status = init_flash()) { | ||
114 | printk(KERN_ERR "OMAP Toto Flash: unable to init map for toto flash\n"); | ||
115 | } | ||
116 | return status; | ||
117 | } | ||
118 | |||
119 | static void __exit omap_toto_mtd_cleanup(void) | ||
120 | { | ||
121 | if (flash_mtd) { | ||
122 | del_mtd_partitions(flash_mtd); | ||
123 | map_destroy(flash_mtd); | ||
124 | kfree(parsed_parts); | ||
125 | } | ||
126 | } | ||
127 | |||
128 | module_init(omap_toto_mtd_init); | ||
129 | module_exit(omap_toto_mtd_cleanup); | ||
130 | |||
131 | MODULE_AUTHOR("Jian Zhang"); | ||
132 | MODULE_DESCRIPTION("OMAP Toto board map driver"); | ||
133 | MODULE_LICENSE("GPL"); | ||
diff --git a/drivers/mtd/maps/pci.c b/drivers/mtd/maps/pci.c index 5c6a25c90380..48f4cf5cb9d1 100644 --- a/drivers/mtd/maps/pci.c +++ b/drivers/mtd/maps/pci.c | |||
@@ -203,15 +203,8 @@ intel_dc21285_init(struct pci_dev *dev, struct map_pci_info *map) | |||
203 | * not enabled, should we be allocating a new resource for it | 203 | * not enabled, should we be allocating a new resource for it |
204 | * or simply enabling it? | 204 | * or simply enabling it? |
205 | */ | 205 | */ |
206 | if (!(pci_resource_flags(dev, PCI_ROM_RESOURCE) & | 206 | pci_enable_rom(dev); |
207 | IORESOURCE_ROM_ENABLE)) { | 207 | printk("%s: enabling expansion ROM\n", pci_name(dev)); |
208 | u32 val; | ||
209 | pci_resource_flags(dev, PCI_ROM_RESOURCE) |= IORESOURCE_ROM_ENABLE; | ||
210 | pci_read_config_dword(dev, PCI_ROM_ADDRESS, &val); | ||
211 | val |= PCI_ROM_ADDRESS_ENABLE; | ||
212 | pci_write_config_dword(dev, PCI_ROM_ADDRESS, val); | ||
213 | printk("%s: enabling expansion ROM\n", pci_name(dev)); | ||
214 | } | ||
215 | } | 208 | } |
216 | 209 | ||
217 | if (!len || !base) | 210 | if (!len || !base) |
@@ -232,18 +225,13 @@ intel_dc21285_init(struct pci_dev *dev, struct map_pci_info *map) | |||
232 | static void | 225 | static void |
233 | intel_dc21285_exit(struct pci_dev *dev, struct map_pci_info *map) | 226 | intel_dc21285_exit(struct pci_dev *dev, struct map_pci_info *map) |
234 | { | 227 | { |
235 | u32 val; | ||
236 | |||
237 | if (map->base) | 228 | if (map->base) |
238 | iounmap(map->base); | 229 | iounmap(map->base); |
239 | 230 | ||
240 | /* | 231 | /* |
241 | * We need to undo the PCI BAR2/PCI ROM BAR address alteration. | 232 | * We need to undo the PCI BAR2/PCI ROM BAR address alteration. |
242 | */ | 233 | */ |
243 | pci_resource_flags(dev, PCI_ROM_RESOURCE) &= ~IORESOURCE_ROM_ENABLE; | 234 | pci_disable_rom(dev); |
244 | pci_read_config_dword(dev, PCI_ROM_ADDRESS, &val); | ||
245 | val &= ~PCI_ROM_ADDRESS_ENABLE; | ||
246 | pci_write_config_dword(dev, PCI_ROM_ADDRESS, val); | ||
247 | } | 235 | } |
248 | 236 | ||
249 | static unsigned long | 237 | static unsigned long |
diff --git a/drivers/mtd/maps/physmap_of.c b/drivers/mtd/maps/physmap_of.c index 49acd4171893..5fcfec034a94 100644 --- a/drivers/mtd/maps/physmap_of.c +++ b/drivers/mtd/maps/physmap_of.c | |||
@@ -230,8 +230,7 @@ static int __devinit of_flash_probe(struct of_device *dev, | |||
230 | 230 | ||
231 | #ifdef CONFIG_MTD_OF_PARTS | 231 | #ifdef CONFIG_MTD_OF_PARTS |
232 | if (err == 0) { | 232 | if (err == 0) { |
233 | err = of_mtd_parse_partitions(&dev->dev, info->mtd, | 233 | err = of_mtd_parse_partitions(&dev->dev, dp, &info->parts); |
234 | dp, &info->parts); | ||
235 | if (err < 0) | 234 | if (err < 0) |
236 | return err; | 235 | return err; |
237 | } | 236 | } |
diff --git a/drivers/mtd/maps/walnut.c b/drivers/mtd/maps/walnut.c deleted file mode 100644 index e243476c8171..000000000000 --- a/drivers/mtd/maps/walnut.c +++ /dev/null | |||
@@ -1,122 +0,0 @@ | |||
1 | /* | ||
2 | * Mapping for Walnut flash | ||
3 | * (used ebony.c as a "framework") | ||
4 | * | ||
5 | * Heikki Lindholm <holindho@infradead.org> | ||
6 | * | ||
7 | * | ||
8 | * This program is free software; you can redistribute it and/or modify it | ||
9 | * under the terms of the GNU General Public License as published by the | ||
10 | * Free Software Foundation; either version 2 of the License, or (at your | ||
11 | * option) any later version. | ||
12 | */ | ||
13 | |||
14 | #include <linux/module.h> | ||
15 | #include <linux/types.h> | ||
16 | #include <linux/kernel.h> | ||
17 | #include <linux/init.h> | ||
18 | #include <linux/mtd/mtd.h> | ||
19 | #include <linux/mtd/map.h> | ||
20 | #include <linux/mtd/partitions.h> | ||
21 | #include <asm/io.h> | ||
22 | #include <asm/ibm4xx.h> | ||
23 | #include <platforms/4xx/walnut.h> | ||
24 | |||
25 | /* these should be in platforms/4xx/walnut.h ? */ | ||
26 | #define WALNUT_FLASH_ONBD_N(x) (x & 0x02) | ||
27 | #define WALNUT_FLASH_SRAM_SEL(x) (x & 0x01) | ||
28 | #define WALNUT_FLASH_LOW 0xFFF00000 | ||
29 | #define WALNUT_FLASH_HIGH 0xFFF80000 | ||
30 | #define WALNUT_FLASH_SIZE 0x80000 | ||
31 | |||
32 | static struct mtd_info *flash; | ||
33 | |||
34 | static struct map_info walnut_map = { | ||
35 | .name = "Walnut flash", | ||
36 | .size = WALNUT_FLASH_SIZE, | ||
37 | .bankwidth = 1, | ||
38 | }; | ||
39 | |||
40 | /* Actually, OpenBIOS is the last 128 KiB of the flash - better | ||
41 | * partitioning could be made */ | ||
42 | static struct mtd_partition walnut_partitions[] = { | ||
43 | { | ||
44 | .name = "OpenBIOS", | ||
45 | .offset = 0x0, | ||
46 | .size = WALNUT_FLASH_SIZE, | ||
47 | /*.mask_flags = MTD_WRITEABLE, */ /* force read-only */ | ||
48 | } | ||
49 | }; | ||
50 | |||
51 | int __init init_walnut(void) | ||
52 | { | ||
53 | u8 fpga_brds1; | ||
54 | void *fpga_brds1_adr; | ||
55 | void *fpga_status_adr; | ||
56 | unsigned long flash_base; | ||
57 | |||
58 | /* this should already be mapped (platform/4xx/walnut.c) */ | ||
59 | fpga_status_adr = ioremap(WALNUT_FPGA_BASE, 8); | ||
60 | if (!fpga_status_adr) | ||
61 | return -ENOMEM; | ||
62 | |||
63 | fpga_brds1_adr = fpga_status_adr+5; | ||
64 | fpga_brds1 = readb(fpga_brds1_adr); | ||
65 | /* iounmap(fpga_status_adr); */ | ||
66 | |||
67 | if (WALNUT_FLASH_ONBD_N(fpga_brds1)) { | ||
68 | printk("The on-board flash is disabled (U79 sw 5)!"); | ||
69 | iounmap(fpga_status_adr); | ||
70 | return -EIO; | ||
71 | } | ||
72 | if (WALNUT_FLASH_SRAM_SEL(fpga_brds1)) | ||
73 | flash_base = WALNUT_FLASH_LOW; | ||
74 | else | ||
75 | flash_base = WALNUT_FLASH_HIGH; | ||
76 | |||
77 | walnut_map.phys = flash_base; | ||
78 | walnut_map.virt = | ||
79 | (void __iomem *)ioremap(flash_base, walnut_map.size); | ||
80 | |||
81 | if (!walnut_map.virt) { | ||
82 | printk("Failed to ioremap flash.\n"); | ||
83 | iounmap(fpga_status_adr); | ||
84 | return -EIO; | ||
85 | } | ||
86 | |||
87 | simple_map_init(&walnut_map); | ||
88 | |||
89 | flash = do_map_probe("jedec_probe", &walnut_map); | ||
90 | if (flash) { | ||
91 | flash->owner = THIS_MODULE; | ||
92 | add_mtd_partitions(flash, walnut_partitions, | ||
93 | ARRAY_SIZE(walnut_partitions)); | ||
94 | } else { | ||
95 | printk("map probe failed for flash\n"); | ||
96 | iounmap(fpga_status_adr); | ||
97 | return -ENXIO; | ||
98 | } | ||
99 | |||
100 | iounmap(fpga_status_adr); | ||
101 | return 0; | ||
102 | } | ||
103 | |||
104 | static void __exit cleanup_walnut(void) | ||
105 | { | ||
106 | if (flash) { | ||
107 | del_mtd_partitions(flash); | ||
108 | map_destroy(flash); | ||
109 | } | ||
110 | |||
111 | if (walnut_map.virt) { | ||
112 | iounmap((void *)walnut_map.virt); | ||
113 | walnut_map.virt = 0; | ||
114 | } | ||
115 | } | ||
116 | |||
117 | module_init(init_walnut); | ||
118 | module_exit(cleanup_walnut); | ||
119 | |||
120 | MODULE_LICENSE("GPL"); | ||
121 | MODULE_AUTHOR("Heikki Lindholm <holindho@infradead.org>"); | ||
122 | MODULE_DESCRIPTION("MTD map and partitions for IBM 405GP Walnut boards"); | ||
diff --git a/drivers/mtd/mtdchar.c b/drivers/mtd/mtdchar.c index 1c74762dec89..963840e9b5bf 100644 --- a/drivers/mtd/mtdchar.c +++ b/drivers/mtd/mtdchar.c | |||
@@ -348,7 +348,7 @@ static void mtdchar_erase_callback (struct erase_info *instr) | |||
348 | wake_up((wait_queue_head_t *)instr->priv); | 348 | wake_up((wait_queue_head_t *)instr->priv); |
349 | } | 349 | } |
350 | 350 | ||
351 | #if defined(CONFIG_MTD_OTP) || defined(CONFIG_MTD_ONENAND_OTP) | 351 | #ifdef CONFIG_HAVE_MTD_OTP |
352 | static int otp_select_filemode(struct mtd_file_info *mfi, int mode) | 352 | static int otp_select_filemode(struct mtd_file_info *mfi, int mode) |
353 | { | 353 | { |
354 | struct mtd_info *mtd = mfi->mtd; | 354 | struct mtd_info *mtd = mfi->mtd; |
@@ -665,7 +665,7 @@ static int mtd_ioctl(struct inode *inode, struct file *file, | |||
665 | break; | 665 | break; |
666 | } | 666 | } |
667 | 667 | ||
668 | #if defined(CONFIG_MTD_OTP) || defined(CONFIG_MTD_ONENAND_OTP) | 668 | #ifdef CONFIG_HAVE_MTD_OTP |
669 | case OTPSELECT: | 669 | case OTPSELECT: |
670 | { | 670 | { |
671 | int mode; | 671 | int mode; |
diff --git a/drivers/mtd/mtdconcat.c b/drivers/mtd/mtdconcat.c index 2972a5edb73d..789842d0e6f2 100644 --- a/drivers/mtd/mtdconcat.c +++ b/drivers/mtd/mtdconcat.c | |||
@@ -444,7 +444,7 @@ static int concat_erase(struct mtd_info *mtd, struct erase_info *instr) | |||
444 | return -EINVAL; | 444 | return -EINVAL; |
445 | } | 445 | } |
446 | 446 | ||
447 | instr->fail_addr = 0xffffffff; | 447 | instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; |
448 | 448 | ||
449 | /* make a local copy of instr to avoid modifying the caller's struct */ | 449 | /* make a local copy of instr to avoid modifying the caller's struct */ |
450 | erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL); | 450 | erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL); |
@@ -493,7 +493,7 @@ static int concat_erase(struct mtd_info *mtd, struct erase_info *instr) | |||
493 | /* sanity check: should never happen since | 493 | /* sanity check: should never happen since |
494 | * block alignment has been checked above */ | 494 | * block alignment has been checked above */ |
495 | BUG_ON(err == -EINVAL); | 495 | BUG_ON(err == -EINVAL); |
496 | if (erase->fail_addr != 0xffffffff) | 496 | if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN) |
497 | instr->fail_addr = erase->fail_addr + offset; | 497 | instr->fail_addr = erase->fail_addr + offset; |
498 | break; | 498 | break; |
499 | } | 499 | } |
diff --git a/drivers/mtd/mtdoops.c b/drivers/mtd/mtdoops.c index 5a680e1e61f1..aebb3b27edbd 100644 --- a/drivers/mtd/mtdoops.c +++ b/drivers/mtd/mtdoops.c | |||
@@ -33,6 +33,7 @@ | |||
33 | #include <linux/interrupt.h> | 33 | #include <linux/interrupt.h> |
34 | #include <linux/mtd/mtd.h> | 34 | #include <linux/mtd/mtd.h> |
35 | 35 | ||
36 | #define MTDOOPS_KERNMSG_MAGIC 0x5d005d00 | ||
36 | #define OOPS_PAGE_SIZE 4096 | 37 | #define OOPS_PAGE_SIZE 4096 |
37 | 38 | ||
38 | static struct mtdoops_context { | 39 | static struct mtdoops_context { |
@@ -99,7 +100,7 @@ static void mtdoops_inc_counter(struct mtdoops_context *cxt) | |||
99 | int ret; | 100 | int ret; |
100 | 101 | ||
101 | cxt->nextpage++; | 102 | cxt->nextpage++; |
102 | if (cxt->nextpage > cxt->oops_pages) | 103 | if (cxt->nextpage >= cxt->oops_pages) |
103 | cxt->nextpage = 0; | 104 | cxt->nextpage = 0; |
104 | cxt->nextcount++; | 105 | cxt->nextcount++; |
105 | if (cxt->nextcount == 0xffffffff) | 106 | if (cxt->nextcount == 0xffffffff) |
@@ -141,7 +142,7 @@ static void mtdoops_workfunc_erase(struct work_struct *work) | |||
141 | mod = (cxt->nextpage * OOPS_PAGE_SIZE) % mtd->erasesize; | 142 | mod = (cxt->nextpage * OOPS_PAGE_SIZE) % mtd->erasesize; |
142 | if (mod != 0) { | 143 | if (mod != 0) { |
143 | cxt->nextpage = cxt->nextpage + ((mtd->erasesize - mod) / OOPS_PAGE_SIZE); | 144 | cxt->nextpage = cxt->nextpage + ((mtd->erasesize - mod) / OOPS_PAGE_SIZE); |
144 | if (cxt->nextpage > cxt->oops_pages) | 145 | if (cxt->nextpage >= cxt->oops_pages) |
145 | cxt->nextpage = 0; | 146 | cxt->nextpage = 0; |
146 | } | 147 | } |
147 | 148 | ||
@@ -158,7 +159,7 @@ badblock: | |||
158 | cxt->nextpage * OOPS_PAGE_SIZE); | 159 | cxt->nextpage * OOPS_PAGE_SIZE); |
159 | i++; | 160 | i++; |
160 | cxt->nextpage = cxt->nextpage + (mtd->erasesize / OOPS_PAGE_SIZE); | 161 | cxt->nextpage = cxt->nextpage + (mtd->erasesize / OOPS_PAGE_SIZE); |
161 | if (cxt->nextpage > cxt->oops_pages) | 162 | if (cxt->nextpage >= cxt->oops_pages) |
162 | cxt->nextpage = 0; | 163 | cxt->nextpage = 0; |
163 | if (i == (cxt->oops_pages / (mtd->erasesize / OOPS_PAGE_SIZE))) { | 164 | if (i == (cxt->oops_pages / (mtd->erasesize / OOPS_PAGE_SIZE))) { |
164 | printk(KERN_ERR "mtdoops: All blocks bad!\n"); | 165 | printk(KERN_ERR "mtdoops: All blocks bad!\n"); |
@@ -224,40 +225,40 @@ static void find_next_position(struct mtdoops_context *cxt) | |||
224 | { | 225 | { |
225 | struct mtd_info *mtd = cxt->mtd; | 226 | struct mtd_info *mtd = cxt->mtd; |
226 | int ret, page, maxpos = 0; | 227 | int ret, page, maxpos = 0; |
227 | u32 count, maxcount = 0xffffffff; | 228 | u32 count[2], maxcount = 0xffffffff; |
228 | size_t retlen; | 229 | size_t retlen; |
229 | 230 | ||
230 | for (page = 0; page < cxt->oops_pages; page++) { | 231 | for (page = 0; page < cxt->oops_pages; page++) { |
231 | ret = mtd->read(mtd, page * OOPS_PAGE_SIZE, 4, &retlen, (u_char *) &count); | 232 | ret = mtd->read(mtd, page * OOPS_PAGE_SIZE, 8, &retlen, (u_char *) &count[0]); |
232 | if ((retlen != 4) || ((ret < 0) && (ret != -EUCLEAN))) { | 233 | if ((retlen != 8) || ((ret < 0) && (ret != -EUCLEAN))) { |
233 | printk(KERN_ERR "mtdoops: Read failure at %d (%td of 4 read)" | 234 | printk(KERN_ERR "mtdoops: Read failure at %d (%td of 8 read)" |
234 | ", err %d.\n", page * OOPS_PAGE_SIZE, retlen, ret); | 235 | ", err %d.\n", page * OOPS_PAGE_SIZE, retlen, ret); |
235 | continue; | 236 | continue; |
236 | } | 237 | } |
237 | 238 | ||
238 | if (count == 0xffffffff) | 239 | if (count[1] != MTDOOPS_KERNMSG_MAGIC) |
240 | continue; | ||
241 | if (count[0] == 0xffffffff) | ||
239 | continue; | 242 | continue; |
240 | if (maxcount == 0xffffffff) { | 243 | if (maxcount == 0xffffffff) { |
241 | maxcount = count; | 244 | maxcount = count[0]; |
242 | maxpos = page; | 245 | maxpos = page; |
243 | } else if ((count < 0x40000000) && (maxcount > 0xc0000000)) { | 246 | } else if ((count[0] < 0x40000000) && (maxcount > 0xc0000000)) { |
244 | maxcount = count; | 247 | maxcount = count[0]; |
245 | maxpos = page; | 248 | maxpos = page; |
246 | } else if ((count > maxcount) && (count < 0xc0000000)) { | 249 | } else if ((count[0] > maxcount) && (count[0] < 0xc0000000)) { |
247 | maxcount = count; | 250 | maxcount = count[0]; |
248 | maxpos = page; | 251 | maxpos = page; |
249 | } else if ((count > maxcount) && (count > 0xc0000000) | 252 | } else if ((count[0] > maxcount) && (count[0] > 0xc0000000) |
250 | && (maxcount > 0x80000000)) { | 253 | && (maxcount > 0x80000000)) { |
251 | maxcount = count; | 254 | maxcount = count[0]; |
252 | maxpos = page; | 255 | maxpos = page; |
253 | } | 256 | } |
254 | } | 257 | } |
255 | if (maxcount == 0xffffffff) { | 258 | if (maxcount == 0xffffffff) { |
256 | cxt->nextpage = 0; | 259 | cxt->nextpage = 0; |
257 | cxt->nextcount = 1; | 260 | cxt->nextcount = 1; |
258 | cxt->ready = 1; | 261 | schedule_work(&cxt->work_erase); |
259 | printk(KERN_DEBUG "mtdoops: Ready %d, %d (first init)\n", | ||
260 | cxt->nextpage, cxt->nextcount); | ||
261 | return; | 262 | return; |
262 | } | 263 | } |
263 | 264 | ||
@@ -358,8 +359,9 @@ mtdoops_console_write(struct console *co, const char *s, unsigned int count) | |||
358 | 359 | ||
359 | if (cxt->writecount == 0) { | 360 | if (cxt->writecount == 0) { |
360 | u32 *stamp = cxt->oops_buf; | 361 | u32 *stamp = cxt->oops_buf; |
361 | *stamp = cxt->nextcount; | 362 | *stamp++ = cxt->nextcount; |
362 | cxt->writecount = 4; | 363 | *stamp = MTDOOPS_KERNMSG_MAGIC; |
364 | cxt->writecount = 8; | ||
363 | } | 365 | } |
364 | 366 | ||
365 | if ((count + cxt->writecount) > OOPS_PAGE_SIZE) | 367 | if ((count + cxt->writecount) > OOPS_PAGE_SIZE) |
diff --git a/drivers/mtd/mtdpart.c b/drivers/mtd/mtdpart.c index 9a06dc93ee0d..3728913fa5fa 100644 --- a/drivers/mtd/mtdpart.c +++ b/drivers/mtd/mtdpart.c | |||
@@ -214,7 +214,7 @@ static int part_erase(struct mtd_info *mtd, struct erase_info *instr) | |||
214 | instr->addr += part->offset; | 214 | instr->addr += part->offset; |
215 | ret = part->master->erase(part->master, instr); | 215 | ret = part->master->erase(part->master, instr); |
216 | if (ret) { | 216 | if (ret) { |
217 | if (instr->fail_addr != 0xffffffff) | 217 | if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) |
218 | instr->fail_addr -= part->offset; | 218 | instr->fail_addr -= part->offset; |
219 | instr->addr -= part->offset; | 219 | instr->addr -= part->offset; |
220 | } | 220 | } |
@@ -226,7 +226,7 @@ void mtd_erase_callback(struct erase_info *instr) | |||
226 | if (instr->mtd->erase == part_erase) { | 226 | if (instr->mtd->erase == part_erase) { |
227 | struct mtd_part *part = PART(instr->mtd); | 227 | struct mtd_part *part = PART(instr->mtd); |
228 | 228 | ||
229 | if (instr->fail_addr != 0xffffffff) | 229 | if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) |
230 | instr->fail_addr -= part->offset; | 230 | instr->fail_addr -= part->offset; |
231 | instr->addr -= part->offset; | 231 | instr->addr -= part->offset; |
232 | } | 232 | } |
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index 41f361c49b32..1c2e9450d663 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig | |||
@@ -56,6 +56,12 @@ config MTD_NAND_H1900 | |||
56 | help | 56 | help |
57 | This enables the driver for the iPAQ h1900 flash. | 57 | This enables the driver for the iPAQ h1900 flash. |
58 | 58 | ||
59 | config MTD_NAND_GPIO | ||
60 | tristate "GPIO NAND Flash driver" | ||
61 | depends on GENERIC_GPIO && ARM | ||
62 | help | ||
63 | This enables a GPIO based NAND flash driver. | ||
64 | |||
59 | config MTD_NAND_SPIA | 65 | config MTD_NAND_SPIA |
60 | tristate "NAND Flash device on SPIA board" | 66 | tristate "NAND Flash device on SPIA board" |
61 | depends on ARCH_P720T | 67 | depends on ARCH_P720T |
@@ -68,12 +74,6 @@ config MTD_NAND_AMS_DELTA | |||
68 | help | 74 | help |
69 | Support for NAND flash on Amstrad E3 (Delta). | 75 | Support for NAND flash on Amstrad E3 (Delta). |
70 | 76 | ||
71 | config MTD_NAND_TOTO | ||
72 | tristate "NAND Flash device on TOTO board" | ||
73 | depends on ARCH_OMAP && BROKEN | ||
74 | help | ||
75 | Support for NAND flash on Texas Instruments Toto platform. | ||
76 | |||
77 | config MTD_NAND_TS7250 | 77 | config MTD_NAND_TS7250 |
78 | tristate "NAND Flash device on TS-7250 board" | 78 | tristate "NAND Flash device on TS-7250 board" |
79 | depends on MACH_TS72XX | 79 | depends on MACH_TS72XX |
@@ -163,13 +163,6 @@ config MTD_NAND_S3C2410_HWECC | |||
163 | incorrect ECC generation, and if using these, the default of | 163 | incorrect ECC generation, and if using these, the default of |
164 | software ECC is preferable. | 164 | software ECC is preferable. |
165 | 165 | ||
166 | config MTD_NAND_NDFC | ||
167 | tristate "NDFC NanD Flash Controller" | ||
168 | depends on 4xx && !PPC_MERGE | ||
169 | select MTD_NAND_ECC_SMC | ||
170 | help | ||
171 | NDFC Nand Flash Controllers are integrated in IBM/AMCC's 4xx SoCs | ||
172 | |||
173 | config MTD_NAND_S3C2410_CLKSTOP | 166 | config MTD_NAND_S3C2410_CLKSTOP |
174 | bool "S3C2410 NAND IDLE clock stop" | 167 | bool "S3C2410 NAND IDLE clock stop" |
175 | depends on MTD_NAND_S3C2410 | 168 | depends on MTD_NAND_S3C2410 |
@@ -340,6 +333,13 @@ config MTD_NAND_PXA3xx | |||
340 | This enables the driver for the NAND flash device found on | 333 | This enables the driver for the NAND flash device found on |
341 | PXA3xx processors | 334 | PXA3xx processors |
342 | 335 | ||
336 | config MTD_NAND_PXA3xx_BUILTIN | ||
337 | bool "Use builtin definitions for some NAND chips (deprecated)" | ||
338 | depends on MTD_NAND_PXA3xx | ||
339 | help | ||
340 | This enables builtin definitions for some NAND chips. This | ||
341 | is deprecated in favor of platform specific data. | ||
342 | |||
343 | config MTD_NAND_CM_X270 | 343 | config MTD_NAND_CM_X270 |
344 | tristate "Support for NAND Flash on CM-X270 modules" | 344 | tristate "Support for NAND Flash on CM-X270 modules" |
345 | depends on MTD_NAND && MACH_ARMCORE | 345 | depends on MTD_NAND && MACH_ARMCORE |
@@ -400,10 +400,24 @@ config MTD_NAND_FSL_ELBC | |||
400 | 400 | ||
401 | config MTD_NAND_FSL_UPM | 401 | config MTD_NAND_FSL_UPM |
402 | tristate "Support for NAND on Freescale UPM" | 402 | tristate "Support for NAND on Freescale UPM" |
403 | depends on MTD_NAND && OF_GPIO && (PPC_83xx || PPC_85xx) | 403 | depends on MTD_NAND && (PPC_83xx || PPC_85xx) |
404 | select FSL_LBC | 404 | select FSL_LBC |
405 | help | 405 | help |
406 | Enables support for NAND Flash chips wired onto Freescale PowerPC | 406 | Enables support for NAND Flash chips wired onto Freescale PowerPC |
407 | processor localbus with User-Programmable Machine support. | 407 | processor localbus with User-Programmable Machine support. |
408 | 408 | ||
409 | config MTD_NAND_MXC | ||
410 | tristate "MXC NAND support" | ||
411 | depends on ARCH_MX2 | ||
412 | help | ||
413 | This enables the driver for the NAND flash controller on the | ||
414 | MXC processors. | ||
415 | |||
416 | config MTD_NAND_SH_FLCTL | ||
417 | tristate "Support for NAND on Renesas SuperH FLCTL" | ||
418 | depends on MTD_NAND && SUPERH && CPU_SUBTYPE_SH7723 | ||
419 | help | ||
420 | Several Renesas SuperH CPU has FLCTL. This option enables support | ||
421 | for NAND Flash using FLCTL. This driver support SH7723. | ||
422 | |||
409 | endif # MTD_NAND | 423 | endif # MTD_NAND |
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index b786c5da82da..b661586afbfc 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile | |||
@@ -8,7 +8,6 @@ obj-$(CONFIG_MTD_NAND_IDS) += nand_ids.o | |||
8 | obj-$(CONFIG_MTD_NAND_CAFE) += cafe_nand.o | 8 | obj-$(CONFIG_MTD_NAND_CAFE) += cafe_nand.o |
9 | obj-$(CONFIG_MTD_NAND_SPIA) += spia.o | 9 | obj-$(CONFIG_MTD_NAND_SPIA) += spia.o |
10 | obj-$(CONFIG_MTD_NAND_AMS_DELTA) += ams-delta.o | 10 | obj-$(CONFIG_MTD_NAND_AMS_DELTA) += ams-delta.o |
11 | obj-$(CONFIG_MTD_NAND_TOTO) += toto.o | ||
12 | obj-$(CONFIG_MTD_NAND_AUTCPU12) += autcpu12.o | 11 | obj-$(CONFIG_MTD_NAND_AUTCPU12) += autcpu12.o |
13 | obj-$(CONFIG_MTD_NAND_EDB7312) += edb7312.o | 12 | obj-$(CONFIG_MTD_NAND_EDB7312) += edb7312.o |
14 | obj-$(CONFIG_MTD_NAND_AU1550) += au1550nd.o | 13 | obj-$(CONFIG_MTD_NAND_AU1550) += au1550nd.o |
@@ -24,6 +23,7 @@ obj-$(CONFIG_MTD_NAND_NANDSIM) += nandsim.o | |||
24 | obj-$(CONFIG_MTD_NAND_CS553X) += cs553x_nand.o | 23 | obj-$(CONFIG_MTD_NAND_CS553X) += cs553x_nand.o |
25 | obj-$(CONFIG_MTD_NAND_NDFC) += ndfc.o | 24 | obj-$(CONFIG_MTD_NAND_NDFC) += ndfc.o |
26 | obj-$(CONFIG_MTD_NAND_ATMEL) += atmel_nand.o | 25 | obj-$(CONFIG_MTD_NAND_ATMEL) += atmel_nand.o |
26 | obj-$(CONFIG_MTD_NAND_GPIO) += gpio.o | ||
27 | obj-$(CONFIG_MTD_NAND_CM_X270) += cmx270_nand.o | 27 | obj-$(CONFIG_MTD_NAND_CM_X270) += cmx270_nand.o |
28 | obj-$(CONFIG_MTD_NAND_BASLER_EXCITE) += excite_nandflash.o | 28 | obj-$(CONFIG_MTD_NAND_BASLER_EXCITE) += excite_nandflash.o |
29 | obj-$(CONFIG_MTD_NAND_PXA3xx) += pxa3xx_nand.o | 29 | obj-$(CONFIG_MTD_NAND_PXA3xx) += pxa3xx_nand.o |
@@ -34,5 +34,7 @@ obj-$(CONFIG_MTD_NAND_PASEMI) += pasemi_nand.o | |||
34 | obj-$(CONFIG_MTD_NAND_ORION) += orion_nand.o | 34 | obj-$(CONFIG_MTD_NAND_ORION) += orion_nand.o |
35 | obj-$(CONFIG_MTD_NAND_FSL_ELBC) += fsl_elbc_nand.o | 35 | obj-$(CONFIG_MTD_NAND_FSL_ELBC) += fsl_elbc_nand.o |
36 | obj-$(CONFIG_MTD_NAND_FSL_UPM) += fsl_upm.o | 36 | obj-$(CONFIG_MTD_NAND_FSL_UPM) += fsl_upm.o |
37 | obj-$(CONFIG_MTD_NAND_SH_FLCTL) += sh_flctl.o | ||
38 | obj-$(CONFIG_MTD_NAND_MXC) += mxc_nand.o | ||
37 | 39 | ||
38 | nand-objs := nand_base.o nand_bbt.o | 40 | nand-objs := nand_base.o nand_bbt.o |
diff --git a/drivers/mtd/nand/atmel_nand.c b/drivers/mtd/nand/atmel_nand.c index 3387e0d5076b..c98c1570a40b 100644 --- a/drivers/mtd/nand/atmel_nand.c +++ b/drivers/mtd/nand/atmel_nand.c | |||
@@ -174,48 +174,6 @@ static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len) | |||
174 | } | 174 | } |
175 | 175 | ||
176 | /* | 176 | /* |
177 | * write oob for small pages | ||
178 | */ | ||
179 | static int atmel_nand_write_oob_512(struct mtd_info *mtd, | ||
180 | struct nand_chip *chip, int page) | ||
181 | { | ||
182 | int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; | ||
183 | int eccsize = chip->ecc.size, length = mtd->oobsize; | ||
184 | int len, pos, status = 0; | ||
185 | const uint8_t *bufpoi = chip->oob_poi; | ||
186 | |||
187 | pos = eccsize + chunk; | ||
188 | |||
189 | chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page); | ||
190 | len = min_t(int, length, chunk); | ||
191 | chip->write_buf(mtd, bufpoi, len); | ||
192 | bufpoi += len; | ||
193 | length -= len; | ||
194 | if (length > 0) | ||
195 | chip->write_buf(mtd, bufpoi, length); | ||
196 | |||
197 | chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); | ||
198 | status = chip->waitfunc(mtd, chip); | ||
199 | |||
200 | return status & NAND_STATUS_FAIL ? -EIO : 0; | ||
201 | |||
202 | } | ||
203 | |||
204 | /* | ||
205 | * read oob for small pages | ||
206 | */ | ||
207 | static int atmel_nand_read_oob_512(struct mtd_info *mtd, | ||
208 | struct nand_chip *chip, int page, int sndcmd) | ||
209 | { | ||
210 | if (sndcmd) { | ||
211 | chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); | ||
212 | sndcmd = 0; | ||
213 | } | ||
214 | chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); | ||
215 | return sndcmd; | ||
216 | } | ||
217 | |||
218 | /* | ||
219 | * Calculate HW ECC | 177 | * Calculate HW ECC |
220 | * | 178 | * |
221 | * function called after a write | 179 | * function called after a write |
@@ -235,14 +193,14 @@ static int atmel_nand_calculate(struct mtd_info *mtd, | |||
235 | /* get the first 2 ECC bytes */ | 193 | /* get the first 2 ECC bytes */ |
236 | ecc_value = ecc_readl(host->ecc, PR); | 194 | ecc_value = ecc_readl(host->ecc, PR); |
237 | 195 | ||
238 | ecc_code[eccpos[0]] = ecc_value & 0xFF; | 196 | ecc_code[0] = ecc_value & 0xFF; |
239 | ecc_code[eccpos[1]] = (ecc_value >> 8) & 0xFF; | 197 | ecc_code[1] = (ecc_value >> 8) & 0xFF; |
240 | 198 | ||
241 | /* get the last 2 ECC bytes */ | 199 | /* get the last 2 ECC bytes */ |
242 | ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY; | 200 | ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY; |
243 | 201 | ||
244 | ecc_code[eccpos[2]] = ecc_value & 0xFF; | 202 | ecc_code[2] = ecc_value & 0xFF; |
245 | ecc_code[eccpos[3]] = (ecc_value >> 8) & 0xFF; | 203 | ecc_code[3] = (ecc_value >> 8) & 0xFF; |
246 | 204 | ||
247 | return 0; | 205 | return 0; |
248 | } | 206 | } |
@@ -476,14 +434,12 @@ static int __init atmel_nand_probe(struct platform_device *pdev) | |||
476 | res = -EIO; | 434 | res = -EIO; |
477 | goto err_ecc_ioremap; | 435 | goto err_ecc_ioremap; |
478 | } | 436 | } |
479 | nand_chip->ecc.mode = NAND_ECC_HW_SYNDROME; | 437 | nand_chip->ecc.mode = NAND_ECC_HW; |
480 | nand_chip->ecc.calculate = atmel_nand_calculate; | 438 | nand_chip->ecc.calculate = atmel_nand_calculate; |
481 | nand_chip->ecc.correct = atmel_nand_correct; | 439 | nand_chip->ecc.correct = atmel_nand_correct; |
482 | nand_chip->ecc.hwctl = atmel_nand_hwctl; | 440 | nand_chip->ecc.hwctl = atmel_nand_hwctl; |
483 | nand_chip->ecc.read_page = atmel_nand_read_page; | 441 | nand_chip->ecc.read_page = atmel_nand_read_page; |
484 | nand_chip->ecc.bytes = 4; | 442 | nand_chip->ecc.bytes = 4; |
485 | nand_chip->ecc.prepad = 0; | ||
486 | nand_chip->ecc.postpad = 0; | ||
487 | } | 443 | } |
488 | 444 | ||
489 | nand_chip->chip_delay = 20; /* 20us command delay time */ | 445 | nand_chip->chip_delay = 20; /* 20us command delay time */ |
@@ -514,7 +470,7 @@ static int __init atmel_nand_probe(struct platform_device *pdev) | |||
514 | goto err_scan_ident; | 470 | goto err_scan_ident; |
515 | } | 471 | } |
516 | 472 | ||
517 | if (nand_chip->ecc.mode == NAND_ECC_HW_SYNDROME) { | 473 | if (nand_chip->ecc.mode == NAND_ECC_HW) { |
518 | /* ECC is calculated for the whole page (1 step) */ | 474 | /* ECC is calculated for the whole page (1 step) */ |
519 | nand_chip->ecc.size = mtd->writesize; | 475 | nand_chip->ecc.size = mtd->writesize; |
520 | 476 | ||
@@ -522,8 +478,6 @@ static int __init atmel_nand_probe(struct platform_device *pdev) | |||
522 | switch (mtd->writesize) { | 478 | switch (mtd->writesize) { |
523 | case 512: | 479 | case 512: |
524 | nand_chip->ecc.layout = &atmel_oobinfo_small; | 480 | nand_chip->ecc.layout = &atmel_oobinfo_small; |
525 | nand_chip->ecc.read_oob = atmel_nand_read_oob_512; | ||
526 | nand_chip->ecc.write_oob = atmel_nand_write_oob_512; | ||
527 | ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528); | 481 | ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528); |
528 | break; | 482 | break; |
529 | case 1024: | 483 | case 1024: |
diff --git a/drivers/mtd/nand/cs553x_nand.c b/drivers/mtd/nand/cs553x_nand.c index 3370a800fd36..9f1b451005ca 100644 --- a/drivers/mtd/nand/cs553x_nand.c +++ b/drivers/mtd/nand/cs553x_nand.c | |||
@@ -289,8 +289,10 @@ static int __init cs553x_init(void) | |||
289 | int i; | 289 | int i; |
290 | uint64_t val; | 290 | uint64_t val; |
291 | 291 | ||
292 | #ifdef CONFIG_MTD_PARTITIONS | ||
292 | int mtd_parts_nb = 0; | 293 | int mtd_parts_nb = 0; |
293 | struct mtd_partition *mtd_parts = NULL; | 294 | struct mtd_partition *mtd_parts = NULL; |
295 | #endif | ||
294 | 296 | ||
295 | /* If the CPU isn't a Geode GX or LX, abort */ | 297 | /* If the CPU isn't a Geode GX or LX, abort */ |
296 | if (!is_geode()) | 298 | if (!is_geode()) |
diff --git a/drivers/mtd/nand/fsl_elbc_nand.c b/drivers/mtd/nand/fsl_elbc_nand.c index 98ad3cefcaf4..4aa5bd6158da 100644 --- a/drivers/mtd/nand/fsl_elbc_nand.c +++ b/drivers/mtd/nand/fsl_elbc_nand.c | |||
@@ -918,8 +918,7 @@ static int __devinit fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl, | |||
918 | 918 | ||
919 | #ifdef CONFIG_MTD_OF_PARTS | 919 | #ifdef CONFIG_MTD_OF_PARTS |
920 | if (ret == 0) { | 920 | if (ret == 0) { |
921 | ret = of_mtd_parse_partitions(priv->dev, &priv->mtd, | 921 | ret = of_mtd_parse_partitions(priv->dev, node, &parts); |
922 | node, &parts); | ||
923 | if (ret < 0) | 922 | if (ret < 0) |
924 | goto err; | 923 | goto err; |
925 | } | 924 | } |
diff --git a/drivers/mtd/nand/fsl_upm.c b/drivers/mtd/nand/fsl_upm.c index 1ebfd87f00b4..024e3fffd4bb 100644 --- a/drivers/mtd/nand/fsl_upm.c +++ b/drivers/mtd/nand/fsl_upm.c | |||
@@ -13,6 +13,7 @@ | |||
13 | 13 | ||
14 | #include <linux/kernel.h> | 14 | #include <linux/kernel.h> |
15 | #include <linux/module.h> | 15 | #include <linux/module.h> |
16 | #include <linux/delay.h> | ||
16 | #include <linux/mtd/nand.h> | 17 | #include <linux/mtd/nand.h> |
17 | #include <linux/mtd/nand_ecc.h> | 18 | #include <linux/mtd/nand_ecc.h> |
18 | #include <linux/mtd/partitions.h> | 19 | #include <linux/mtd/partitions.h> |
@@ -36,8 +37,6 @@ struct fsl_upm_nand { | |||
36 | uint8_t upm_cmd_offset; | 37 | uint8_t upm_cmd_offset; |
37 | void __iomem *io_base; | 38 | void __iomem *io_base; |
38 | int rnb_gpio; | 39 | int rnb_gpio; |
39 | const uint32_t *wait_pattern; | ||
40 | const uint32_t *wait_write; | ||
41 | int chip_delay; | 40 | int chip_delay; |
42 | }; | 41 | }; |
43 | 42 | ||
@@ -61,10 +60,11 @@ static void fun_wait_rnb(struct fsl_upm_nand *fun) | |||
61 | if (fun->rnb_gpio >= 0) { | 60 | if (fun->rnb_gpio >= 0) { |
62 | while (--cnt && !fun_chip_ready(&fun->mtd)) | 61 | while (--cnt && !fun_chip_ready(&fun->mtd)) |
63 | cpu_relax(); | 62 | cpu_relax(); |
63 | if (!cnt) | ||
64 | dev_err(fun->dev, "tired waiting for RNB\n"); | ||
65 | } else { | ||
66 | ndelay(100); | ||
64 | } | 67 | } |
65 | |||
66 | if (!cnt) | ||
67 | dev_err(fun->dev, "tired waiting for RNB\n"); | ||
68 | } | 68 | } |
69 | 69 | ||
70 | static void fun_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) | 70 | static void fun_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) |
@@ -89,8 +89,7 @@ static void fun_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) | |||
89 | 89 | ||
90 | fsl_upm_run_pattern(&fun->upm, fun->io_base, cmd); | 90 | fsl_upm_run_pattern(&fun->upm, fun->io_base, cmd); |
91 | 91 | ||
92 | if (fun->wait_pattern) | 92 | fun_wait_rnb(fun); |
93 | fun_wait_rnb(fun); | ||
94 | } | 93 | } |
95 | 94 | ||
96 | static uint8_t fun_read_byte(struct mtd_info *mtd) | 95 | static uint8_t fun_read_byte(struct mtd_info *mtd) |
@@ -116,14 +115,16 @@ static void fun_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) | |||
116 | 115 | ||
117 | for (i = 0; i < len; i++) { | 116 | for (i = 0; i < len; i++) { |
118 | out_8(fun->chip.IO_ADDR_W, buf[i]); | 117 | out_8(fun->chip.IO_ADDR_W, buf[i]); |
119 | if (fun->wait_write) | 118 | fun_wait_rnb(fun); |
120 | fun_wait_rnb(fun); | ||
121 | } | 119 | } |
122 | } | 120 | } |
123 | 121 | ||
124 | static int __devinit fun_chip_init(struct fsl_upm_nand *fun) | 122 | static int __devinit fun_chip_init(struct fsl_upm_nand *fun, |
123 | const struct device_node *upm_np, | ||
124 | const struct resource *io_res) | ||
125 | { | 125 | { |
126 | int ret; | 126 | int ret; |
127 | struct device_node *flash_np; | ||
127 | #ifdef CONFIG_MTD_PARTITIONS | 128 | #ifdef CONFIG_MTD_PARTITIONS |
128 | static const char *part_types[] = { "cmdlinepart", NULL, }; | 129 | static const char *part_types[] = { "cmdlinepart", NULL, }; |
129 | #endif | 130 | #endif |
@@ -143,18 +144,37 @@ static int __devinit fun_chip_init(struct fsl_upm_nand *fun) | |||
143 | fun->mtd.priv = &fun->chip; | 144 | fun->mtd.priv = &fun->chip; |
144 | fun->mtd.owner = THIS_MODULE; | 145 | fun->mtd.owner = THIS_MODULE; |
145 | 146 | ||
147 | flash_np = of_get_next_child(upm_np, NULL); | ||
148 | if (!flash_np) | ||
149 | return -ENODEV; | ||
150 | |||
151 | fun->mtd.name = kasprintf(GFP_KERNEL, "%x.%s", io_res->start, | ||
152 | flash_np->name); | ||
153 | if (!fun->mtd.name) { | ||
154 | ret = -ENOMEM; | ||
155 | goto err; | ||
156 | } | ||
157 | |||
146 | ret = nand_scan(&fun->mtd, 1); | 158 | ret = nand_scan(&fun->mtd, 1); |
147 | if (ret) | 159 | if (ret) |
148 | return ret; | 160 | goto err; |
149 | |||
150 | fun->mtd.name = fun->dev->bus_id; | ||
151 | 161 | ||
152 | #ifdef CONFIG_MTD_PARTITIONS | 162 | #ifdef CONFIG_MTD_PARTITIONS |
153 | ret = parse_mtd_partitions(&fun->mtd, part_types, &fun->parts, 0); | 163 | ret = parse_mtd_partitions(&fun->mtd, part_types, &fun->parts, 0); |
164 | |||
165 | #ifdef CONFIG_MTD_OF_PARTS | ||
166 | if (ret == 0) | ||
167 | ret = of_mtd_parse_partitions(fun->dev, &fun->mtd, | ||
168 | flash_np, &fun->parts); | ||
169 | #endif | ||
154 | if (ret > 0) | 170 | if (ret > 0) |
155 | return add_mtd_partitions(&fun->mtd, fun->parts, ret); | 171 | ret = add_mtd_partitions(&fun->mtd, fun->parts, ret); |
172 | else | ||
156 | #endif | 173 | #endif |
157 | return add_mtd_device(&fun->mtd); | 174 | ret = add_mtd_device(&fun->mtd); |
175 | err: | ||
176 | of_node_put(flash_np); | ||
177 | return ret; | ||
158 | } | 178 | } |
159 | 179 | ||
160 | static int __devinit fun_probe(struct of_device *ofdev, | 180 | static int __devinit fun_probe(struct of_device *ofdev, |
@@ -211,6 +231,12 @@ static int __devinit fun_probe(struct of_device *ofdev, | |||
211 | goto err2; | 231 | goto err2; |
212 | } | 232 | } |
213 | 233 | ||
234 | prop = of_get_property(ofdev->node, "chip-delay", NULL); | ||
235 | if (prop) | ||
236 | fun->chip_delay = *prop; | ||
237 | else | ||
238 | fun->chip_delay = 50; | ||
239 | |||
214 | fun->io_base = devm_ioremap_nocache(&ofdev->dev, io_res.start, | 240 | fun->io_base = devm_ioremap_nocache(&ofdev->dev, io_res.start, |
215 | io_res.end - io_res.start + 1); | 241 | io_res.end - io_res.start + 1); |
216 | if (!fun->io_base) { | 242 | if (!fun->io_base) { |
@@ -220,17 +246,8 @@ static int __devinit fun_probe(struct of_device *ofdev, | |||
220 | 246 | ||
221 | fun->dev = &ofdev->dev; | 247 | fun->dev = &ofdev->dev; |
222 | fun->last_ctrl = NAND_CLE; | 248 | fun->last_ctrl = NAND_CLE; |
223 | fun->wait_pattern = of_get_property(ofdev->node, "fsl,wait-pattern", | ||
224 | NULL); | ||
225 | fun->wait_write = of_get_property(ofdev->node, "fsl,wait-write", NULL); | ||
226 | |||
227 | prop = of_get_property(ofdev->node, "chip-delay", NULL); | ||
228 | if (prop) | ||
229 | fun->chip_delay = *prop; | ||
230 | else | ||
231 | fun->chip_delay = 50; | ||
232 | 249 | ||
233 | ret = fun_chip_init(fun); | 250 | ret = fun_chip_init(fun, ofdev->node, &io_res); |
234 | if (ret) | 251 | if (ret) |
235 | goto err2; | 252 | goto err2; |
236 | 253 | ||
@@ -251,6 +268,7 @@ static int __devexit fun_remove(struct of_device *ofdev) | |||
251 | struct fsl_upm_nand *fun = dev_get_drvdata(&ofdev->dev); | 268 | struct fsl_upm_nand *fun = dev_get_drvdata(&ofdev->dev); |
252 | 269 | ||
253 | nand_release(&fun->mtd); | 270 | nand_release(&fun->mtd); |
271 | kfree(fun->mtd.name); | ||
254 | 272 | ||
255 | if (fun->rnb_gpio >= 0) | 273 | if (fun->rnb_gpio >= 0) |
256 | gpio_free(fun->rnb_gpio); | 274 | gpio_free(fun->rnb_gpio); |
diff --git a/drivers/mtd/nand/gpio.c b/drivers/mtd/nand/gpio.c new file mode 100644 index 000000000000..8f902e75aa85 --- /dev/null +++ b/drivers/mtd/nand/gpio.c | |||
@@ -0,0 +1,375 @@ | |||
1 | /* | ||
2 | * drivers/mtd/nand/gpio.c | ||
3 | * | ||
4 | * Updated, and converted to generic GPIO based driver by Russell King. | ||
5 | * | ||
6 | * Written by Ben Dooks <ben@simtec.co.uk> | ||
7 | * Based on 2.4 version by Mark Whittaker | ||
8 | * | ||
9 | * © 2004 Simtec Electronics | ||
10 | * | ||
11 | * Device driver for NAND connected via GPIO | ||
12 | * | ||
13 | * This program is free software; you can redistribute it and/or modify | ||
14 | * it under the terms of the GNU General Public License version 2 as | ||
15 | * published by the Free Software Foundation. | ||
16 | * | ||
17 | */ | ||
18 | |||
19 | #include <linux/kernel.h> | ||
20 | #include <linux/init.h> | ||
21 | #include <linux/slab.h> | ||
22 | #include <linux/module.h> | ||
23 | #include <linux/platform_device.h> | ||
24 | #include <linux/gpio.h> | ||
25 | #include <linux/io.h> | ||
26 | #include <linux/mtd/mtd.h> | ||
27 | #include <linux/mtd/nand.h> | ||
28 | #include <linux/mtd/partitions.h> | ||
29 | #include <linux/mtd/nand-gpio.h> | ||
30 | |||
31 | struct gpiomtd { | ||
32 | void __iomem *io_sync; | ||
33 | struct mtd_info mtd_info; | ||
34 | struct nand_chip nand_chip; | ||
35 | struct gpio_nand_platdata plat; | ||
36 | }; | ||
37 | |||
38 | #define gpio_nand_getpriv(x) container_of(x, struct gpiomtd, mtd_info) | ||
39 | |||
40 | |||
41 | #ifdef CONFIG_ARM | ||
42 | /* gpio_nand_dosync() | ||
43 | * | ||
44 | * Make sure the GPIO state changes occur in-order with writes to NAND | ||
45 | * memory region. | ||
46 | * Needed on PXA due to bus-reordering within the SoC itself (see section on | ||
47 | * I/O ordering in PXA manual (section 2.3, p35) | ||
48 | */ | ||
49 | static void gpio_nand_dosync(struct gpiomtd *gpiomtd) | ||
50 | { | ||
51 | unsigned long tmp; | ||
52 | |||
53 | if (gpiomtd->io_sync) { | ||
54 | /* | ||
55 | * Linux memory barriers don't cater for what's required here. | ||
56 | * What's required is what's here - a read from a separate | ||
57 | * region with a dependency on that read. | ||
58 | */ | ||
59 | tmp = readl(gpiomtd->io_sync); | ||
60 | asm volatile("mov %1, %0\n" : "=r" (tmp) : "r" (tmp)); | ||
61 | } | ||
62 | } | ||
63 | #else | ||
64 | static inline void gpio_nand_dosync(struct gpiomtd *gpiomtd) {} | ||
65 | #endif | ||
66 | |||
67 | static void gpio_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) | ||
68 | { | ||
69 | struct gpiomtd *gpiomtd = gpio_nand_getpriv(mtd); | ||
70 | |||
71 | gpio_nand_dosync(gpiomtd); | ||
72 | |||
73 | if (ctrl & NAND_CTRL_CHANGE) { | ||
74 | gpio_set_value(gpiomtd->plat.gpio_nce, !(ctrl & NAND_NCE)); | ||
75 | gpio_set_value(gpiomtd->plat.gpio_cle, !!(ctrl & NAND_CLE)); | ||
76 | gpio_set_value(gpiomtd->plat.gpio_ale, !!(ctrl & NAND_ALE)); | ||
77 | gpio_nand_dosync(gpiomtd); | ||
78 | } | ||
79 | if (cmd == NAND_CMD_NONE) | ||
80 | return; | ||
81 | |||
82 | writeb(cmd, gpiomtd->nand_chip.IO_ADDR_W); | ||
83 | gpio_nand_dosync(gpiomtd); | ||
84 | } | ||
85 | |||
86 | static void gpio_nand_writebuf(struct mtd_info *mtd, const u_char *buf, int len) | ||
87 | { | ||
88 | struct nand_chip *this = mtd->priv; | ||
89 | |||
90 | writesb(this->IO_ADDR_W, buf, len); | ||
91 | } | ||
92 | |||
93 | static void gpio_nand_readbuf(struct mtd_info *mtd, u_char *buf, int len) | ||
94 | { | ||
95 | struct nand_chip *this = mtd->priv; | ||
96 | |||
97 | readsb(this->IO_ADDR_R, buf, len); | ||
98 | } | ||
99 | |||
100 | static int gpio_nand_verifybuf(struct mtd_info *mtd, const u_char *buf, int len) | ||
101 | { | ||
102 | struct nand_chip *this = mtd->priv; | ||
103 | unsigned char read, *p = (unsigned char *) buf; | ||
104 | int i, err = 0; | ||
105 | |||
106 | for (i = 0; i < len; i++) { | ||
107 | read = readb(this->IO_ADDR_R); | ||
108 | if (read != p[i]) { | ||
109 | pr_debug("%s: err at %d (read %04x vs %04x)\n", | ||
110 | __func__, i, read, p[i]); | ||
111 | err = -EFAULT; | ||
112 | } | ||
113 | } | ||
114 | return err; | ||
115 | } | ||
116 | |||
117 | static void gpio_nand_writebuf16(struct mtd_info *mtd, const u_char *buf, | ||
118 | int len) | ||
119 | { | ||
120 | struct nand_chip *this = mtd->priv; | ||
121 | |||
122 | if (IS_ALIGNED((unsigned long)buf, 2)) { | ||
123 | writesw(this->IO_ADDR_W, buf, len>>1); | ||
124 | } else { | ||
125 | int i; | ||
126 | unsigned short *ptr = (unsigned short *)buf; | ||
127 | |||
128 | for (i = 0; i < len; i += 2, ptr++) | ||
129 | writew(*ptr, this->IO_ADDR_W); | ||
130 | } | ||
131 | } | ||
132 | |||
133 | static void gpio_nand_readbuf16(struct mtd_info *mtd, u_char *buf, int len) | ||
134 | { | ||
135 | struct nand_chip *this = mtd->priv; | ||
136 | |||
137 | if (IS_ALIGNED((unsigned long)buf, 2)) { | ||
138 | readsw(this->IO_ADDR_R, buf, len>>1); | ||
139 | } else { | ||
140 | int i; | ||
141 | unsigned short *ptr = (unsigned short *)buf; | ||
142 | |||
143 | for (i = 0; i < len; i += 2, ptr++) | ||
144 | *ptr = readw(this->IO_ADDR_R); | ||
145 | } | ||
146 | } | ||
147 | |||
148 | static int gpio_nand_verifybuf16(struct mtd_info *mtd, const u_char *buf, | ||
149 | int len) | ||
150 | { | ||
151 | struct nand_chip *this = mtd->priv; | ||
152 | unsigned short read, *p = (unsigned short *) buf; | ||
153 | int i, err = 0; | ||
154 | len >>= 1; | ||
155 | |||
156 | for (i = 0; i < len; i++) { | ||
157 | read = readw(this->IO_ADDR_R); | ||
158 | if (read != p[i]) { | ||
159 | pr_debug("%s: err at %d (read %04x vs %04x)\n", | ||
160 | __func__, i, read, p[i]); | ||
161 | err = -EFAULT; | ||
162 | } | ||
163 | } | ||
164 | return err; | ||
165 | } | ||
166 | |||
167 | |||
168 | static int gpio_nand_devready(struct mtd_info *mtd) | ||
169 | { | ||
170 | struct gpiomtd *gpiomtd = gpio_nand_getpriv(mtd); | ||
171 | return gpio_get_value(gpiomtd->plat.gpio_rdy); | ||
172 | } | ||
173 | |||
174 | static int __devexit gpio_nand_remove(struct platform_device *dev) | ||
175 | { | ||
176 | struct gpiomtd *gpiomtd = platform_get_drvdata(dev); | ||
177 | struct resource *res; | ||
178 | |||
179 | nand_release(&gpiomtd->mtd_info); | ||
180 | |||
181 | res = platform_get_resource(dev, IORESOURCE_MEM, 1); | ||
182 | iounmap(gpiomtd->io_sync); | ||
183 | if (res) | ||
184 | release_mem_region(res->start, res->end - res->start + 1); | ||
185 | |||
186 | res = platform_get_resource(dev, IORESOURCE_MEM, 0); | ||
187 | iounmap(gpiomtd->nand_chip.IO_ADDR_R); | ||
188 | release_mem_region(res->start, res->end - res->start + 1); | ||
189 | |||
190 | if (gpio_is_valid(gpiomtd->plat.gpio_nwp)) | ||
191 | gpio_set_value(gpiomtd->plat.gpio_nwp, 0); | ||
192 | gpio_set_value(gpiomtd->plat.gpio_nce, 1); | ||
193 | |||
194 | gpio_free(gpiomtd->plat.gpio_cle); | ||
195 | gpio_free(gpiomtd->plat.gpio_ale); | ||
196 | gpio_free(gpiomtd->plat.gpio_nce); | ||
197 | if (gpio_is_valid(gpiomtd->plat.gpio_nwp)) | ||
198 | gpio_free(gpiomtd->plat.gpio_nwp); | ||
199 | gpio_free(gpiomtd->plat.gpio_rdy); | ||
200 | |||
201 | kfree(gpiomtd); | ||
202 | |||
203 | return 0; | ||
204 | } | ||
205 | |||
206 | static void __iomem *request_and_remap(struct resource *res, size_t size, | ||
207 | const char *name, int *err) | ||
208 | { | ||
209 | void __iomem *ptr; | ||
210 | |||
211 | if (!request_mem_region(res->start, res->end - res->start + 1, name)) { | ||
212 | *err = -EBUSY; | ||
213 | return NULL; | ||
214 | } | ||
215 | |||
216 | ptr = ioremap(res->start, size); | ||
217 | if (!ptr) { | ||
218 | release_mem_region(res->start, res->end - res->start + 1); | ||
219 | *err = -ENOMEM; | ||
220 | } | ||
221 | return ptr; | ||
222 | } | ||
223 | |||
224 | static int __devinit gpio_nand_probe(struct platform_device *dev) | ||
225 | { | ||
226 | struct gpiomtd *gpiomtd; | ||
227 | struct nand_chip *this; | ||
228 | struct resource *res0, *res1; | ||
229 | int ret; | ||
230 | |||
231 | if (!dev->dev.platform_data) | ||
232 | return -EINVAL; | ||
233 | |||
234 | res0 = platform_get_resource(dev, IORESOURCE_MEM, 0); | ||
235 | if (!res0) | ||
236 | return -EINVAL; | ||
237 | |||
238 | gpiomtd = kzalloc(sizeof(*gpiomtd), GFP_KERNEL); | ||
239 | if (gpiomtd == NULL) { | ||
240 | dev_err(&dev->dev, "failed to create NAND MTD\n"); | ||
241 | return -ENOMEM; | ||
242 | } | ||
243 | |||
244 | this = &gpiomtd->nand_chip; | ||
245 | this->IO_ADDR_R = request_and_remap(res0, 2, "NAND", &ret); | ||
246 | if (!this->IO_ADDR_R) { | ||
247 | dev_err(&dev->dev, "unable to map NAND\n"); | ||
248 | goto err_map; | ||
249 | } | ||
250 | |||
251 | res1 = platform_get_resource(dev, IORESOURCE_MEM, 1); | ||
252 | if (res1) { | ||
253 | gpiomtd->io_sync = request_and_remap(res1, 4, "NAND sync", &ret); | ||
254 | if (!gpiomtd->io_sync) { | ||
255 | dev_err(&dev->dev, "unable to map sync NAND\n"); | ||
256 | goto err_sync; | ||
257 | } | ||
258 | } | ||
259 | |||
260 | memcpy(&gpiomtd->plat, dev->dev.platform_data, sizeof(gpiomtd->plat)); | ||
261 | |||
262 | ret = gpio_request(gpiomtd->plat.gpio_nce, "NAND NCE"); | ||
263 | if (ret) | ||
264 | goto err_nce; | ||
265 | gpio_direction_output(gpiomtd->plat.gpio_nce, 1); | ||
266 | if (gpio_is_valid(gpiomtd->plat.gpio_nwp)) { | ||
267 | ret = gpio_request(gpiomtd->plat.gpio_nwp, "NAND NWP"); | ||
268 | if (ret) | ||
269 | goto err_nwp; | ||
270 | gpio_direction_output(gpiomtd->plat.gpio_nwp, 1); | ||
271 | } | ||
272 | ret = gpio_request(gpiomtd->plat.gpio_ale, "NAND ALE"); | ||
273 | if (ret) | ||
274 | goto err_ale; | ||
275 | gpio_direction_output(gpiomtd->plat.gpio_ale, 0); | ||
276 | ret = gpio_request(gpiomtd->plat.gpio_cle, "NAND CLE"); | ||
277 | if (ret) | ||
278 | goto err_cle; | ||
279 | gpio_direction_output(gpiomtd->plat.gpio_cle, 0); | ||
280 | ret = gpio_request(gpiomtd->plat.gpio_rdy, "NAND RDY"); | ||
281 | if (ret) | ||
282 | goto err_rdy; | ||
283 | gpio_direction_input(gpiomtd->plat.gpio_rdy); | ||
284 | |||
285 | |||
286 | this->IO_ADDR_W = this->IO_ADDR_R; | ||
287 | this->ecc.mode = NAND_ECC_SOFT; | ||
288 | this->options = gpiomtd->plat.options; | ||
289 | this->chip_delay = gpiomtd->plat.chip_delay; | ||
290 | |||
291 | /* install our routines */ | ||
292 | this->cmd_ctrl = gpio_nand_cmd_ctrl; | ||
293 | this->dev_ready = gpio_nand_devready; | ||
294 | |||
295 | if (this->options & NAND_BUSWIDTH_16) { | ||
296 | this->read_buf = gpio_nand_readbuf16; | ||
297 | this->write_buf = gpio_nand_writebuf16; | ||
298 | this->verify_buf = gpio_nand_verifybuf16; | ||
299 | } else { | ||
300 | this->read_buf = gpio_nand_readbuf; | ||
301 | this->write_buf = gpio_nand_writebuf; | ||
302 | this->verify_buf = gpio_nand_verifybuf; | ||
303 | } | ||
304 | |||
305 | /* set the mtd private data for the nand driver */ | ||
306 | gpiomtd->mtd_info.priv = this; | ||
307 | gpiomtd->mtd_info.owner = THIS_MODULE; | ||
308 | |||
309 | if (nand_scan(&gpiomtd->mtd_info, 1)) { | ||
310 | dev_err(&dev->dev, "no nand chips found?\n"); | ||
311 | ret = -ENXIO; | ||
312 | goto err_wp; | ||
313 | } | ||
314 | |||
315 | if (gpiomtd->plat.adjust_parts) | ||
316 | gpiomtd->plat.adjust_parts(&gpiomtd->plat, | ||
317 | gpiomtd->mtd_info.size); | ||
318 | |||
319 | add_mtd_partitions(&gpiomtd->mtd_info, gpiomtd->plat.parts, | ||
320 | gpiomtd->plat.num_parts); | ||
321 | platform_set_drvdata(dev, gpiomtd); | ||
322 | |||
323 | return 0; | ||
324 | |||
325 | err_wp: | ||
326 | if (gpio_is_valid(gpiomtd->plat.gpio_nwp)) | ||
327 | gpio_set_value(gpiomtd->plat.gpio_nwp, 0); | ||
328 | gpio_free(gpiomtd->plat.gpio_rdy); | ||
329 | err_rdy: | ||
330 | gpio_free(gpiomtd->plat.gpio_cle); | ||
331 | err_cle: | ||
332 | gpio_free(gpiomtd->plat.gpio_ale); | ||
333 | err_ale: | ||
334 | if (gpio_is_valid(gpiomtd->plat.gpio_nwp)) | ||
335 | gpio_free(gpiomtd->plat.gpio_nwp); | ||
336 | err_nwp: | ||
337 | gpio_free(gpiomtd->plat.gpio_nce); | ||
338 | err_nce: | ||
339 | iounmap(gpiomtd->io_sync); | ||
340 | if (res1) | ||
341 | release_mem_region(res1->start, res1->end - res1->start + 1); | ||
342 | err_sync: | ||
343 | iounmap(gpiomtd->nand_chip.IO_ADDR_R); | ||
344 | release_mem_region(res0->start, res0->end - res0->start + 1); | ||
345 | err_map: | ||
346 | kfree(gpiomtd); | ||
347 | return ret; | ||
348 | } | ||
349 | |||
350 | static struct platform_driver gpio_nand_driver = { | ||
351 | .probe = gpio_nand_probe, | ||
352 | .remove = gpio_nand_remove, | ||
353 | .driver = { | ||
354 | .name = "gpio-nand", | ||
355 | }, | ||
356 | }; | ||
357 | |||
358 | static int __init gpio_nand_init(void) | ||
359 | { | ||
360 | printk(KERN_INFO "GPIO NAND driver, © 2004 Simtec Electronics\n"); | ||
361 | |||
362 | return platform_driver_register(&gpio_nand_driver); | ||
363 | } | ||
364 | |||
365 | static void __exit gpio_nand_exit(void) | ||
366 | { | ||
367 | platform_driver_unregister(&gpio_nand_driver); | ||
368 | } | ||
369 | |||
370 | module_init(gpio_nand_init); | ||
371 | module_exit(gpio_nand_exit); | ||
372 | |||
373 | MODULE_LICENSE("GPL"); | ||
374 | MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); | ||
375 | MODULE_DESCRIPTION("GPIO NAND Driver"); | ||
diff --git a/drivers/mtd/nand/mxc_nand.c b/drivers/mtd/nand/mxc_nand.c new file mode 100644 index 000000000000..21fd4f1c4806 --- /dev/null +++ b/drivers/mtd/nand/mxc_nand.c | |||
@@ -0,0 +1,1077 @@ | |||
1 | /* | ||
2 | * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. | ||
3 | * Copyright 2008 Sascha Hauer, kernel@pengutronix.de | ||
4 | * | ||
5 | * This program is free software; you can redistribute it and/or | ||
6 | * modify it under the terms of the GNU General Public License | ||
7 | * as published by the Free Software Foundation; either version 2 | ||
8 | * of the License, or (at your option) any later version. | ||
9 | * This program is distributed in the hope that it will be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | * GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License | ||
15 | * along with this program; if not, write to the Free Software | ||
16 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, | ||
17 | * MA 02110-1301, USA. | ||
18 | */ | ||
19 | |||
20 | #include <linux/delay.h> | ||
21 | #include <linux/slab.h> | ||
22 | #include <linux/init.h> | ||
23 | #include <linux/module.h> | ||
24 | #include <linux/mtd/mtd.h> | ||
25 | #include <linux/mtd/nand.h> | ||
26 | #include <linux/mtd/partitions.h> | ||
27 | #include <linux/interrupt.h> | ||
28 | #include <linux/device.h> | ||
29 | #include <linux/platform_device.h> | ||
30 | #include <linux/clk.h> | ||
31 | #include <linux/err.h> | ||
32 | #include <linux/io.h> | ||
33 | |||
34 | #include <asm/mach/flash.h> | ||
35 | #include <mach/mxc_nand.h> | ||
36 | |||
37 | #define DRIVER_NAME "mxc_nand" | ||
38 | |||
39 | /* Addresses for NFC registers */ | ||
40 | #define NFC_BUF_SIZE 0xE00 | ||
41 | #define NFC_BUF_ADDR 0xE04 | ||
42 | #define NFC_FLASH_ADDR 0xE06 | ||
43 | #define NFC_FLASH_CMD 0xE08 | ||
44 | #define NFC_CONFIG 0xE0A | ||
45 | #define NFC_ECC_STATUS_RESULT 0xE0C | ||
46 | #define NFC_RSLTMAIN_AREA 0xE0E | ||
47 | #define NFC_RSLTSPARE_AREA 0xE10 | ||
48 | #define NFC_WRPROT 0xE12 | ||
49 | #define NFC_UNLOCKSTART_BLKADDR 0xE14 | ||
50 | #define NFC_UNLOCKEND_BLKADDR 0xE16 | ||
51 | #define NFC_NF_WRPRST 0xE18 | ||
52 | #define NFC_CONFIG1 0xE1A | ||
53 | #define NFC_CONFIG2 0xE1C | ||
54 | |||
55 | /* Addresses for NFC RAM BUFFER Main area 0 */ | ||
56 | #define MAIN_AREA0 0x000 | ||
57 | #define MAIN_AREA1 0x200 | ||
58 | #define MAIN_AREA2 0x400 | ||
59 | #define MAIN_AREA3 0x600 | ||
60 | |||
61 | /* Addresses for NFC SPARE BUFFER Spare area 0 */ | ||
62 | #define SPARE_AREA0 0x800 | ||
63 | #define SPARE_AREA1 0x810 | ||
64 | #define SPARE_AREA2 0x820 | ||
65 | #define SPARE_AREA3 0x830 | ||
66 | |||
67 | /* Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register | ||
68 | * for Command operation */ | ||
69 | #define NFC_CMD 0x1 | ||
70 | |||
71 | /* Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register | ||
72 | * for Address operation */ | ||
73 | #define NFC_ADDR 0x2 | ||
74 | |||
75 | /* Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register | ||
76 | * for Input operation */ | ||
77 | #define NFC_INPUT 0x4 | ||
78 | |||
79 | /* Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register | ||
80 | * for Data Output operation */ | ||
81 | #define NFC_OUTPUT 0x8 | ||
82 | |||
83 | /* Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register | ||
84 | * for Read ID operation */ | ||
85 | #define NFC_ID 0x10 | ||
86 | |||
87 | /* Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register | ||
88 | * for Read Status operation */ | ||
89 | #define NFC_STATUS 0x20 | ||
90 | |||
91 | /* Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read | ||
92 | * Status operation */ | ||
93 | #define NFC_INT 0x8000 | ||
94 | |||
95 | #define NFC_SP_EN (1 << 2) | ||
96 | #define NFC_ECC_EN (1 << 3) | ||
97 | #define NFC_INT_MSK (1 << 4) | ||
98 | #define NFC_BIG (1 << 5) | ||
99 | #define NFC_RST (1 << 6) | ||
100 | #define NFC_CE (1 << 7) | ||
101 | #define NFC_ONE_CYCLE (1 << 8) | ||
102 | |||
103 | struct mxc_nand_host { | ||
104 | struct mtd_info mtd; | ||
105 | struct nand_chip nand; | ||
106 | struct mtd_partition *parts; | ||
107 | struct device *dev; | ||
108 | |||
109 | void __iomem *regs; | ||
110 | int spare_only; | ||
111 | int status_request; | ||
112 | int pagesize_2k; | ||
113 | uint16_t col_addr; | ||
114 | struct clk *clk; | ||
115 | int clk_act; | ||
116 | int irq; | ||
117 | |||
118 | wait_queue_head_t irq_waitq; | ||
119 | }; | ||
120 | |||
121 | /* Define delays in microsec for NAND device operations */ | ||
122 | #define TROP_US_DELAY 2000 | ||
123 | /* Macros to get byte and bit positions of ECC */ | ||
124 | #define COLPOS(x) ((x) >> 3) | ||
125 | #define BITPOS(x) ((x) & 0xf) | ||
126 | |||
127 | /* Define single bit Error positions in Main & Spare area */ | ||
128 | #define MAIN_SINGLEBIT_ERROR 0x4 | ||
129 | #define SPARE_SINGLEBIT_ERROR 0x1 | ||
130 | |||
131 | /* OOB placement block for use with hardware ecc generation */ | ||
132 | static struct nand_ecclayout nand_hw_eccoob_8 = { | ||
133 | .eccbytes = 5, | ||
134 | .eccpos = {6, 7, 8, 9, 10}, | ||
135 | .oobfree = {{0, 5}, {11, 5}, } | ||
136 | }; | ||
137 | |||
138 | static struct nand_ecclayout nand_hw_eccoob_16 = { | ||
139 | .eccbytes = 5, | ||
140 | .eccpos = {6, 7, 8, 9, 10}, | ||
141 | .oobfree = {{0, 6}, {12, 4}, } | ||
142 | }; | ||
143 | |||
144 | #ifdef CONFIG_MTD_PARTITIONS | ||
145 | static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL }; | ||
146 | #endif | ||
147 | |||
148 | static irqreturn_t mxc_nfc_irq(int irq, void *dev_id) | ||
149 | { | ||
150 | struct mxc_nand_host *host = dev_id; | ||
151 | |||
152 | uint16_t tmp; | ||
153 | |||
154 | tmp = readw(host->regs + NFC_CONFIG1); | ||
155 | tmp |= NFC_INT_MSK; /* Disable interrupt */ | ||
156 | writew(tmp, host->regs + NFC_CONFIG1); | ||
157 | |||
158 | wake_up(&host->irq_waitq); | ||
159 | |||
160 | return IRQ_HANDLED; | ||
161 | } | ||
162 | |||
163 | /* This function polls the NANDFC to wait for the basic operation to | ||
164 | * complete by checking the INT bit of config2 register. | ||
165 | */ | ||
166 | static void wait_op_done(struct mxc_nand_host *host, int max_retries, | ||
167 | uint16_t param, int useirq) | ||
168 | { | ||
169 | uint32_t tmp; | ||
170 | |||
171 | if (useirq) { | ||
172 | if ((readw(host->regs + NFC_CONFIG2) & NFC_INT) == 0) { | ||
173 | |||
174 | tmp = readw(host->regs + NFC_CONFIG1); | ||
175 | tmp &= ~NFC_INT_MSK; /* Enable interrupt */ | ||
176 | writew(tmp, host->regs + NFC_CONFIG1); | ||
177 | |||
178 | wait_event(host->irq_waitq, | ||
179 | readw(host->regs + NFC_CONFIG2) & NFC_INT); | ||
180 | |||
181 | tmp = readw(host->regs + NFC_CONFIG2); | ||
182 | tmp &= ~NFC_INT; | ||
183 | writew(tmp, host->regs + NFC_CONFIG2); | ||
184 | } | ||
185 | } else { | ||
186 | while (max_retries-- > 0) { | ||
187 | if (readw(host->regs + NFC_CONFIG2) & NFC_INT) { | ||
188 | tmp = readw(host->regs + NFC_CONFIG2); | ||
189 | tmp &= ~NFC_INT; | ||
190 | writew(tmp, host->regs + NFC_CONFIG2); | ||
191 | break; | ||
192 | } | ||
193 | udelay(1); | ||
194 | } | ||
195 | if (max_retries <= 0) | ||
196 | DEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n", | ||
197 | __func__, param); | ||
198 | } | ||
199 | } | ||
200 | |||
201 | /* This function issues the specified command to the NAND device and | ||
202 | * waits for completion. */ | ||
203 | static void send_cmd(struct mxc_nand_host *host, uint16_t cmd, int useirq) | ||
204 | { | ||
205 | DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x, %d)\n", cmd, useirq); | ||
206 | |||
207 | writew(cmd, host->regs + NFC_FLASH_CMD); | ||
208 | writew(NFC_CMD, host->regs + NFC_CONFIG2); | ||
209 | |||
210 | /* Wait for operation to complete */ | ||
211 | wait_op_done(host, TROP_US_DELAY, cmd, useirq); | ||
212 | } | ||
213 | |||
214 | /* This function sends an address (or partial address) to the | ||
215 | * NAND device. The address is used to select the source/destination for | ||
216 | * a NAND command. */ | ||
217 | static void send_addr(struct mxc_nand_host *host, uint16_t addr, int islast) | ||
218 | { | ||
219 | DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast); | ||
220 | |||
221 | writew(addr, host->regs + NFC_FLASH_ADDR); | ||
222 | writew(NFC_ADDR, host->regs + NFC_CONFIG2); | ||
223 | |||
224 | /* Wait for operation to complete */ | ||
225 | wait_op_done(host, TROP_US_DELAY, addr, islast); | ||
226 | } | ||
227 | |||
228 | /* This function requests the NANDFC to initate the transfer | ||
229 | * of data currently in the NANDFC RAM buffer to the NAND device. */ | ||
230 | static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id, | ||
231 | int spare_only) | ||
232 | { | ||
233 | DEBUG(MTD_DEBUG_LEVEL3, "send_prog_page (%d)\n", spare_only); | ||
234 | |||
235 | /* NANDFC buffer 0 is used for page read/write */ | ||
236 | writew(buf_id, host->regs + NFC_BUF_ADDR); | ||
237 | |||
238 | /* Configure spare or page+spare access */ | ||
239 | if (!host->pagesize_2k) { | ||
240 | uint16_t config1 = readw(host->regs + NFC_CONFIG1); | ||
241 | if (spare_only) | ||
242 | config1 |= NFC_SP_EN; | ||
243 | else | ||
244 | config1 &= ~(NFC_SP_EN); | ||
245 | writew(config1, host->regs + NFC_CONFIG1); | ||
246 | } | ||
247 | |||
248 | writew(NFC_INPUT, host->regs + NFC_CONFIG2); | ||
249 | |||
250 | /* Wait for operation to complete */ | ||
251 | wait_op_done(host, TROP_US_DELAY, spare_only, true); | ||
252 | } | ||
253 | |||
254 | /* Requests NANDFC to initated the transfer of data from the | ||
255 | * NAND device into in the NANDFC ram buffer. */ | ||
256 | static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id, | ||
257 | int spare_only) | ||
258 | { | ||
259 | DEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only); | ||
260 | |||
261 | /* NANDFC buffer 0 is used for page read/write */ | ||
262 | writew(buf_id, host->regs + NFC_BUF_ADDR); | ||
263 | |||
264 | /* Configure spare or page+spare access */ | ||
265 | if (!host->pagesize_2k) { | ||
266 | uint32_t config1 = readw(host->regs + NFC_CONFIG1); | ||
267 | if (spare_only) | ||
268 | config1 |= NFC_SP_EN; | ||
269 | else | ||
270 | config1 &= ~NFC_SP_EN; | ||
271 | writew(config1, host->regs + NFC_CONFIG1); | ||
272 | } | ||
273 | |||
274 | writew(NFC_OUTPUT, host->regs + NFC_CONFIG2); | ||
275 | |||
276 | /* Wait for operation to complete */ | ||
277 | wait_op_done(host, TROP_US_DELAY, spare_only, true); | ||
278 | } | ||
279 | |||
280 | /* Request the NANDFC to perform a read of the NAND device ID. */ | ||
281 | static void send_read_id(struct mxc_nand_host *host) | ||
282 | { | ||
283 | struct nand_chip *this = &host->nand; | ||
284 | uint16_t tmp; | ||
285 | |||
286 | /* NANDFC buffer 0 is used for device ID output */ | ||
287 | writew(0x0, host->regs + NFC_BUF_ADDR); | ||
288 | |||
289 | /* Read ID into main buffer */ | ||
290 | tmp = readw(host->regs + NFC_CONFIG1); | ||
291 | tmp &= ~NFC_SP_EN; | ||
292 | writew(tmp, host->regs + NFC_CONFIG1); | ||
293 | |||
294 | writew(NFC_ID, host->regs + NFC_CONFIG2); | ||
295 | |||
296 | /* Wait for operation to complete */ | ||
297 | wait_op_done(host, TROP_US_DELAY, 0, true); | ||
298 | |||
299 | if (this->options & NAND_BUSWIDTH_16) { | ||
300 | void __iomem *main_buf = host->regs + MAIN_AREA0; | ||
301 | /* compress the ID info */ | ||
302 | writeb(readb(main_buf + 2), main_buf + 1); | ||
303 | writeb(readb(main_buf + 4), main_buf + 2); | ||
304 | writeb(readb(main_buf + 6), main_buf + 3); | ||
305 | writeb(readb(main_buf + 8), main_buf + 4); | ||
306 | writeb(readb(main_buf + 10), main_buf + 5); | ||
307 | } | ||
308 | } | ||
309 | |||
310 | /* This function requests the NANDFC to perform a read of the | ||
311 | * NAND device status and returns the current status. */ | ||
312 | static uint16_t get_dev_status(struct mxc_nand_host *host) | ||
313 | { | ||
314 | void __iomem *main_buf = host->regs + MAIN_AREA1; | ||
315 | uint32_t store; | ||
316 | uint16_t ret, tmp; | ||
317 | /* Issue status request to NAND device */ | ||
318 | |||
319 | /* store the main area1 first word, later do recovery */ | ||
320 | store = readl(main_buf); | ||
321 | /* NANDFC buffer 1 is used for device status to prevent | ||
322 | * corruption of read/write buffer on status requests. */ | ||
323 | writew(1, host->regs + NFC_BUF_ADDR); | ||
324 | |||
325 | /* Read status into main buffer */ | ||
326 | tmp = readw(host->regs + NFC_CONFIG1); | ||
327 | tmp &= ~NFC_SP_EN; | ||
328 | writew(tmp, host->regs + NFC_CONFIG1); | ||
329 | |||
330 | writew(NFC_STATUS, host->regs + NFC_CONFIG2); | ||
331 | |||
332 | /* Wait for operation to complete */ | ||
333 | wait_op_done(host, TROP_US_DELAY, 0, true); | ||
334 | |||
335 | /* Status is placed in first word of main buffer */ | ||
336 | /* get status, then recovery area 1 data */ | ||
337 | ret = readw(main_buf); | ||
338 | writel(store, main_buf); | ||
339 | |||
340 | return ret; | ||
341 | } | ||
342 | |||
343 | /* This functions is used by upper layer to checks if device is ready */ | ||
344 | static int mxc_nand_dev_ready(struct mtd_info *mtd) | ||
345 | { | ||
346 | /* | ||
347 | * NFC handles R/B internally. Therefore, this function | ||
348 | * always returns status as ready. | ||
349 | */ | ||
350 | return 1; | ||
351 | } | ||
352 | |||
353 | static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode) | ||
354 | { | ||
355 | /* | ||
356 | * If HW ECC is enabled, we turn it on during init. There is | ||
357 | * no need to enable again here. | ||
358 | */ | ||
359 | } | ||
360 | |||
361 | static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat, | ||
362 | u_char *read_ecc, u_char *calc_ecc) | ||
363 | { | ||
364 | struct nand_chip *nand_chip = mtd->priv; | ||
365 | struct mxc_nand_host *host = nand_chip->priv; | ||
366 | |||
367 | /* | ||
368 | * 1-Bit errors are automatically corrected in HW. No need for | ||
369 | * additional correction. 2-Bit errors cannot be corrected by | ||
370 | * HW ECC, so we need to return failure | ||
371 | */ | ||
372 | uint16_t ecc_status = readw(host->regs + NFC_ECC_STATUS_RESULT); | ||
373 | |||
374 | if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) { | ||
375 | DEBUG(MTD_DEBUG_LEVEL0, | ||
376 | "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n"); | ||
377 | return -1; | ||
378 | } | ||
379 | |||
380 | return 0; | ||
381 | } | ||
382 | |||
383 | static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, | ||
384 | u_char *ecc_code) | ||
385 | { | ||
386 | return 0; | ||
387 | } | ||
388 | |||
389 | static u_char mxc_nand_read_byte(struct mtd_info *mtd) | ||
390 | { | ||
391 | struct nand_chip *nand_chip = mtd->priv; | ||
392 | struct mxc_nand_host *host = nand_chip->priv; | ||
393 | uint8_t ret = 0; | ||
394 | uint16_t col, rd_word; | ||
395 | uint16_t __iomem *main_buf = host->regs + MAIN_AREA0; | ||
396 | uint16_t __iomem *spare_buf = host->regs + SPARE_AREA0; | ||
397 | |||
398 | /* Check for status request */ | ||
399 | if (host->status_request) | ||
400 | return get_dev_status(host) & 0xFF; | ||
401 | |||
402 | /* Get column for 16-bit access */ | ||
403 | col = host->col_addr >> 1; | ||
404 | |||
405 | /* If we are accessing the spare region */ | ||
406 | if (host->spare_only) | ||
407 | rd_word = readw(&spare_buf[col]); | ||
408 | else | ||
409 | rd_word = readw(&main_buf[col]); | ||
410 | |||
411 | /* Pick upper/lower byte of word from RAM buffer */ | ||
412 | if (host->col_addr & 0x1) | ||
413 | ret = (rd_word >> 8) & 0xFF; | ||
414 | else | ||
415 | ret = rd_word & 0xFF; | ||
416 | |||
417 | /* Update saved column address */ | ||
418 | host->col_addr++; | ||
419 | |||
420 | return ret; | ||
421 | } | ||
422 | |||
423 | static uint16_t mxc_nand_read_word(struct mtd_info *mtd) | ||
424 | { | ||
425 | struct nand_chip *nand_chip = mtd->priv; | ||
426 | struct mxc_nand_host *host = nand_chip->priv; | ||
427 | uint16_t col, rd_word, ret; | ||
428 | uint16_t __iomem *p; | ||
429 | |||
430 | DEBUG(MTD_DEBUG_LEVEL3, | ||
431 | "mxc_nand_read_word(col = %d)\n", host->col_addr); | ||
432 | |||
433 | col = host->col_addr; | ||
434 | /* Adjust saved column address */ | ||
435 | if (col < mtd->writesize && host->spare_only) | ||
436 | col += mtd->writesize; | ||
437 | |||
438 | if (col < mtd->writesize) | ||
439 | p = (host->regs + MAIN_AREA0) + (col >> 1); | ||
440 | else | ||
441 | p = (host->regs + SPARE_AREA0) + ((col - mtd->writesize) >> 1); | ||
442 | |||
443 | if (col & 1) { | ||
444 | rd_word = readw(p); | ||
445 | ret = (rd_word >> 8) & 0xff; | ||
446 | rd_word = readw(&p[1]); | ||
447 | ret |= (rd_word << 8) & 0xff00; | ||
448 | |||
449 | } else | ||
450 | ret = readw(p); | ||
451 | |||
452 | /* Update saved column address */ | ||
453 | host->col_addr = col + 2; | ||
454 | |||
455 | return ret; | ||
456 | } | ||
457 | |||
458 | /* Write data of length len to buffer buf. The data to be | ||
459 | * written on NAND Flash is first copied to RAMbuffer. After the Data Input | ||
460 | * Operation by the NFC, the data is written to NAND Flash */ | ||
461 | static void mxc_nand_write_buf(struct mtd_info *mtd, | ||
462 | const u_char *buf, int len) | ||
463 | { | ||
464 | struct nand_chip *nand_chip = mtd->priv; | ||
465 | struct mxc_nand_host *host = nand_chip->priv; | ||
466 | int n, col, i = 0; | ||
467 | |||
468 | DEBUG(MTD_DEBUG_LEVEL3, | ||
469 | "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr, | ||
470 | len); | ||
471 | |||
472 | col = host->col_addr; | ||
473 | |||
474 | /* Adjust saved column address */ | ||
475 | if (col < mtd->writesize && host->spare_only) | ||
476 | col += mtd->writesize; | ||
477 | |||
478 | n = mtd->writesize + mtd->oobsize - col; | ||
479 | n = min(len, n); | ||
480 | |||
481 | DEBUG(MTD_DEBUG_LEVEL3, | ||
482 | "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n); | ||
483 | |||
484 | while (n) { | ||
485 | void __iomem *p; | ||
486 | |||
487 | if (col < mtd->writesize) | ||
488 | p = host->regs + MAIN_AREA0 + (col & ~3); | ||
489 | else | ||
490 | p = host->regs + SPARE_AREA0 - | ||
491 | mtd->writesize + (col & ~3); | ||
492 | |||
493 | DEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__, | ||
494 | __LINE__, p); | ||
495 | |||
496 | if (((col | (int)&buf[i]) & 3) || n < 16) { | ||
497 | uint32_t data = 0; | ||
498 | |||
499 | if (col & 3 || n < 4) | ||
500 | data = readl(p); | ||
501 | |||
502 | switch (col & 3) { | ||
503 | case 0: | ||
504 | if (n) { | ||
505 | data = (data & 0xffffff00) | | ||
506 | (buf[i++] << 0); | ||
507 | n--; | ||
508 | col++; | ||
509 | } | ||
510 | case 1: | ||
511 | if (n) { | ||
512 | data = (data & 0xffff00ff) | | ||
513 | (buf[i++] << 8); | ||
514 | n--; | ||
515 | col++; | ||
516 | } | ||
517 | case 2: | ||
518 | if (n) { | ||
519 | data = (data & 0xff00ffff) | | ||
520 | (buf[i++] << 16); | ||
521 | n--; | ||
522 | col++; | ||
523 | } | ||
524 | case 3: | ||
525 | if (n) { | ||
526 | data = (data & 0x00ffffff) | | ||
527 | (buf[i++] << 24); | ||
528 | n--; | ||
529 | col++; | ||
530 | } | ||
531 | } | ||
532 | |||
533 | writel(data, p); | ||
534 | } else { | ||
535 | int m = mtd->writesize - col; | ||
536 | |||
537 | if (col >= mtd->writesize) | ||
538 | m += mtd->oobsize; | ||
539 | |||
540 | m = min(n, m) & ~3; | ||
541 | |||
542 | DEBUG(MTD_DEBUG_LEVEL3, | ||
543 | "%s:%d: n = %d, m = %d, i = %d, col = %d\n", | ||
544 | __func__, __LINE__, n, m, i, col); | ||
545 | |||
546 | memcpy(p, &buf[i], m); | ||
547 | col += m; | ||
548 | i += m; | ||
549 | n -= m; | ||
550 | } | ||
551 | } | ||
552 | /* Update saved column address */ | ||
553 | host->col_addr = col; | ||
554 | } | ||
555 | |||
556 | /* Read the data buffer from the NAND Flash. To read the data from NAND | ||
557 | * Flash first the data output cycle is initiated by the NFC, which copies | ||
558 | * the data to RAMbuffer. This data of length len is then copied to buffer buf. | ||
559 | */ | ||
560 | static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) | ||
561 | { | ||
562 | struct nand_chip *nand_chip = mtd->priv; | ||
563 | struct mxc_nand_host *host = nand_chip->priv; | ||
564 | int n, col, i = 0; | ||
565 | |||
566 | DEBUG(MTD_DEBUG_LEVEL3, | ||
567 | "mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len); | ||
568 | |||
569 | col = host->col_addr; | ||
570 | |||
571 | /* Adjust saved column address */ | ||
572 | if (col < mtd->writesize && host->spare_only) | ||
573 | col += mtd->writesize; | ||
574 | |||
575 | n = mtd->writesize + mtd->oobsize - col; | ||
576 | n = min(len, n); | ||
577 | |||
578 | while (n) { | ||
579 | void __iomem *p; | ||
580 | |||
581 | if (col < mtd->writesize) | ||
582 | p = host->regs + MAIN_AREA0 + (col & ~3); | ||
583 | else | ||
584 | p = host->regs + SPARE_AREA0 - | ||
585 | mtd->writesize + (col & ~3); | ||
586 | |||
587 | if (((col | (int)&buf[i]) & 3) || n < 16) { | ||
588 | uint32_t data; | ||
589 | |||
590 | data = readl(p); | ||
591 | switch (col & 3) { | ||
592 | case 0: | ||
593 | if (n) { | ||
594 | buf[i++] = (uint8_t) (data); | ||
595 | n--; | ||
596 | col++; | ||
597 | } | ||
598 | case 1: | ||
599 | if (n) { | ||
600 | buf[i++] = (uint8_t) (data >> 8); | ||
601 | n--; | ||
602 | col++; | ||
603 | } | ||
604 | case 2: | ||
605 | if (n) { | ||
606 | buf[i++] = (uint8_t) (data >> 16); | ||
607 | n--; | ||
608 | col++; | ||
609 | } | ||
610 | case 3: | ||
611 | if (n) { | ||
612 | buf[i++] = (uint8_t) (data >> 24); | ||
613 | n--; | ||
614 | col++; | ||
615 | } | ||
616 | } | ||
617 | } else { | ||
618 | int m = mtd->writesize - col; | ||
619 | |||
620 | if (col >= mtd->writesize) | ||
621 | m += mtd->oobsize; | ||
622 | |||
623 | m = min(n, m) & ~3; | ||
624 | memcpy(&buf[i], p, m); | ||
625 | col += m; | ||
626 | i += m; | ||
627 | n -= m; | ||
628 | } | ||
629 | } | ||
630 | /* Update saved column address */ | ||
631 | host->col_addr = col; | ||
632 | |||
633 | } | ||
634 | |||
635 | /* Used by the upper layer to verify the data in NAND Flash | ||
636 | * with the data in the buf. */ | ||
637 | static int mxc_nand_verify_buf(struct mtd_info *mtd, | ||
638 | const u_char *buf, int len) | ||
639 | { | ||
640 | return -EFAULT; | ||
641 | } | ||
642 | |||
643 | /* This function is used by upper layer for select and | ||
644 | * deselect of the NAND chip */ | ||
645 | static void mxc_nand_select_chip(struct mtd_info *mtd, int chip) | ||
646 | { | ||
647 | struct nand_chip *nand_chip = mtd->priv; | ||
648 | struct mxc_nand_host *host = nand_chip->priv; | ||
649 | |||
650 | #ifdef CONFIG_MTD_NAND_MXC_FORCE_CE | ||
651 | if (chip > 0) { | ||
652 | DEBUG(MTD_DEBUG_LEVEL0, | ||
653 | "ERROR: Illegal chip select (chip = %d)\n", chip); | ||
654 | return; | ||
655 | } | ||
656 | |||
657 | if (chip == -1) { | ||
658 | writew(readw(host->regs + NFC_CONFIG1) & ~NFC_CE, | ||
659 | host->regs + NFC_CONFIG1); | ||
660 | return; | ||
661 | } | ||
662 | |||
663 | writew(readw(host->regs + NFC_CONFIG1) | NFC_CE, | ||
664 | host->regs + NFC_CONFIG1); | ||
665 | #endif | ||
666 | |||
667 | switch (chip) { | ||
668 | case -1: | ||
669 | /* Disable the NFC clock */ | ||
670 | if (host->clk_act) { | ||
671 | clk_disable(host->clk); | ||
672 | host->clk_act = 0; | ||
673 | } | ||
674 | break; | ||
675 | case 0: | ||
676 | /* Enable the NFC clock */ | ||
677 | if (!host->clk_act) { | ||
678 | clk_enable(host->clk); | ||
679 | host->clk_act = 1; | ||
680 | } | ||
681 | break; | ||
682 | |||
683 | default: | ||
684 | break; | ||
685 | } | ||
686 | } | ||
687 | |||
688 | /* Used by the upper layer to write command to NAND Flash for | ||
689 | * different operations to be carried out on NAND Flash */ | ||
690 | static void mxc_nand_command(struct mtd_info *mtd, unsigned command, | ||
691 | int column, int page_addr) | ||
692 | { | ||
693 | struct nand_chip *nand_chip = mtd->priv; | ||
694 | struct mxc_nand_host *host = nand_chip->priv; | ||
695 | int useirq = true; | ||
696 | |||
697 | DEBUG(MTD_DEBUG_LEVEL3, | ||
698 | "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n", | ||
699 | command, column, page_addr); | ||
700 | |||
701 | /* Reset command state information */ | ||
702 | host->status_request = false; | ||
703 | |||
704 | /* Command pre-processing step */ | ||
705 | switch (command) { | ||
706 | |||
707 | case NAND_CMD_STATUS: | ||
708 | host->col_addr = 0; | ||
709 | host->status_request = true; | ||
710 | break; | ||
711 | |||
712 | case NAND_CMD_READ0: | ||
713 | host->col_addr = column; | ||
714 | host->spare_only = false; | ||
715 | useirq = false; | ||
716 | break; | ||
717 | |||
718 | case NAND_CMD_READOOB: | ||
719 | host->col_addr = column; | ||
720 | host->spare_only = true; | ||
721 | useirq = false; | ||
722 | if (host->pagesize_2k) | ||
723 | command = NAND_CMD_READ0; /* only READ0 is valid */ | ||
724 | break; | ||
725 | |||
726 | case NAND_CMD_SEQIN: | ||
727 | if (column >= mtd->writesize) { | ||
728 | /* | ||
729 | * FIXME: before send SEQIN command for write OOB, | ||
730 | * We must read one page out. | ||
731 | * For K9F1GXX has no READ1 command to set current HW | ||
732 | * pointer to spare area, we must write the whole page | ||
733 | * including OOB together. | ||
734 | */ | ||
735 | if (host->pagesize_2k) | ||
736 | /* call ourself to read a page */ | ||
737 | mxc_nand_command(mtd, NAND_CMD_READ0, 0, | ||
738 | page_addr); | ||
739 | |||
740 | host->col_addr = column - mtd->writesize; | ||
741 | host->spare_only = true; | ||
742 | |||
743 | /* Set program pointer to spare region */ | ||
744 | if (!host->pagesize_2k) | ||
745 | send_cmd(host, NAND_CMD_READOOB, false); | ||
746 | } else { | ||
747 | host->spare_only = false; | ||
748 | host->col_addr = column; | ||
749 | |||
750 | /* Set program pointer to page start */ | ||
751 | if (!host->pagesize_2k) | ||
752 | send_cmd(host, NAND_CMD_READ0, false); | ||
753 | } | ||
754 | useirq = false; | ||
755 | break; | ||
756 | |||
757 | case NAND_CMD_PAGEPROG: | ||
758 | send_prog_page(host, 0, host->spare_only); | ||
759 | |||
760 | if (host->pagesize_2k) { | ||
761 | /* data in 4 areas datas */ | ||
762 | send_prog_page(host, 1, host->spare_only); | ||
763 | send_prog_page(host, 2, host->spare_only); | ||
764 | send_prog_page(host, 3, host->spare_only); | ||
765 | } | ||
766 | |||
767 | break; | ||
768 | |||
769 | case NAND_CMD_ERASE1: | ||
770 | useirq = false; | ||
771 | break; | ||
772 | } | ||
773 | |||
774 | /* Write out the command to the device. */ | ||
775 | send_cmd(host, command, useirq); | ||
776 | |||
777 | /* Write out column address, if necessary */ | ||
778 | if (column != -1) { | ||
779 | /* | ||
780 | * MXC NANDFC can only perform full page+spare or | ||
781 | * spare-only read/write. When the upper layers | ||
782 | * layers perform a read/write buf operation, | ||
783 | * we will used the saved column adress to index into | ||
784 | * the full page. | ||
785 | */ | ||
786 | send_addr(host, 0, page_addr == -1); | ||
787 | if (host->pagesize_2k) | ||
788 | /* another col addr cycle for 2k page */ | ||
789 | send_addr(host, 0, false); | ||
790 | } | ||
791 | |||
792 | /* Write out page address, if necessary */ | ||
793 | if (page_addr != -1) { | ||
794 | /* paddr_0 - p_addr_7 */ | ||
795 | send_addr(host, (page_addr & 0xff), false); | ||
796 | |||
797 | if (host->pagesize_2k) { | ||
798 | send_addr(host, (page_addr >> 8) & 0xFF, false); | ||
799 | if (mtd->size >= 0x40000000) | ||
800 | send_addr(host, (page_addr >> 16) & 0xff, true); | ||
801 | } else { | ||
802 | /* One more address cycle for higher density devices */ | ||
803 | if (mtd->size >= 0x4000000) { | ||
804 | /* paddr_8 - paddr_15 */ | ||
805 | send_addr(host, (page_addr >> 8) & 0xff, false); | ||
806 | send_addr(host, (page_addr >> 16) & 0xff, true); | ||
807 | } else | ||
808 | /* paddr_8 - paddr_15 */ | ||
809 | send_addr(host, (page_addr >> 8) & 0xff, true); | ||
810 | } | ||
811 | } | ||
812 | |||
813 | /* Command post-processing step */ | ||
814 | switch (command) { | ||
815 | |||
816 | case NAND_CMD_RESET: | ||
817 | break; | ||
818 | |||
819 | case NAND_CMD_READOOB: | ||
820 | case NAND_CMD_READ0: | ||
821 | if (host->pagesize_2k) { | ||
822 | /* send read confirm command */ | ||
823 | send_cmd(host, NAND_CMD_READSTART, true); | ||
824 | /* read for each AREA */ | ||
825 | send_read_page(host, 0, host->spare_only); | ||
826 | send_read_page(host, 1, host->spare_only); | ||
827 | send_read_page(host, 2, host->spare_only); | ||
828 | send_read_page(host, 3, host->spare_only); | ||
829 | } else | ||
830 | send_read_page(host, 0, host->spare_only); | ||
831 | break; | ||
832 | |||
833 | case NAND_CMD_READID: | ||
834 | send_read_id(host); | ||
835 | break; | ||
836 | |||
837 | case NAND_CMD_PAGEPROG: | ||
838 | break; | ||
839 | |||
840 | case NAND_CMD_STATUS: | ||
841 | break; | ||
842 | |||
843 | case NAND_CMD_ERASE2: | ||
844 | break; | ||
845 | } | ||
846 | } | ||
847 | |||
848 | static int __init mxcnd_probe(struct platform_device *pdev) | ||
849 | { | ||
850 | struct nand_chip *this; | ||
851 | struct mtd_info *mtd; | ||
852 | struct mxc_nand_platform_data *pdata = pdev->dev.platform_data; | ||
853 | struct mxc_nand_host *host; | ||
854 | struct resource *res; | ||
855 | uint16_t tmp; | ||
856 | int err = 0, nr_parts = 0; | ||
857 | |||
858 | /* Allocate memory for MTD device structure and private data */ | ||
859 | host = kzalloc(sizeof(struct mxc_nand_host), GFP_KERNEL); | ||
860 | if (!host) | ||
861 | return -ENOMEM; | ||
862 | |||
863 | host->dev = &pdev->dev; | ||
864 | /* structures must be linked */ | ||
865 | this = &host->nand; | ||
866 | mtd = &host->mtd; | ||
867 | mtd->priv = this; | ||
868 | mtd->owner = THIS_MODULE; | ||
869 | |||
870 | /* 50 us command delay time */ | ||
871 | this->chip_delay = 5; | ||
872 | |||
873 | this->priv = host; | ||
874 | this->dev_ready = mxc_nand_dev_ready; | ||
875 | this->cmdfunc = mxc_nand_command; | ||
876 | this->select_chip = mxc_nand_select_chip; | ||
877 | this->read_byte = mxc_nand_read_byte; | ||
878 | this->read_word = mxc_nand_read_word; | ||
879 | this->write_buf = mxc_nand_write_buf; | ||
880 | this->read_buf = mxc_nand_read_buf; | ||
881 | this->verify_buf = mxc_nand_verify_buf; | ||
882 | |||
883 | host->clk = clk_get(&pdev->dev, "nfc_clk"); | ||
884 | if (IS_ERR(host->clk)) | ||
885 | goto eclk; | ||
886 | |||
887 | clk_enable(host->clk); | ||
888 | host->clk_act = 1; | ||
889 | |||
890 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | ||
891 | if (!res) { | ||
892 | err = -ENODEV; | ||
893 | goto eres; | ||
894 | } | ||
895 | |||
896 | host->regs = ioremap(res->start, res->end - res->start + 1); | ||
897 | if (!host->regs) { | ||
898 | err = -EIO; | ||
899 | goto eres; | ||
900 | } | ||
901 | |||
902 | tmp = readw(host->regs + NFC_CONFIG1); | ||
903 | tmp |= NFC_INT_MSK; | ||
904 | writew(tmp, host->regs + NFC_CONFIG1); | ||
905 | |||
906 | init_waitqueue_head(&host->irq_waitq); | ||
907 | |||
908 | host->irq = platform_get_irq(pdev, 0); | ||
909 | |||
910 | err = request_irq(host->irq, mxc_nfc_irq, 0, "mxc_nd", host); | ||
911 | if (err) | ||
912 | goto eirq; | ||
913 | |||
914 | if (pdata->hw_ecc) { | ||
915 | this->ecc.calculate = mxc_nand_calculate_ecc; | ||
916 | this->ecc.hwctl = mxc_nand_enable_hwecc; | ||
917 | this->ecc.correct = mxc_nand_correct_data; | ||
918 | this->ecc.mode = NAND_ECC_HW; | ||
919 | this->ecc.size = 512; | ||
920 | this->ecc.bytes = 3; | ||
921 | this->ecc.layout = &nand_hw_eccoob_8; | ||
922 | tmp = readw(host->regs + NFC_CONFIG1); | ||
923 | tmp |= NFC_ECC_EN; | ||
924 | writew(tmp, host->regs + NFC_CONFIG1); | ||
925 | } else { | ||
926 | this->ecc.size = 512; | ||
927 | this->ecc.bytes = 3; | ||
928 | this->ecc.layout = &nand_hw_eccoob_8; | ||
929 | this->ecc.mode = NAND_ECC_SOFT; | ||
930 | tmp = readw(host->regs + NFC_CONFIG1); | ||
931 | tmp &= ~NFC_ECC_EN; | ||
932 | writew(tmp, host->regs + NFC_CONFIG1); | ||
933 | } | ||
934 | |||
935 | /* Reset NAND */ | ||
936 | this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); | ||
937 | |||
938 | /* preset operation */ | ||
939 | /* Unlock the internal RAM Buffer */ | ||
940 | writew(0x2, host->regs + NFC_CONFIG); | ||
941 | |||
942 | /* Blocks to be unlocked */ | ||
943 | writew(0x0, host->regs + NFC_UNLOCKSTART_BLKADDR); | ||
944 | writew(0x4000, host->regs + NFC_UNLOCKEND_BLKADDR); | ||
945 | |||
946 | /* Unlock Block Command for given address range */ | ||
947 | writew(0x4, host->regs + NFC_WRPROT); | ||
948 | |||
949 | /* NAND bus width determines access funtions used by upper layer */ | ||
950 | if (pdata->width == 2) { | ||
951 | this->options |= NAND_BUSWIDTH_16; | ||
952 | this->ecc.layout = &nand_hw_eccoob_16; | ||
953 | } | ||
954 | |||
955 | host->pagesize_2k = 0; | ||
956 | |||
957 | /* Scan to find existence of the device */ | ||
958 | if (nand_scan(mtd, 1)) { | ||
959 | DEBUG(MTD_DEBUG_LEVEL0, | ||
960 | "MXC_ND: Unable to find any NAND device.\n"); | ||
961 | err = -ENXIO; | ||
962 | goto escan; | ||
963 | } | ||
964 | |||
965 | /* Register the partitions */ | ||
966 | #ifdef CONFIG_MTD_PARTITIONS | ||
967 | nr_parts = | ||
968 | parse_mtd_partitions(mtd, part_probes, &host->parts, 0); | ||
969 | if (nr_parts > 0) | ||
970 | add_mtd_partitions(mtd, host->parts, nr_parts); | ||
971 | else | ||
972 | #endif | ||
973 | { | ||
974 | pr_info("Registering %s as whole device\n", mtd->name); | ||
975 | add_mtd_device(mtd); | ||
976 | } | ||
977 | |||
978 | platform_set_drvdata(pdev, host); | ||
979 | |||
980 | return 0; | ||
981 | |||
982 | escan: | ||
983 | free_irq(host->irq, NULL); | ||
984 | eirq: | ||
985 | iounmap(host->regs); | ||
986 | eres: | ||
987 | clk_put(host->clk); | ||
988 | eclk: | ||
989 | kfree(host); | ||
990 | |||
991 | return err; | ||
992 | } | ||
993 | |||
994 | static int __devexit mxcnd_remove(struct platform_device *pdev) | ||
995 | { | ||
996 | struct mxc_nand_host *host = platform_get_drvdata(pdev); | ||
997 | |||
998 | clk_put(host->clk); | ||
999 | |||
1000 | platform_set_drvdata(pdev, NULL); | ||
1001 | |||
1002 | nand_release(&host->mtd); | ||
1003 | free_irq(host->irq, NULL); | ||
1004 | iounmap(host->regs); | ||
1005 | kfree(host); | ||
1006 | |||
1007 | return 0; | ||
1008 | } | ||
1009 | |||
1010 | #ifdef CONFIG_PM | ||
1011 | static int mxcnd_suspend(struct platform_device *pdev, pm_message_t state) | ||
1012 | { | ||
1013 | struct mtd_info *info = platform_get_drvdata(pdev); | ||
1014 | int ret = 0; | ||
1015 | |||
1016 | DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND suspend\n"); | ||
1017 | if (info) | ||
1018 | ret = info->suspend(info); | ||
1019 | |||
1020 | /* Disable the NFC clock */ | ||
1021 | clk_disable(nfc_clk); /* FIXME */ | ||
1022 | |||
1023 | return ret; | ||
1024 | } | ||
1025 | |||
1026 | static int mxcnd_resume(struct platform_device *pdev) | ||
1027 | { | ||
1028 | struct mtd_info *info = platform_get_drvdata(pdev); | ||
1029 | int ret = 0; | ||
1030 | |||
1031 | DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND resume\n"); | ||
1032 | /* Enable the NFC clock */ | ||
1033 | clk_enable(nfc_clk); /* FIXME */ | ||
1034 | |||
1035 | if (info) | ||
1036 | info->resume(info); | ||
1037 | |||
1038 | return ret; | ||
1039 | } | ||
1040 | |||
1041 | #else | ||
1042 | # define mxcnd_suspend NULL | ||
1043 | # define mxcnd_resume NULL | ||
1044 | #endif /* CONFIG_PM */ | ||
1045 | |||
1046 | static struct platform_driver mxcnd_driver = { | ||
1047 | .driver = { | ||
1048 | .name = DRIVER_NAME, | ||
1049 | }, | ||
1050 | .remove = __exit_p(mxcnd_remove), | ||
1051 | .suspend = mxcnd_suspend, | ||
1052 | .resume = mxcnd_resume, | ||
1053 | }; | ||
1054 | |||
1055 | static int __init mxc_nd_init(void) | ||
1056 | { | ||
1057 | /* Register the device driver structure. */ | ||
1058 | pr_info("MXC MTD nand Driver\n"); | ||
1059 | if (platform_driver_probe(&mxcnd_driver, mxcnd_probe) != 0) { | ||
1060 | printk(KERN_ERR "Driver register failed for mxcnd_driver\n"); | ||
1061 | return -ENODEV; | ||
1062 | } | ||
1063 | return 0; | ||
1064 | } | ||
1065 | |||
1066 | static void __exit mxc_nd_cleanup(void) | ||
1067 | { | ||
1068 | /* Unregister the device structure */ | ||
1069 | platform_driver_unregister(&mxcnd_driver); | ||
1070 | } | ||
1071 | |||
1072 | module_init(mxc_nd_init); | ||
1073 | module_exit(mxc_nd_cleanup); | ||
1074 | |||
1075 | MODULE_AUTHOR("Freescale Semiconductor, Inc."); | ||
1076 | MODULE_DESCRIPTION("MXC NAND MTD driver"); | ||
1077 | MODULE_LICENSE("GPL"); | ||
diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c index d1129bae6c27..0a9c9cd33f96 100644 --- a/drivers/mtd/nand/nand_base.c +++ b/drivers/mtd/nand/nand_base.c | |||
@@ -801,9 +801,9 @@ static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, | |||
801 | * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function | 801 | * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function |
802 | * @mtd: mtd info structure | 802 | * @mtd: mtd info structure |
803 | * @chip: nand chip info structure | 803 | * @chip: nand chip info structure |
804 | * @dataofs offset of requested data within the page | 804 | * @data_offs: offset of requested data within the page |
805 | * @readlen data length | 805 | * @readlen: data length |
806 | * @buf: buffer to store read data | 806 | * @bufpoi: buffer to store read data |
807 | */ | 807 | */ |
808 | static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi) | 808 | static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi) |
809 | { | 809 | { |
@@ -2042,7 +2042,7 @@ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, | |||
2042 | return -EINVAL; | 2042 | return -EINVAL; |
2043 | } | 2043 | } |
2044 | 2044 | ||
2045 | instr->fail_addr = 0xffffffff; | 2045 | instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; |
2046 | 2046 | ||
2047 | /* Grab the lock and see if the device is available */ | 2047 | /* Grab the lock and see if the device is available */ |
2048 | nand_get_device(chip, mtd, FL_ERASING); | 2048 | nand_get_device(chip, mtd, FL_ERASING); |
@@ -2318,6 +2318,12 @@ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, | |||
2318 | /* Select the device */ | 2318 | /* Select the device */ |
2319 | chip->select_chip(mtd, 0); | 2319 | chip->select_chip(mtd, 0); |
2320 | 2320 | ||
2321 | /* | ||
2322 | * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) | ||
2323 | * after power-up | ||
2324 | */ | ||
2325 | chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); | ||
2326 | |||
2321 | /* Send the command for reading device ID */ | 2327 | /* Send the command for reading device ID */ |
2322 | chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); | 2328 | chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); |
2323 | 2329 | ||
@@ -2488,6 +2494,8 @@ int nand_scan_ident(struct mtd_info *mtd, int maxchips) | |||
2488 | /* Check for a chip array */ | 2494 | /* Check for a chip array */ |
2489 | for (i = 1; i < maxchips; i++) { | 2495 | for (i = 1; i < maxchips; i++) { |
2490 | chip->select_chip(mtd, i); | 2496 | chip->select_chip(mtd, i); |
2497 | /* See comment in nand_get_flash_type for reset */ | ||
2498 | chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); | ||
2491 | /* Send the command for reading device ID */ | 2499 | /* Send the command for reading device ID */ |
2492 | chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); | 2500 | chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); |
2493 | /* Read manufacturer and device IDs */ | 2501 | /* Read manufacturer and device IDs */ |
diff --git a/drivers/mtd/nand/nand_ecc.c b/drivers/mtd/nand/nand_ecc.c index 918a806a8471..868147acce2c 100644 --- a/drivers/mtd/nand/nand_ecc.c +++ b/drivers/mtd/nand/nand_ecc.c | |||
@@ -1,13 +1,18 @@ | |||
1 | /* | 1 | /* |
2 | * This file contains an ECC algorithm from Toshiba that detects and | 2 | * This file contains an ECC algorithm that detects and corrects 1 bit |
3 | * corrects 1 bit errors in a 256 byte block of data. | 3 | * errors in a 256 byte block of data. |
4 | * | 4 | * |
5 | * drivers/mtd/nand/nand_ecc.c | 5 | * drivers/mtd/nand/nand_ecc.c |
6 | * | 6 | * |
7 | * Copyright (C) 2000-2004 Steven J. Hill (sjhill@realitydiluted.com) | 7 | * Copyright © 2008 Koninklijke Philips Electronics NV. |
8 | * Toshiba America Electronics Components, Inc. | 8 | * Author: Frans Meulenbroeks |
9 | * | 9 | * |
10 | * Copyright (C) 2006 Thomas Gleixner <tglx@linutronix.de> | 10 | * Completely replaces the previous ECC implementation which was written by: |
11 | * Steven J. Hill (sjhill@realitydiluted.com) | ||
12 | * Thomas Gleixner (tglx@linutronix.de) | ||
13 | * | ||
14 | * Information on how this algorithm works and how it was developed | ||
15 | * can be found in Documentation/mtd/nand_ecc.txt | ||
11 | * | 16 | * |
12 | * This file is free software; you can redistribute it and/or modify it | 17 | * This file is free software; you can redistribute it and/or modify it |
13 | * under the terms of the GNU General Public License as published by the | 18 | * under the terms of the GNU General Public License as published by the |
@@ -23,174 +28,475 @@ | |||
23 | * with this file; if not, write to the Free Software Foundation, Inc., | 28 | * with this file; if not, write to the Free Software Foundation, Inc., |
24 | * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. | 29 | * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. |
25 | * | 30 | * |
26 | * As a special exception, if other files instantiate templates or use | ||
27 | * macros or inline functions from these files, or you compile these | ||
28 | * files and link them with other works to produce a work based on these | ||
29 | * files, these files do not by themselves cause the resulting work to be | ||
30 | * covered by the GNU General Public License. However the source code for | ||
31 | * these files must still be made available in accordance with section (3) | ||
32 | * of the GNU General Public License. | ||
33 | * | ||
34 | * This exception does not invalidate any other reasons why a work based on | ||
35 | * this file might be covered by the GNU General Public License. | ||
36 | */ | 31 | */ |
37 | 32 | ||
33 | /* | ||
34 | * The STANDALONE macro is useful when running the code outside the kernel | ||
35 | * e.g. when running the code in a testbed or a benchmark program. | ||
36 | * When STANDALONE is used, the module related macros are commented out | ||
37 | * as well as the linux include files. | ||
38 | * Instead a private definition of mtd_info is given to satisfy the compiler | ||
39 | * (the code does not use mtd_info, so the code does not care) | ||
40 | */ | ||
41 | #ifndef STANDALONE | ||
38 | #include <linux/types.h> | 42 | #include <linux/types.h> |
39 | #include <linux/kernel.h> | 43 | #include <linux/kernel.h> |
40 | #include <linux/module.h> | 44 | #include <linux/module.h> |
45 | #include <linux/mtd/mtd.h> | ||
46 | #include <linux/mtd/nand.h> | ||
41 | #include <linux/mtd/nand_ecc.h> | 47 | #include <linux/mtd/nand_ecc.h> |
48 | #include <asm/byteorder.h> | ||
49 | #else | ||
50 | #include <stdint.h> | ||
51 | struct mtd_info; | ||
52 | #define EXPORT_SYMBOL(x) /* x */ | ||
53 | |||
54 | #define MODULE_LICENSE(x) /* x */ | ||
55 | #define MODULE_AUTHOR(x) /* x */ | ||
56 | #define MODULE_DESCRIPTION(x) /* x */ | ||
57 | |||
58 | #define printk printf | ||
59 | #define KERN_ERR "" | ||
60 | #endif | ||
61 | |||
62 | /* | ||
63 | * invparity is a 256 byte table that contains the odd parity | ||
64 | * for each byte. So if the number of bits in a byte is even, | ||
65 | * the array element is 1, and when the number of bits is odd | ||
66 | * the array eleemnt is 0. | ||
67 | */ | ||
68 | static const char invparity[256] = { | ||
69 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | ||
70 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | ||
71 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | ||
72 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | ||
73 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | ||
74 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | ||
75 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | ||
76 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | ||
77 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | ||
78 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | ||
79 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | ||
80 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | ||
81 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | ||
82 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | ||
83 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | ||
84 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 | ||
85 | }; | ||
86 | |||
87 | /* | ||
88 | * bitsperbyte contains the number of bits per byte | ||
89 | * this is only used for testing and repairing parity | ||
90 | * (a precalculated value slightly improves performance) | ||
91 | */ | ||
92 | static const char bitsperbyte[256] = { | ||
93 | 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, | ||
94 | 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, | ||
95 | 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, | ||
96 | 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, | ||
97 | 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, | ||
98 | 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, | ||
99 | 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, | ||
100 | 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, | ||
101 | 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, | ||
102 | 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, | ||
103 | 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, | ||
104 | 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, | ||
105 | 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, | ||
106 | 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, | ||
107 | 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, | ||
108 | 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, | ||
109 | }; | ||
42 | 110 | ||
43 | /* | 111 | /* |
44 | * Pre-calculated 256-way 1 byte column parity | 112 | * addressbits is a lookup table to filter out the bits from the xor-ed |
113 | * ecc data that identify the faulty location. | ||
114 | * this is only used for repairing parity | ||
115 | * see the comments in nand_correct_data for more details | ||
45 | */ | 116 | */ |
46 | static const u_char nand_ecc_precalc_table[] = { | 117 | static const char addressbits[256] = { |
47 | 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00, | 118 | 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, |
48 | 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, | 119 | 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, |
49 | 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, | 120 | 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, |
50 | 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, | 121 | 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, |
51 | 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, | 122 | 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, |
52 | 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, | 123 | 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, |
53 | 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, | 124 | 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, |
54 | 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, | 125 | 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, |
55 | 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, | 126 | 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, |
56 | 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, | 127 | 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, |
57 | 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, | 128 | 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, |
58 | 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, | 129 | 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, |
59 | 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, | 130 | 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, |
60 | 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, | 131 | 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, |
61 | 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, | 132 | 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, |
62 | 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00 | 133 | 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, |
134 | 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, | ||
135 | 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, | ||
136 | 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, | ||
137 | 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, | ||
138 | 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, | ||
139 | 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, | ||
140 | 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, | ||
141 | 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, | ||
142 | 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, | ||
143 | 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, | ||
144 | 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, | ||
145 | 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, | ||
146 | 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, | ||
147 | 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, | ||
148 | 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, | ||
149 | 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f | ||
63 | }; | 150 | }; |
64 | 151 | ||
65 | /** | 152 | /** |
66 | * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256-byte block | 153 | * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte |
154 | * block | ||
67 | * @mtd: MTD block structure | 155 | * @mtd: MTD block structure |
68 | * @dat: raw data | 156 | * @buf: input buffer with raw data |
69 | * @ecc_code: buffer for ECC | 157 | * @code: output buffer with ECC |
70 | */ | 158 | */ |
71 | int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, | 159 | int nand_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf, |
72 | u_char *ecc_code) | 160 | unsigned char *code) |
73 | { | 161 | { |
74 | uint8_t idx, reg1, reg2, reg3, tmp1, tmp2; | ||
75 | int i; | 162 | int i; |
163 | const uint32_t *bp = (uint32_t *)buf; | ||
164 | /* 256 or 512 bytes/ecc */ | ||
165 | const uint32_t eccsize_mult = | ||
166 | (((struct nand_chip *)mtd->priv)->ecc.size) >> 8; | ||
167 | uint32_t cur; /* current value in buffer */ | ||
168 | /* rp0..rp15..rp17 are the various accumulated parities (per byte) */ | ||
169 | uint32_t rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7; | ||
170 | uint32_t rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15, rp16; | ||
171 | uint32_t uninitialized_var(rp17); /* to make compiler happy */ | ||
172 | uint32_t par; /* the cumulative parity for all data */ | ||
173 | uint32_t tmppar; /* the cumulative parity for this iteration; | ||
174 | for rp12, rp14 and rp16 at the end of the | ||
175 | loop */ | ||
176 | |||
177 | par = 0; | ||
178 | rp4 = 0; | ||
179 | rp6 = 0; | ||
180 | rp8 = 0; | ||
181 | rp10 = 0; | ||
182 | rp12 = 0; | ||
183 | rp14 = 0; | ||
184 | rp16 = 0; | ||
185 | |||
186 | /* | ||
187 | * The loop is unrolled a number of times; | ||
188 | * This avoids if statements to decide on which rp value to update | ||
189 | * Also we process the data by longwords. | ||
190 | * Note: passing unaligned data might give a performance penalty. | ||
191 | * It is assumed that the buffers are aligned. | ||
192 | * tmppar is the cumulative sum of this iteration. | ||
193 | * needed for calculating rp12, rp14, rp16 and par | ||
194 | * also used as a performance improvement for rp6, rp8 and rp10 | ||
195 | */ | ||
196 | for (i = 0; i < eccsize_mult << 2; i++) { | ||
197 | cur = *bp++; | ||
198 | tmppar = cur; | ||
199 | rp4 ^= cur; | ||
200 | cur = *bp++; | ||
201 | tmppar ^= cur; | ||
202 | rp6 ^= tmppar; | ||
203 | cur = *bp++; | ||
204 | tmppar ^= cur; | ||
205 | rp4 ^= cur; | ||
206 | cur = *bp++; | ||
207 | tmppar ^= cur; | ||
208 | rp8 ^= tmppar; | ||
76 | 209 | ||
77 | /* Initialize variables */ | 210 | cur = *bp++; |
78 | reg1 = reg2 = reg3 = 0; | 211 | tmppar ^= cur; |
212 | rp4 ^= cur; | ||
213 | rp6 ^= cur; | ||
214 | cur = *bp++; | ||
215 | tmppar ^= cur; | ||
216 | rp6 ^= cur; | ||
217 | cur = *bp++; | ||
218 | tmppar ^= cur; | ||
219 | rp4 ^= cur; | ||
220 | cur = *bp++; | ||
221 | tmppar ^= cur; | ||
222 | rp10 ^= tmppar; | ||
79 | 223 | ||
80 | /* Build up column parity */ | 224 | cur = *bp++; |
81 | for(i = 0; i < 256; i++) { | 225 | tmppar ^= cur; |
82 | /* Get CP0 - CP5 from table */ | 226 | rp4 ^= cur; |
83 | idx = nand_ecc_precalc_table[*dat++]; | 227 | rp6 ^= cur; |
84 | reg1 ^= (idx & 0x3f); | 228 | rp8 ^= cur; |
229 | cur = *bp++; | ||
230 | tmppar ^= cur; | ||
231 | rp6 ^= cur; | ||
232 | rp8 ^= cur; | ||
233 | cur = *bp++; | ||
234 | tmppar ^= cur; | ||
235 | rp4 ^= cur; | ||
236 | rp8 ^= cur; | ||
237 | cur = *bp++; | ||
238 | tmppar ^= cur; | ||
239 | rp8 ^= cur; | ||
85 | 240 | ||
86 | /* All bit XOR = 1 ? */ | 241 | cur = *bp++; |
87 | if (idx & 0x40) { | 242 | tmppar ^= cur; |
88 | reg3 ^= (uint8_t) i; | 243 | rp4 ^= cur; |
89 | reg2 ^= ~((uint8_t) i); | 244 | rp6 ^= cur; |
90 | } | 245 | cur = *bp++; |
246 | tmppar ^= cur; | ||
247 | rp6 ^= cur; | ||
248 | cur = *bp++; | ||
249 | tmppar ^= cur; | ||
250 | rp4 ^= cur; | ||
251 | cur = *bp++; | ||
252 | tmppar ^= cur; | ||
253 | |||
254 | par ^= tmppar; | ||
255 | if ((i & 0x1) == 0) | ||
256 | rp12 ^= tmppar; | ||
257 | if ((i & 0x2) == 0) | ||
258 | rp14 ^= tmppar; | ||
259 | if (eccsize_mult == 2 && (i & 0x4) == 0) | ||
260 | rp16 ^= tmppar; | ||
91 | } | 261 | } |
92 | 262 | ||
93 | /* Create non-inverted ECC code from line parity */ | 263 | /* |
94 | tmp1 = (reg3 & 0x80) >> 0; /* B7 -> B7 */ | 264 | * handle the fact that we use longword operations |
95 | tmp1 |= (reg2 & 0x80) >> 1; /* B7 -> B6 */ | 265 | * we'll bring rp4..rp14..rp16 back to single byte entities by |
96 | tmp1 |= (reg3 & 0x40) >> 1; /* B6 -> B5 */ | 266 | * shifting and xoring first fold the upper and lower 16 bits, |
97 | tmp1 |= (reg2 & 0x40) >> 2; /* B6 -> B4 */ | 267 | * then the upper and lower 8 bits. |
98 | tmp1 |= (reg3 & 0x20) >> 2; /* B5 -> B3 */ | 268 | */ |
99 | tmp1 |= (reg2 & 0x20) >> 3; /* B5 -> B2 */ | 269 | rp4 ^= (rp4 >> 16); |
100 | tmp1 |= (reg3 & 0x10) >> 3; /* B4 -> B1 */ | 270 | rp4 ^= (rp4 >> 8); |
101 | tmp1 |= (reg2 & 0x10) >> 4; /* B4 -> B0 */ | 271 | rp4 &= 0xff; |
102 | 272 | rp6 ^= (rp6 >> 16); | |
103 | tmp2 = (reg3 & 0x08) << 4; /* B3 -> B7 */ | 273 | rp6 ^= (rp6 >> 8); |
104 | tmp2 |= (reg2 & 0x08) << 3; /* B3 -> B6 */ | 274 | rp6 &= 0xff; |
105 | tmp2 |= (reg3 & 0x04) << 3; /* B2 -> B5 */ | 275 | rp8 ^= (rp8 >> 16); |
106 | tmp2 |= (reg2 & 0x04) << 2; /* B2 -> B4 */ | 276 | rp8 ^= (rp8 >> 8); |
107 | tmp2 |= (reg3 & 0x02) << 2; /* B1 -> B3 */ | 277 | rp8 &= 0xff; |
108 | tmp2 |= (reg2 & 0x02) << 1; /* B1 -> B2 */ | 278 | rp10 ^= (rp10 >> 16); |
109 | tmp2 |= (reg3 & 0x01) << 1; /* B0 -> B1 */ | 279 | rp10 ^= (rp10 >> 8); |
110 | tmp2 |= (reg2 & 0x01) << 0; /* B7 -> B0 */ | 280 | rp10 &= 0xff; |
111 | 281 | rp12 ^= (rp12 >> 16); | |
112 | /* Calculate final ECC code */ | 282 | rp12 ^= (rp12 >> 8); |
113 | #ifdef CONFIG_MTD_NAND_ECC_SMC | 283 | rp12 &= 0xff; |
114 | ecc_code[0] = ~tmp2; | 284 | rp14 ^= (rp14 >> 16); |
115 | ecc_code[1] = ~tmp1; | 285 | rp14 ^= (rp14 >> 8); |
286 | rp14 &= 0xff; | ||
287 | if (eccsize_mult == 2) { | ||
288 | rp16 ^= (rp16 >> 16); | ||
289 | rp16 ^= (rp16 >> 8); | ||
290 | rp16 &= 0xff; | ||
291 | } | ||
292 | |||
293 | /* | ||
294 | * we also need to calculate the row parity for rp0..rp3 | ||
295 | * This is present in par, because par is now | ||
296 | * rp3 rp3 rp2 rp2 in little endian and | ||
297 | * rp2 rp2 rp3 rp3 in big endian | ||
298 | * as well as | ||
299 | * rp1 rp0 rp1 rp0 in little endian and | ||
300 | * rp0 rp1 rp0 rp1 in big endian | ||
301 | * First calculate rp2 and rp3 | ||
302 | */ | ||
303 | #ifdef __BIG_ENDIAN | ||
304 | rp2 = (par >> 16); | ||
305 | rp2 ^= (rp2 >> 8); | ||
306 | rp2 &= 0xff; | ||
307 | rp3 = par & 0xffff; | ||
308 | rp3 ^= (rp3 >> 8); | ||
309 | rp3 &= 0xff; | ||
116 | #else | 310 | #else |
117 | ecc_code[0] = ~tmp1; | 311 | rp3 = (par >> 16); |
118 | ecc_code[1] = ~tmp2; | 312 | rp3 ^= (rp3 >> 8); |
313 | rp3 &= 0xff; | ||
314 | rp2 = par & 0xffff; | ||
315 | rp2 ^= (rp2 >> 8); | ||
316 | rp2 &= 0xff; | ||
119 | #endif | 317 | #endif |
120 | ecc_code[2] = ((~reg1) << 2) | 0x03; | ||
121 | 318 | ||
122 | return 0; | 319 | /* reduce par to 16 bits then calculate rp1 and rp0 */ |
123 | } | 320 | par ^= (par >> 16); |
124 | EXPORT_SYMBOL(nand_calculate_ecc); | 321 | #ifdef __BIG_ENDIAN |
322 | rp0 = (par >> 8) & 0xff; | ||
323 | rp1 = (par & 0xff); | ||
324 | #else | ||
325 | rp1 = (par >> 8) & 0xff; | ||
326 | rp0 = (par & 0xff); | ||
327 | #endif | ||
125 | 328 | ||
126 | static inline int countbits(uint32_t byte) | 329 | /* finally reduce par to 8 bits */ |
127 | { | 330 | par ^= (par >> 8); |
128 | int res = 0; | 331 | par &= 0xff; |
129 | 332 | ||
130 | for (;byte; byte >>= 1) | 333 | /* |
131 | res += byte & 0x01; | 334 | * and calculate rp5..rp15..rp17 |
132 | return res; | 335 | * note that par = rp4 ^ rp5 and due to the commutative property |
336 | * of the ^ operator we can say: | ||
337 | * rp5 = (par ^ rp4); | ||
338 | * The & 0xff seems superfluous, but benchmarking learned that | ||
339 | * leaving it out gives slightly worse results. No idea why, probably | ||
340 | * it has to do with the way the pipeline in pentium is organized. | ||
341 | */ | ||
342 | rp5 = (par ^ rp4) & 0xff; | ||
343 | rp7 = (par ^ rp6) & 0xff; | ||
344 | rp9 = (par ^ rp8) & 0xff; | ||
345 | rp11 = (par ^ rp10) & 0xff; | ||
346 | rp13 = (par ^ rp12) & 0xff; | ||
347 | rp15 = (par ^ rp14) & 0xff; | ||
348 | if (eccsize_mult == 2) | ||
349 | rp17 = (par ^ rp16) & 0xff; | ||
350 | |||
351 | /* | ||
352 | * Finally calculate the ecc bits. | ||
353 | * Again here it might seem that there are performance optimisations | ||
354 | * possible, but benchmarks showed that on the system this is developed | ||
355 | * the code below is the fastest | ||
356 | */ | ||
357 | #ifdef CONFIG_MTD_NAND_ECC_SMC | ||
358 | code[0] = | ||
359 | (invparity[rp7] << 7) | | ||
360 | (invparity[rp6] << 6) | | ||
361 | (invparity[rp5] << 5) | | ||
362 | (invparity[rp4] << 4) | | ||
363 | (invparity[rp3] << 3) | | ||
364 | (invparity[rp2] << 2) | | ||
365 | (invparity[rp1] << 1) | | ||
366 | (invparity[rp0]); | ||
367 | code[1] = | ||
368 | (invparity[rp15] << 7) | | ||
369 | (invparity[rp14] << 6) | | ||
370 | (invparity[rp13] << 5) | | ||
371 | (invparity[rp12] << 4) | | ||
372 | (invparity[rp11] << 3) | | ||
373 | (invparity[rp10] << 2) | | ||
374 | (invparity[rp9] << 1) | | ||
375 | (invparity[rp8]); | ||
376 | #else | ||
377 | code[1] = | ||
378 | (invparity[rp7] << 7) | | ||
379 | (invparity[rp6] << 6) | | ||
380 | (invparity[rp5] << 5) | | ||
381 | (invparity[rp4] << 4) | | ||
382 | (invparity[rp3] << 3) | | ||
383 | (invparity[rp2] << 2) | | ||
384 | (invparity[rp1] << 1) | | ||
385 | (invparity[rp0]); | ||
386 | code[0] = | ||
387 | (invparity[rp15] << 7) | | ||
388 | (invparity[rp14] << 6) | | ||
389 | (invparity[rp13] << 5) | | ||
390 | (invparity[rp12] << 4) | | ||
391 | (invparity[rp11] << 3) | | ||
392 | (invparity[rp10] << 2) | | ||
393 | (invparity[rp9] << 1) | | ||
394 | (invparity[rp8]); | ||
395 | #endif | ||
396 | if (eccsize_mult == 1) | ||
397 | code[2] = | ||
398 | (invparity[par & 0xf0] << 7) | | ||
399 | (invparity[par & 0x0f] << 6) | | ||
400 | (invparity[par & 0xcc] << 5) | | ||
401 | (invparity[par & 0x33] << 4) | | ||
402 | (invparity[par & 0xaa] << 3) | | ||
403 | (invparity[par & 0x55] << 2) | | ||
404 | 3; | ||
405 | else | ||
406 | code[2] = | ||
407 | (invparity[par & 0xf0] << 7) | | ||
408 | (invparity[par & 0x0f] << 6) | | ||
409 | (invparity[par & 0xcc] << 5) | | ||
410 | (invparity[par & 0x33] << 4) | | ||
411 | (invparity[par & 0xaa] << 3) | | ||
412 | (invparity[par & 0x55] << 2) | | ||
413 | (invparity[rp17] << 1) | | ||
414 | (invparity[rp16] << 0); | ||
415 | return 0; | ||
133 | } | 416 | } |
417 | EXPORT_SYMBOL(nand_calculate_ecc); | ||
134 | 418 | ||
135 | /** | 419 | /** |
136 | * nand_correct_data - [NAND Interface] Detect and correct bit error(s) | 420 | * nand_correct_data - [NAND Interface] Detect and correct bit error(s) |
137 | * @mtd: MTD block structure | 421 | * @mtd: MTD block structure |
138 | * @dat: raw data read from the chip | 422 | * @buf: raw data read from the chip |
139 | * @read_ecc: ECC from the chip | 423 | * @read_ecc: ECC from the chip |
140 | * @calc_ecc: the ECC calculated from raw data | 424 | * @calc_ecc: the ECC calculated from raw data |
141 | * | 425 | * |
142 | * Detect and correct a 1 bit error for 256 byte block | 426 | * Detect and correct a 1 bit error for 256/512 byte block |
143 | */ | 427 | */ |
144 | int nand_correct_data(struct mtd_info *mtd, u_char *dat, | 428 | int nand_correct_data(struct mtd_info *mtd, unsigned char *buf, |
145 | u_char *read_ecc, u_char *calc_ecc) | 429 | unsigned char *read_ecc, unsigned char *calc_ecc) |
146 | { | 430 | { |
147 | uint8_t s0, s1, s2; | 431 | unsigned char b0, b1, b2; |
432 | unsigned char byte_addr, bit_addr; | ||
433 | /* 256 or 512 bytes/ecc */ | ||
434 | const uint32_t eccsize_mult = | ||
435 | (((struct nand_chip *)mtd->priv)->ecc.size) >> 8; | ||
148 | 436 | ||
437 | /* | ||
438 | * b0 to b2 indicate which bit is faulty (if any) | ||
439 | * we might need the xor result more than once, | ||
440 | * so keep them in a local var | ||
441 | */ | ||
149 | #ifdef CONFIG_MTD_NAND_ECC_SMC | 442 | #ifdef CONFIG_MTD_NAND_ECC_SMC |
150 | s0 = calc_ecc[0] ^ read_ecc[0]; | 443 | b0 = read_ecc[0] ^ calc_ecc[0]; |
151 | s1 = calc_ecc[1] ^ read_ecc[1]; | 444 | b1 = read_ecc[1] ^ calc_ecc[1]; |
152 | s2 = calc_ecc[2] ^ read_ecc[2]; | ||
153 | #else | 445 | #else |
154 | s1 = calc_ecc[0] ^ read_ecc[0]; | 446 | b0 = read_ecc[1] ^ calc_ecc[1]; |
155 | s0 = calc_ecc[1] ^ read_ecc[1]; | 447 | b1 = read_ecc[0] ^ calc_ecc[0]; |
156 | s2 = calc_ecc[2] ^ read_ecc[2]; | ||
157 | #endif | 448 | #endif |
158 | if ((s0 | s1 | s2) == 0) | 449 | b2 = read_ecc[2] ^ calc_ecc[2]; |
159 | return 0; | ||
160 | |||
161 | /* Check for a single bit error */ | ||
162 | if( ((s0 ^ (s0 >> 1)) & 0x55) == 0x55 && | ||
163 | ((s1 ^ (s1 >> 1)) & 0x55) == 0x55 && | ||
164 | ((s2 ^ (s2 >> 1)) & 0x54) == 0x54) { | ||
165 | 450 | ||
166 | uint32_t byteoffs, bitnum; | 451 | /* check if there are any bitfaults */ |
167 | 452 | ||
168 | byteoffs = (s1 << 0) & 0x80; | 453 | /* repeated if statements are slightly more efficient than switch ... */ |
169 | byteoffs |= (s1 << 1) & 0x40; | 454 | /* ordered in order of likelihood */ |
170 | byteoffs |= (s1 << 2) & 0x20; | ||
171 | byteoffs |= (s1 << 3) & 0x10; | ||
172 | 455 | ||
173 | byteoffs |= (s0 >> 4) & 0x08; | 456 | if ((b0 | b1 | b2) == 0) |
174 | byteoffs |= (s0 >> 3) & 0x04; | 457 | return 0; /* no error */ |
175 | byteoffs |= (s0 >> 2) & 0x02; | ||
176 | byteoffs |= (s0 >> 1) & 0x01; | ||
177 | |||
178 | bitnum = (s2 >> 5) & 0x04; | ||
179 | bitnum |= (s2 >> 4) & 0x02; | ||
180 | bitnum |= (s2 >> 3) & 0x01; | ||
181 | |||
182 | dat[byteoffs] ^= (1 << bitnum); | ||
183 | 458 | ||
459 | if ((((b0 ^ (b0 >> 1)) & 0x55) == 0x55) && | ||
460 | (((b1 ^ (b1 >> 1)) & 0x55) == 0x55) && | ||
461 | ((eccsize_mult == 1 && ((b2 ^ (b2 >> 1)) & 0x54) == 0x54) || | ||
462 | (eccsize_mult == 2 && ((b2 ^ (b2 >> 1)) & 0x55) == 0x55))) { | ||
463 | /* single bit error */ | ||
464 | /* | ||
465 | * rp17/rp15/13/11/9/7/5/3/1 indicate which byte is the faulty | ||
466 | * byte, cp 5/3/1 indicate the faulty bit. | ||
467 | * A lookup table (called addressbits) is used to filter | ||
468 | * the bits from the byte they are in. | ||
469 | * A marginal optimisation is possible by having three | ||
470 | * different lookup tables. | ||
471 | * One as we have now (for b0), one for b2 | ||
472 | * (that would avoid the >> 1), and one for b1 (with all values | ||
473 | * << 4). However it was felt that introducing two more tables | ||
474 | * hardly justify the gain. | ||
475 | * | ||
476 | * The b2 shift is there to get rid of the lowest two bits. | ||
477 | * We could also do addressbits[b2] >> 1 but for the | ||
478 | * performace it does not make any difference | ||
479 | */ | ||
480 | if (eccsize_mult == 1) | ||
481 | byte_addr = (addressbits[b1] << 4) + addressbits[b0]; | ||
482 | else | ||
483 | byte_addr = (addressbits[b2 & 0x3] << 8) + | ||
484 | (addressbits[b1] << 4) + addressbits[b0]; | ||
485 | bit_addr = addressbits[b2 >> 2]; | ||
486 | /* flip the bit */ | ||
487 | buf[byte_addr] ^= (1 << bit_addr); | ||
184 | return 1; | 488 | return 1; |
185 | } | ||
186 | 489 | ||
187 | if(countbits(s0 | ((uint32_t)s1 << 8) | ((uint32_t)s2 <<16)) == 1) | 490 | } |
188 | return 1; | 491 | /* count nr of bits; use table lookup, faster than calculating it */ |
492 | if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1) | ||
493 | return 1; /* error in ecc data; no action needed */ | ||
189 | 494 | ||
190 | return -EBADMSG; | 495 | printk(KERN_ERR "uncorrectable error : "); |
496 | return -1; | ||
191 | } | 497 | } |
192 | EXPORT_SYMBOL(nand_correct_data); | 498 | EXPORT_SYMBOL(nand_correct_data); |
193 | 499 | ||
194 | MODULE_LICENSE("GPL"); | 500 | MODULE_LICENSE("GPL"); |
195 | MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>"); | 501 | MODULE_AUTHOR("Frans Meulenbroeks <fransmeulenbroeks@gmail.com>"); |
196 | MODULE_DESCRIPTION("Generic NAND ECC support"); | 502 | MODULE_DESCRIPTION("Generic NAND ECC support"); |
diff --git a/drivers/mtd/nand/nandsim.c b/drivers/mtd/nand/nandsim.c index 556e8131ecdc..ae7c57781a68 100644 --- a/drivers/mtd/nand/nandsim.c +++ b/drivers/mtd/nand/nandsim.c | |||
@@ -38,7 +38,6 @@ | |||
38 | #include <linux/delay.h> | 38 | #include <linux/delay.h> |
39 | #include <linux/list.h> | 39 | #include <linux/list.h> |
40 | #include <linux/random.h> | 40 | #include <linux/random.h> |
41 | #include <asm/div64.h> | ||
42 | 41 | ||
43 | /* Default simulator parameters values */ | 42 | /* Default simulator parameters values */ |
44 | #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \ | 43 | #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \ |
diff --git a/drivers/mtd/nand/pxa3xx_nand.c b/drivers/mtd/nand/pxa3xx_nand.c index a64ad15b8fdd..c0fa9c9edf08 100644 --- a/drivers/mtd/nand/pxa3xx_nand.c +++ b/drivers/mtd/nand/pxa3xx_nand.c | |||
@@ -115,55 +115,11 @@ enum { | |||
115 | STATE_PIO_WRITING, | 115 | STATE_PIO_WRITING, |
116 | }; | 116 | }; |
117 | 117 | ||
118 | struct pxa3xx_nand_timing { | ||
119 | unsigned int tCH; /* Enable signal hold time */ | ||
120 | unsigned int tCS; /* Enable signal setup time */ | ||
121 | unsigned int tWH; /* ND_nWE high duration */ | ||
122 | unsigned int tWP; /* ND_nWE pulse time */ | ||
123 | unsigned int tRH; /* ND_nRE high duration */ | ||
124 | unsigned int tRP; /* ND_nRE pulse width */ | ||
125 | unsigned int tR; /* ND_nWE high to ND_nRE low for read */ | ||
126 | unsigned int tWHR; /* ND_nWE high to ND_nRE low for status read */ | ||
127 | unsigned int tAR; /* ND_ALE low to ND_nRE low delay */ | ||
128 | }; | ||
129 | |||
130 | struct pxa3xx_nand_cmdset { | ||
131 | uint16_t read1; | ||
132 | uint16_t read2; | ||
133 | uint16_t program; | ||
134 | uint16_t read_status; | ||
135 | uint16_t read_id; | ||
136 | uint16_t erase; | ||
137 | uint16_t reset; | ||
138 | uint16_t lock; | ||
139 | uint16_t unlock; | ||
140 | uint16_t lock_status; | ||
141 | }; | ||
142 | |||
143 | struct pxa3xx_nand_flash { | ||
144 | struct pxa3xx_nand_timing *timing; /* NAND Flash timing */ | ||
145 | struct pxa3xx_nand_cmdset *cmdset; | ||
146 | |||
147 | uint32_t page_per_block;/* Pages per block (PG_PER_BLK) */ | ||
148 | uint32_t page_size; /* Page size in bytes (PAGE_SZ) */ | ||
149 | uint32_t flash_width; /* Width of Flash memory (DWIDTH_M) */ | ||
150 | uint32_t dfc_width; /* Width of flash controller(DWIDTH_C) */ | ||
151 | uint32_t num_blocks; /* Number of physical blocks in Flash */ | ||
152 | uint32_t chip_id; | ||
153 | |||
154 | /* NOTE: these are automatically calculated, do not define */ | ||
155 | size_t oob_size; | ||
156 | size_t read_id_bytes; | ||
157 | |||
158 | unsigned int col_addr_cycles; | ||
159 | unsigned int row_addr_cycles; | ||
160 | }; | ||
161 | |||
162 | struct pxa3xx_nand_info { | 118 | struct pxa3xx_nand_info { |
163 | struct nand_chip nand_chip; | 119 | struct nand_chip nand_chip; |
164 | 120 | ||
165 | struct platform_device *pdev; | 121 | struct platform_device *pdev; |
166 | struct pxa3xx_nand_flash *flash_info; | 122 | const struct pxa3xx_nand_flash *flash_info; |
167 | 123 | ||
168 | struct clk *clk; | 124 | struct clk *clk; |
169 | void __iomem *mmio_base; | 125 | void __iomem *mmio_base; |
@@ -202,12 +158,20 @@ struct pxa3xx_nand_info { | |||
202 | uint32_t ndcb0; | 158 | uint32_t ndcb0; |
203 | uint32_t ndcb1; | 159 | uint32_t ndcb1; |
204 | uint32_t ndcb2; | 160 | uint32_t ndcb2; |
161 | |||
162 | /* calculated from pxa3xx_nand_flash data */ | ||
163 | size_t oob_size; | ||
164 | size_t read_id_bytes; | ||
165 | |||
166 | unsigned int col_addr_cycles; | ||
167 | unsigned int row_addr_cycles; | ||
205 | }; | 168 | }; |
206 | 169 | ||
207 | static int use_dma = 1; | 170 | static int use_dma = 1; |
208 | module_param(use_dma, bool, 0444); | 171 | module_param(use_dma, bool, 0444); |
209 | MODULE_PARM_DESC(use_dma, "enable DMA for data transfering to/from NAND HW"); | 172 | MODULE_PARM_DESC(use_dma, "enable DMA for data transfering to/from NAND HW"); |
210 | 173 | ||
174 | #ifdef CONFIG_MTD_NAND_PXA3xx_BUILTIN | ||
211 | static struct pxa3xx_nand_cmdset smallpage_cmdset = { | 175 | static struct pxa3xx_nand_cmdset smallpage_cmdset = { |
212 | .read1 = 0x0000, | 176 | .read1 = 0x0000, |
213 | .read2 = 0x0050, | 177 | .read2 = 0x0050, |
@@ -291,11 +255,35 @@ static struct pxa3xx_nand_flash micron1GbX16 = { | |||
291 | .chip_id = 0xb12c, | 255 | .chip_id = 0xb12c, |
292 | }; | 256 | }; |
293 | 257 | ||
258 | static struct pxa3xx_nand_timing stm2GbX16_timing = { | ||
259 | .tCH = 10, | ||
260 | .tCS = 35, | ||
261 | .tWH = 15, | ||
262 | .tWP = 25, | ||
263 | .tRH = 15, | ||
264 | .tRP = 25, | ||
265 | .tR = 25000, | ||
266 | .tWHR = 60, | ||
267 | .tAR = 10, | ||
268 | }; | ||
269 | |||
270 | static struct pxa3xx_nand_flash stm2GbX16 = { | ||
271 | .timing = &stm2GbX16_timing, | ||
272 | .page_per_block = 64, | ||
273 | .page_size = 2048, | ||
274 | .flash_width = 16, | ||
275 | .dfc_width = 16, | ||
276 | .num_blocks = 2048, | ||
277 | .chip_id = 0xba20, | ||
278 | }; | ||
279 | |||
294 | static struct pxa3xx_nand_flash *builtin_flash_types[] = { | 280 | static struct pxa3xx_nand_flash *builtin_flash_types[] = { |
295 | &samsung512MbX16, | 281 | &samsung512MbX16, |
296 | µn1GbX8, | 282 | µn1GbX8, |
297 | µn1GbX16, | 283 | µn1GbX16, |
284 | &stm2GbX16, | ||
298 | }; | 285 | }; |
286 | #endif /* CONFIG_MTD_NAND_PXA3xx_BUILTIN */ | ||
299 | 287 | ||
300 | #define NDTR0_tCH(c) (min((c), 7) << 19) | 288 | #define NDTR0_tCH(c) (min((c), 7) << 19) |
301 | #define NDTR0_tCS(c) (min((c), 7) << 16) | 289 | #define NDTR0_tCS(c) (min((c), 7) << 16) |
@@ -312,7 +300,7 @@ static struct pxa3xx_nand_flash *builtin_flash_types[] = { | |||
312 | #define ns2cycle(ns, clk) (int)(((ns) * (clk / 1000000) / 1000) + 1) | 300 | #define ns2cycle(ns, clk) (int)(((ns) * (clk / 1000000) / 1000) + 1) |
313 | 301 | ||
314 | static void pxa3xx_nand_set_timing(struct pxa3xx_nand_info *info, | 302 | static void pxa3xx_nand_set_timing(struct pxa3xx_nand_info *info, |
315 | struct pxa3xx_nand_timing *t) | 303 | const struct pxa3xx_nand_timing *t) |
316 | { | 304 | { |
317 | unsigned long nand_clk = clk_get_rate(info->clk); | 305 | unsigned long nand_clk = clk_get_rate(info->clk); |
318 | uint32_t ndtr0, ndtr1; | 306 | uint32_t ndtr0, ndtr1; |
@@ -354,8 +342,8 @@ static int wait_for_event(struct pxa3xx_nand_info *info, uint32_t event) | |||
354 | static int prepare_read_prog_cmd(struct pxa3xx_nand_info *info, | 342 | static int prepare_read_prog_cmd(struct pxa3xx_nand_info *info, |
355 | uint16_t cmd, int column, int page_addr) | 343 | uint16_t cmd, int column, int page_addr) |
356 | { | 344 | { |
357 | struct pxa3xx_nand_flash *f = info->flash_info; | 345 | const struct pxa3xx_nand_flash *f = info->flash_info; |
358 | struct pxa3xx_nand_cmdset *cmdset = f->cmdset; | 346 | const struct pxa3xx_nand_cmdset *cmdset = f->cmdset; |
359 | 347 | ||
360 | /* calculate data size */ | 348 | /* calculate data size */ |
361 | switch (f->page_size) { | 349 | switch (f->page_size) { |
@@ -373,14 +361,14 @@ static int prepare_read_prog_cmd(struct pxa3xx_nand_info *info, | |||
373 | info->ndcb0 = cmd | ((cmd & 0xff00) ? NDCB0_DBC : 0); | 361 | info->ndcb0 = cmd | ((cmd & 0xff00) ? NDCB0_DBC : 0); |
374 | info->ndcb1 = 0; | 362 | info->ndcb1 = 0; |
375 | info->ndcb2 = 0; | 363 | info->ndcb2 = 0; |
376 | info->ndcb0 |= NDCB0_ADDR_CYC(f->row_addr_cycles + f->col_addr_cycles); | 364 | info->ndcb0 |= NDCB0_ADDR_CYC(info->row_addr_cycles + info->col_addr_cycles); |
377 | 365 | ||
378 | if (f->col_addr_cycles == 2) { | 366 | if (info->col_addr_cycles == 2) { |
379 | /* large block, 2 cycles for column address | 367 | /* large block, 2 cycles for column address |
380 | * row address starts from 3rd cycle | 368 | * row address starts from 3rd cycle |
381 | */ | 369 | */ |
382 | info->ndcb1 |= (page_addr << 16) | (column & 0xffff); | 370 | info->ndcb1 |= (page_addr << 16) | (column & 0xffff); |
383 | if (f->row_addr_cycles == 3) | 371 | if (info->row_addr_cycles == 3) |
384 | info->ndcb2 = (page_addr >> 16) & 0xff; | 372 | info->ndcb2 = (page_addr >> 16) & 0xff; |
385 | } else | 373 | } else |
386 | /* small block, 1 cycles for column address | 374 | /* small block, 1 cycles for column address |
@@ -406,7 +394,7 @@ static int prepare_erase_cmd(struct pxa3xx_nand_info *info, | |||
406 | 394 | ||
407 | static int prepare_other_cmd(struct pxa3xx_nand_info *info, uint16_t cmd) | 395 | static int prepare_other_cmd(struct pxa3xx_nand_info *info, uint16_t cmd) |
408 | { | 396 | { |
409 | struct pxa3xx_nand_cmdset *cmdset = info->flash_info->cmdset; | 397 | const struct pxa3xx_nand_cmdset *cmdset = info->flash_info->cmdset; |
410 | 398 | ||
411 | info->ndcb0 = cmd | ((cmd & 0xff00) ? NDCB0_DBC : 0); | 399 | info->ndcb0 = cmd | ((cmd & 0xff00) ? NDCB0_DBC : 0); |
412 | info->ndcb1 = 0; | 400 | info->ndcb1 = 0; |
@@ -641,8 +629,8 @@ static void pxa3xx_nand_cmdfunc(struct mtd_info *mtd, unsigned command, | |||
641 | int column, int page_addr) | 629 | int column, int page_addr) |
642 | { | 630 | { |
643 | struct pxa3xx_nand_info *info = mtd->priv; | 631 | struct pxa3xx_nand_info *info = mtd->priv; |
644 | struct pxa3xx_nand_flash *flash_info = info->flash_info; | 632 | const struct pxa3xx_nand_flash *flash_info = info->flash_info; |
645 | struct pxa3xx_nand_cmdset *cmdset = flash_info->cmdset; | 633 | const struct pxa3xx_nand_cmdset *cmdset = flash_info->cmdset; |
646 | int ret; | 634 | int ret; |
647 | 635 | ||
648 | info->use_dma = (use_dma) ? 1 : 0; | 636 | info->use_dma = (use_dma) ? 1 : 0; |
@@ -720,7 +708,7 @@ static void pxa3xx_nand_cmdfunc(struct mtd_info *mtd, unsigned command, | |||
720 | info->use_dma = 0; /* force PIO read */ | 708 | info->use_dma = 0; /* force PIO read */ |
721 | info->buf_start = 0; | 709 | info->buf_start = 0; |
722 | info->buf_count = (command == NAND_CMD_READID) ? | 710 | info->buf_count = (command == NAND_CMD_READID) ? |
723 | flash_info->read_id_bytes : 1; | 711 | info->read_id_bytes : 1; |
724 | 712 | ||
725 | if (prepare_other_cmd(info, (command == NAND_CMD_READID) ? | 713 | if (prepare_other_cmd(info, (command == NAND_CMD_READID) ? |
726 | cmdset->read_id : cmdset->read_status)) | 714 | cmdset->read_id : cmdset->read_status)) |
@@ -861,8 +849,8 @@ static int pxa3xx_nand_ecc_correct(struct mtd_info *mtd, | |||
861 | 849 | ||
862 | static int __readid(struct pxa3xx_nand_info *info, uint32_t *id) | 850 | static int __readid(struct pxa3xx_nand_info *info, uint32_t *id) |
863 | { | 851 | { |
864 | struct pxa3xx_nand_flash *f = info->flash_info; | 852 | const struct pxa3xx_nand_flash *f = info->flash_info; |
865 | struct pxa3xx_nand_cmdset *cmdset = f->cmdset; | 853 | const struct pxa3xx_nand_cmdset *cmdset = f->cmdset; |
866 | uint32_t ndcr; | 854 | uint32_t ndcr; |
867 | uint8_t id_buff[8]; | 855 | uint8_t id_buff[8]; |
868 | 856 | ||
@@ -891,7 +879,7 @@ fail_timeout: | |||
891 | } | 879 | } |
892 | 880 | ||
893 | static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info, | 881 | static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info, |
894 | struct pxa3xx_nand_flash *f) | 882 | const struct pxa3xx_nand_flash *f) |
895 | { | 883 | { |
896 | struct platform_device *pdev = info->pdev; | 884 | struct platform_device *pdev = info->pdev; |
897 | struct pxa3xx_nand_platform_data *pdata = pdev->dev.platform_data; | 885 | struct pxa3xx_nand_platform_data *pdata = pdev->dev.platform_data; |
@@ -904,25 +892,25 @@ static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info, | |||
904 | return -EINVAL; | 892 | return -EINVAL; |
905 | 893 | ||
906 | /* calculate flash information */ | 894 | /* calculate flash information */ |
907 | f->oob_size = (f->page_size == 2048) ? 64 : 16; | 895 | info->oob_size = (f->page_size == 2048) ? 64 : 16; |
908 | f->read_id_bytes = (f->page_size == 2048) ? 4 : 2; | 896 | info->read_id_bytes = (f->page_size == 2048) ? 4 : 2; |
909 | 897 | ||
910 | /* calculate addressing information */ | 898 | /* calculate addressing information */ |
911 | f->col_addr_cycles = (f->page_size == 2048) ? 2 : 1; | 899 | info->col_addr_cycles = (f->page_size == 2048) ? 2 : 1; |
912 | 900 | ||
913 | if (f->num_blocks * f->page_per_block > 65536) | 901 | if (f->num_blocks * f->page_per_block > 65536) |
914 | f->row_addr_cycles = 3; | 902 | info->row_addr_cycles = 3; |
915 | else | 903 | else |
916 | f->row_addr_cycles = 2; | 904 | info->row_addr_cycles = 2; |
917 | 905 | ||
918 | ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0; | 906 | ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0; |
919 | ndcr |= (f->col_addr_cycles == 2) ? NDCR_RA_START : 0; | 907 | ndcr |= (info->col_addr_cycles == 2) ? NDCR_RA_START : 0; |
920 | ndcr |= (f->page_per_block == 64) ? NDCR_PG_PER_BLK : 0; | 908 | ndcr |= (f->page_per_block == 64) ? NDCR_PG_PER_BLK : 0; |
921 | ndcr |= (f->page_size == 2048) ? NDCR_PAGE_SZ : 0; | 909 | ndcr |= (f->page_size == 2048) ? NDCR_PAGE_SZ : 0; |
922 | ndcr |= (f->flash_width == 16) ? NDCR_DWIDTH_M : 0; | 910 | ndcr |= (f->flash_width == 16) ? NDCR_DWIDTH_M : 0; |
923 | ndcr |= (f->dfc_width == 16) ? NDCR_DWIDTH_C : 0; | 911 | ndcr |= (f->dfc_width == 16) ? NDCR_DWIDTH_C : 0; |
924 | 912 | ||
925 | ndcr |= NDCR_RD_ID_CNT(f->read_id_bytes); | 913 | ndcr |= NDCR_RD_ID_CNT(info->read_id_bytes); |
926 | ndcr |= NDCR_SPARE_EN; /* enable spare by default */ | 914 | ndcr |= NDCR_SPARE_EN; /* enable spare by default */ |
927 | 915 | ||
928 | info->reg_ndcr = ndcr; | 916 | info->reg_ndcr = ndcr; |
@@ -932,12 +920,27 @@ static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info, | |||
932 | return 0; | 920 | return 0; |
933 | } | 921 | } |
934 | 922 | ||
935 | static int pxa3xx_nand_detect_flash(struct pxa3xx_nand_info *info) | 923 | static int pxa3xx_nand_detect_flash(struct pxa3xx_nand_info *info, |
924 | const struct pxa3xx_nand_platform_data *pdata) | ||
936 | { | 925 | { |
937 | struct pxa3xx_nand_flash *f; | 926 | const struct pxa3xx_nand_flash *f; |
938 | uint32_t id; | 927 | uint32_t id = -1; |
939 | int i; | 928 | int i; |
940 | 929 | ||
930 | for (i = 0; i<pdata->num_flash; ++i) { | ||
931 | f = pdata->flash + i; | ||
932 | |||
933 | if (pxa3xx_nand_config_flash(info, f)) | ||
934 | continue; | ||
935 | |||
936 | if (__readid(info, &id)) | ||
937 | continue; | ||
938 | |||
939 | if (id == f->chip_id) | ||
940 | return 0; | ||
941 | } | ||
942 | |||
943 | #ifdef CONFIG_MTD_NAND_PXA3xx_BUILTIN | ||
941 | for (i = 0; i < ARRAY_SIZE(builtin_flash_types); i++) { | 944 | for (i = 0; i < ARRAY_SIZE(builtin_flash_types); i++) { |
942 | 945 | ||
943 | f = builtin_flash_types[i]; | 946 | f = builtin_flash_types[i]; |
@@ -951,7 +954,11 @@ static int pxa3xx_nand_detect_flash(struct pxa3xx_nand_info *info) | |||
951 | if (id == f->chip_id) | 954 | if (id == f->chip_id) |
952 | return 0; | 955 | return 0; |
953 | } | 956 | } |
957 | #endif | ||
954 | 958 | ||
959 | dev_warn(&info->pdev->dev, | ||
960 | "failed to detect configured nand flash; found %04x instead of\n", | ||
961 | id); | ||
955 | return -ENODEV; | 962 | return -ENODEV; |
956 | } | 963 | } |
957 | 964 | ||
@@ -1014,7 +1021,7 @@ static struct nand_ecclayout hw_largepage_ecclayout = { | |||
1014 | static void pxa3xx_nand_init_mtd(struct mtd_info *mtd, | 1021 | static void pxa3xx_nand_init_mtd(struct mtd_info *mtd, |
1015 | struct pxa3xx_nand_info *info) | 1022 | struct pxa3xx_nand_info *info) |
1016 | { | 1023 | { |
1017 | struct pxa3xx_nand_flash *f = info->flash_info; | 1024 | const struct pxa3xx_nand_flash *f = info->flash_info; |
1018 | struct nand_chip *this = &info->nand_chip; | 1025 | struct nand_chip *this = &info->nand_chip; |
1019 | 1026 | ||
1020 | this->options = (f->flash_width == 16) ? NAND_BUSWIDTH_16: 0; | 1027 | this->options = (f->flash_width == 16) ? NAND_BUSWIDTH_16: 0; |
@@ -1135,7 +1142,7 @@ static int pxa3xx_nand_probe(struct platform_device *pdev) | |||
1135 | goto fail_free_buf; | 1142 | goto fail_free_buf; |
1136 | } | 1143 | } |
1137 | 1144 | ||
1138 | ret = pxa3xx_nand_detect_flash(info); | 1145 | ret = pxa3xx_nand_detect_flash(info, pdata); |
1139 | if (ret) { | 1146 | if (ret) { |
1140 | dev_err(&pdev->dev, "failed to detect flash\n"); | 1147 | dev_err(&pdev->dev, "failed to detect flash\n"); |
1141 | ret = -ENODEV; | 1148 | ret = -ENODEV; |
diff --git a/drivers/mtd/nand/sh_flctl.c b/drivers/mtd/nand/sh_flctl.c new file mode 100644 index 000000000000..821acb08ff1c --- /dev/null +++ b/drivers/mtd/nand/sh_flctl.c | |||
@@ -0,0 +1,878 @@ | |||
1 | /* | ||
2 | * SuperH FLCTL nand controller | ||
3 | * | ||
4 | * Copyright © 2008 Renesas Solutions Corp. | ||
5 | * Copyright © 2008 Atom Create Engineering Co., Ltd. | ||
6 | * | ||
7 | * Based on fsl_elbc_nand.c, Copyright © 2006-2007 Freescale Semiconductor | ||
8 | * | ||
9 | * This program is free software; you can redistribute it and/or modify | ||
10 | * it under the terms of the GNU General Public License as published by | ||
11 | * the Free Software Foundation; version 2 of the License. | ||
12 | * | ||
13 | * This program is distributed in the hope that it will be useful, | ||
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
16 | * GNU General Public License for more details. | ||
17 | * | ||
18 | * You should have received a copy of the GNU General Public License | ||
19 | * along with this program; if not, write to the Free Software | ||
20 | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | ||
21 | * | ||
22 | */ | ||
23 | |||
24 | #include <linux/module.h> | ||
25 | #include <linux/kernel.h> | ||
26 | #include <linux/delay.h> | ||
27 | #include <linux/io.h> | ||
28 | #include <linux/platform_device.h> | ||
29 | |||
30 | #include <linux/mtd/mtd.h> | ||
31 | #include <linux/mtd/nand.h> | ||
32 | #include <linux/mtd/partitions.h> | ||
33 | #include <linux/mtd/sh_flctl.h> | ||
34 | |||
35 | static struct nand_ecclayout flctl_4secc_oob_16 = { | ||
36 | .eccbytes = 10, | ||
37 | .eccpos = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, | ||
38 | .oobfree = { | ||
39 | {.offset = 12, | ||
40 | . length = 4} }, | ||
41 | }; | ||
42 | |||
43 | static struct nand_ecclayout flctl_4secc_oob_64 = { | ||
44 | .eccbytes = 10, | ||
45 | .eccpos = {48, 49, 50, 51, 52, 53, 54, 55, 56, 57}, | ||
46 | .oobfree = { | ||
47 | {.offset = 60, | ||
48 | . length = 4} }, | ||
49 | }; | ||
50 | |||
51 | static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; | ||
52 | |||
53 | static struct nand_bbt_descr flctl_4secc_smallpage = { | ||
54 | .options = NAND_BBT_SCAN2NDPAGE, | ||
55 | .offs = 11, | ||
56 | .len = 1, | ||
57 | .pattern = scan_ff_pattern, | ||
58 | }; | ||
59 | |||
60 | static struct nand_bbt_descr flctl_4secc_largepage = { | ||
61 | .options = 0, | ||
62 | .offs = 58, | ||
63 | .len = 2, | ||
64 | .pattern = scan_ff_pattern, | ||
65 | }; | ||
66 | |||
67 | static void empty_fifo(struct sh_flctl *flctl) | ||
68 | { | ||
69 | writel(0x000c0000, FLINTDMACR(flctl)); /* FIFO Clear */ | ||
70 | writel(0x00000000, FLINTDMACR(flctl)); /* Clear Error flags */ | ||
71 | } | ||
72 | |||
73 | static void start_translation(struct sh_flctl *flctl) | ||
74 | { | ||
75 | writeb(TRSTRT, FLTRCR(flctl)); | ||
76 | } | ||
77 | |||
78 | static void wait_completion(struct sh_flctl *flctl) | ||
79 | { | ||
80 | uint32_t timeout = LOOP_TIMEOUT_MAX; | ||
81 | |||
82 | while (timeout--) { | ||
83 | if (readb(FLTRCR(flctl)) & TREND) { | ||
84 | writeb(0x0, FLTRCR(flctl)); | ||
85 | return; | ||
86 | } | ||
87 | udelay(1); | ||
88 | } | ||
89 | |||
90 | printk(KERN_ERR "wait_completion(): Timeout occured \n"); | ||
91 | writeb(0x0, FLTRCR(flctl)); | ||
92 | } | ||
93 | |||
94 | static void set_addr(struct mtd_info *mtd, int column, int page_addr) | ||
95 | { | ||
96 | struct sh_flctl *flctl = mtd_to_flctl(mtd); | ||
97 | uint32_t addr = 0; | ||
98 | |||
99 | if (column == -1) { | ||
100 | addr = page_addr; /* ERASE1 */ | ||
101 | } else if (page_addr != -1) { | ||
102 | /* SEQIN, READ0, etc.. */ | ||
103 | if (flctl->page_size) { | ||
104 | addr = column & 0x0FFF; | ||
105 | addr |= (page_addr & 0xff) << 16; | ||
106 | addr |= ((page_addr >> 8) & 0xff) << 24; | ||
107 | /* big than 128MB */ | ||
108 | if (flctl->rw_ADRCNT == ADRCNT2_E) { | ||
109 | uint32_t addr2; | ||
110 | addr2 = (page_addr >> 16) & 0xff; | ||
111 | writel(addr2, FLADR2(flctl)); | ||
112 | } | ||
113 | } else { | ||
114 | addr = column; | ||
115 | addr |= (page_addr & 0xff) << 8; | ||
116 | addr |= ((page_addr >> 8) & 0xff) << 16; | ||
117 | addr |= ((page_addr >> 16) & 0xff) << 24; | ||
118 | } | ||
119 | } | ||
120 | writel(addr, FLADR(flctl)); | ||
121 | } | ||
122 | |||
123 | static void wait_rfifo_ready(struct sh_flctl *flctl) | ||
124 | { | ||
125 | uint32_t timeout = LOOP_TIMEOUT_MAX; | ||
126 | |||
127 | while (timeout--) { | ||
128 | uint32_t val; | ||
129 | /* check FIFO */ | ||
130 | val = readl(FLDTCNTR(flctl)) >> 16; | ||
131 | if (val & 0xFF) | ||
132 | return; | ||
133 | udelay(1); | ||
134 | } | ||
135 | printk(KERN_ERR "wait_rfifo_ready(): Timeout occured \n"); | ||
136 | } | ||
137 | |||
138 | static void wait_wfifo_ready(struct sh_flctl *flctl) | ||
139 | { | ||
140 | uint32_t len, timeout = LOOP_TIMEOUT_MAX; | ||
141 | |||
142 | while (timeout--) { | ||
143 | /* check FIFO */ | ||
144 | len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF; | ||
145 | if (len >= 4) | ||
146 | return; | ||
147 | udelay(1); | ||
148 | } | ||
149 | printk(KERN_ERR "wait_wfifo_ready(): Timeout occured \n"); | ||
150 | } | ||
151 | |||
152 | static int wait_recfifo_ready(struct sh_flctl *flctl) | ||
153 | { | ||
154 | uint32_t timeout = LOOP_TIMEOUT_MAX; | ||
155 | int checked[4]; | ||
156 | void __iomem *ecc_reg[4]; | ||
157 | int i; | ||
158 | uint32_t data, size; | ||
159 | |||
160 | memset(checked, 0, sizeof(checked)); | ||
161 | |||
162 | while (timeout--) { | ||
163 | size = readl(FLDTCNTR(flctl)) >> 24; | ||
164 | if (size & 0xFF) | ||
165 | return 0; /* success */ | ||
166 | |||
167 | if (readl(FL4ECCCR(flctl)) & _4ECCFA) | ||
168 | return 1; /* can't correct */ | ||
169 | |||
170 | udelay(1); | ||
171 | if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) | ||
172 | continue; | ||
173 | |||
174 | /* start error correction */ | ||
175 | ecc_reg[0] = FL4ECCRESULT0(flctl); | ||
176 | ecc_reg[1] = FL4ECCRESULT1(flctl); | ||
177 | ecc_reg[2] = FL4ECCRESULT2(flctl); | ||
178 | ecc_reg[3] = FL4ECCRESULT3(flctl); | ||
179 | |||
180 | for (i = 0; i < 3; i++) { | ||
181 | data = readl(ecc_reg[i]); | ||
182 | if (data != INIT_FL4ECCRESULT_VAL && !checked[i]) { | ||
183 | uint8_t org; | ||
184 | int index; | ||
185 | |||
186 | index = data >> 16; | ||
187 | org = flctl->done_buff[index]; | ||
188 | flctl->done_buff[index] = org ^ (data & 0xFF); | ||
189 | checked[i] = 1; | ||
190 | } | ||
191 | } | ||
192 | |||
193 | writel(0, FL4ECCCR(flctl)); | ||
194 | } | ||
195 | |||
196 | printk(KERN_ERR "wait_recfifo_ready(): Timeout occured \n"); | ||
197 | return 1; /* timeout */ | ||
198 | } | ||
199 | |||
200 | static void wait_wecfifo_ready(struct sh_flctl *flctl) | ||
201 | { | ||
202 | uint32_t timeout = LOOP_TIMEOUT_MAX; | ||
203 | uint32_t len; | ||
204 | |||
205 | while (timeout--) { | ||
206 | /* check FLECFIFO */ | ||
207 | len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF; | ||
208 | if (len >= 4) | ||
209 | return; | ||
210 | udelay(1); | ||
211 | } | ||
212 | printk(KERN_ERR "wait_wecfifo_ready(): Timeout occured \n"); | ||
213 | } | ||
214 | |||
215 | static void read_datareg(struct sh_flctl *flctl, int offset) | ||
216 | { | ||
217 | unsigned long data; | ||
218 | unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; | ||
219 | |||
220 | wait_completion(flctl); | ||
221 | |||
222 | data = readl(FLDATAR(flctl)); | ||
223 | *buf = le32_to_cpu(data); | ||
224 | } | ||
225 | |||
226 | static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset) | ||
227 | { | ||
228 | int i, len_4align; | ||
229 | unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; | ||
230 | void *fifo_addr = (void *)FLDTFIFO(flctl); | ||
231 | |||
232 | len_4align = (rlen + 3) / 4; | ||
233 | |||
234 | for (i = 0; i < len_4align; i++) { | ||
235 | wait_rfifo_ready(flctl); | ||
236 | buf[i] = readl(fifo_addr); | ||
237 | buf[i] = be32_to_cpu(buf[i]); | ||
238 | } | ||
239 | } | ||
240 | |||
241 | static int read_ecfiforeg(struct sh_flctl *flctl, uint8_t *buff) | ||
242 | { | ||
243 | int i; | ||
244 | unsigned long *ecc_buf = (unsigned long *)buff; | ||
245 | void *fifo_addr = (void *)FLECFIFO(flctl); | ||
246 | |||
247 | for (i = 0; i < 4; i++) { | ||
248 | if (wait_recfifo_ready(flctl)) | ||
249 | return 1; | ||
250 | ecc_buf[i] = readl(fifo_addr); | ||
251 | ecc_buf[i] = be32_to_cpu(ecc_buf[i]); | ||
252 | } | ||
253 | |||
254 | return 0; | ||
255 | } | ||
256 | |||
257 | static void write_fiforeg(struct sh_flctl *flctl, int rlen, int offset) | ||
258 | { | ||
259 | int i, len_4align; | ||
260 | unsigned long *data = (unsigned long *)&flctl->done_buff[offset]; | ||
261 | void *fifo_addr = (void *)FLDTFIFO(flctl); | ||
262 | |||
263 | len_4align = (rlen + 3) / 4; | ||
264 | for (i = 0; i < len_4align; i++) { | ||
265 | wait_wfifo_ready(flctl); | ||
266 | writel(cpu_to_be32(data[i]), fifo_addr); | ||
267 | } | ||
268 | } | ||
269 | |||
270 | static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val) | ||
271 | { | ||
272 | struct sh_flctl *flctl = mtd_to_flctl(mtd); | ||
273 | uint32_t flcmncr_val = readl(FLCMNCR(flctl)); | ||
274 | uint32_t flcmdcr_val, addr_len_bytes = 0; | ||
275 | |||
276 | /* Set SNAND bit if page size is 2048byte */ | ||
277 | if (flctl->page_size) | ||
278 | flcmncr_val |= SNAND_E; | ||
279 | else | ||
280 | flcmncr_val &= ~SNAND_E; | ||
281 | |||
282 | /* default FLCMDCR val */ | ||
283 | flcmdcr_val = DOCMD1_E | DOADR_E; | ||
284 | |||
285 | /* Set for FLCMDCR */ | ||
286 | switch (cmd) { | ||
287 | case NAND_CMD_ERASE1: | ||
288 | addr_len_bytes = flctl->erase_ADRCNT; | ||
289 | flcmdcr_val |= DOCMD2_E; | ||
290 | break; | ||
291 | case NAND_CMD_READ0: | ||
292 | case NAND_CMD_READOOB: | ||
293 | addr_len_bytes = flctl->rw_ADRCNT; | ||
294 | flcmdcr_val |= CDSRC_E; | ||
295 | break; | ||
296 | case NAND_CMD_SEQIN: | ||
297 | /* This case is that cmd is READ0 or READ1 or READ00 */ | ||
298 | flcmdcr_val &= ~DOADR_E; /* ONLY execute 1st cmd */ | ||
299 | break; | ||
300 | case NAND_CMD_PAGEPROG: | ||
301 | addr_len_bytes = flctl->rw_ADRCNT; | ||
302 | flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW; | ||
303 | break; | ||
304 | case NAND_CMD_READID: | ||
305 | flcmncr_val &= ~SNAND_E; | ||
306 | addr_len_bytes = ADRCNT_1; | ||
307 | break; | ||
308 | case NAND_CMD_STATUS: | ||
309 | case NAND_CMD_RESET: | ||
310 | flcmncr_val &= ~SNAND_E; | ||
311 | flcmdcr_val &= ~(DOADR_E | DOSR_E); | ||
312 | break; | ||
313 | default: | ||
314 | break; | ||
315 | } | ||
316 | |||
317 | /* Set address bytes parameter */ | ||
318 | flcmdcr_val |= addr_len_bytes; | ||
319 | |||
320 | /* Now actually write */ | ||
321 | writel(flcmncr_val, FLCMNCR(flctl)); | ||
322 | writel(flcmdcr_val, FLCMDCR(flctl)); | ||
323 | writel(flcmcdr_val, FLCMCDR(flctl)); | ||
324 | } | ||
325 | |||
326 | static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, | ||
327 | uint8_t *buf) | ||
328 | { | ||
329 | int i, eccsize = chip->ecc.size; | ||
330 | int eccbytes = chip->ecc.bytes; | ||
331 | int eccsteps = chip->ecc.steps; | ||
332 | uint8_t *p = buf; | ||
333 | struct sh_flctl *flctl = mtd_to_flctl(mtd); | ||
334 | |||
335 | for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) | ||
336 | chip->read_buf(mtd, p, eccsize); | ||
337 | |||
338 | for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { | ||
339 | if (flctl->hwecc_cant_correct[i]) | ||
340 | mtd->ecc_stats.failed++; | ||
341 | else | ||
342 | mtd->ecc_stats.corrected += 0; | ||
343 | } | ||
344 | |||
345 | return 0; | ||
346 | } | ||
347 | |||
348 | static void flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, | ||
349 | const uint8_t *buf) | ||
350 | { | ||
351 | int i, eccsize = chip->ecc.size; | ||
352 | int eccbytes = chip->ecc.bytes; | ||
353 | int eccsteps = chip->ecc.steps; | ||
354 | const uint8_t *p = buf; | ||
355 | |||
356 | for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) | ||
357 | chip->write_buf(mtd, p, eccsize); | ||
358 | } | ||
359 | |||
360 | static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr) | ||
361 | { | ||
362 | struct sh_flctl *flctl = mtd_to_flctl(mtd); | ||
363 | int sector, page_sectors; | ||
364 | |||
365 | if (flctl->page_size) | ||
366 | page_sectors = 4; | ||
367 | else | ||
368 | page_sectors = 1; | ||
369 | |||
370 | writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT, | ||
371 | FLCMNCR(flctl)); | ||
372 | |||
373 | set_cmd_regs(mtd, NAND_CMD_READ0, | ||
374 | (NAND_CMD_READSTART << 8) | NAND_CMD_READ0); | ||
375 | |||
376 | for (sector = 0; sector < page_sectors; sector++) { | ||
377 | int ret; | ||
378 | |||
379 | empty_fifo(flctl); | ||
380 | writel(readl(FLCMDCR(flctl)) | 1, FLCMDCR(flctl)); | ||
381 | writel(page_addr << 2 | sector, FLADR(flctl)); | ||
382 | |||
383 | start_translation(flctl); | ||
384 | read_fiforeg(flctl, 512, 512 * sector); | ||
385 | |||
386 | ret = read_ecfiforeg(flctl, | ||
387 | &flctl->done_buff[mtd->writesize + 16 * sector]); | ||
388 | |||
389 | if (ret) | ||
390 | flctl->hwecc_cant_correct[sector] = 1; | ||
391 | |||
392 | writel(0x0, FL4ECCCR(flctl)); | ||
393 | wait_completion(flctl); | ||
394 | } | ||
395 | writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT), | ||
396 | FLCMNCR(flctl)); | ||
397 | } | ||
398 | |||
399 | static void execmd_read_oob(struct mtd_info *mtd, int page_addr) | ||
400 | { | ||
401 | struct sh_flctl *flctl = mtd_to_flctl(mtd); | ||
402 | |||
403 | set_cmd_regs(mtd, NAND_CMD_READ0, | ||
404 | (NAND_CMD_READSTART << 8) | NAND_CMD_READ0); | ||
405 | |||
406 | empty_fifo(flctl); | ||
407 | if (flctl->page_size) { | ||
408 | int i; | ||
409 | /* In case that the page size is 2k */ | ||
410 | for (i = 0; i < 16 * 3; i++) | ||
411 | flctl->done_buff[i] = 0xFF; | ||
412 | |||
413 | set_addr(mtd, 3 * 528 + 512, page_addr); | ||
414 | writel(16, FLDTCNTR(flctl)); | ||
415 | |||
416 | start_translation(flctl); | ||
417 | read_fiforeg(flctl, 16, 16 * 3); | ||
418 | wait_completion(flctl); | ||
419 | } else { | ||
420 | /* In case that the page size is 512b */ | ||
421 | set_addr(mtd, 512, page_addr); | ||
422 | writel(16, FLDTCNTR(flctl)); | ||
423 | |||
424 | start_translation(flctl); | ||
425 | read_fiforeg(flctl, 16, 0); | ||
426 | wait_completion(flctl); | ||
427 | } | ||
428 | } | ||
429 | |||
430 | static void execmd_write_page_sector(struct mtd_info *mtd) | ||
431 | { | ||
432 | struct sh_flctl *flctl = mtd_to_flctl(mtd); | ||
433 | int i, page_addr = flctl->seqin_page_addr; | ||
434 | int sector, page_sectors; | ||
435 | |||
436 | if (flctl->page_size) | ||
437 | page_sectors = 4; | ||
438 | else | ||
439 | page_sectors = 1; | ||
440 | |||
441 | writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl)); | ||
442 | |||
443 | set_cmd_regs(mtd, NAND_CMD_PAGEPROG, | ||
444 | (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN); | ||
445 | |||
446 | for (sector = 0; sector < page_sectors; sector++) { | ||
447 | empty_fifo(flctl); | ||
448 | writel(readl(FLCMDCR(flctl)) | 1, FLCMDCR(flctl)); | ||
449 | writel(page_addr << 2 | sector, FLADR(flctl)); | ||
450 | |||
451 | start_translation(flctl); | ||
452 | write_fiforeg(flctl, 512, 512 * sector); | ||
453 | |||
454 | for (i = 0; i < 4; i++) { | ||
455 | wait_wecfifo_ready(flctl); /* wait for write ready */ | ||
456 | writel(0xFFFFFFFF, FLECFIFO(flctl)); | ||
457 | } | ||
458 | wait_completion(flctl); | ||
459 | } | ||
460 | |||
461 | writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl)); | ||
462 | } | ||
463 | |||
464 | static void execmd_write_oob(struct mtd_info *mtd) | ||
465 | { | ||
466 | struct sh_flctl *flctl = mtd_to_flctl(mtd); | ||
467 | int page_addr = flctl->seqin_page_addr; | ||
468 | int sector, page_sectors; | ||
469 | |||
470 | if (flctl->page_size) { | ||
471 | sector = 3; | ||
472 | page_sectors = 4; | ||
473 | } else { | ||
474 | sector = 0; | ||
475 | page_sectors = 1; | ||
476 | } | ||
477 | |||
478 | set_cmd_regs(mtd, NAND_CMD_PAGEPROG, | ||
479 | (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN); | ||
480 | |||
481 | for (; sector < page_sectors; sector++) { | ||
482 | empty_fifo(flctl); | ||
483 | set_addr(mtd, sector * 528 + 512, page_addr); | ||
484 | writel(16, FLDTCNTR(flctl)); /* set read size */ | ||
485 | |||
486 | start_translation(flctl); | ||
487 | write_fiforeg(flctl, 16, 16 * sector); | ||
488 | wait_completion(flctl); | ||
489 | } | ||
490 | } | ||
491 | |||
492 | static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command, | ||
493 | int column, int page_addr) | ||
494 | { | ||
495 | struct sh_flctl *flctl = mtd_to_flctl(mtd); | ||
496 | uint32_t read_cmd = 0; | ||
497 | |||
498 | flctl->read_bytes = 0; | ||
499 | if (command != NAND_CMD_PAGEPROG) | ||
500 | flctl->index = 0; | ||
501 | |||
502 | switch (command) { | ||
503 | case NAND_CMD_READ1: | ||
504 | case NAND_CMD_READ0: | ||
505 | if (flctl->hwecc) { | ||
506 | /* read page with hwecc */ | ||
507 | execmd_read_page_sector(mtd, page_addr); | ||
508 | break; | ||
509 | } | ||
510 | empty_fifo(flctl); | ||
511 | if (flctl->page_size) | ||
512 | set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8) | ||
513 | | command); | ||
514 | else | ||
515 | set_cmd_regs(mtd, command, command); | ||
516 | |||
517 | set_addr(mtd, 0, page_addr); | ||
518 | |||
519 | flctl->read_bytes = mtd->writesize + mtd->oobsize; | ||
520 | flctl->index += column; | ||
521 | goto read_normal_exit; | ||
522 | |||
523 | case NAND_CMD_READOOB: | ||
524 | if (flctl->hwecc) { | ||
525 | /* read page with hwecc */ | ||
526 | execmd_read_oob(mtd, page_addr); | ||
527 | break; | ||
528 | } | ||
529 | |||
530 | empty_fifo(flctl); | ||
531 | if (flctl->page_size) { | ||
532 | set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8) | ||
533 | | NAND_CMD_READ0); | ||
534 | set_addr(mtd, mtd->writesize, page_addr); | ||
535 | } else { | ||
536 | set_cmd_regs(mtd, command, command); | ||
537 | set_addr(mtd, 0, page_addr); | ||
538 | } | ||
539 | flctl->read_bytes = mtd->oobsize; | ||
540 | goto read_normal_exit; | ||
541 | |||
542 | case NAND_CMD_READID: | ||
543 | empty_fifo(flctl); | ||
544 | set_cmd_regs(mtd, command, command); | ||
545 | set_addr(mtd, 0, 0); | ||
546 | |||
547 | flctl->read_bytes = 4; | ||
548 | writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */ | ||
549 | start_translation(flctl); | ||
550 | read_datareg(flctl, 0); /* read and end */ | ||
551 | break; | ||
552 | |||
553 | case NAND_CMD_ERASE1: | ||
554 | flctl->erase1_page_addr = page_addr; | ||
555 | break; | ||
556 | |||
557 | case NAND_CMD_ERASE2: | ||
558 | set_cmd_regs(mtd, NAND_CMD_ERASE1, | ||
559 | (command << 8) | NAND_CMD_ERASE1); | ||
560 | set_addr(mtd, -1, flctl->erase1_page_addr); | ||
561 | start_translation(flctl); | ||
562 | wait_completion(flctl); | ||
563 | break; | ||
564 | |||
565 | case NAND_CMD_SEQIN: | ||
566 | if (!flctl->page_size) { | ||
567 | /* output read command */ | ||
568 | if (column >= mtd->writesize) { | ||
569 | column -= mtd->writesize; | ||
570 | read_cmd = NAND_CMD_READOOB; | ||
571 | } else if (column < 256) { | ||
572 | read_cmd = NAND_CMD_READ0; | ||
573 | } else { | ||
574 | column -= 256; | ||
575 | read_cmd = NAND_CMD_READ1; | ||
576 | } | ||
577 | } | ||
578 | flctl->seqin_column = column; | ||
579 | flctl->seqin_page_addr = page_addr; | ||
580 | flctl->seqin_read_cmd = read_cmd; | ||
581 | break; | ||
582 | |||
583 | case NAND_CMD_PAGEPROG: | ||
584 | empty_fifo(flctl); | ||
585 | if (!flctl->page_size) { | ||
586 | set_cmd_regs(mtd, NAND_CMD_SEQIN, | ||
587 | flctl->seqin_read_cmd); | ||
588 | set_addr(mtd, -1, -1); | ||
589 | writel(0, FLDTCNTR(flctl)); /* set 0 size */ | ||
590 | start_translation(flctl); | ||
591 | wait_completion(flctl); | ||
592 | } | ||
593 | if (flctl->hwecc) { | ||
594 | /* write page with hwecc */ | ||
595 | if (flctl->seqin_column == mtd->writesize) | ||
596 | execmd_write_oob(mtd); | ||
597 | else if (!flctl->seqin_column) | ||
598 | execmd_write_page_sector(mtd); | ||
599 | else | ||
600 | printk(KERN_ERR "Invalid address !?\n"); | ||
601 | break; | ||
602 | } | ||
603 | set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN); | ||
604 | set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr); | ||
605 | writel(flctl->index, FLDTCNTR(flctl)); /* set write size */ | ||
606 | start_translation(flctl); | ||
607 | write_fiforeg(flctl, flctl->index, 0); | ||
608 | wait_completion(flctl); | ||
609 | break; | ||
610 | |||
611 | case NAND_CMD_STATUS: | ||
612 | set_cmd_regs(mtd, command, command); | ||
613 | set_addr(mtd, -1, -1); | ||
614 | |||
615 | flctl->read_bytes = 1; | ||
616 | writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */ | ||
617 | start_translation(flctl); | ||
618 | read_datareg(flctl, 0); /* read and end */ | ||
619 | break; | ||
620 | |||
621 | case NAND_CMD_RESET: | ||
622 | set_cmd_regs(mtd, command, command); | ||
623 | set_addr(mtd, -1, -1); | ||
624 | |||
625 | writel(0, FLDTCNTR(flctl)); /* set 0 size */ | ||
626 | start_translation(flctl); | ||
627 | wait_completion(flctl); | ||
628 | break; | ||
629 | |||
630 | default: | ||
631 | break; | ||
632 | } | ||
633 | return; | ||
634 | |||
635 | read_normal_exit: | ||
636 | writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */ | ||
637 | start_translation(flctl); | ||
638 | read_fiforeg(flctl, flctl->read_bytes, 0); | ||
639 | wait_completion(flctl); | ||
640 | return; | ||
641 | } | ||
642 | |||
643 | static void flctl_select_chip(struct mtd_info *mtd, int chipnr) | ||
644 | { | ||
645 | struct sh_flctl *flctl = mtd_to_flctl(mtd); | ||
646 | uint32_t flcmncr_val = readl(FLCMNCR(flctl)); | ||
647 | |||
648 | switch (chipnr) { | ||
649 | case -1: | ||
650 | flcmncr_val &= ~CE0_ENABLE; | ||
651 | writel(flcmncr_val, FLCMNCR(flctl)); | ||
652 | break; | ||
653 | case 0: | ||
654 | flcmncr_val |= CE0_ENABLE; | ||
655 | writel(flcmncr_val, FLCMNCR(flctl)); | ||
656 | break; | ||
657 | default: | ||
658 | BUG(); | ||
659 | } | ||
660 | } | ||
661 | |||
662 | static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) | ||
663 | { | ||
664 | struct sh_flctl *flctl = mtd_to_flctl(mtd); | ||
665 | int i, index = flctl->index; | ||
666 | |||
667 | for (i = 0; i < len; i++) | ||
668 | flctl->done_buff[index + i] = buf[i]; | ||
669 | flctl->index += len; | ||
670 | } | ||
671 | |||
672 | static uint8_t flctl_read_byte(struct mtd_info *mtd) | ||
673 | { | ||
674 | struct sh_flctl *flctl = mtd_to_flctl(mtd); | ||
675 | int index = flctl->index; | ||
676 | uint8_t data; | ||
677 | |||
678 | data = flctl->done_buff[index]; | ||
679 | flctl->index++; | ||
680 | return data; | ||
681 | } | ||
682 | |||
683 | static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) | ||
684 | { | ||
685 | int i; | ||
686 | |||
687 | for (i = 0; i < len; i++) | ||
688 | buf[i] = flctl_read_byte(mtd); | ||
689 | } | ||
690 | |||
691 | static int flctl_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) | ||
692 | { | ||
693 | int i; | ||
694 | |||
695 | for (i = 0; i < len; i++) | ||
696 | if (buf[i] != flctl_read_byte(mtd)) | ||
697 | return -EFAULT; | ||
698 | return 0; | ||
699 | } | ||
700 | |||
701 | static void flctl_register_init(struct sh_flctl *flctl, unsigned long val) | ||
702 | { | ||
703 | writel(val, FLCMNCR(flctl)); | ||
704 | } | ||
705 | |||
706 | static int flctl_chip_init_tail(struct mtd_info *mtd) | ||
707 | { | ||
708 | struct sh_flctl *flctl = mtd_to_flctl(mtd); | ||
709 | struct nand_chip *chip = &flctl->chip; | ||
710 | |||
711 | if (mtd->writesize == 512) { | ||
712 | flctl->page_size = 0; | ||
713 | if (chip->chipsize > (32 << 20)) { | ||
714 | /* big than 32MB */ | ||
715 | flctl->rw_ADRCNT = ADRCNT_4; | ||
716 | flctl->erase_ADRCNT = ADRCNT_3; | ||
717 | } else if (chip->chipsize > (2 << 16)) { | ||
718 | /* big than 128KB */ | ||
719 | flctl->rw_ADRCNT = ADRCNT_3; | ||
720 | flctl->erase_ADRCNT = ADRCNT_2; | ||
721 | } else { | ||
722 | flctl->rw_ADRCNT = ADRCNT_2; | ||
723 | flctl->erase_ADRCNT = ADRCNT_1; | ||
724 | } | ||
725 | } else { | ||
726 | flctl->page_size = 1; | ||
727 | if (chip->chipsize > (128 << 20)) { | ||
728 | /* big than 128MB */ | ||
729 | flctl->rw_ADRCNT = ADRCNT2_E; | ||
730 | flctl->erase_ADRCNT = ADRCNT_3; | ||
731 | } else if (chip->chipsize > (8 << 16)) { | ||
732 | /* big than 512KB */ | ||
733 | flctl->rw_ADRCNT = ADRCNT_4; | ||
734 | flctl->erase_ADRCNT = ADRCNT_2; | ||
735 | } else { | ||
736 | flctl->rw_ADRCNT = ADRCNT_3; | ||
737 | flctl->erase_ADRCNT = ADRCNT_1; | ||
738 | } | ||
739 | } | ||
740 | |||
741 | if (flctl->hwecc) { | ||
742 | if (mtd->writesize == 512) { | ||
743 | chip->ecc.layout = &flctl_4secc_oob_16; | ||
744 | chip->badblock_pattern = &flctl_4secc_smallpage; | ||
745 | } else { | ||
746 | chip->ecc.layout = &flctl_4secc_oob_64; | ||
747 | chip->badblock_pattern = &flctl_4secc_largepage; | ||
748 | } | ||
749 | |||
750 | chip->ecc.size = 512; | ||
751 | chip->ecc.bytes = 10; | ||
752 | chip->ecc.read_page = flctl_read_page_hwecc; | ||
753 | chip->ecc.write_page = flctl_write_page_hwecc; | ||
754 | chip->ecc.mode = NAND_ECC_HW; | ||
755 | |||
756 | /* 4 symbols ECC enabled */ | ||
757 | writel(readl(FLCMNCR(flctl)) | _4ECCEN | ECCPOS2 | ECCPOS_02, | ||
758 | FLCMNCR(flctl)); | ||
759 | } else { | ||
760 | chip->ecc.mode = NAND_ECC_SOFT; | ||
761 | } | ||
762 | |||
763 | return 0; | ||
764 | } | ||
765 | |||
766 | static int __init flctl_probe(struct platform_device *pdev) | ||
767 | { | ||
768 | struct resource *res; | ||
769 | struct sh_flctl *flctl; | ||
770 | struct mtd_info *flctl_mtd; | ||
771 | struct nand_chip *nand; | ||
772 | struct sh_flctl_platform_data *pdata; | ||
773 | int ret; | ||
774 | |||
775 | pdata = pdev->dev.platform_data; | ||
776 | if (pdata == NULL) { | ||
777 | printk(KERN_ERR "sh_flctl platform_data not found.\n"); | ||
778 | return -ENODEV; | ||
779 | } | ||
780 | |||
781 | flctl = kzalloc(sizeof(struct sh_flctl), GFP_KERNEL); | ||
782 | if (!flctl) { | ||
783 | printk(KERN_ERR "Unable to allocate NAND MTD dev structure.\n"); | ||
784 | return -ENOMEM; | ||
785 | } | ||
786 | |||
787 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | ||
788 | if (!res) { | ||
789 | printk(KERN_ERR "%s: resource not found.\n", __func__); | ||
790 | ret = -ENODEV; | ||
791 | goto err; | ||
792 | } | ||
793 | |||
794 | flctl->reg = ioremap(res->start, res->end - res->start + 1); | ||
795 | if (flctl->reg == NULL) { | ||
796 | printk(KERN_ERR "%s: ioremap error.\n", __func__); | ||
797 | ret = -ENOMEM; | ||
798 | goto err; | ||
799 | } | ||
800 | |||
801 | platform_set_drvdata(pdev, flctl); | ||
802 | flctl_mtd = &flctl->mtd; | ||
803 | nand = &flctl->chip; | ||
804 | flctl_mtd->priv = nand; | ||
805 | flctl->hwecc = pdata->has_hwecc; | ||
806 | |||
807 | flctl_register_init(flctl, pdata->flcmncr_val); | ||
808 | |||
809 | nand->options = NAND_NO_AUTOINCR; | ||
810 | |||
811 | /* Set address of hardware control function */ | ||
812 | /* 20 us command delay time */ | ||
813 | nand->chip_delay = 20; | ||
814 | |||
815 | nand->read_byte = flctl_read_byte; | ||
816 | nand->write_buf = flctl_write_buf; | ||
817 | nand->read_buf = flctl_read_buf; | ||
818 | nand->verify_buf = flctl_verify_buf; | ||
819 | nand->select_chip = flctl_select_chip; | ||
820 | nand->cmdfunc = flctl_cmdfunc; | ||
821 | |||
822 | ret = nand_scan_ident(flctl_mtd, 1); | ||
823 | if (ret) | ||
824 | goto err; | ||
825 | |||
826 | ret = flctl_chip_init_tail(flctl_mtd); | ||
827 | if (ret) | ||
828 | goto err; | ||
829 | |||
830 | ret = nand_scan_tail(flctl_mtd); | ||
831 | if (ret) | ||
832 | goto err; | ||
833 | |||
834 | add_mtd_partitions(flctl_mtd, pdata->parts, pdata->nr_parts); | ||
835 | |||
836 | return 0; | ||
837 | |||
838 | err: | ||
839 | kfree(flctl); | ||
840 | return ret; | ||
841 | } | ||
842 | |||
843 | static int __exit flctl_remove(struct platform_device *pdev) | ||
844 | { | ||
845 | struct sh_flctl *flctl = platform_get_drvdata(pdev); | ||
846 | |||
847 | nand_release(&flctl->mtd); | ||
848 | kfree(flctl); | ||
849 | |||
850 | return 0; | ||
851 | } | ||
852 | |||
853 | static struct platform_driver flctl_driver = { | ||
854 | .probe = flctl_probe, | ||
855 | .remove = flctl_remove, | ||
856 | .driver = { | ||
857 | .name = "sh_flctl", | ||
858 | .owner = THIS_MODULE, | ||
859 | }, | ||
860 | }; | ||
861 | |||
862 | static int __init flctl_nand_init(void) | ||
863 | { | ||
864 | return platform_driver_register(&flctl_driver); | ||
865 | } | ||
866 | |||
867 | static void __exit flctl_nand_cleanup(void) | ||
868 | { | ||
869 | platform_driver_unregister(&flctl_driver); | ||
870 | } | ||
871 | |||
872 | module_init(flctl_nand_init); | ||
873 | module_exit(flctl_nand_cleanup); | ||
874 | |||
875 | MODULE_LICENSE("GPL"); | ||
876 | MODULE_AUTHOR("Yoshihiro Shimoda"); | ||
877 | MODULE_DESCRIPTION("SuperH FLCTL driver"); | ||
878 | MODULE_ALIAS("platform:sh_flctl"); | ||
diff --git a/drivers/mtd/nand/toto.c b/drivers/mtd/nand/toto.c deleted file mode 100644 index bbf492e6830d..000000000000 --- a/drivers/mtd/nand/toto.c +++ /dev/null | |||
@@ -1,206 +0,0 @@ | |||
1 | /* | ||
2 | * drivers/mtd/nand/toto.c | ||
3 | * | ||
4 | * Copyright (c) 2003 Texas Instruments | ||
5 | * | ||
6 | * Derived from drivers/mtd/autcpu12.c | ||
7 | * | ||
8 | * Copyright (c) 2002 Thomas Gleixner <tgxl@linutronix.de> | ||
9 | * | ||
10 | * This program is free software; you can redistribute it and/or modify | ||
11 | * it under the terms of the GNU General Public License version 2 as | ||
12 | * published by the Free Software Foundation. | ||
13 | * | ||
14 | * Overview: | ||
15 | * This is a device driver for the NAND flash device found on the | ||
16 | * TI fido board. It supports 32MiB and 64MiB cards | ||
17 | */ | ||
18 | |||
19 | #include <linux/slab.h> | ||
20 | #include <linux/init.h> | ||
21 | #include <linux/module.h> | ||
22 | #include <linux/delay.h> | ||
23 | #include <linux/mtd/mtd.h> | ||
24 | #include <linux/mtd/nand.h> | ||
25 | #include <linux/mtd/partitions.h> | ||
26 | #include <asm/io.h> | ||
27 | #include <asm/arch/hardware.h> | ||
28 | #include <asm/sizes.h> | ||
29 | #include <asm/arch/toto.h> | ||
30 | #include <asm/arch-omap1510/hardware.h> | ||
31 | #include <asm/arch/gpio.h> | ||
32 | |||
33 | #define CONFIG_NAND_WORKAROUND 1 | ||
34 | |||
35 | /* | ||
36 | * MTD structure for TOTO board | ||
37 | */ | ||
38 | static struct mtd_info *toto_mtd = NULL; | ||
39 | |||
40 | static unsigned long toto_io_base = OMAP_FLASH_1_BASE; | ||
41 | |||
42 | /* | ||
43 | * Define partitions for flash devices | ||
44 | */ | ||
45 | |||
46 | static struct mtd_partition partition_info64M[] = { | ||
47 | { .name = "toto kernel partition 1", | ||
48 | .offset = 0, | ||
49 | .size = 2 * SZ_1M }, | ||
50 | { .name = "toto file sys partition 2", | ||
51 | .offset = 2 * SZ_1M, | ||
52 | .size = 14 * SZ_1M }, | ||
53 | { .name = "toto user partition 3", | ||
54 | .offset = 16 * SZ_1M, | ||
55 | .size = 16 * SZ_1M }, | ||
56 | { .name = "toto devboard extra partition 4", | ||
57 | .offset = 32 * SZ_1M, | ||
58 | .size = 32 * SZ_1M }, | ||
59 | }; | ||
60 | |||
61 | static struct mtd_partition partition_info32M[] = { | ||
62 | { .name = "toto kernel partition 1", | ||
63 | .offset = 0, | ||
64 | .size = 2 * SZ_1M }, | ||
65 | { .name = "toto file sys partition 2", | ||
66 | .offset = 2 * SZ_1M, | ||
67 | .size = 14 * SZ_1M }, | ||
68 | { .name = "toto user partition 3", | ||
69 | .offset = 16 * SZ_1M, | ||
70 | .size = 16 * SZ_1M }, | ||
71 | }; | ||
72 | |||
73 | #define NUM_PARTITIONS32M 3 | ||
74 | #define NUM_PARTITIONS64M 4 | ||
75 | |||
76 | /* | ||
77 | * hardware specific access to control-lines | ||
78 | * | ||
79 | * ctrl: | ||
80 | * NAND_NCE: bit 0 -> bit 14 (0x4000) | ||
81 | * NAND_CLE: bit 1 -> bit 12 (0x1000) | ||
82 | * NAND_ALE: bit 2 -> bit 1 (0x0002) | ||
83 | */ | ||
84 | static void toto_hwcontrol(struct mtd_info *mtd, int cmd, | ||
85 | unsigned int ctrl) | ||
86 | { | ||
87 | struct nand_chip *chip = mtd->priv; | ||
88 | |||
89 | if (ctrl & NAND_CTRL_CHANGE) { | ||
90 | unsigned long bits; | ||
91 | |||
92 | /* hopefully enough time for tc make proceding write to clear */ | ||
93 | udelay(1); | ||
94 | |||
95 | bits = (~ctrl & NAND_NCE) << 14; | ||
96 | bits |= (ctrl & NAND_CLE) << 12; | ||
97 | bits |= (ctrl & NAND_ALE) >> 1; | ||
98 | |||
99 | #warning Wild guess as gpiosetout() is nowhere defined in the kernel source - tglx | ||
100 | gpiosetout(0x5002, bits); | ||
101 | |||
102 | #ifdef CONFIG_NAND_WORKAROUND | ||
103 | /* "some" dev boards busted, blue wired to rts2 :( */ | ||
104 | rts2setout(2, (ctrl & NAND_CLE) << 1); | ||
105 | #endif | ||
106 | /* allow time to ensure gpio state to over take memory write */ | ||
107 | udelay(1); | ||
108 | } | ||
109 | |||
110 | if (cmd != NAND_CMD_NONE) | ||
111 | writeb(cmd, chip->IO_ADDR_W); | ||
112 | } | ||
113 | |||
114 | /* | ||
115 | * Main initialization routine | ||
116 | */ | ||
117 | static int __init toto_init(void) | ||
118 | { | ||
119 | struct nand_chip *this; | ||
120 | int err = 0; | ||
121 | |||
122 | /* Allocate memory for MTD device structure and private data */ | ||
123 | toto_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); | ||
124 | if (!toto_mtd) { | ||
125 | printk(KERN_WARNING "Unable to allocate toto NAND MTD device structure.\n"); | ||
126 | err = -ENOMEM; | ||
127 | goto out; | ||
128 | } | ||
129 | |||
130 | /* Get pointer to private data */ | ||
131 | this = (struct nand_chip *)(&toto_mtd[1]); | ||
132 | |||
133 | /* Initialize structures */ | ||
134 | memset(toto_mtd, 0, sizeof(struct mtd_info)); | ||
135 | memset(this, 0, sizeof(struct nand_chip)); | ||
136 | |||
137 | /* Link the private data with the MTD structure */ | ||
138 | toto_mtd->priv = this; | ||
139 | toto_mtd->owner = THIS_MODULE; | ||
140 | |||
141 | /* Set address of NAND IO lines */ | ||
142 | this->IO_ADDR_R = toto_io_base; | ||
143 | this->IO_ADDR_W = toto_io_base; | ||
144 | this->cmd_ctrl = toto_hwcontrol; | ||
145 | this->dev_ready = NULL; | ||
146 | /* 25 us command delay time */ | ||
147 | this->chip_delay = 30; | ||
148 | this->ecc.mode = NAND_ECC_SOFT; | ||
149 | |||
150 | /* Scan to find existance of the device */ | ||
151 | if (nand_scan(toto_mtd, 1)) { | ||
152 | err = -ENXIO; | ||
153 | goto out_mtd; | ||
154 | } | ||
155 | |||
156 | /* Register the partitions */ | ||
157 | switch (toto_mtd->size) { | ||
158 | case SZ_64M: | ||
159 | add_mtd_partitions(toto_mtd, partition_info64M, NUM_PARTITIONS64M); | ||
160 | break; | ||
161 | case SZ_32M: | ||
162 | add_mtd_partitions(toto_mtd, partition_info32M, NUM_PARTITIONS32M); | ||
163 | break; | ||
164 | default:{ | ||
165 | printk(KERN_WARNING "Unsupported Nand device\n"); | ||
166 | err = -ENXIO; | ||
167 | goto out_buf; | ||
168 | } | ||
169 | } | ||
170 | |||
171 | gpioreserve(NAND_MASK); /* claim our gpios */ | ||
172 | archflashwp(0, 0); /* open up flash for writing */ | ||
173 | |||
174 | goto out; | ||
175 | |||
176 | out_mtd: | ||
177 | kfree(toto_mtd); | ||
178 | out: | ||
179 | return err; | ||
180 | } | ||
181 | |||
182 | module_init(toto_init); | ||
183 | |||
184 | /* | ||
185 | * Clean up routine | ||
186 | */ | ||
187 | static void __exit toto_cleanup(void) | ||
188 | { | ||
189 | /* Release resources, unregister device */ | ||
190 | nand_release(toto_mtd); | ||
191 | |||
192 | /* Free the MTD device structure */ | ||
193 | kfree(toto_mtd); | ||
194 | |||
195 | /* stop flash writes */ | ||
196 | archflashwp(0, 1); | ||
197 | |||
198 | /* release gpios to system */ | ||
199 | gpiorelease(NAND_MASK); | ||
200 | } | ||
201 | |||
202 | module_exit(toto_cleanup); | ||
203 | |||
204 | MODULE_LICENSE("GPL"); | ||
205 | MODULE_AUTHOR("Richard Woodruff <r-woodruff2@ti.com>"); | ||
206 | MODULE_DESCRIPTION("Glue layer for NAND flash on toto board"); | ||
diff --git a/drivers/mtd/ofpart.c b/drivers/mtd/ofpart.c index 4f80c2fd89af..9e45b3f39c0e 100644 --- a/drivers/mtd/ofpart.c +++ b/drivers/mtd/ofpart.c | |||
@@ -20,7 +20,6 @@ | |||
20 | #include <linux/mtd/partitions.h> | 20 | #include <linux/mtd/partitions.h> |
21 | 21 | ||
22 | int __devinit of_mtd_parse_partitions(struct device *dev, | 22 | int __devinit of_mtd_parse_partitions(struct device *dev, |
23 | struct mtd_info *mtd, | ||
24 | struct device_node *node, | 23 | struct device_node *node, |
25 | struct mtd_partition **pparts) | 24 | struct mtd_partition **pparts) |
26 | { | 25 | { |
diff --git a/drivers/mtd/onenand/Kconfig b/drivers/mtd/onenand/Kconfig index cb41cbca64f7..79fa79e8f8de 100644 --- a/drivers/mtd/onenand/Kconfig +++ b/drivers/mtd/onenand/Kconfig | |||
@@ -27,8 +27,16 @@ config MTD_ONENAND_GENERIC | |||
27 | help | 27 | help |
28 | Support for OneNAND flash via platform device driver. | 28 | Support for OneNAND flash via platform device driver. |
29 | 29 | ||
30 | config MTD_ONENAND_OMAP2 | ||
31 | tristate "OneNAND on OMAP2/OMAP3 support" | ||
32 | depends on MTD_ONENAND && (ARCH_OMAP2 || ARCH_OMAP3) | ||
33 | help | ||
34 | Support for a OneNAND flash device connected to an OMAP2/OMAP3 CPU | ||
35 | via the GPMC memory controller. | ||
36 | |||
30 | config MTD_ONENAND_OTP | 37 | config MTD_ONENAND_OTP |
31 | bool "OneNAND OTP Support" | 38 | bool "OneNAND OTP Support" |
39 | select HAVE_MTD_OTP | ||
32 | help | 40 | help |
33 | One Block of the NAND Flash Array memory is reserved as | 41 | One Block of the NAND Flash Array memory is reserved as |
34 | a One-Time Programmable Block memory area. | 42 | a One-Time Programmable Block memory area. |
diff --git a/drivers/mtd/onenand/Makefile b/drivers/mtd/onenand/Makefile index 4d2eacfd7e11..64b6cc61a520 100644 --- a/drivers/mtd/onenand/Makefile +++ b/drivers/mtd/onenand/Makefile | |||
@@ -7,6 +7,7 @@ obj-$(CONFIG_MTD_ONENAND) += onenand.o | |||
7 | 7 | ||
8 | # Board specific. | 8 | # Board specific. |
9 | obj-$(CONFIG_MTD_ONENAND_GENERIC) += generic.o | 9 | obj-$(CONFIG_MTD_ONENAND_GENERIC) += generic.o |
10 | obj-$(CONFIG_MTD_ONENAND_OMAP2) += omap2.o | ||
10 | 11 | ||
11 | # Simulator | 12 | # Simulator |
12 | obj-$(CONFIG_MTD_ONENAND_SIM) += onenand_sim.o | 13 | obj-$(CONFIG_MTD_ONENAND_SIM) += onenand_sim.o |
diff --git a/drivers/mtd/onenand/omap2.c b/drivers/mtd/onenand/omap2.c new file mode 100644 index 000000000000..8387e05daae2 --- /dev/null +++ b/drivers/mtd/onenand/omap2.c | |||
@@ -0,0 +1,802 @@ | |||
1 | /* | ||
2 | * linux/drivers/mtd/onenand/omap2.c | ||
3 | * | ||
4 | * OneNAND driver for OMAP2 / OMAP3 | ||
5 | * | ||
6 | * Copyright © 2005-2006 Nokia Corporation | ||
7 | * | ||
8 | * Author: Jarkko Lavinen <jarkko.lavinen@nokia.com> and Juha Yrjölä | ||
9 | * IRQ and DMA support written by Timo Teras | ||
10 | * | ||
11 | * This program is free software; you can redistribute it and/or modify it | ||
12 | * under the terms of the GNU General Public License version 2 as published by | ||
13 | * the Free Software Foundation. | ||
14 | * | ||
15 | * This program is distributed in the hope that it will be useful, but WITHOUT | ||
16 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
17 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
18 | * more details. | ||
19 | * | ||
20 | * You should have received a copy of the GNU General Public License along with | ||
21 | * this program; see the file COPYING. If not, write to the Free Software | ||
22 | * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
23 | * | ||
24 | */ | ||
25 | |||
26 | #include <linux/device.h> | ||
27 | #include <linux/module.h> | ||
28 | #include <linux/init.h> | ||
29 | #include <linux/mtd/mtd.h> | ||
30 | #include <linux/mtd/onenand.h> | ||
31 | #include <linux/mtd/partitions.h> | ||
32 | #include <linux/platform_device.h> | ||
33 | #include <linux/interrupt.h> | ||
34 | #include <linux/delay.h> | ||
35 | |||
36 | #include <asm/io.h> | ||
37 | #include <asm/mach/flash.h> | ||
38 | #include <asm/arch/gpmc.h> | ||
39 | #include <asm/arch/onenand.h> | ||
40 | #include <asm/arch/gpio.h> | ||
41 | #include <asm/arch/gpmc.h> | ||
42 | #include <asm/arch/pm.h> | ||
43 | |||
44 | #include <linux/dma-mapping.h> | ||
45 | #include <asm/dma-mapping.h> | ||
46 | #include <asm/arch/dma.h> | ||
47 | |||
48 | #include <asm/arch/board.h> | ||
49 | |||
50 | #define DRIVER_NAME "omap2-onenand" | ||
51 | |||
52 | #define ONENAND_IO_SIZE SZ_128K | ||
53 | #define ONENAND_BUFRAM_SIZE (1024 * 5) | ||
54 | |||
55 | struct omap2_onenand { | ||
56 | struct platform_device *pdev; | ||
57 | int gpmc_cs; | ||
58 | unsigned long phys_base; | ||
59 | int gpio_irq; | ||
60 | struct mtd_info mtd; | ||
61 | struct mtd_partition *parts; | ||
62 | struct onenand_chip onenand; | ||
63 | struct completion irq_done; | ||
64 | struct completion dma_done; | ||
65 | int dma_channel; | ||
66 | int freq; | ||
67 | int (*setup)(void __iomem *base, int freq); | ||
68 | }; | ||
69 | |||
70 | static void omap2_onenand_dma_cb(int lch, u16 ch_status, void *data) | ||
71 | { | ||
72 | struct omap2_onenand *c = data; | ||
73 | |||
74 | complete(&c->dma_done); | ||
75 | } | ||
76 | |||
77 | static irqreturn_t omap2_onenand_interrupt(int irq, void *dev_id) | ||
78 | { | ||
79 | struct omap2_onenand *c = dev_id; | ||
80 | |||
81 | complete(&c->irq_done); | ||
82 | |||
83 | return IRQ_HANDLED; | ||
84 | } | ||
85 | |||
86 | static inline unsigned short read_reg(struct omap2_onenand *c, int reg) | ||
87 | { | ||
88 | return readw(c->onenand.base + reg); | ||
89 | } | ||
90 | |||
91 | static inline void write_reg(struct omap2_onenand *c, unsigned short value, | ||
92 | int reg) | ||
93 | { | ||
94 | writew(value, c->onenand.base + reg); | ||
95 | } | ||
96 | |||
97 | static void wait_err(char *msg, int state, unsigned int ctrl, unsigned int intr) | ||
98 | { | ||
99 | printk(KERN_ERR "onenand_wait: %s! state %d ctrl 0x%04x intr 0x%04x\n", | ||
100 | msg, state, ctrl, intr); | ||
101 | } | ||
102 | |||
103 | static void wait_warn(char *msg, int state, unsigned int ctrl, | ||
104 | unsigned int intr) | ||
105 | { | ||
106 | printk(KERN_WARNING "onenand_wait: %s! state %d ctrl 0x%04x " | ||
107 | "intr 0x%04x\n", msg, state, ctrl, intr); | ||
108 | } | ||
109 | |||
110 | static int omap2_onenand_wait(struct mtd_info *mtd, int state) | ||
111 | { | ||
112 | struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); | ||
113 | unsigned int intr = 0; | ||
114 | unsigned int ctrl; | ||
115 | unsigned long timeout; | ||
116 | u32 syscfg; | ||
117 | |||
118 | if (state == FL_RESETING) { | ||
119 | int i; | ||
120 | |||
121 | for (i = 0; i < 20; i++) { | ||
122 | udelay(1); | ||
123 | intr = read_reg(c, ONENAND_REG_INTERRUPT); | ||
124 | if (intr & ONENAND_INT_MASTER) | ||
125 | break; | ||
126 | } | ||
127 | ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); | ||
128 | if (ctrl & ONENAND_CTRL_ERROR) { | ||
129 | wait_err("controller error", state, ctrl, intr); | ||
130 | return -EIO; | ||
131 | } | ||
132 | if (!(intr & ONENAND_INT_RESET)) { | ||
133 | wait_err("timeout", state, ctrl, intr); | ||
134 | return -EIO; | ||
135 | } | ||
136 | return 0; | ||
137 | } | ||
138 | |||
139 | if (state != FL_READING) { | ||
140 | int result; | ||
141 | |||
142 | /* Turn interrupts on */ | ||
143 | syscfg = read_reg(c, ONENAND_REG_SYS_CFG1); | ||
144 | if (!(syscfg & ONENAND_SYS_CFG1_IOBE)) { | ||
145 | syscfg |= ONENAND_SYS_CFG1_IOBE; | ||
146 | write_reg(c, syscfg, ONENAND_REG_SYS_CFG1); | ||
147 | if (cpu_is_omap34xx()) | ||
148 | /* Add a delay to let GPIO settle */ | ||
149 | syscfg = read_reg(c, ONENAND_REG_SYS_CFG1); | ||
150 | } | ||
151 | |||
152 | INIT_COMPLETION(c->irq_done); | ||
153 | if (c->gpio_irq) { | ||
154 | result = omap_get_gpio_datain(c->gpio_irq); | ||
155 | if (result == -1) { | ||
156 | ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); | ||
157 | intr = read_reg(c, ONENAND_REG_INTERRUPT); | ||
158 | wait_err("gpio error", state, ctrl, intr); | ||
159 | return -EIO; | ||
160 | } | ||
161 | } else | ||
162 | result = 0; | ||
163 | if (result == 0) { | ||
164 | int retry_cnt = 0; | ||
165 | retry: | ||
166 | result = wait_for_completion_timeout(&c->irq_done, | ||
167 | msecs_to_jiffies(20)); | ||
168 | if (result == 0) { | ||
169 | /* Timeout after 20ms */ | ||
170 | ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); | ||
171 | if (ctrl & ONENAND_CTRL_ONGO) { | ||
172 | /* | ||
173 | * The operation seems to be still going | ||
174 | * so give it some more time. | ||
175 | */ | ||
176 | retry_cnt += 1; | ||
177 | if (retry_cnt < 3) | ||
178 | goto retry; | ||
179 | intr = read_reg(c, | ||
180 | ONENAND_REG_INTERRUPT); | ||
181 | wait_err("timeout", state, ctrl, intr); | ||
182 | return -EIO; | ||
183 | } | ||
184 | intr = read_reg(c, ONENAND_REG_INTERRUPT); | ||
185 | if ((intr & ONENAND_INT_MASTER) == 0) | ||
186 | wait_warn("timeout", state, ctrl, intr); | ||
187 | } | ||
188 | } | ||
189 | } else { | ||
190 | int retry_cnt = 0; | ||
191 | |||
192 | /* Turn interrupts off */ | ||
193 | syscfg = read_reg(c, ONENAND_REG_SYS_CFG1); | ||
194 | syscfg &= ~ONENAND_SYS_CFG1_IOBE; | ||
195 | write_reg(c, syscfg, ONENAND_REG_SYS_CFG1); | ||
196 | |||
197 | timeout = jiffies + msecs_to_jiffies(20); | ||
198 | while (1) { | ||
199 | if (time_before(jiffies, timeout)) { | ||
200 | intr = read_reg(c, ONENAND_REG_INTERRUPT); | ||
201 | if (intr & ONENAND_INT_MASTER) | ||
202 | break; | ||
203 | } else { | ||
204 | /* Timeout after 20ms */ | ||
205 | ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); | ||
206 | if (ctrl & ONENAND_CTRL_ONGO) { | ||
207 | /* | ||
208 | * The operation seems to be still going | ||
209 | * so give it some more time. | ||
210 | */ | ||
211 | retry_cnt += 1; | ||
212 | if (retry_cnt < 3) { | ||
213 | timeout = jiffies + | ||
214 | msecs_to_jiffies(20); | ||
215 | continue; | ||
216 | } | ||
217 | } | ||
218 | break; | ||
219 | } | ||
220 | } | ||
221 | } | ||
222 | |||
223 | intr = read_reg(c, ONENAND_REG_INTERRUPT); | ||
224 | ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); | ||
225 | |||
226 | if (intr & ONENAND_INT_READ) { | ||
227 | int ecc = read_reg(c, ONENAND_REG_ECC_STATUS); | ||
228 | |||
229 | if (ecc) { | ||
230 | unsigned int addr1, addr8; | ||
231 | |||
232 | addr1 = read_reg(c, ONENAND_REG_START_ADDRESS1); | ||
233 | addr8 = read_reg(c, ONENAND_REG_START_ADDRESS8); | ||
234 | if (ecc & ONENAND_ECC_2BIT_ALL) { | ||
235 | printk(KERN_ERR "onenand_wait: ECC error = " | ||
236 | "0x%04x, addr1 %#x, addr8 %#x\n", | ||
237 | ecc, addr1, addr8); | ||
238 | mtd->ecc_stats.failed++; | ||
239 | return -EBADMSG; | ||
240 | } else if (ecc & ONENAND_ECC_1BIT_ALL) { | ||
241 | printk(KERN_NOTICE "onenand_wait: correctable " | ||
242 | "ECC error = 0x%04x, addr1 %#x, " | ||
243 | "addr8 %#x\n", ecc, addr1, addr8); | ||
244 | mtd->ecc_stats.corrected++; | ||
245 | } | ||
246 | } | ||
247 | } else if (state == FL_READING) { | ||
248 | wait_err("timeout", state, ctrl, intr); | ||
249 | return -EIO; | ||
250 | } | ||
251 | |||
252 | if (ctrl & ONENAND_CTRL_ERROR) { | ||
253 | wait_err("controller error", state, ctrl, intr); | ||
254 | if (ctrl & ONENAND_CTRL_LOCK) | ||
255 | printk(KERN_ERR "onenand_wait: " | ||
256 | "Device is write protected!!!\n"); | ||
257 | return -EIO; | ||
258 | } | ||
259 | |||
260 | if (ctrl & 0xFE9F) | ||
261 | wait_warn("unexpected controller status", state, ctrl, intr); | ||
262 | |||
263 | return 0; | ||
264 | } | ||
265 | |||
266 | static inline int omap2_onenand_bufferram_offset(struct mtd_info *mtd, int area) | ||
267 | { | ||
268 | struct onenand_chip *this = mtd->priv; | ||
269 | |||
270 | if (ONENAND_CURRENT_BUFFERRAM(this)) { | ||
271 | if (area == ONENAND_DATARAM) | ||
272 | return mtd->writesize; | ||
273 | if (area == ONENAND_SPARERAM) | ||
274 | return mtd->oobsize; | ||
275 | } | ||
276 | |||
277 | return 0; | ||
278 | } | ||
279 | |||
280 | #if defined(CONFIG_ARCH_OMAP3) || defined(MULTI_OMAP2) | ||
281 | |||
282 | static int omap3_onenand_read_bufferram(struct mtd_info *mtd, int area, | ||
283 | unsigned char *buffer, int offset, | ||
284 | size_t count) | ||
285 | { | ||
286 | struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); | ||
287 | struct onenand_chip *this = mtd->priv; | ||
288 | dma_addr_t dma_src, dma_dst; | ||
289 | int bram_offset; | ||
290 | unsigned long timeout; | ||
291 | void *buf = (void *)buffer; | ||
292 | size_t xtra; | ||
293 | volatile unsigned *done; | ||
294 | |||
295 | bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset; | ||
296 | if (bram_offset & 3 || (size_t)buf & 3 || count < 384) | ||
297 | goto out_copy; | ||
298 | |||
299 | if (buf >= high_memory) { | ||
300 | struct page *p1; | ||
301 | |||
302 | if (((size_t)buf & PAGE_MASK) != | ||
303 | ((size_t)(buf + count - 1) & PAGE_MASK)) | ||
304 | goto out_copy; | ||
305 | p1 = vmalloc_to_page(buf); | ||
306 | if (!p1) | ||
307 | goto out_copy; | ||
308 | buf = page_address(p1) + ((size_t)buf & ~PAGE_MASK); | ||
309 | } | ||
310 | |||
311 | xtra = count & 3; | ||
312 | if (xtra) { | ||
313 | count -= xtra; | ||
314 | memcpy(buf + count, this->base + bram_offset + count, xtra); | ||
315 | } | ||
316 | |||
317 | dma_src = c->phys_base + bram_offset; | ||
318 | dma_dst = dma_map_single(&c->pdev->dev, buf, count, DMA_FROM_DEVICE); | ||
319 | if (dma_mapping_error(&c->pdev->dev, dma_dst)) { | ||
320 | dev_err(&c->pdev->dev, | ||
321 | "Couldn't DMA map a %d byte buffer\n", | ||
322 | count); | ||
323 | goto out_copy; | ||
324 | } | ||
325 | |||
326 | omap_set_dma_transfer_params(c->dma_channel, OMAP_DMA_DATA_TYPE_S32, | ||
327 | count >> 2, 1, 0, 0, 0); | ||
328 | omap_set_dma_src_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, | ||
329 | dma_src, 0, 0); | ||
330 | omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, | ||
331 | dma_dst, 0, 0); | ||
332 | |||
333 | INIT_COMPLETION(c->dma_done); | ||
334 | omap_start_dma(c->dma_channel); | ||
335 | |||
336 | timeout = jiffies + msecs_to_jiffies(20); | ||
337 | done = &c->dma_done.done; | ||
338 | while (time_before(jiffies, timeout)) | ||
339 | if (*done) | ||
340 | break; | ||
341 | |||
342 | dma_unmap_single(&c->pdev->dev, dma_dst, count, DMA_FROM_DEVICE); | ||
343 | |||
344 | if (!*done) { | ||
345 | dev_err(&c->pdev->dev, "timeout waiting for DMA\n"); | ||
346 | goto out_copy; | ||
347 | } | ||
348 | |||
349 | return 0; | ||
350 | |||
351 | out_copy: | ||
352 | memcpy(buf, this->base + bram_offset, count); | ||
353 | return 0; | ||
354 | } | ||
355 | |||
356 | static int omap3_onenand_write_bufferram(struct mtd_info *mtd, int area, | ||
357 | const unsigned char *buffer, | ||
358 | int offset, size_t count) | ||
359 | { | ||
360 | struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); | ||
361 | struct onenand_chip *this = mtd->priv; | ||
362 | dma_addr_t dma_src, dma_dst; | ||
363 | int bram_offset; | ||
364 | unsigned long timeout; | ||
365 | void *buf = (void *)buffer; | ||
366 | volatile unsigned *done; | ||
367 | |||
368 | bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset; | ||
369 | if (bram_offset & 3 || (size_t)buf & 3 || count < 384) | ||
370 | goto out_copy; | ||
371 | |||
372 | /* panic_write() may be in an interrupt context */ | ||
373 | if (in_interrupt()) | ||
374 | goto out_copy; | ||
375 | |||
376 | if (buf >= high_memory) { | ||
377 | struct page *p1; | ||
378 | |||
379 | if (((size_t)buf & PAGE_MASK) != | ||
380 | ((size_t)(buf + count - 1) & PAGE_MASK)) | ||
381 | goto out_copy; | ||
382 | p1 = vmalloc_to_page(buf); | ||
383 | if (!p1) | ||
384 | goto out_copy; | ||
385 | buf = page_address(p1) + ((size_t)buf & ~PAGE_MASK); | ||
386 | } | ||
387 | |||
388 | dma_src = dma_map_single(&c->pdev->dev, buf, count, DMA_TO_DEVICE); | ||
389 | dma_dst = c->phys_base + bram_offset; | ||
390 | if (dma_mapping_error(&c->pdev->dev, dma_dst)) { | ||
391 | dev_err(&c->pdev->dev, | ||
392 | "Couldn't DMA map a %d byte buffer\n", | ||
393 | count); | ||
394 | return -1; | ||
395 | } | ||
396 | |||
397 | omap_set_dma_transfer_params(c->dma_channel, OMAP_DMA_DATA_TYPE_S32, | ||
398 | count >> 2, 1, 0, 0, 0); | ||
399 | omap_set_dma_src_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, | ||
400 | dma_src, 0, 0); | ||
401 | omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, | ||
402 | dma_dst, 0, 0); | ||
403 | |||
404 | INIT_COMPLETION(c->dma_done); | ||
405 | omap_start_dma(c->dma_channel); | ||
406 | |||
407 | timeout = jiffies + msecs_to_jiffies(20); | ||
408 | done = &c->dma_done.done; | ||
409 | while (time_before(jiffies, timeout)) | ||
410 | if (*done) | ||
411 | break; | ||
412 | |||
413 | dma_unmap_single(&c->pdev->dev, dma_dst, count, DMA_TO_DEVICE); | ||
414 | |||
415 | if (!*done) { | ||
416 | dev_err(&c->pdev->dev, "timeout waiting for DMA\n"); | ||
417 | goto out_copy; | ||
418 | } | ||
419 | |||
420 | return 0; | ||
421 | |||
422 | out_copy: | ||
423 | memcpy(this->base + bram_offset, buf, count); | ||
424 | return 0; | ||
425 | } | ||
426 | |||
427 | #else | ||
428 | |||
429 | int omap3_onenand_read_bufferram(struct mtd_info *mtd, int area, | ||
430 | unsigned char *buffer, int offset, | ||
431 | size_t count); | ||
432 | |||
433 | int omap3_onenand_write_bufferram(struct mtd_info *mtd, int area, | ||
434 | const unsigned char *buffer, | ||
435 | int offset, size_t count); | ||
436 | |||
437 | #endif | ||
438 | |||
439 | #if defined(CONFIG_ARCH_OMAP2) || defined(MULTI_OMAP2) | ||
440 | |||
441 | static int omap2_onenand_read_bufferram(struct mtd_info *mtd, int area, | ||
442 | unsigned char *buffer, int offset, | ||
443 | size_t count) | ||
444 | { | ||
445 | struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); | ||
446 | struct onenand_chip *this = mtd->priv; | ||
447 | dma_addr_t dma_src, dma_dst; | ||
448 | int bram_offset; | ||
449 | |||
450 | bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset; | ||
451 | /* DMA is not used. Revisit PM requirements before enabling it. */ | ||
452 | if (1 || (c->dma_channel < 0) || | ||
453 | ((void *) buffer >= (void *) high_memory) || (bram_offset & 3) || | ||
454 | (((unsigned int) buffer) & 3) || (count < 1024) || (count & 3)) { | ||
455 | memcpy(buffer, (__force void *)(this->base + bram_offset), | ||
456 | count); | ||
457 | return 0; | ||
458 | } | ||
459 | |||
460 | dma_src = c->phys_base + bram_offset; | ||
461 | dma_dst = dma_map_single(&c->pdev->dev, buffer, count, | ||
462 | DMA_FROM_DEVICE); | ||
463 | if (dma_mapping_error(&c->pdev->dev, dma_dst)) { | ||
464 | dev_err(&c->pdev->dev, | ||
465 | "Couldn't DMA map a %d byte buffer\n", | ||
466 | count); | ||
467 | return -1; | ||
468 | } | ||
469 | |||
470 | omap_set_dma_transfer_params(c->dma_channel, OMAP_DMA_DATA_TYPE_S32, | ||
471 | count / 4, 1, 0, 0, 0); | ||
472 | omap_set_dma_src_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, | ||
473 | dma_src, 0, 0); | ||
474 | omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, | ||
475 | dma_dst, 0, 0); | ||
476 | |||
477 | INIT_COMPLETION(c->dma_done); | ||
478 | omap_start_dma(c->dma_channel); | ||
479 | wait_for_completion(&c->dma_done); | ||
480 | |||
481 | dma_unmap_single(&c->pdev->dev, dma_dst, count, DMA_FROM_DEVICE); | ||
482 | |||
483 | return 0; | ||
484 | } | ||
485 | |||
486 | static int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area, | ||
487 | const unsigned char *buffer, | ||
488 | int offset, size_t count) | ||
489 | { | ||
490 | struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); | ||
491 | struct onenand_chip *this = mtd->priv; | ||
492 | dma_addr_t dma_src, dma_dst; | ||
493 | int bram_offset; | ||
494 | |||
495 | bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset; | ||
496 | /* DMA is not used. Revisit PM requirements before enabling it. */ | ||
497 | if (1 || (c->dma_channel < 0) || | ||
498 | ((void *) buffer >= (void *) high_memory) || (bram_offset & 3) || | ||
499 | (((unsigned int) buffer) & 3) || (count < 1024) || (count & 3)) { | ||
500 | memcpy((__force void *)(this->base + bram_offset), buffer, | ||
501 | count); | ||
502 | return 0; | ||
503 | } | ||
504 | |||
505 | dma_src = dma_map_single(&c->pdev->dev, (void *) buffer, count, | ||
506 | DMA_TO_DEVICE); | ||
507 | dma_dst = c->phys_base + bram_offset; | ||
508 | if (dma_mapping_error(&c->pdev->dev, dma_dst)) { | ||
509 | dev_err(&c->pdev->dev, | ||
510 | "Couldn't DMA map a %d byte buffer\n", | ||
511 | count); | ||
512 | return -1; | ||
513 | } | ||
514 | |||
515 | omap_set_dma_transfer_params(c->dma_channel, OMAP_DMA_DATA_TYPE_S16, | ||
516 | count / 2, 1, 0, 0, 0); | ||
517 | omap_set_dma_src_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, | ||
518 | dma_src, 0, 0); | ||
519 | omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, | ||
520 | dma_dst, 0, 0); | ||
521 | |||
522 | INIT_COMPLETION(c->dma_done); | ||
523 | omap_start_dma(c->dma_channel); | ||
524 | wait_for_completion(&c->dma_done); | ||
525 | |||
526 | dma_unmap_single(&c->pdev->dev, dma_dst, count, DMA_TO_DEVICE); | ||
527 | |||
528 | return 0; | ||
529 | } | ||
530 | |||
531 | #else | ||
532 | |||
533 | int omap2_onenand_read_bufferram(struct mtd_info *mtd, int area, | ||
534 | unsigned char *buffer, int offset, | ||
535 | size_t count); | ||
536 | |||
537 | int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area, | ||
538 | const unsigned char *buffer, | ||
539 | int offset, size_t count); | ||
540 | |||
541 | #endif | ||
542 | |||
543 | static struct platform_driver omap2_onenand_driver; | ||
544 | |||
545 | static int __adjust_timing(struct device *dev, void *data) | ||
546 | { | ||
547 | int ret = 0; | ||
548 | struct omap2_onenand *c; | ||
549 | |||
550 | c = dev_get_drvdata(dev); | ||
551 | |||
552 | BUG_ON(c->setup == NULL); | ||
553 | |||
554 | /* DMA is not in use so this is all that is needed */ | ||
555 | /* Revisit for OMAP3! */ | ||
556 | ret = c->setup(c->onenand.base, c->freq); | ||
557 | |||
558 | return ret; | ||
559 | } | ||
560 | |||
561 | int omap2_onenand_rephase(void) | ||
562 | { | ||
563 | return driver_for_each_device(&omap2_onenand_driver.driver, NULL, | ||
564 | NULL, __adjust_timing); | ||
565 | } | ||
566 | |||
567 | static void __devexit omap2_onenand_shutdown(struct platform_device *pdev) | ||
568 | { | ||
569 | struct omap2_onenand *c = dev_get_drvdata(&pdev->dev); | ||
570 | |||
571 | /* With certain content in the buffer RAM, the OMAP boot ROM code | ||
572 | * can recognize the flash chip incorrectly. Zero it out before | ||
573 | * soft reset. | ||
574 | */ | ||
575 | memset((__force void *)c->onenand.base, 0, ONENAND_BUFRAM_SIZE); | ||
576 | } | ||
577 | |||
578 | static int __devinit omap2_onenand_probe(struct platform_device *pdev) | ||
579 | { | ||
580 | struct omap_onenand_platform_data *pdata; | ||
581 | struct omap2_onenand *c; | ||
582 | int r; | ||
583 | |||
584 | pdata = pdev->dev.platform_data; | ||
585 | if (pdata == NULL) { | ||
586 | dev_err(&pdev->dev, "platform data missing\n"); | ||
587 | return -ENODEV; | ||
588 | } | ||
589 | |||
590 | c = kzalloc(sizeof(struct omap2_onenand), GFP_KERNEL); | ||
591 | if (!c) | ||
592 | return -ENOMEM; | ||
593 | |||
594 | init_completion(&c->irq_done); | ||
595 | init_completion(&c->dma_done); | ||
596 | c->gpmc_cs = pdata->cs; | ||
597 | c->gpio_irq = pdata->gpio_irq; | ||
598 | c->dma_channel = pdata->dma_channel; | ||
599 | if (c->dma_channel < 0) { | ||
600 | /* if -1, don't use DMA */ | ||
601 | c->gpio_irq = 0; | ||
602 | } | ||
603 | |||
604 | r = gpmc_cs_request(c->gpmc_cs, ONENAND_IO_SIZE, &c->phys_base); | ||
605 | if (r < 0) { | ||
606 | dev_err(&pdev->dev, "Cannot request GPMC CS\n"); | ||
607 | goto err_kfree; | ||
608 | } | ||
609 | |||
610 | if (request_mem_region(c->phys_base, ONENAND_IO_SIZE, | ||
611 | pdev->dev.driver->name) == NULL) { | ||
612 | dev_err(&pdev->dev, "Cannot reserve memory region at 0x%08lx, " | ||
613 | "size: 0x%x\n", c->phys_base, ONENAND_IO_SIZE); | ||
614 | r = -EBUSY; | ||
615 | goto err_free_cs; | ||
616 | } | ||
617 | c->onenand.base = ioremap(c->phys_base, ONENAND_IO_SIZE); | ||
618 | if (c->onenand.base == NULL) { | ||
619 | r = -ENOMEM; | ||
620 | goto err_release_mem_region; | ||
621 | } | ||
622 | |||
623 | if (pdata->onenand_setup != NULL) { | ||
624 | r = pdata->onenand_setup(c->onenand.base, c->freq); | ||
625 | if (r < 0) { | ||
626 | dev_err(&pdev->dev, "Onenand platform setup failed: " | ||
627 | "%d\n", r); | ||
628 | goto err_iounmap; | ||
629 | } | ||
630 | c->setup = pdata->onenand_setup; | ||
631 | } | ||
632 | |||
633 | if (c->gpio_irq) { | ||
634 | if ((r = omap_request_gpio(c->gpio_irq)) < 0) { | ||
635 | dev_err(&pdev->dev, "Failed to request GPIO%d for " | ||
636 | "OneNAND\n", c->gpio_irq); | ||
637 | goto err_iounmap; | ||
638 | } | ||
639 | omap_set_gpio_direction(c->gpio_irq, 1); | ||
640 | |||
641 | if ((r = request_irq(OMAP_GPIO_IRQ(c->gpio_irq), | ||
642 | omap2_onenand_interrupt, IRQF_TRIGGER_RISING, | ||
643 | pdev->dev.driver->name, c)) < 0) | ||
644 | goto err_release_gpio; | ||
645 | } | ||
646 | |||
647 | if (c->dma_channel >= 0) { | ||
648 | r = omap_request_dma(0, pdev->dev.driver->name, | ||
649 | omap2_onenand_dma_cb, (void *) c, | ||
650 | &c->dma_channel); | ||
651 | if (r == 0) { | ||
652 | omap_set_dma_write_mode(c->dma_channel, | ||
653 | OMAP_DMA_WRITE_NON_POSTED); | ||
654 | omap_set_dma_src_data_pack(c->dma_channel, 1); | ||
655 | omap_set_dma_src_burst_mode(c->dma_channel, | ||
656 | OMAP_DMA_DATA_BURST_8); | ||
657 | omap_set_dma_dest_data_pack(c->dma_channel, 1); | ||
658 | omap_set_dma_dest_burst_mode(c->dma_channel, | ||
659 | OMAP_DMA_DATA_BURST_8); | ||
660 | } else { | ||
661 | dev_info(&pdev->dev, | ||
662 | "failed to allocate DMA for OneNAND, " | ||
663 | "using PIO instead\n"); | ||
664 | c->dma_channel = -1; | ||
665 | } | ||
666 | } | ||
667 | |||
668 | dev_info(&pdev->dev, "initializing on CS%d, phys base 0x%08lx, virtual " | ||
669 | "base %p\n", c->gpmc_cs, c->phys_base, | ||
670 | c->onenand.base); | ||
671 | |||
672 | c->pdev = pdev; | ||
673 | c->mtd.name = pdev->dev.bus_id; | ||
674 | c->mtd.priv = &c->onenand; | ||
675 | c->mtd.owner = THIS_MODULE; | ||
676 | |||
677 | if (c->dma_channel >= 0) { | ||
678 | struct onenand_chip *this = &c->onenand; | ||
679 | |||
680 | this->wait = omap2_onenand_wait; | ||
681 | if (cpu_is_omap34xx()) { | ||
682 | this->read_bufferram = omap3_onenand_read_bufferram; | ||
683 | this->write_bufferram = omap3_onenand_write_bufferram; | ||
684 | } else { | ||
685 | this->read_bufferram = omap2_onenand_read_bufferram; | ||
686 | this->write_bufferram = omap2_onenand_write_bufferram; | ||
687 | } | ||
688 | } | ||
689 | |||
690 | if ((r = onenand_scan(&c->mtd, 1)) < 0) | ||
691 | goto err_release_dma; | ||
692 | |||
693 | switch ((c->onenand.version_id >> 4) & 0xf) { | ||
694 | case 0: | ||
695 | c->freq = 40; | ||
696 | break; | ||
697 | case 1: | ||
698 | c->freq = 54; | ||
699 | break; | ||
700 | case 2: | ||
701 | c->freq = 66; | ||
702 | break; | ||
703 | case 3: | ||
704 | c->freq = 83; | ||
705 | break; | ||
706 | } | ||
707 | |||
708 | #ifdef CONFIG_MTD_PARTITIONS | ||
709 | if (pdata->parts != NULL) | ||
710 | r = add_mtd_partitions(&c->mtd, pdata->parts, | ||
711 | pdata->nr_parts); | ||
712 | else | ||
713 | #endif | ||
714 | r = add_mtd_device(&c->mtd); | ||
715 | if (r < 0) | ||
716 | goto err_release_onenand; | ||
717 | |||
718 | platform_set_drvdata(pdev, c); | ||
719 | |||
720 | return 0; | ||
721 | |||
722 | err_release_onenand: | ||
723 | onenand_release(&c->mtd); | ||
724 | err_release_dma: | ||
725 | if (c->dma_channel != -1) | ||
726 | omap_free_dma(c->dma_channel); | ||
727 | if (c->gpio_irq) | ||
728 | free_irq(OMAP_GPIO_IRQ(c->gpio_irq), c); | ||
729 | err_release_gpio: | ||
730 | if (c->gpio_irq) | ||
731 | omap_free_gpio(c->gpio_irq); | ||
732 | err_iounmap: | ||
733 | iounmap(c->onenand.base); | ||
734 | err_release_mem_region: | ||
735 | release_mem_region(c->phys_base, ONENAND_IO_SIZE); | ||
736 | err_free_cs: | ||
737 | gpmc_cs_free(c->gpmc_cs); | ||
738 | err_kfree: | ||
739 | kfree(c); | ||
740 | |||
741 | return r; | ||
742 | } | ||
743 | |||
744 | static int __devexit omap2_onenand_remove(struct platform_device *pdev) | ||
745 | { | ||
746 | struct omap2_onenand *c = dev_get_drvdata(&pdev->dev); | ||
747 | |||
748 | BUG_ON(c == NULL); | ||
749 | |||
750 | #ifdef CONFIG_MTD_PARTITIONS | ||
751 | if (c->parts) | ||
752 | del_mtd_partitions(&c->mtd); | ||
753 | else | ||
754 | del_mtd_device(&c->mtd); | ||
755 | #else | ||
756 | del_mtd_device(&c->mtd); | ||
757 | #endif | ||
758 | |||
759 | onenand_release(&c->mtd); | ||
760 | if (c->dma_channel != -1) | ||
761 | omap_free_dma(c->dma_channel); | ||
762 | omap2_onenand_shutdown(pdev); | ||
763 | platform_set_drvdata(pdev, NULL); | ||
764 | if (c->gpio_irq) { | ||
765 | free_irq(OMAP_GPIO_IRQ(c->gpio_irq), c); | ||
766 | omap_free_gpio(c->gpio_irq); | ||
767 | } | ||
768 | iounmap(c->onenand.base); | ||
769 | release_mem_region(c->phys_base, ONENAND_IO_SIZE); | ||
770 | kfree(c); | ||
771 | |||
772 | return 0; | ||
773 | } | ||
774 | |||
775 | static struct platform_driver omap2_onenand_driver = { | ||
776 | .probe = omap2_onenand_probe, | ||
777 | .remove = omap2_onenand_remove, | ||
778 | .shutdown = omap2_onenand_shutdown, | ||
779 | .driver = { | ||
780 | .name = DRIVER_NAME, | ||
781 | .owner = THIS_MODULE, | ||
782 | }, | ||
783 | }; | ||
784 | |||
785 | static int __init omap2_onenand_init(void) | ||
786 | { | ||
787 | printk(KERN_INFO "OneNAND driver initializing\n"); | ||
788 | return platform_driver_register(&omap2_onenand_driver); | ||
789 | } | ||
790 | |||
791 | static void __exit omap2_onenand_exit(void) | ||
792 | { | ||
793 | platform_driver_unregister(&omap2_onenand_driver); | ||
794 | } | ||
795 | |||
796 | module_init(omap2_onenand_init); | ||
797 | module_exit(omap2_onenand_exit); | ||
798 | |||
799 | MODULE_ALIAS(DRIVER_NAME); | ||
800 | MODULE_LICENSE("GPL"); | ||
801 | MODULE_AUTHOR("Jarkko Lavinen <jarkko.lavinen@nokia.com>"); | ||
802 | MODULE_DESCRIPTION("Glue layer for OneNAND flash on OMAP2 / OMAP3"); | ||
diff --git a/drivers/mtd/onenand/onenand_base.c b/drivers/mtd/onenand/onenand_base.c index 926cf3a4135d..90ed319f26e6 100644 --- a/drivers/mtd/onenand/onenand_base.c +++ b/drivers/mtd/onenand/onenand_base.c | |||
@@ -1794,7 +1794,7 @@ static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr) | |||
1794 | return -EINVAL; | 1794 | return -EINVAL; |
1795 | } | 1795 | } |
1796 | 1796 | ||
1797 | instr->fail_addr = 0xffffffff; | 1797 | instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; |
1798 | 1798 | ||
1799 | /* Grab the lock and see if the device is available */ | 1799 | /* Grab the lock and see if the device is available */ |
1800 | onenand_get_device(mtd, FL_ERASING); | 1800 | onenand_get_device(mtd, FL_ERASING); |
diff --git a/drivers/mtd/ssfdc.c b/drivers/mtd/ssfdc.c index a5f3d60047d4..33a5d6ed6f18 100644 --- a/drivers/mtd/ssfdc.c +++ b/drivers/mtd/ssfdc.c | |||
@@ -321,8 +321,7 @@ static void ssfdcr_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) | |||
321 | DEBUG(MTD_DEBUG_LEVEL1, | 321 | DEBUG(MTD_DEBUG_LEVEL1, |
322 | "SSFDC_RO: cis_block=%d,erase_size=%d,map_len=%d,n_zones=%d\n", | 322 | "SSFDC_RO: cis_block=%d,erase_size=%d,map_len=%d,n_zones=%d\n", |
323 | ssfdc->cis_block, ssfdc->erase_size, ssfdc->map_len, | 323 | ssfdc->cis_block, ssfdc->erase_size, ssfdc->map_len, |
324 | (ssfdc->map_len + MAX_PHYS_BLK_PER_ZONE - 1) / | 324 | DIV_ROUND_UP(ssfdc->map_len, MAX_PHYS_BLK_PER_ZONE)); |
325 | MAX_PHYS_BLK_PER_ZONE); | ||
326 | 325 | ||
327 | /* Set geometry */ | 326 | /* Set geometry */ |
328 | ssfdc->heads = 16; | 327 | ssfdc->heads = 16; |
diff --git a/drivers/mtd/ubi/cdev.c b/drivers/mtd/ubi/cdev.c index 03c759b4eeb5..b30a0b83d7f1 100644 --- a/drivers/mtd/ubi/cdev.c +++ b/drivers/mtd/ubi/cdev.c | |||
@@ -104,12 +104,9 @@ static int vol_cdev_open(struct inode *inode, struct file *file) | |||
104 | struct ubi_volume_desc *desc; | 104 | struct ubi_volume_desc *desc; |
105 | int vol_id = iminor(inode) - 1, mode, ubi_num; | 105 | int vol_id = iminor(inode) - 1, mode, ubi_num; |
106 | 106 | ||
107 | lock_kernel(); | ||
108 | ubi_num = ubi_major2num(imajor(inode)); | 107 | ubi_num = ubi_major2num(imajor(inode)); |
109 | if (ubi_num < 0) { | 108 | if (ubi_num < 0) |
110 | unlock_kernel(); | ||
111 | return ubi_num; | 109 | return ubi_num; |
112 | } | ||
113 | 110 | ||
114 | if (file->f_mode & FMODE_WRITE) | 111 | if (file->f_mode & FMODE_WRITE) |
115 | mode = UBI_READWRITE; | 112 | mode = UBI_READWRITE; |
@@ -119,7 +116,6 @@ static int vol_cdev_open(struct inode *inode, struct file *file) | |||
119 | dbg_gen("open volume %d, mode %d", vol_id, mode); | 116 | dbg_gen("open volume %d, mode %d", vol_id, mode); |
120 | 117 | ||
121 | desc = ubi_open_volume(ubi_num, vol_id, mode); | 118 | desc = ubi_open_volume(ubi_num, vol_id, mode); |
122 | unlock_kernel(); | ||
123 | if (IS_ERR(desc)) | 119 | if (IS_ERR(desc)) |
124 | return PTR_ERR(desc); | 120 | return PTR_ERR(desc); |
125 | 121 | ||
diff --git a/drivers/mtd/ubi/scan.c b/drivers/mtd/ubi/scan.c index 967bb4406df9..4f2daa5bbecf 100644 --- a/drivers/mtd/ubi/scan.c +++ b/drivers/mtd/ubi/scan.c | |||
@@ -387,7 +387,7 @@ int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si, | |||
387 | pnum, vol_id, lnum, ec, sqnum, bitflips); | 387 | pnum, vol_id, lnum, ec, sqnum, bitflips); |
388 | 388 | ||
389 | sv = add_volume(si, vol_id, pnum, vid_hdr); | 389 | sv = add_volume(si, vol_id, pnum, vid_hdr); |
390 | if (IS_ERR(sv) < 0) | 390 | if (IS_ERR(sv)) |
391 | return PTR_ERR(sv); | 391 | return PTR_ERR(sv); |
392 | 392 | ||
393 | if (si->max_sqnum < sqnum) | 393 | if (si->max_sqnum < sqnum) |
diff --git a/drivers/mtd/ubi/vtbl.c b/drivers/mtd/ubi/vtbl.c index 217d0e111b2a..333c8941552f 100644 --- a/drivers/mtd/ubi/vtbl.c +++ b/drivers/mtd/ubi/vtbl.c | |||
@@ -244,8 +244,8 @@ static int vtbl_check(const struct ubi_device *ubi, | |||
244 | } | 244 | } |
245 | 245 | ||
246 | if (reserved_pebs > ubi->good_peb_count) { | 246 | if (reserved_pebs > ubi->good_peb_count) { |
247 | dbg_err("too large reserved_pebs, good PEBs %d", | 247 | dbg_err("too large reserved_pebs %d, good PEBs %d", |
248 | ubi->good_peb_count); | 248 | reserved_pebs, ubi->good_peb_count); |
249 | err = 9; | 249 | err = 9; |
250 | goto bad; | 250 | goto bad; |
251 | } | 251 | } |
diff --git a/drivers/pci/rom.c b/drivers/pci/rom.c index bd5c0e031398..1f5f6143f35c 100644 --- a/drivers/pci/rom.c +++ b/drivers/pci/rom.c | |||
@@ -21,7 +21,7 @@ | |||
21 | * between the ROM and other resources, so enabling it may disable access | 21 | * between the ROM and other resources, so enabling it may disable access |
22 | * to MMIO registers or other card memory. | 22 | * to MMIO registers or other card memory. |
23 | */ | 23 | */ |
24 | static int pci_enable_rom(struct pci_dev *pdev) | 24 | int pci_enable_rom(struct pci_dev *pdev) |
25 | { | 25 | { |
26 | struct resource *res = pdev->resource + PCI_ROM_RESOURCE; | 26 | struct resource *res = pdev->resource + PCI_ROM_RESOURCE; |
27 | struct pci_bus_region region; | 27 | struct pci_bus_region region; |
@@ -45,7 +45,7 @@ static int pci_enable_rom(struct pci_dev *pdev) | |||
45 | * Disable ROM decoding on a PCI device by turning off the last bit in the | 45 | * Disable ROM decoding on a PCI device by turning off the last bit in the |
46 | * ROM BAR. | 46 | * ROM BAR. |
47 | */ | 47 | */ |
48 | static void pci_disable_rom(struct pci_dev *pdev) | 48 | void pci_disable_rom(struct pci_dev *pdev) |
49 | { | 49 | { |
50 | u32 rom_addr; | 50 | u32 rom_addr; |
51 | pci_read_config_dword(pdev, pdev->rom_base_reg, &rom_addr); | 51 | pci_read_config_dword(pdev, pdev->rom_base_reg, &rom_addr); |
@@ -260,3 +260,5 @@ void pci_cleanup_rom(struct pci_dev *pdev) | |||
260 | 260 | ||
261 | EXPORT_SYMBOL(pci_map_rom); | 261 | EXPORT_SYMBOL(pci_map_rom); |
262 | EXPORT_SYMBOL(pci_unmap_rom); | 262 | EXPORT_SYMBOL(pci_unmap_rom); |
263 | EXPORT_SYMBOL_GPL(pci_enable_rom); | ||
264 | EXPORT_SYMBOL_GPL(pci_disable_rom); | ||
diff --git a/fs/Kconfig b/fs/Kconfig index c189089f35a5..4eca61c201f0 100644 --- a/fs/Kconfig +++ b/fs/Kconfig | |||
@@ -1168,195 +1168,7 @@ config EFS_FS | |||
1168 | To compile the EFS file system support as a module, choose M here: the | 1168 | To compile the EFS file system support as a module, choose M here: the |
1169 | module will be called efs. | 1169 | module will be called efs. |
1170 | 1170 | ||
1171 | config JFFS2_FS | 1171 | source "fs/jffs2/Kconfig" |
1172 | tristate "Journalling Flash File System v2 (JFFS2) support" | ||
1173 | select CRC32 | ||
1174 | depends on MTD | ||
1175 | help | ||
1176 | JFFS2 is the second generation of the Journalling Flash File System | ||
1177 | for use on diskless embedded devices. It provides improved wear | ||
1178 | levelling, compression and support for hard links. You cannot use | ||
1179 | this on normal block devices, only on 'MTD' devices. | ||
1180 | |||
1181 | Further information on the design and implementation of JFFS2 is | ||
1182 | available at <http://sources.redhat.com/jffs2/>. | ||
1183 | |||
1184 | config JFFS2_FS_DEBUG | ||
1185 | int "JFFS2 debugging verbosity (0 = quiet, 2 = noisy)" | ||
1186 | depends on JFFS2_FS | ||
1187 | default "0" | ||
1188 | help | ||
1189 | This controls the amount of debugging messages produced by the JFFS2 | ||
1190 | code. Set it to zero for use in production systems. For evaluation, | ||
1191 | testing and debugging, it's advisable to set it to one. This will | ||
1192 | enable a few assertions and will print debugging messages at the | ||
1193 | KERN_DEBUG loglevel, where they won't normally be visible. Level 2 | ||
1194 | is unlikely to be useful - it enables extra debugging in certain | ||
1195 | areas which at one point needed debugging, but when the bugs were | ||
1196 | located and fixed, the detailed messages were relegated to level 2. | ||
1197 | |||
1198 | If reporting bugs, please try to have available a full dump of the | ||
1199 | messages at debug level 1 while the misbehaviour was occurring. | ||
1200 | |||
1201 | config JFFS2_FS_WRITEBUFFER | ||
1202 | bool "JFFS2 write-buffering support" | ||
1203 | depends on JFFS2_FS | ||
1204 | default y | ||
1205 | help | ||
1206 | This enables the write-buffering support in JFFS2. | ||
1207 | |||
1208 | This functionality is required to support JFFS2 on the following | ||
1209 | types of flash devices: | ||
1210 | - NAND flash | ||
1211 | - NOR flash with transparent ECC | ||
1212 | - DataFlash | ||
1213 | |||
1214 | config JFFS2_FS_WBUF_VERIFY | ||
1215 | bool "Verify JFFS2 write-buffer reads" | ||
1216 | depends on JFFS2_FS_WRITEBUFFER | ||
1217 | default n | ||
1218 | help | ||
1219 | This causes JFFS2 to read back every page written through the | ||
1220 | write-buffer, and check for errors. | ||
1221 | |||
1222 | config JFFS2_SUMMARY | ||
1223 | bool "JFFS2 summary support (EXPERIMENTAL)" | ||
1224 | depends on JFFS2_FS && EXPERIMENTAL | ||
1225 | default n | ||
1226 | help | ||
1227 | This feature makes it possible to use summary information | ||
1228 | for faster filesystem mount. | ||
1229 | |||
1230 | The summary information can be inserted into a filesystem image | ||
1231 | by the utility 'sumtool'. | ||
1232 | |||
1233 | If unsure, say 'N'. | ||
1234 | |||
1235 | config JFFS2_FS_XATTR | ||
1236 | bool "JFFS2 XATTR support (EXPERIMENTAL)" | ||
1237 | depends on JFFS2_FS && EXPERIMENTAL | ||
1238 | default n | ||
1239 | help | ||
1240 | Extended attributes are name:value pairs associated with inodes by | ||
1241 | the kernel or by users (see the attr(5) manual page, or visit | ||
1242 | <http://acl.bestbits.at/> for details). | ||
1243 | |||
1244 | If unsure, say N. | ||
1245 | |||
1246 | config JFFS2_FS_POSIX_ACL | ||
1247 | bool "JFFS2 POSIX Access Control Lists" | ||
1248 | depends on JFFS2_FS_XATTR | ||
1249 | default y | ||
1250 | select FS_POSIX_ACL | ||
1251 | help | ||
1252 | Posix Access Control Lists (ACLs) support permissions for users and | ||
1253 | groups beyond the owner/group/world scheme. | ||
1254 | |||
1255 | To learn more about Access Control Lists, visit the Posix ACLs for | ||
1256 | Linux website <http://acl.bestbits.at/>. | ||
1257 | |||
1258 | If you don't know what Access Control Lists are, say N | ||
1259 | |||
1260 | config JFFS2_FS_SECURITY | ||
1261 | bool "JFFS2 Security Labels" | ||
1262 | depends on JFFS2_FS_XATTR | ||
1263 | default y | ||
1264 | help | ||
1265 | Security labels support alternative access control models | ||
1266 | implemented by security modules like SELinux. This option | ||
1267 | enables an extended attribute handler for file security | ||
1268 | labels in the jffs2 filesystem. | ||
1269 | |||
1270 | If you are not using a security module that requires using | ||
1271 | extended attributes for file security labels, say N. | ||
1272 | |||
1273 | config JFFS2_COMPRESSION_OPTIONS | ||
1274 | bool "Advanced compression options for JFFS2" | ||
1275 | depends on JFFS2_FS | ||
1276 | default n | ||
1277 | help | ||
1278 | Enabling this option allows you to explicitly choose which | ||
1279 | compression modules, if any, are enabled in JFFS2. Removing | ||
1280 | compressors can mean you cannot read existing file systems, | ||
1281 | and enabling experimental compressors can mean that you | ||
1282 | write a file system which cannot be read by a standard kernel. | ||
1283 | |||
1284 | If unsure, you should _definitely_ say 'N'. | ||
1285 | |||
1286 | config JFFS2_ZLIB | ||
1287 | bool "JFFS2 ZLIB compression support" if JFFS2_COMPRESSION_OPTIONS | ||
1288 | select ZLIB_INFLATE | ||
1289 | select ZLIB_DEFLATE | ||
1290 | depends on JFFS2_FS | ||
1291 | default y | ||
1292 | help | ||
1293 | Zlib is designed to be a free, general-purpose, legally unencumbered, | ||
1294 | lossless data-compression library for use on virtually any computer | ||
1295 | hardware and operating system. See <http://www.gzip.org/zlib/> for | ||
1296 | further information. | ||
1297 | |||
1298 | Say 'Y' if unsure. | ||
1299 | |||
1300 | config JFFS2_LZO | ||
1301 | bool "JFFS2 LZO compression support" if JFFS2_COMPRESSION_OPTIONS | ||
1302 | select LZO_COMPRESS | ||
1303 | select LZO_DECOMPRESS | ||
1304 | depends on JFFS2_FS | ||
1305 | default n | ||
1306 | help | ||
1307 | minilzo-based compression. Generally works better than Zlib. | ||
1308 | |||
1309 | This feature was added in July, 2007. Say 'N' if you need | ||
1310 | compatibility with older bootloaders or kernels. | ||
1311 | |||
1312 | config JFFS2_RTIME | ||
1313 | bool "JFFS2 RTIME compression support" if JFFS2_COMPRESSION_OPTIONS | ||
1314 | depends on JFFS2_FS | ||
1315 | default y | ||
1316 | help | ||
1317 | Rtime does manage to recompress already-compressed data. Say 'Y' if unsure. | ||
1318 | |||
1319 | config JFFS2_RUBIN | ||
1320 | bool "JFFS2 RUBIN compression support" if JFFS2_COMPRESSION_OPTIONS | ||
1321 | depends on JFFS2_FS | ||
1322 | default n | ||
1323 | help | ||
1324 | RUBINMIPS and DYNRUBIN compressors. Say 'N' if unsure. | ||
1325 | |||
1326 | choice | ||
1327 | prompt "JFFS2 default compression mode" if JFFS2_COMPRESSION_OPTIONS | ||
1328 | default JFFS2_CMODE_PRIORITY | ||
1329 | depends on JFFS2_FS | ||
1330 | help | ||
1331 | You can set here the default compression mode of JFFS2 from | ||
1332 | the available compression modes. Don't touch if unsure. | ||
1333 | |||
1334 | config JFFS2_CMODE_NONE | ||
1335 | bool "no compression" | ||
1336 | help | ||
1337 | Uses no compression. | ||
1338 | |||
1339 | config JFFS2_CMODE_PRIORITY | ||
1340 | bool "priority" | ||
1341 | help | ||
1342 | Tries the compressors in a predefined order and chooses the first | ||
1343 | successful one. | ||
1344 | |||
1345 | config JFFS2_CMODE_SIZE | ||
1346 | bool "size (EXPERIMENTAL)" | ||
1347 | help | ||
1348 | Tries all compressors and chooses the one which has the smallest | ||
1349 | result. | ||
1350 | |||
1351 | config JFFS2_CMODE_FAVOURLZO | ||
1352 | bool "Favour LZO" | ||
1353 | help | ||
1354 | Tries all compressors and chooses the one which has the smallest | ||
1355 | result but gives some preference to LZO (which has faster | ||
1356 | decompression) at the expense of size. | ||
1357 | |||
1358 | endchoice | ||
1359 | |||
1360 | # UBIFS File system configuration | 1172 | # UBIFS File system configuration |
1361 | source "fs/ubifs/Kconfig" | 1173 | source "fs/ubifs/Kconfig" |
1362 | 1174 | ||
diff --git a/fs/jffs2/Kconfig b/fs/jffs2/Kconfig new file mode 100644 index 000000000000..6ae169cd8faa --- /dev/null +++ b/fs/jffs2/Kconfig | |||
@@ -0,0 +1,188 @@ | |||
1 | config JFFS2_FS | ||
2 | tristate "Journalling Flash File System v2 (JFFS2) support" | ||
3 | select CRC32 | ||
4 | depends on MTD | ||
5 | help | ||
6 | JFFS2 is the second generation of the Journalling Flash File System | ||
7 | for use on diskless embedded devices. It provides improved wear | ||
8 | levelling, compression and support for hard links. You cannot use | ||
9 | this on normal block devices, only on 'MTD' devices. | ||
10 | |||
11 | Further information on the design and implementation of JFFS2 is | ||
12 | available at <http://sources.redhat.com/jffs2/>. | ||
13 | |||
14 | config JFFS2_FS_DEBUG | ||
15 | int "JFFS2 debugging verbosity (0 = quiet, 2 = noisy)" | ||
16 | depends on JFFS2_FS | ||
17 | default "0" | ||
18 | help | ||
19 | This controls the amount of debugging messages produced by the JFFS2 | ||
20 | code. Set it to zero for use in production systems. For evaluation, | ||
21 | testing and debugging, it's advisable to set it to one. This will | ||
22 | enable a few assertions and will print debugging messages at the | ||
23 | KERN_DEBUG loglevel, where they won't normally be visible. Level 2 | ||
24 | is unlikely to be useful - it enables extra debugging in certain | ||
25 | areas which at one point needed debugging, but when the bugs were | ||
26 | located and fixed, the detailed messages were relegated to level 2. | ||
27 | |||
28 | If reporting bugs, please try to have available a full dump of the | ||
29 | messages at debug level 1 while the misbehaviour was occurring. | ||
30 | |||
31 | config JFFS2_FS_WRITEBUFFER | ||
32 | bool "JFFS2 write-buffering support" | ||
33 | depends on JFFS2_FS | ||
34 | default y | ||
35 | help | ||
36 | This enables the write-buffering support in JFFS2. | ||
37 | |||
38 | This functionality is required to support JFFS2 on the following | ||
39 | types of flash devices: | ||
40 | - NAND flash | ||
41 | - NOR flash with transparent ECC | ||
42 | - DataFlash | ||
43 | |||
44 | config JFFS2_FS_WBUF_VERIFY | ||
45 | bool "Verify JFFS2 write-buffer reads" | ||
46 | depends on JFFS2_FS_WRITEBUFFER | ||
47 | default n | ||
48 | help | ||
49 | This causes JFFS2 to read back every page written through the | ||
50 | write-buffer, and check for errors. | ||
51 | |||
52 | config JFFS2_SUMMARY | ||
53 | bool "JFFS2 summary support (EXPERIMENTAL)" | ||
54 | depends on JFFS2_FS && EXPERIMENTAL | ||
55 | default n | ||
56 | help | ||
57 | This feature makes it possible to use summary information | ||
58 | for faster filesystem mount. | ||
59 | |||
60 | The summary information can be inserted into a filesystem image | ||
61 | by the utility 'sumtool'. | ||
62 | |||
63 | If unsure, say 'N'. | ||
64 | |||
65 | config JFFS2_FS_XATTR | ||
66 | bool "JFFS2 XATTR support (EXPERIMENTAL)" | ||
67 | depends on JFFS2_FS && EXPERIMENTAL | ||
68 | default n | ||
69 | help | ||
70 | Extended attributes are name:value pairs associated with inodes by | ||
71 | the kernel or by users (see the attr(5) manual page, or visit | ||
72 | <http://acl.bestbits.at/> for details). | ||
73 | |||
74 | If unsure, say N. | ||
75 | |||
76 | config JFFS2_FS_POSIX_ACL | ||
77 | bool "JFFS2 POSIX Access Control Lists" | ||
78 | depends on JFFS2_FS_XATTR | ||
79 | default y | ||
80 | select FS_POSIX_ACL | ||
81 | help | ||
82 | Posix Access Control Lists (ACLs) support permissions for users and | ||
83 | groups beyond the owner/group/world scheme. | ||
84 | |||
85 | To learn more about Access Control Lists, visit the Posix ACLs for | ||
86 | Linux website <http://acl.bestbits.at/>. | ||
87 | |||
88 | If you don't know what Access Control Lists are, say N | ||
89 | |||
90 | config JFFS2_FS_SECURITY | ||
91 | bool "JFFS2 Security Labels" | ||
92 | depends on JFFS2_FS_XATTR | ||
93 | default y | ||
94 | help | ||
95 | Security labels support alternative access control models | ||
96 | implemented by security modules like SELinux. This option | ||
97 | enables an extended attribute handler for file security | ||
98 | labels in the jffs2 filesystem. | ||
99 | |||
100 | If you are not using a security module that requires using | ||
101 | extended attributes for file security labels, say N. | ||
102 | |||
103 | config JFFS2_COMPRESSION_OPTIONS | ||
104 | bool "Advanced compression options for JFFS2" | ||
105 | depends on JFFS2_FS | ||
106 | default n | ||
107 | help | ||
108 | Enabling this option allows you to explicitly choose which | ||
109 | compression modules, if any, are enabled in JFFS2. Removing | ||
110 | compressors can mean you cannot read existing file systems, | ||
111 | and enabling experimental compressors can mean that you | ||
112 | write a file system which cannot be read by a standard kernel. | ||
113 | |||
114 | If unsure, you should _definitely_ say 'N'. | ||
115 | |||
116 | config JFFS2_ZLIB | ||
117 | bool "JFFS2 ZLIB compression support" if JFFS2_COMPRESSION_OPTIONS | ||
118 | select ZLIB_INFLATE | ||
119 | select ZLIB_DEFLATE | ||
120 | depends on JFFS2_FS | ||
121 | default y | ||
122 | help | ||
123 | Zlib is designed to be a free, general-purpose, legally unencumbered, | ||
124 | lossless data-compression library for use on virtually any computer | ||
125 | hardware and operating system. See <http://www.gzip.org/zlib/> for | ||
126 | further information. | ||
127 | |||
128 | Say 'Y' if unsure. | ||
129 | |||
130 | config JFFS2_LZO | ||
131 | bool "JFFS2 LZO compression support" if JFFS2_COMPRESSION_OPTIONS | ||
132 | select LZO_COMPRESS | ||
133 | select LZO_DECOMPRESS | ||
134 | depends on JFFS2_FS | ||
135 | default n | ||
136 | help | ||
137 | minilzo-based compression. Generally works better than Zlib. | ||
138 | |||
139 | This feature was added in July, 2007. Say 'N' if you need | ||
140 | compatibility with older bootloaders or kernels. | ||
141 | |||
142 | config JFFS2_RTIME | ||
143 | bool "JFFS2 RTIME compression support" if JFFS2_COMPRESSION_OPTIONS | ||
144 | depends on JFFS2_FS | ||
145 | default y | ||
146 | help | ||
147 | Rtime does manage to recompress already-compressed data. Say 'Y' if unsure. | ||
148 | |||
149 | config JFFS2_RUBIN | ||
150 | bool "JFFS2 RUBIN compression support" if JFFS2_COMPRESSION_OPTIONS | ||
151 | depends on JFFS2_FS | ||
152 | default n | ||
153 | help | ||
154 | RUBINMIPS and DYNRUBIN compressors. Say 'N' if unsure. | ||
155 | |||
156 | choice | ||
157 | prompt "JFFS2 default compression mode" if JFFS2_COMPRESSION_OPTIONS | ||
158 | default JFFS2_CMODE_PRIORITY | ||
159 | depends on JFFS2_FS | ||
160 | help | ||
161 | You can set here the default compression mode of JFFS2 from | ||
162 | the available compression modes. Don't touch if unsure. | ||
163 | |||
164 | config JFFS2_CMODE_NONE | ||
165 | bool "no compression" | ||
166 | help | ||
167 | Uses no compression. | ||
168 | |||
169 | config JFFS2_CMODE_PRIORITY | ||
170 | bool "priority" | ||
171 | help | ||
172 | Tries the compressors in a predefined order and chooses the first | ||
173 | successful one. | ||
174 | |||
175 | config JFFS2_CMODE_SIZE | ||
176 | bool "size (EXPERIMENTAL)" | ||
177 | help | ||
178 | Tries all compressors and chooses the one which has the smallest | ||
179 | result. | ||
180 | |||
181 | config JFFS2_CMODE_FAVOURLZO | ||
182 | bool "Favour LZO" | ||
183 | help | ||
184 | Tries all compressors and chooses the one which has the smallest | ||
185 | result but gives some preference to LZO (which has faster | ||
186 | decompression) at the expense of size. | ||
187 | |||
188 | endchoice | ||
diff --git a/fs/jffs2/compr.c b/fs/jffs2/compr.c index 86739ee53b37..f25e70c1b51c 100644 --- a/fs/jffs2/compr.c +++ b/fs/jffs2/compr.c | |||
@@ -53,8 +53,8 @@ static int jffs2_is_best_compression(struct jffs2_compressor *this, | |||
53 | } | 53 | } |
54 | 54 | ||
55 | /* jffs2_compress: | 55 | /* jffs2_compress: |
56 | * @data: Pointer to uncompressed data | 56 | * @data_in: Pointer to uncompressed data |
57 | * @cdata: Pointer to returned pointer to buffer for compressed data | 57 | * @cpage_out: Pointer to returned pointer to buffer for compressed data |
58 | * @datalen: On entry, holds the amount of data available for compression. | 58 | * @datalen: On entry, holds the amount of data available for compression. |
59 | * On exit, expected to hold the amount of data actually compressed. | 59 | * On exit, expected to hold the amount of data actually compressed. |
60 | * @cdatalen: On entry, holds the amount of space available for compressed | 60 | * @cdatalen: On entry, holds the amount of space available for compressed |
diff --git a/fs/jffs2/dir.c b/fs/jffs2/dir.c index cd219ef55254..b1aaae823a52 100644 --- a/fs/jffs2/dir.c +++ b/fs/jffs2/dir.c | |||
@@ -311,7 +311,7 @@ static int jffs2_symlink (struct inode *dir_i, struct dentry *dentry, const char | |||
311 | /* FIXME: If you care. We'd need to use frags for the target | 311 | /* FIXME: If you care. We'd need to use frags for the target |
312 | if it grows much more than this */ | 312 | if it grows much more than this */ |
313 | if (targetlen > 254) | 313 | if (targetlen > 254) |
314 | return -EINVAL; | 314 | return -ENAMETOOLONG; |
315 | 315 | ||
316 | ri = jffs2_alloc_raw_inode(); | 316 | ri = jffs2_alloc_raw_inode(); |
317 | 317 | ||
diff --git a/fs/jffs2/erase.c b/fs/jffs2/erase.c index dddb2a6c9e2c..259461b910af 100644 --- a/fs/jffs2/erase.c +++ b/fs/jffs2/erase.c | |||
@@ -68,7 +68,7 @@ static void jffs2_erase_block(struct jffs2_sb_info *c, | |||
68 | instr->len = c->sector_size; | 68 | instr->len = c->sector_size; |
69 | instr->callback = jffs2_erase_callback; | 69 | instr->callback = jffs2_erase_callback; |
70 | instr->priv = (unsigned long)(&instr[1]); | 70 | instr->priv = (unsigned long)(&instr[1]); |
71 | instr->fail_addr = 0xffffffff; | 71 | instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; |
72 | 72 | ||
73 | ((struct erase_priv_struct *)instr->priv)->jeb = jeb; | 73 | ((struct erase_priv_struct *)instr->priv)->jeb = jeb; |
74 | ((struct erase_priv_struct *)instr->priv)->c = c; | 74 | ((struct erase_priv_struct *)instr->priv)->c = c; |
@@ -175,7 +175,7 @@ static void jffs2_erase_failed(struct jffs2_sb_info *c, struct jffs2_eraseblock | |||
175 | { | 175 | { |
176 | /* For NAND, if the failure did not occur at the device level for a | 176 | /* For NAND, if the failure did not occur at the device level for a |
177 | specific physical page, don't bother updating the bad block table. */ | 177 | specific physical page, don't bother updating the bad block table. */ |
178 | if (jffs2_cleanmarker_oob(c) && (bad_offset != 0xffffffff)) { | 178 | if (jffs2_cleanmarker_oob(c) && (bad_offset != MTD_FAIL_ADDR_UNKNOWN)) { |
179 | /* We had a device-level failure to erase. Let's see if we've | 179 | /* We had a device-level failure to erase. Let's see if we've |
180 | failed too many times. */ | 180 | failed too many times. */ |
181 | if (!jffs2_write_nand_badblock(c, jeb, bad_offset)) { | 181 | if (!jffs2_write_nand_badblock(c, jeb, bad_offset)) { |
diff --git a/fs/jffs2/fs.c b/fs/jffs2/fs.c index 086c43830221..249305d65d5b 100644 --- a/fs/jffs2/fs.c +++ b/fs/jffs2/fs.c | |||
@@ -207,6 +207,8 @@ int jffs2_statfs(struct dentry *dentry, struct kstatfs *buf) | |||
207 | buf->f_files = 0; | 207 | buf->f_files = 0; |
208 | buf->f_ffree = 0; | 208 | buf->f_ffree = 0; |
209 | buf->f_namelen = JFFS2_MAX_NAME_LEN; | 209 | buf->f_namelen = JFFS2_MAX_NAME_LEN; |
210 | buf->f_fsid.val[0] = JFFS2_SUPER_MAGIC; | ||
211 | buf->f_fsid.val[1] = c->mtd->index; | ||
210 | 212 | ||
211 | spin_lock(&c->erase_completion_lock); | 213 | spin_lock(&c->erase_completion_lock); |
212 | avail = c->dirty_size + c->free_size; | 214 | avail = c->dirty_size + c->free_size; |
@@ -440,14 +442,14 @@ struct inode *jffs2_new_inode (struct inode *dir_i, int mode, struct jffs2_raw_i | |||
440 | 442 | ||
441 | memset(ri, 0, sizeof(*ri)); | 443 | memset(ri, 0, sizeof(*ri)); |
442 | /* Set OS-specific defaults for new inodes */ | 444 | /* Set OS-specific defaults for new inodes */ |
443 | ri->uid = cpu_to_je16(current->fsuid); | 445 | ri->uid = cpu_to_je16(current_fsuid()); |
444 | 446 | ||
445 | if (dir_i->i_mode & S_ISGID) { | 447 | if (dir_i->i_mode & S_ISGID) { |
446 | ri->gid = cpu_to_je16(dir_i->i_gid); | 448 | ri->gid = cpu_to_je16(dir_i->i_gid); |
447 | if (S_ISDIR(mode)) | 449 | if (S_ISDIR(mode)) |
448 | mode |= S_ISGID; | 450 | mode |= S_ISGID; |
449 | } else { | 451 | } else { |
450 | ri->gid = cpu_to_je16(current->fsgid); | 452 | ri->gid = cpu_to_je16(current_fsgid()); |
451 | } | 453 | } |
452 | 454 | ||
453 | /* POSIX ACLs have to be processed now, at least partly. | 455 | /* POSIX ACLs have to be processed now, at least partly. |
diff --git a/fs/jffs2/nodemgmt.c b/fs/jffs2/nodemgmt.c index a9bf9603c1ba..0875b60b4bf7 100644 --- a/fs/jffs2/nodemgmt.c +++ b/fs/jffs2/nodemgmt.c | |||
@@ -261,6 +261,10 @@ static int jffs2_find_nextblock(struct jffs2_sb_info *c) | |||
261 | 261 | ||
262 | jffs2_sum_reset_collected(c->summary); /* reset collected summary */ | 262 | jffs2_sum_reset_collected(c->summary); /* reset collected summary */ |
263 | 263 | ||
264 | /* adjust write buffer offset, else we get a non contiguous write bug */ | ||
265 | if (!(c->wbuf_ofs % c->sector_size) && !c->wbuf_len) | ||
266 | c->wbuf_ofs = 0xffffffff; | ||
267 | |||
264 | D1(printk(KERN_DEBUG "jffs2_find_nextblock(): new nextblock = 0x%08x\n", c->nextblock->offset)); | 268 | D1(printk(KERN_DEBUG "jffs2_find_nextblock(): new nextblock = 0x%08x\n", c->nextblock->offset)); |
265 | 269 | ||
266 | return 0; | 270 | return 0; |
diff --git a/fs/jffs2/wbuf.c b/fs/jffs2/wbuf.c index 0e78b00035e4..d9a721e6db70 100644 --- a/fs/jffs2/wbuf.c +++ b/fs/jffs2/wbuf.c | |||
@@ -679,10 +679,7 @@ static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad) | |||
679 | 679 | ||
680 | memset(c->wbuf,0xff,c->wbuf_pagesize); | 680 | memset(c->wbuf,0xff,c->wbuf_pagesize); |
681 | /* adjust write buffer offset, else we get a non contiguous write bug */ | 681 | /* adjust write buffer offset, else we get a non contiguous write bug */ |
682 | if (SECTOR_ADDR(c->wbuf_ofs) == SECTOR_ADDR(c->wbuf_ofs+c->wbuf_pagesize)) | 682 | c->wbuf_ofs += c->wbuf_pagesize; |
683 | c->wbuf_ofs += c->wbuf_pagesize; | ||
684 | else | ||
685 | c->wbuf_ofs = 0xffffffff; | ||
686 | c->wbuf_len = 0; | 683 | c->wbuf_len = 0; |
687 | return 0; | 684 | return 0; |
688 | } | 685 | } |
diff --git a/include/linux/mtd/cfi.h b/include/linux/mtd/cfi.h index d6fb115f5a07..ee5124ec319e 100644 --- a/include/linux/mtd/cfi.h +++ b/include/linux/mtd/cfi.h | |||
@@ -12,6 +12,7 @@ | |||
12 | #include <linux/mtd/flashchip.h> | 12 | #include <linux/mtd/flashchip.h> |
13 | #include <linux/mtd/map.h> | 13 | #include <linux/mtd/map.h> |
14 | #include <linux/mtd/cfi_endian.h> | 14 | #include <linux/mtd/cfi_endian.h> |
15 | #include <linux/mtd/xip.h> | ||
15 | 16 | ||
16 | #ifdef CONFIG_MTD_CFI_I1 | 17 | #ifdef CONFIG_MTD_CFI_I1 |
17 | #define cfi_interleave(cfi) 1 | 18 | #define cfi_interleave(cfi) 1 |
@@ -430,7 +431,6 @@ static inline uint32_t cfi_send_gen_cmd(u_char cmd, uint32_t cmd_addr, uint32_t | |||
430 | { | 431 | { |
431 | map_word val; | 432 | map_word val; |
432 | uint32_t addr = base + cfi_build_cmd_addr(cmd_addr, cfi_interleave(cfi), type); | 433 | uint32_t addr = base + cfi_build_cmd_addr(cmd_addr, cfi_interleave(cfi), type); |
433 | |||
434 | val = cfi_build_cmd(cmd, map, cfi); | 434 | val = cfi_build_cmd(cmd, map, cfi); |
435 | 435 | ||
436 | if (prev_val) | 436 | if (prev_val) |
@@ -483,6 +483,13 @@ static inline void cfi_udelay(int us) | |||
483 | } | 483 | } |
484 | } | 484 | } |
485 | 485 | ||
486 | int __xipram cfi_qry_present(struct map_info *map, __u32 base, | ||
487 | struct cfi_private *cfi); | ||
488 | int __xipram cfi_qry_mode_on(uint32_t base, struct map_info *map, | ||
489 | struct cfi_private *cfi); | ||
490 | void __xipram cfi_qry_mode_off(uint32_t base, struct map_info *map, | ||
491 | struct cfi_private *cfi); | ||
492 | |||
486 | struct cfi_extquery *cfi_read_pri(struct map_info *map, uint16_t adr, uint16_t size, | 493 | struct cfi_extquery *cfi_read_pri(struct map_info *map, uint16_t adr, uint16_t size, |
487 | const char* name); | 494 | const char* name); |
488 | struct cfi_fixup { | 495 | struct cfi_fixup { |
diff --git a/include/linux/mtd/flashchip.h b/include/linux/mtd/flashchip.h index 08dd131301c1..d4f38c5fd44e 100644 --- a/include/linux/mtd/flashchip.h +++ b/include/linux/mtd/flashchip.h | |||
@@ -73,6 +73,10 @@ struct flchip { | |||
73 | int buffer_write_time; | 73 | int buffer_write_time; |
74 | int erase_time; | 74 | int erase_time; |
75 | 75 | ||
76 | int word_write_time_max; | ||
77 | int buffer_write_time_max; | ||
78 | int erase_time_max; | ||
79 | |||
76 | void *priv; | 80 | void *priv; |
77 | }; | 81 | }; |
78 | 82 | ||
diff --git a/include/linux/mtd/mtd.h b/include/linux/mtd/mtd.h index 922636548558..eae26bb6430a 100644 --- a/include/linux/mtd/mtd.h +++ b/include/linux/mtd/mtd.h | |||
@@ -25,8 +25,10 @@ | |||
25 | #define MTD_ERASE_DONE 0x08 | 25 | #define MTD_ERASE_DONE 0x08 |
26 | #define MTD_ERASE_FAILED 0x10 | 26 | #define MTD_ERASE_FAILED 0x10 |
27 | 27 | ||
28 | #define MTD_FAIL_ADDR_UNKNOWN 0xffffffff | ||
29 | |||
28 | /* If the erase fails, fail_addr might indicate exactly which block failed. If | 30 | /* If the erase fails, fail_addr might indicate exactly which block failed. If |
29 | fail_addr = 0xffffffff, the failure was not at the device level or was not | 31 | fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level or was not |
30 | specific to any particular block. */ | 32 | specific to any particular block. */ |
31 | struct erase_info { | 33 | struct erase_info { |
32 | struct mtd_info *mtd; | 34 | struct mtd_info *mtd; |
diff --git a/include/linux/mtd/nand-gpio.h b/include/linux/mtd/nand-gpio.h new file mode 100644 index 000000000000..51534e50f7fc --- /dev/null +++ b/include/linux/mtd/nand-gpio.h | |||
@@ -0,0 +1,19 @@ | |||
1 | #ifndef __LINUX_MTD_NAND_GPIO_H | ||
2 | #define __LINUX_MTD_NAND_GPIO_H | ||
3 | |||
4 | #include <linux/mtd/nand.h> | ||
5 | |||
6 | struct gpio_nand_platdata { | ||
7 | int gpio_nce; | ||
8 | int gpio_nwp; | ||
9 | int gpio_cle; | ||
10 | int gpio_ale; | ||
11 | int gpio_rdy; | ||
12 | void (*adjust_parts)(struct gpio_nand_platdata *, size_t); | ||
13 | struct mtd_partition *parts; | ||
14 | unsigned int num_parts; | ||
15 | unsigned int options; | ||
16 | int chip_delay; | ||
17 | }; | ||
18 | |||
19 | #endif | ||
diff --git a/include/linux/mtd/nand.h b/include/linux/mtd/nand.h index 81774e5facf4..733d3f3b4eb8 100644 --- a/include/linux/mtd/nand.h +++ b/include/linux/mtd/nand.h | |||
@@ -248,6 +248,7 @@ struct nand_hw_control { | |||
248 | * @read_page_raw: function to read a raw page without ECC | 248 | * @read_page_raw: function to read a raw page without ECC |
249 | * @write_page_raw: function to write a raw page without ECC | 249 | * @write_page_raw: function to write a raw page without ECC |
250 | * @read_page: function to read a page according to the ecc generator requirements | 250 | * @read_page: function to read a page according to the ecc generator requirements |
251 | * @read_subpage: function to read parts of the page covered by ECC. | ||
251 | * @write_page: function to write a page according to the ecc generator requirements | 252 | * @write_page: function to write a page according to the ecc generator requirements |
252 | * @read_oob: function to read chip OOB data | 253 | * @read_oob: function to read chip OOB data |
253 | * @write_oob: function to write chip OOB data | 254 | * @write_oob: function to write chip OOB data |
diff --git a/include/linux/mtd/onenand_regs.h b/include/linux/mtd/onenand_regs.h index d1b310c92eb4..0c6bbe28f38c 100644 --- a/include/linux/mtd/onenand_regs.h +++ b/include/linux/mtd/onenand_regs.h | |||
@@ -152,6 +152,8 @@ | |||
152 | #define ONENAND_SYS_CFG1_INT (1 << 6) | 152 | #define ONENAND_SYS_CFG1_INT (1 << 6) |
153 | #define ONENAND_SYS_CFG1_IOBE (1 << 5) | 153 | #define ONENAND_SYS_CFG1_IOBE (1 << 5) |
154 | #define ONENAND_SYS_CFG1_RDY_CONF (1 << 4) | 154 | #define ONENAND_SYS_CFG1_RDY_CONF (1 << 4) |
155 | #define ONENAND_SYS_CFG1_HF (1 << 2) | ||
156 | #define ONENAND_SYS_CFG1_SYNC_WRITE (1 << 1) | ||
155 | 157 | ||
156 | /* | 158 | /* |
157 | * Controller Status Register F240h (R) | 159 | * Controller Status Register F240h (R) |
diff --git a/include/linux/mtd/partitions.h b/include/linux/mtd/partitions.h index 5014f7a9f5df..c92b4d439609 100644 --- a/include/linux/mtd/partitions.h +++ b/include/linux/mtd/partitions.h | |||
@@ -73,7 +73,6 @@ struct device; | |||
73 | struct device_node; | 73 | struct device_node; |
74 | 74 | ||
75 | int __devinit of_mtd_parse_partitions(struct device *dev, | 75 | int __devinit of_mtd_parse_partitions(struct device *dev, |
76 | struct mtd_info *mtd, | ||
77 | struct device_node *node, | 76 | struct device_node *node, |
78 | struct mtd_partition **pparts); | 77 | struct mtd_partition **pparts); |
79 | 78 | ||
diff --git a/include/linux/mtd/sh_flctl.h b/include/linux/mtd/sh_flctl.h new file mode 100644 index 000000000000..e77c1cea404d --- /dev/null +++ b/include/linux/mtd/sh_flctl.h | |||
@@ -0,0 +1,125 @@ | |||
1 | /* | ||
2 | * SuperH FLCTL nand controller | ||
3 | * | ||
4 | * Copyright © 2008 Renesas Solutions Corp. | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify | ||
7 | * it under the terms of the GNU General Public License as published by | ||
8 | * the Free Software Foundation; version 2 of the License. | ||
9 | * | ||
10 | * This program is distributed in the hope that it will be useful, | ||
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
13 | * GNU General Public License for more details. | ||
14 | * | ||
15 | * You should have received a copy of the GNU General Public License | ||
16 | * along with this program; if not, write to the Free Software | ||
17 | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | ||
18 | */ | ||
19 | |||
20 | #ifndef __SH_FLCTL_H__ | ||
21 | #define __SH_FLCTL_H__ | ||
22 | |||
23 | #include <linux/mtd/mtd.h> | ||
24 | #include <linux/mtd/nand.h> | ||
25 | #include <linux/mtd/partitions.h> | ||
26 | |||
27 | /* FLCTL registers */ | ||
28 | #define FLCMNCR(f) (f->reg + 0x0) | ||
29 | #define FLCMDCR(f) (f->reg + 0x4) | ||
30 | #define FLCMCDR(f) (f->reg + 0x8) | ||
31 | #define FLADR(f) (f->reg + 0xC) | ||
32 | #define FLADR2(f) (f->reg + 0x3C) | ||
33 | #define FLDATAR(f) (f->reg + 0x10) | ||
34 | #define FLDTCNTR(f) (f->reg + 0x14) | ||
35 | #define FLINTDMACR(f) (f->reg + 0x18) | ||
36 | #define FLBSYTMR(f) (f->reg + 0x1C) | ||
37 | #define FLBSYCNT(f) (f->reg + 0x20) | ||
38 | #define FLDTFIFO(f) (f->reg + 0x24) | ||
39 | #define FLECFIFO(f) (f->reg + 0x28) | ||
40 | #define FLTRCR(f) (f->reg + 0x2C) | ||
41 | #define FL4ECCRESULT0(f) (f->reg + 0x80) | ||
42 | #define FL4ECCRESULT1(f) (f->reg + 0x84) | ||
43 | #define FL4ECCRESULT2(f) (f->reg + 0x88) | ||
44 | #define FL4ECCRESULT3(f) (f->reg + 0x8C) | ||
45 | #define FL4ECCCR(f) (f->reg + 0x90) | ||
46 | #define FL4ECCCNT(f) (f->reg + 0x94) | ||
47 | #define FLERRADR(f) (f->reg + 0x98) | ||
48 | |||
49 | /* FLCMNCR control bits */ | ||
50 | #define ECCPOS2 (0x1 << 25) | ||
51 | #define _4ECCCNTEN (0x1 << 24) | ||
52 | #define _4ECCEN (0x1 << 23) | ||
53 | #define _4ECCCORRECT (0x1 << 22) | ||
54 | #define SNAND_E (0x1 << 18) /* SNAND (0=512 1=2048)*/ | ||
55 | #define QTSEL_E (0x1 << 17) | ||
56 | #define ENDIAN (0x1 << 16) /* 1 = little endian */ | ||
57 | #define FCKSEL_E (0x1 << 15) | ||
58 | #define ECCPOS_00 (0x00 << 12) | ||
59 | #define ECCPOS_01 (0x01 << 12) | ||
60 | #define ECCPOS_02 (0x02 << 12) | ||
61 | #define ACM_SACCES_MODE (0x01 << 10) | ||
62 | #define NANWF_E (0x1 << 9) | ||
63 | #define SE_D (0x1 << 8) /* Spare area disable */ | ||
64 | #define CE1_ENABLE (0x1 << 4) /* Chip Enable 1 */ | ||
65 | #define CE0_ENABLE (0x1 << 3) /* Chip Enable 0 */ | ||
66 | #define TYPESEL_SET (0x1 << 0) | ||
67 | |||
68 | /* FLCMDCR control bits */ | ||
69 | #define ADRCNT2_E (0x1 << 31) /* 5byte address enable */ | ||
70 | #define ADRMD_E (0x1 << 26) /* Sector address access */ | ||
71 | #define CDSRC_E (0x1 << 25) /* Data buffer selection */ | ||
72 | #define DOSR_E (0x1 << 24) /* Status read check */ | ||
73 | #define SELRW (0x1 << 21) /* 0:read 1:write */ | ||
74 | #define DOADR_E (0x1 << 20) /* Address stage execute */ | ||
75 | #define ADRCNT_1 (0x00 << 18) /* Address data bytes: 1byte */ | ||
76 | #define ADRCNT_2 (0x01 << 18) /* Address data bytes: 2byte */ | ||
77 | #define ADRCNT_3 (0x02 << 18) /* Address data bytes: 3byte */ | ||
78 | #define ADRCNT_4 (0x03 << 18) /* Address data bytes: 4byte */ | ||
79 | #define DOCMD2_E (0x1 << 17) /* 2nd cmd stage execute */ | ||
80 | #define DOCMD1_E (0x1 << 16) /* 1st cmd stage execute */ | ||
81 | |||
82 | /* FLTRCR control bits */ | ||
83 | #define TRSTRT (0x1 << 0) /* translation start */ | ||
84 | #define TREND (0x1 << 1) /* translation end */ | ||
85 | |||
86 | /* FL4ECCCR control bits */ | ||
87 | #define _4ECCFA (0x1 << 2) /* 4 symbols correct fault */ | ||
88 | #define _4ECCEND (0x1 << 1) /* 4 symbols end */ | ||
89 | #define _4ECCEXST (0x1 << 0) /* 4 symbols exist */ | ||
90 | |||
91 | #define INIT_FL4ECCRESULT_VAL 0x03FF03FF | ||
92 | #define LOOP_TIMEOUT_MAX 0x00010000 | ||
93 | |||
94 | #define mtd_to_flctl(mtd) container_of(mtd, struct sh_flctl, mtd) | ||
95 | |||
96 | struct sh_flctl { | ||
97 | struct mtd_info mtd; | ||
98 | struct nand_chip chip; | ||
99 | void __iomem *reg; | ||
100 | |||
101 | uint8_t done_buff[2048 + 64]; /* max size 2048 + 64 */ | ||
102 | int read_bytes; | ||
103 | int index; | ||
104 | int seqin_column; /* column in SEQIN cmd */ | ||
105 | int seqin_page_addr; /* page_addr in SEQIN cmd */ | ||
106 | uint32_t seqin_read_cmd; /* read cmd in SEQIN cmd */ | ||
107 | int erase1_page_addr; /* page_addr in ERASE1 cmd */ | ||
108 | uint32_t erase_ADRCNT; /* bits of FLCMDCR in ERASE1 cmd */ | ||
109 | uint32_t rw_ADRCNT; /* bits of FLCMDCR in READ WRITE cmd */ | ||
110 | |||
111 | int hwecc_cant_correct[4]; | ||
112 | |||
113 | unsigned page_size:1; /* NAND page size (0 = 512, 1 = 2048) */ | ||
114 | unsigned hwecc:1; /* Hardware ECC (0 = disabled, 1 = enabled) */ | ||
115 | }; | ||
116 | |||
117 | struct sh_flctl_platform_data { | ||
118 | struct mtd_partition *parts; | ||
119 | int nr_parts; | ||
120 | unsigned long flcmncr_val; | ||
121 | |||
122 | unsigned has_hwecc:1; | ||
123 | }; | ||
124 | |||
125 | #endif /* __SH_FLCTL_H__ */ | ||
diff --git a/include/linux/pci.h b/include/linux/pci.h index 98dc6243a706..acf8f24037cd 100644 --- a/include/linux/pci.h +++ b/include/linux/pci.h | |||
@@ -631,6 +631,8 @@ int __must_check pci_assign_resource(struct pci_dev *dev, int i); | |||
631 | int pci_select_bars(struct pci_dev *dev, unsigned long flags); | 631 | int pci_select_bars(struct pci_dev *dev, unsigned long flags); |
632 | 632 | ||
633 | /* ROM control related routines */ | 633 | /* ROM control related routines */ |
634 | int pci_enable_rom(struct pci_dev *pdev); | ||
635 | void pci_disable_rom(struct pci_dev *pdev); | ||
634 | void __iomem __must_check *pci_map_rom(struct pci_dev *pdev, size_t *size); | 636 | void __iomem __must_check *pci_map_rom(struct pci_dev *pdev, size_t *size); |
635 | void pci_unmap_rom(struct pci_dev *pdev, void __iomem *rom); | 637 | void pci_unmap_rom(struct pci_dev *pdev, void __iomem *rom); |
636 | size_t pci_get_rom_size(void __iomem *rom, size_t size); | 638 | size_t pci_get_rom_size(void __iomem *rom, size_t size); |