diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2012-01-06 11:33:28 -0500 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2012-01-06 11:44:54 -0500 |
commit | 0db49b72bce26341274b74fd968501489a361ae3 (patch) | |
tree | cdb076827aefb38d719d4c42f8ef291c36072fa8 | |
parent | 35b740e4662ef386f0c60e1b60aaf5b44db9914c (diff) | |
parent | 1ac9bc6943edf7d181b4b1cc734981350d4f6bae (diff) |
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (40 commits)
sched/tracing: Add a new tracepoint for sleeptime
sched: Disable scheduler warnings during oopses
sched: Fix cgroup movement of waking process
sched: Fix cgroup movement of newly created process
sched: Fix cgroup movement of forking process
sched: Remove cfs bandwidth period check in tg_set_cfs_period()
sched: Fix load-balance lock-breaking
sched: Replace all_pinned with a generic flags field
sched: Only queue remote wakeups when crossing cache boundaries
sched: Add missing rcu_dereference() around ->real_parent usage
[S390] fix cputime overflow in uptime_proc_show
[S390] cputime: add sparse checking and cleanup
sched: Mark parent and real_parent as __rcu
sched, nohz: Fix missing RCU read lock
sched, nohz: Set the NOHZ_BALANCE_KICK flag for idle load balancer
sched, nohz: Fix the idle cpu check in nohz_idle_balance
sched: Use jump_labels for sched_feat
sched/accounting: Fix parameter passing in task_group_account_field
sched/accounting: Fix user/system tick double accounting
sched/accounting: Re-use scheduler statistics for the root cgroup
...
Fix up conflicts in
- arch/ia64/include/asm/cputime.h, include/asm-generic/cputime.h
usecs_to_cputime64() vs the sparse cleanups
- kernel/sched/fair.c, kernel/time/tick-sched.c
scheduler changes in multiple branches
-rw-r--r-- | arch/ia64/include/asm/cputime.h | 72 | ||||
-rw-r--r-- | arch/powerpc/include/asm/cputime.h | 70 | ||||
-rw-r--r-- | arch/s390/appldata/appldata_os.c | 16 | ||||
-rw-r--r-- | arch/s390/include/asm/cputime.h | 140 | ||||
-rw-r--r-- | arch/x86/include/asm/i387.h | 2 | ||||
-rw-r--r-- | drivers/cpufreq/cpufreq_conservative.c | 50 | ||||
-rw-r--r-- | drivers/cpufreq/cpufreq_ondemand.c | 54 | ||||
-rw-r--r-- | drivers/cpufreq/cpufreq_stats.c | 5 | ||||
-rw-r--r-- | drivers/macintosh/rack-meter.c | 14 | ||||
-rw-r--r-- | fs/proc/array.c | 8 | ||||
-rw-r--r-- | fs/proc/stat.c | 63 | ||||
-rw-r--r-- | fs/proc/uptime.c | 11 | ||||
-rw-r--r-- | include/asm-generic/cputime.h | 65 | ||||
-rw-r--r-- | include/linux/kernel_stat.h | 36 | ||||
-rw-r--r-- | include/linux/latencytop.h | 3 | ||||
-rw-r--r-- | include/linux/sched.h | 23 | ||||
-rw-r--r-- | include/trace/events/sched.h | 57 | ||||
-rw-r--r-- | kernel/Makefile | 20 | ||||
-rw-r--r-- | kernel/acct.c | 4 | ||||
-rw-r--r-- | kernel/cpu.c | 3 | ||||
-rw-r--r-- | kernel/exit.c | 22 | ||||
-rw-r--r-- | kernel/fork.c | 14 | ||||
-rw-r--r-- | kernel/itimer.c | 15 | ||||
-rw-r--r-- | kernel/posix-cpu-timers.c | 132 | ||||
-rw-r--r-- | kernel/sched/Makefile | 20 | ||||
-rw-r--r-- | kernel/sched/auto_group.c (renamed from kernel/sched_autogroup.c) | 33 | ||||
-rw-r--r-- | kernel/sched/auto_group.h (renamed from kernel/sched_autogroup.h) | 26 | ||||
-rw-r--r-- | kernel/sched/clock.c (renamed from kernel/sched_clock.c) | 0 | ||||
-rw-r--r-- | kernel/sched/core.c (renamed from kernel/sched.c) | 2187 | ||||
-rw-r--r-- | kernel/sched/cpupri.c (renamed from kernel/sched_cpupri.c) | 4 | ||||
-rw-r--r-- | kernel/sched/cpupri.h (renamed from kernel/sched_cpupri.h) | 0 | ||||
-rw-r--r-- | kernel/sched/debug.c (renamed from kernel/sched_debug.c) | 6 | ||||
-rw-r--r-- | kernel/sched/fair.c (renamed from kernel/sched_fair.c) | 1000 | ||||
-rw-r--r-- | kernel/sched/features.h (renamed from kernel/sched_features.h) | 30 | ||||
-rw-r--r-- | kernel/sched/idle_task.c (renamed from kernel/sched_idletask.c) | 4 | ||||
-rw-r--r-- | kernel/sched/rt.c (renamed from kernel/sched_rt.c) | 218 | ||||
-rw-r--r-- | kernel/sched/sched.h | 1166 | ||||
-rw-r--r-- | kernel/sched/stats.c | 111 | ||||
-rw-r--r-- | kernel/sched/stats.h (renamed from kernel/sched_stats.h) | 109 | ||||
-rw-r--r-- | kernel/sched/stop_task.c (renamed from kernel/sched_stoptask.c) | 4 | ||||
-rw-r--r-- | kernel/signal.c | 6 | ||||
-rw-r--r-- | kernel/sys.c | 6 | ||||
-rw-r--r-- | kernel/time/tick-sched.c | 8 | ||||
-rw-r--r-- | kernel/tsacct.c | 2 |
44 files changed, 3049 insertions, 2790 deletions
diff --git a/arch/ia64/include/asm/cputime.h b/arch/ia64/include/asm/cputime.h index 5a274af31b2b..3deac956d325 100644 --- a/arch/ia64/include/asm/cputime.h +++ b/arch/ia64/include/asm/cputime.h | |||
@@ -26,60 +26,53 @@ | |||
26 | #include <linux/jiffies.h> | 26 | #include <linux/jiffies.h> |
27 | #include <asm/processor.h> | 27 | #include <asm/processor.h> |
28 | 28 | ||
29 | typedef u64 cputime_t; | 29 | typedef u64 __nocast cputime_t; |
30 | typedef u64 cputime64_t; | 30 | typedef u64 __nocast cputime64_t; |
31 | 31 | ||
32 | #define cputime_zero ((cputime_t)0) | ||
33 | #define cputime_one_jiffy jiffies_to_cputime(1) | 32 | #define cputime_one_jiffy jiffies_to_cputime(1) |
34 | #define cputime_max ((~((cputime_t)0) >> 1) - 1) | ||
35 | #define cputime_add(__a, __b) ((__a) + (__b)) | ||
36 | #define cputime_sub(__a, __b) ((__a) - (__b)) | ||
37 | #define cputime_div(__a, __n) ((__a) / (__n)) | ||
38 | #define cputime_halve(__a) ((__a) >> 1) | ||
39 | #define cputime_eq(__a, __b) ((__a) == (__b)) | ||
40 | #define cputime_gt(__a, __b) ((__a) > (__b)) | ||
41 | #define cputime_ge(__a, __b) ((__a) >= (__b)) | ||
42 | #define cputime_lt(__a, __b) ((__a) < (__b)) | ||
43 | #define cputime_le(__a, __b) ((__a) <= (__b)) | ||
44 | |||
45 | #define cputime64_zero ((cputime64_t)0) | ||
46 | #define cputime64_add(__a, __b) ((__a) + (__b)) | ||
47 | #define cputime64_sub(__a, __b) ((__a) - (__b)) | ||
48 | #define cputime_to_cputime64(__ct) (__ct) | ||
49 | 33 | ||
50 | /* | 34 | /* |
51 | * Convert cputime <-> jiffies (HZ) | 35 | * Convert cputime <-> jiffies (HZ) |
52 | */ | 36 | */ |
53 | #define cputime_to_jiffies(__ct) ((__ct) / (NSEC_PER_SEC / HZ)) | 37 | #define cputime_to_jiffies(__ct) \ |
54 | #define jiffies_to_cputime(__jif) ((__jif) * (NSEC_PER_SEC / HZ)) | 38 | ((__force u64)(__ct) / (NSEC_PER_SEC / HZ)) |
55 | #define cputime64_to_jiffies64(__ct) ((__ct) / (NSEC_PER_SEC / HZ)) | 39 | #define jiffies_to_cputime(__jif) \ |
56 | #define jiffies64_to_cputime64(__jif) ((__jif) * (NSEC_PER_SEC / HZ)) | 40 | (__force cputime_t)((__jif) * (NSEC_PER_SEC / HZ)) |
41 | #define cputime64_to_jiffies64(__ct) \ | ||
42 | ((__force u64)(__ct) / (NSEC_PER_SEC / HZ)) | ||
43 | #define jiffies64_to_cputime64(__jif) \ | ||
44 | (__force cputime64_t)((__jif) * (NSEC_PER_SEC / HZ)) | ||
57 | 45 | ||
58 | /* | 46 | /* |
59 | * Convert cputime <-> microseconds | 47 | * Convert cputime <-> microseconds |
60 | */ | 48 | */ |
61 | #define cputime_to_usecs(__ct) ((__ct) / NSEC_PER_USEC) | 49 | #define cputime_to_usecs(__ct) \ |
62 | #define usecs_to_cputime(__usecs) ((__usecs) * NSEC_PER_USEC) | 50 | ((__force u64)(__ct) / NSEC_PER_USEC) |
63 | #define usecs_to_cputime64(__usecs) usecs_to_cputime(__usecs) | 51 | #define usecs_to_cputime(__usecs) \ |
52 | (__force cputime_t)((__usecs) * NSEC_PER_USEC) | ||
53 | #define usecs_to_cputime64(__usecs) \ | ||
54 | (__force cputime64_t)((__usecs) * NSEC_PER_USEC) | ||
64 | 55 | ||
65 | /* | 56 | /* |
66 | * Convert cputime <-> seconds | 57 | * Convert cputime <-> seconds |
67 | */ | 58 | */ |
68 | #define cputime_to_secs(__ct) ((__ct) / NSEC_PER_SEC) | 59 | #define cputime_to_secs(__ct) \ |
69 | #define secs_to_cputime(__secs) ((__secs) * NSEC_PER_SEC) | 60 | ((__force u64)(__ct) / NSEC_PER_SEC) |
61 | #define secs_to_cputime(__secs) \ | ||
62 | (__force cputime_t)((__secs) * NSEC_PER_SEC) | ||
70 | 63 | ||
71 | /* | 64 | /* |
72 | * Convert cputime <-> timespec (nsec) | 65 | * Convert cputime <-> timespec (nsec) |
73 | */ | 66 | */ |
74 | static inline cputime_t timespec_to_cputime(const struct timespec *val) | 67 | static inline cputime_t timespec_to_cputime(const struct timespec *val) |
75 | { | 68 | { |
76 | cputime_t ret = val->tv_sec * NSEC_PER_SEC; | 69 | u64 ret = val->tv_sec * NSEC_PER_SEC + val->tv_nsec; |
77 | return (ret + val->tv_nsec); | 70 | return (__force cputime_t) ret; |
78 | } | 71 | } |
79 | static inline void cputime_to_timespec(const cputime_t ct, struct timespec *val) | 72 | static inline void cputime_to_timespec(const cputime_t ct, struct timespec *val) |
80 | { | 73 | { |
81 | val->tv_sec = ct / NSEC_PER_SEC; | 74 | val->tv_sec = (__force u64) ct / NSEC_PER_SEC; |
82 | val->tv_nsec = ct % NSEC_PER_SEC; | 75 | val->tv_nsec = (__force u64) ct % NSEC_PER_SEC; |
83 | } | 76 | } |
84 | 77 | ||
85 | /* | 78 | /* |
@@ -87,25 +80,28 @@ static inline void cputime_to_timespec(const cputime_t ct, struct timespec *val) | |||
87 | */ | 80 | */ |
88 | static inline cputime_t timeval_to_cputime(struct timeval *val) | 81 | static inline cputime_t timeval_to_cputime(struct timeval *val) |
89 | { | 82 | { |
90 | cputime_t ret = val->tv_sec * NSEC_PER_SEC; | 83 | u64 ret = val->tv_sec * NSEC_PER_SEC + val->tv_usec * NSEC_PER_USEC; |
91 | return (ret + val->tv_usec * NSEC_PER_USEC); | 84 | return (__force cputime_t) ret; |
92 | } | 85 | } |
93 | static inline void cputime_to_timeval(const cputime_t ct, struct timeval *val) | 86 | static inline void cputime_to_timeval(const cputime_t ct, struct timeval *val) |
94 | { | 87 | { |
95 | val->tv_sec = ct / NSEC_PER_SEC; | 88 | val->tv_sec = (__force u64) ct / NSEC_PER_SEC; |
96 | val->tv_usec = (ct % NSEC_PER_SEC) / NSEC_PER_USEC; | 89 | val->tv_usec = ((__force u64) ct % NSEC_PER_SEC) / NSEC_PER_USEC; |
97 | } | 90 | } |
98 | 91 | ||
99 | /* | 92 | /* |
100 | * Convert cputime <-> clock (USER_HZ) | 93 | * Convert cputime <-> clock (USER_HZ) |
101 | */ | 94 | */ |
102 | #define cputime_to_clock_t(__ct) ((__ct) / (NSEC_PER_SEC / USER_HZ)) | 95 | #define cputime_to_clock_t(__ct) \ |
103 | #define clock_t_to_cputime(__x) ((__x) * (NSEC_PER_SEC / USER_HZ)) | 96 | ((__force u64)(__ct) / (NSEC_PER_SEC / USER_HZ)) |
97 | #define clock_t_to_cputime(__x) \ | ||
98 | (__force cputime_t)((__x) * (NSEC_PER_SEC / USER_HZ)) | ||
104 | 99 | ||
105 | /* | 100 | /* |
106 | * Convert cputime64 to clock. | 101 | * Convert cputime64 to clock. |
107 | */ | 102 | */ |
108 | #define cputime64_to_clock_t(__ct) cputime_to_clock_t((cputime_t)__ct) | 103 | #define cputime64_to_clock_t(__ct) \ |
104 | cputime_to_clock_t((__force cputime_t)__ct) | ||
109 | 105 | ||
110 | #endif /* CONFIG_VIRT_CPU_ACCOUNTING */ | 106 | #endif /* CONFIG_VIRT_CPU_ACCOUNTING */ |
111 | #endif /* __IA64_CPUTIME_H */ | 107 | #endif /* __IA64_CPUTIME_H */ |
diff --git a/arch/powerpc/include/asm/cputime.h b/arch/powerpc/include/asm/cputime.h index 98b7c4b49c9d..6ec1c380a4d6 100644 --- a/arch/powerpc/include/asm/cputime.h +++ b/arch/powerpc/include/asm/cputime.h | |||
@@ -29,25 +29,8 @@ static inline void setup_cputime_one_jiffy(void) { } | |||
29 | #include <asm/time.h> | 29 | #include <asm/time.h> |
30 | #include <asm/param.h> | 30 | #include <asm/param.h> |
31 | 31 | ||
32 | typedef u64 cputime_t; | 32 | typedef u64 __nocast cputime_t; |
33 | typedef u64 cputime64_t; | 33 | typedef u64 __nocast cputime64_t; |
34 | |||
35 | #define cputime_zero ((cputime_t)0) | ||
36 | #define cputime_max ((~((cputime_t)0) >> 1) - 1) | ||
37 | #define cputime_add(__a, __b) ((__a) + (__b)) | ||
38 | #define cputime_sub(__a, __b) ((__a) - (__b)) | ||
39 | #define cputime_div(__a, __n) ((__a) / (__n)) | ||
40 | #define cputime_halve(__a) ((__a) >> 1) | ||
41 | #define cputime_eq(__a, __b) ((__a) == (__b)) | ||
42 | #define cputime_gt(__a, __b) ((__a) > (__b)) | ||
43 | #define cputime_ge(__a, __b) ((__a) >= (__b)) | ||
44 | #define cputime_lt(__a, __b) ((__a) < (__b)) | ||
45 | #define cputime_le(__a, __b) ((__a) <= (__b)) | ||
46 | |||
47 | #define cputime64_zero ((cputime64_t)0) | ||
48 | #define cputime64_add(__a, __b) ((__a) + (__b)) | ||
49 | #define cputime64_sub(__a, __b) ((__a) - (__b)) | ||
50 | #define cputime_to_cputime64(__ct) (__ct) | ||
51 | 34 | ||
52 | #ifdef __KERNEL__ | 35 | #ifdef __KERNEL__ |
53 | 36 | ||
@@ -65,7 +48,7 @@ DECLARE_PER_CPU(unsigned long, cputime_scaled_last_delta); | |||
65 | 48 | ||
66 | static inline unsigned long cputime_to_jiffies(const cputime_t ct) | 49 | static inline unsigned long cputime_to_jiffies(const cputime_t ct) |
67 | { | 50 | { |
68 | return mulhdu(ct, __cputime_jiffies_factor); | 51 | return mulhdu((__force u64) ct, __cputime_jiffies_factor); |
69 | } | 52 | } |
70 | 53 | ||
71 | /* Estimate the scaled cputime by scaling the real cputime based on | 54 | /* Estimate the scaled cputime by scaling the real cputime based on |
@@ -74,14 +57,15 @@ static inline cputime_t cputime_to_scaled(const cputime_t ct) | |||
74 | { | 57 | { |
75 | if (cpu_has_feature(CPU_FTR_SPURR) && | 58 | if (cpu_has_feature(CPU_FTR_SPURR) && |
76 | __get_cpu_var(cputime_last_delta)) | 59 | __get_cpu_var(cputime_last_delta)) |
77 | return ct * __get_cpu_var(cputime_scaled_last_delta) / | 60 | return (__force u64) ct * |
78 | __get_cpu_var(cputime_last_delta); | 61 | __get_cpu_var(cputime_scaled_last_delta) / |
62 | __get_cpu_var(cputime_last_delta); | ||
79 | return ct; | 63 | return ct; |
80 | } | 64 | } |
81 | 65 | ||
82 | static inline cputime_t jiffies_to_cputime(const unsigned long jif) | 66 | static inline cputime_t jiffies_to_cputime(const unsigned long jif) |
83 | { | 67 | { |
84 | cputime_t ct; | 68 | u64 ct; |
85 | unsigned long sec; | 69 | unsigned long sec; |
86 | 70 | ||
87 | /* have to be a little careful about overflow */ | 71 | /* have to be a little careful about overflow */ |
@@ -93,7 +77,7 @@ static inline cputime_t jiffies_to_cputime(const unsigned long jif) | |||
93 | } | 77 | } |
94 | if (sec) | 78 | if (sec) |
95 | ct += (cputime_t) sec * tb_ticks_per_sec; | 79 | ct += (cputime_t) sec * tb_ticks_per_sec; |
96 | return ct; | 80 | return (__force cputime_t) ct; |
97 | } | 81 | } |
98 | 82 | ||
99 | static inline void setup_cputime_one_jiffy(void) | 83 | static inline void setup_cputime_one_jiffy(void) |
@@ -103,7 +87,7 @@ static inline void setup_cputime_one_jiffy(void) | |||
103 | 87 | ||
104 | static inline cputime64_t jiffies64_to_cputime64(const u64 jif) | 88 | static inline cputime64_t jiffies64_to_cputime64(const u64 jif) |
105 | { | 89 | { |
106 | cputime_t ct; | 90 | u64 ct; |
107 | u64 sec; | 91 | u64 sec; |
108 | 92 | ||
109 | /* have to be a little careful about overflow */ | 93 | /* have to be a little careful about overflow */ |
@@ -114,13 +98,13 @@ static inline cputime64_t jiffies64_to_cputime64(const u64 jif) | |||
114 | do_div(ct, HZ); | 98 | do_div(ct, HZ); |
115 | } | 99 | } |
116 | if (sec) | 100 | if (sec) |
117 | ct += (cputime_t) sec * tb_ticks_per_sec; | 101 | ct += (u64) sec * tb_ticks_per_sec; |
118 | return ct; | 102 | return (__force cputime64_t) ct; |
119 | } | 103 | } |
120 | 104 | ||
121 | static inline u64 cputime64_to_jiffies64(const cputime_t ct) | 105 | static inline u64 cputime64_to_jiffies64(const cputime_t ct) |
122 | { | 106 | { |
123 | return mulhdu(ct, __cputime_jiffies_factor); | 107 | return mulhdu((__force u64) ct, __cputime_jiffies_factor); |
124 | } | 108 | } |
125 | 109 | ||
126 | /* | 110 | /* |
@@ -130,12 +114,12 @@ extern u64 __cputime_msec_factor; | |||
130 | 114 | ||
131 | static inline unsigned long cputime_to_usecs(const cputime_t ct) | 115 | static inline unsigned long cputime_to_usecs(const cputime_t ct) |
132 | { | 116 | { |
133 | return mulhdu(ct, __cputime_msec_factor) * USEC_PER_MSEC; | 117 | return mulhdu((__force u64) ct, __cputime_msec_factor) * USEC_PER_MSEC; |
134 | } | 118 | } |
135 | 119 | ||
136 | static inline cputime_t usecs_to_cputime(const unsigned long us) | 120 | static inline cputime_t usecs_to_cputime(const unsigned long us) |
137 | { | 121 | { |
138 | cputime_t ct; | 122 | u64 ct; |
139 | unsigned long sec; | 123 | unsigned long sec; |
140 | 124 | ||
141 | /* have to be a little careful about overflow */ | 125 | /* have to be a little careful about overflow */ |
@@ -147,7 +131,7 @@ static inline cputime_t usecs_to_cputime(const unsigned long us) | |||
147 | } | 131 | } |
148 | if (sec) | 132 | if (sec) |
149 | ct += (cputime_t) sec * tb_ticks_per_sec; | 133 | ct += (cputime_t) sec * tb_ticks_per_sec; |
150 | return ct; | 134 | return (__force cputime_t) ct; |
151 | } | 135 | } |
152 | 136 | ||
153 | #define usecs_to_cputime64(us) usecs_to_cputime(us) | 137 | #define usecs_to_cputime64(us) usecs_to_cputime(us) |
@@ -159,12 +143,12 @@ extern u64 __cputime_sec_factor; | |||
159 | 143 | ||
160 | static inline unsigned long cputime_to_secs(const cputime_t ct) | 144 | static inline unsigned long cputime_to_secs(const cputime_t ct) |
161 | { | 145 | { |
162 | return mulhdu(ct, __cputime_sec_factor); | 146 | return mulhdu((__force u64) ct, __cputime_sec_factor); |
163 | } | 147 | } |
164 | 148 | ||
165 | static inline cputime_t secs_to_cputime(const unsigned long sec) | 149 | static inline cputime_t secs_to_cputime(const unsigned long sec) |
166 | { | 150 | { |
167 | return (cputime_t) sec * tb_ticks_per_sec; | 151 | return (__force cputime_t)((u64) sec * tb_ticks_per_sec); |
168 | } | 152 | } |
169 | 153 | ||
170 | /* | 154 | /* |
@@ -172,7 +156,7 @@ static inline cputime_t secs_to_cputime(const unsigned long sec) | |||
172 | */ | 156 | */ |
173 | static inline void cputime_to_timespec(const cputime_t ct, struct timespec *p) | 157 | static inline void cputime_to_timespec(const cputime_t ct, struct timespec *p) |
174 | { | 158 | { |
175 | u64 x = ct; | 159 | u64 x = (__force u64) ct; |
176 | unsigned int frac; | 160 | unsigned int frac; |
177 | 161 | ||
178 | frac = do_div(x, tb_ticks_per_sec); | 162 | frac = do_div(x, tb_ticks_per_sec); |
@@ -184,11 +168,11 @@ static inline void cputime_to_timespec(const cputime_t ct, struct timespec *p) | |||
184 | 168 | ||
185 | static inline cputime_t timespec_to_cputime(const struct timespec *p) | 169 | static inline cputime_t timespec_to_cputime(const struct timespec *p) |
186 | { | 170 | { |
187 | cputime_t ct; | 171 | u64 ct; |
188 | 172 | ||
189 | ct = (u64) p->tv_nsec * tb_ticks_per_sec; | 173 | ct = (u64) p->tv_nsec * tb_ticks_per_sec; |
190 | do_div(ct, 1000000000); | 174 | do_div(ct, 1000000000); |
191 | return ct + (u64) p->tv_sec * tb_ticks_per_sec; | 175 | return (__force cputime_t)(ct + (u64) p->tv_sec * tb_ticks_per_sec); |
192 | } | 176 | } |
193 | 177 | ||
194 | /* | 178 | /* |
@@ -196,7 +180,7 @@ static inline cputime_t timespec_to_cputime(const struct timespec *p) | |||
196 | */ | 180 | */ |
197 | static inline void cputime_to_timeval(const cputime_t ct, struct timeval *p) | 181 | static inline void cputime_to_timeval(const cputime_t ct, struct timeval *p) |
198 | { | 182 | { |
199 | u64 x = ct; | 183 | u64 x = (__force u64) ct; |
200 | unsigned int frac; | 184 | unsigned int frac; |
201 | 185 | ||
202 | frac = do_div(x, tb_ticks_per_sec); | 186 | frac = do_div(x, tb_ticks_per_sec); |
@@ -208,11 +192,11 @@ static inline void cputime_to_timeval(const cputime_t ct, struct timeval *p) | |||
208 | 192 | ||
209 | static inline cputime_t timeval_to_cputime(const struct timeval *p) | 193 | static inline cputime_t timeval_to_cputime(const struct timeval *p) |
210 | { | 194 | { |
211 | cputime_t ct; | 195 | u64 ct; |
212 | 196 | ||
213 | ct = (u64) p->tv_usec * tb_ticks_per_sec; | 197 | ct = (u64) p->tv_usec * tb_ticks_per_sec; |
214 | do_div(ct, 1000000); | 198 | do_div(ct, 1000000); |
215 | return ct + (u64) p->tv_sec * tb_ticks_per_sec; | 199 | return (__force cputime_t)(ct + (u64) p->tv_sec * tb_ticks_per_sec); |
216 | } | 200 | } |
217 | 201 | ||
218 | /* | 202 | /* |
@@ -222,12 +206,12 @@ extern u64 __cputime_clockt_factor; | |||
222 | 206 | ||
223 | static inline unsigned long cputime_to_clock_t(const cputime_t ct) | 207 | static inline unsigned long cputime_to_clock_t(const cputime_t ct) |
224 | { | 208 | { |
225 | return mulhdu(ct, __cputime_clockt_factor); | 209 | return mulhdu((__force u64) ct, __cputime_clockt_factor); |
226 | } | 210 | } |
227 | 211 | ||
228 | static inline cputime_t clock_t_to_cputime(const unsigned long clk) | 212 | static inline cputime_t clock_t_to_cputime(const unsigned long clk) |
229 | { | 213 | { |
230 | cputime_t ct; | 214 | u64 ct; |
231 | unsigned long sec; | 215 | unsigned long sec; |
232 | 216 | ||
233 | /* have to be a little careful about overflow */ | 217 | /* have to be a little careful about overflow */ |
@@ -238,8 +222,8 @@ static inline cputime_t clock_t_to_cputime(const unsigned long clk) | |||
238 | do_div(ct, USER_HZ); | 222 | do_div(ct, USER_HZ); |
239 | } | 223 | } |
240 | if (sec) | 224 | if (sec) |
241 | ct += (cputime_t) sec * tb_ticks_per_sec; | 225 | ct += (u64) sec * tb_ticks_per_sec; |
242 | return ct; | 226 | return (__force cputime_t) ct; |
243 | } | 227 | } |
244 | 228 | ||
245 | #define cputime64_to_clock_t(ct) cputime_to_clock_t((cputime_t)(ct)) | 229 | #define cputime64_to_clock_t(ct) cputime_to_clock_t((cputime_t)(ct)) |
diff --git a/arch/s390/appldata/appldata_os.c b/arch/s390/appldata/appldata_os.c index 92f1cb745d69..4de031d6b76c 100644 --- a/arch/s390/appldata/appldata_os.c +++ b/arch/s390/appldata/appldata_os.c | |||
@@ -115,21 +115,21 @@ static void appldata_get_os_data(void *data) | |||
115 | j = 0; | 115 | j = 0; |
116 | for_each_online_cpu(i) { | 116 | for_each_online_cpu(i) { |
117 | os_data->os_cpu[j].per_cpu_user = | 117 | os_data->os_cpu[j].per_cpu_user = |
118 | cputime_to_jiffies(kstat_cpu(i).cpustat.user); | 118 | cputime_to_jiffies(kcpustat_cpu(i).cpustat[CPUTIME_USER]); |
119 | os_data->os_cpu[j].per_cpu_nice = | 119 | os_data->os_cpu[j].per_cpu_nice = |
120 | cputime_to_jiffies(kstat_cpu(i).cpustat.nice); | 120 | cputime_to_jiffies(kcpustat_cpu(i).cpustat[CPUTIME_NICE]); |
121 | os_data->os_cpu[j].per_cpu_system = | 121 | os_data->os_cpu[j].per_cpu_system = |
122 | cputime_to_jiffies(kstat_cpu(i).cpustat.system); | 122 | cputime_to_jiffies(kcpustat_cpu(i).cpustat[CPUTIME_SYSTEM]); |
123 | os_data->os_cpu[j].per_cpu_idle = | 123 | os_data->os_cpu[j].per_cpu_idle = |
124 | cputime_to_jiffies(kstat_cpu(i).cpustat.idle); | 124 | cputime_to_jiffies(kcpustat_cpu(i).cpustat[CPUTIME_IDLE]); |
125 | os_data->os_cpu[j].per_cpu_irq = | 125 | os_data->os_cpu[j].per_cpu_irq = |
126 | cputime_to_jiffies(kstat_cpu(i).cpustat.irq); | 126 | cputime_to_jiffies(kcpustat_cpu(i).cpustat[CPUTIME_IRQ]); |
127 | os_data->os_cpu[j].per_cpu_softirq = | 127 | os_data->os_cpu[j].per_cpu_softirq = |
128 | cputime_to_jiffies(kstat_cpu(i).cpustat.softirq); | 128 | cputime_to_jiffies(kcpustat_cpu(i).cpustat[CPUTIME_SOFTIRQ]); |
129 | os_data->os_cpu[j].per_cpu_iowait = | 129 | os_data->os_cpu[j].per_cpu_iowait = |
130 | cputime_to_jiffies(kstat_cpu(i).cpustat.iowait); | 130 | cputime_to_jiffies(kcpustat_cpu(i).cpustat[CPUTIME_IOWAIT]); |
131 | os_data->os_cpu[j].per_cpu_steal = | 131 | os_data->os_cpu[j].per_cpu_steal = |
132 | cputime_to_jiffies(kstat_cpu(i).cpustat.steal); | 132 | cputime_to_jiffies(kcpustat_cpu(i).cpustat[CPUTIME_STEAL]); |
133 | os_data->os_cpu[j].cpu_id = i; | 133 | os_data->os_cpu[j].cpu_id = i; |
134 | j++; | 134 | j++; |
135 | } | 135 | } |
diff --git a/arch/s390/include/asm/cputime.h b/arch/s390/include/asm/cputime.h index b9acaaa175d8..c23c3900c304 100644 --- a/arch/s390/include/asm/cputime.h +++ b/arch/s390/include/asm/cputime.h | |||
@@ -16,75 +16,60 @@ | |||
16 | 16 | ||
17 | /* We want to use full resolution of the CPU timer: 2**-12 micro-seconds. */ | 17 | /* We want to use full resolution of the CPU timer: 2**-12 micro-seconds. */ |
18 | 18 | ||
19 | typedef unsigned long long cputime_t; | 19 | typedef unsigned long long __nocast cputime_t; |
20 | typedef unsigned long long cputime64_t; | 20 | typedef unsigned long long __nocast cputime64_t; |
21 | 21 | ||
22 | #ifndef __s390x__ | 22 | static inline unsigned long __div(unsigned long long n, unsigned long base) |
23 | |||
24 | static inline unsigned int | ||
25 | __div(unsigned long long n, unsigned int base) | ||
26 | { | 23 | { |
24 | #ifndef __s390x__ | ||
27 | register_pair rp; | 25 | register_pair rp; |
28 | 26 | ||
29 | rp.pair = n >> 1; | 27 | rp.pair = n >> 1; |
30 | asm ("dr %0,%1" : "+d" (rp) : "d" (base >> 1)); | 28 | asm ("dr %0,%1" : "+d" (rp) : "d" (base >> 1)); |
31 | return rp.subreg.odd; | 29 | return rp.subreg.odd; |
30 | #else /* __s390x__ */ | ||
31 | return n / base; | ||
32 | #endif /* __s390x__ */ | ||
32 | } | 33 | } |
33 | 34 | ||
34 | #else /* __s390x__ */ | 35 | #define cputime_one_jiffy jiffies_to_cputime(1) |
35 | 36 | ||
36 | static inline unsigned int | 37 | /* |
37 | __div(unsigned long long n, unsigned int base) | 38 | * Convert cputime to jiffies and back. |
39 | */ | ||
40 | static inline unsigned long cputime_to_jiffies(const cputime_t cputime) | ||
38 | { | 41 | { |
39 | return n / base; | 42 | return __div((__force unsigned long long) cputime, 4096000000ULL / HZ); |
40 | } | 43 | } |
41 | 44 | ||
42 | #endif /* __s390x__ */ | 45 | static inline cputime_t jiffies_to_cputime(const unsigned int jif) |
46 | { | ||
47 | return (__force cputime_t)(jif * (4096000000ULL / HZ)); | ||
48 | } | ||
43 | 49 | ||
44 | #define cputime_zero (0ULL) | 50 | static inline u64 cputime64_to_jiffies64(cputime64_t cputime) |
45 | #define cputime_one_jiffy jiffies_to_cputime(1) | 51 | { |
46 | #define cputime_max ((~0UL >> 1) - 1) | 52 | unsigned long long jif = (__force unsigned long long) cputime; |
47 | #define cputime_add(__a, __b) ((__a) + (__b)) | 53 | do_div(jif, 4096000000ULL / HZ); |
48 | #define cputime_sub(__a, __b) ((__a) - (__b)) | 54 | return jif; |
49 | #define cputime_div(__a, __n) ({ \ | 55 | } |
50 | unsigned long long __div = (__a); \ | 56 | |
51 | do_div(__div,__n); \ | 57 | static inline cputime64_t jiffies64_to_cputime64(const u64 jif) |
52 | __div; \ | 58 | { |
53 | }) | 59 | return (__force cputime64_t)(jif * (4096000000ULL / HZ)); |
54 | #define cputime_halve(__a) ((__a) >> 1) | ||
55 | #define cputime_eq(__a, __b) ((__a) == (__b)) | ||
56 | #define cputime_gt(__a, __b) ((__a) > (__b)) | ||
57 | #define cputime_ge(__a, __b) ((__a) >= (__b)) | ||
58 | #define cputime_lt(__a, __b) ((__a) < (__b)) | ||
59 | #define cputime_le(__a, __b) ((__a) <= (__b)) | ||
60 | #define cputime_to_jiffies(__ct) (__div((__ct), 4096000000ULL / HZ)) | ||
61 | #define cputime_to_scaled(__ct) (__ct) | ||
62 | #define jiffies_to_cputime(__hz) ((cputime_t)(__hz) * (4096000000ULL / HZ)) | ||
63 | |||
64 | #define cputime64_zero (0ULL) | ||
65 | #define cputime64_add(__a, __b) ((__a) + (__b)) | ||
66 | #define cputime_to_cputime64(__ct) (__ct) | ||
67 | |||
68 | static inline u64 | ||
69 | cputime64_to_jiffies64(cputime64_t cputime) | ||
70 | { | ||
71 | do_div(cputime, 4096000000ULL / HZ); | ||
72 | return cputime; | ||
73 | } | 60 | } |
74 | 61 | ||
75 | /* | 62 | /* |
76 | * Convert cputime to microseconds and back. | 63 | * Convert cputime to microseconds and back. |
77 | */ | 64 | */ |
78 | static inline unsigned int | 65 | static inline unsigned int cputime_to_usecs(const cputime_t cputime) |
79 | cputime_to_usecs(const cputime_t cputime) | ||
80 | { | 66 | { |
81 | return cputime_div(cputime, 4096); | 67 | return (__force unsigned long long) cputime >> 12; |
82 | } | 68 | } |
83 | 69 | ||
84 | static inline cputime_t | 70 | static inline cputime_t usecs_to_cputime(const unsigned int m) |
85 | usecs_to_cputime(const unsigned int m) | ||
86 | { | 71 | { |
87 | return (cputime_t) m * 4096; | 72 | return (__force cputime_t)(m * 4096ULL); |
88 | } | 73 | } |
89 | 74 | ||
90 | #define usecs_to_cputime64(m) usecs_to_cputime(m) | 75 | #define usecs_to_cputime64(m) usecs_to_cputime(m) |
@@ -92,40 +77,39 @@ usecs_to_cputime(const unsigned int m) | |||
92 | /* | 77 | /* |
93 | * Convert cputime to milliseconds and back. | 78 | * Convert cputime to milliseconds and back. |
94 | */ | 79 | */ |
95 | static inline unsigned int | 80 | static inline unsigned int cputime_to_secs(const cputime_t cputime) |
96 | cputime_to_secs(const cputime_t cputime) | ||
97 | { | 81 | { |
98 | return __div(cputime, 2048000000) >> 1; | 82 | return __div((__force unsigned long long) cputime, 2048000000) >> 1; |
99 | } | 83 | } |
100 | 84 | ||
101 | static inline cputime_t | 85 | static inline cputime_t secs_to_cputime(const unsigned int s) |
102 | secs_to_cputime(const unsigned int s) | ||
103 | { | 86 | { |
104 | return (cputime_t) s * 4096000000ULL; | 87 | return (__force cputime_t)(s * 4096000000ULL); |
105 | } | 88 | } |
106 | 89 | ||
107 | /* | 90 | /* |
108 | * Convert cputime to timespec and back. | 91 | * Convert cputime to timespec and back. |
109 | */ | 92 | */ |
110 | static inline cputime_t | 93 | static inline cputime_t timespec_to_cputime(const struct timespec *value) |
111 | timespec_to_cputime(const struct timespec *value) | ||
112 | { | 94 | { |
113 | return value->tv_nsec * 4096 / 1000 + (u64) value->tv_sec * 4096000000ULL; | 95 | unsigned long long ret = value->tv_sec * 4096000000ULL; |
96 | return (__force cputime_t)(ret + value->tv_nsec * 4096 / 1000); | ||
114 | } | 97 | } |
115 | 98 | ||
116 | static inline void | 99 | static inline void cputime_to_timespec(const cputime_t cputime, |
117 | cputime_to_timespec(const cputime_t cputime, struct timespec *value) | 100 | struct timespec *value) |
118 | { | 101 | { |
102 | unsigned long long __cputime = (__force unsigned long long) cputime; | ||
119 | #ifndef __s390x__ | 103 | #ifndef __s390x__ |
120 | register_pair rp; | 104 | register_pair rp; |
121 | 105 | ||
122 | rp.pair = cputime >> 1; | 106 | rp.pair = __cputime >> 1; |
123 | asm ("dr %0,%1" : "+d" (rp) : "d" (2048000000UL)); | 107 | asm ("dr %0,%1" : "+d" (rp) : "d" (2048000000UL)); |
124 | value->tv_nsec = rp.subreg.even * 1000 / 4096; | 108 | value->tv_nsec = rp.subreg.even * 1000 / 4096; |
125 | value->tv_sec = rp.subreg.odd; | 109 | value->tv_sec = rp.subreg.odd; |
126 | #else | 110 | #else |
127 | value->tv_nsec = (cputime % 4096000000ULL) * 1000 / 4096; | 111 | value->tv_nsec = (__cputime % 4096000000ULL) * 1000 / 4096; |
128 | value->tv_sec = cputime / 4096000000ULL; | 112 | value->tv_sec = __cputime / 4096000000ULL; |
129 | #endif | 113 | #endif |
130 | } | 114 | } |
131 | 115 | ||
@@ -134,50 +118,52 @@ cputime_to_timespec(const cputime_t cputime, struct timespec *value) | |||
134 | * Since cputime and timeval have the same resolution (microseconds) | 118 | * Since cputime and timeval have the same resolution (microseconds) |
135 | * this is easy. | 119 | * this is easy. |
136 | */ | 120 | */ |
137 | static inline cputime_t | 121 | static inline cputime_t timeval_to_cputime(const struct timeval *value) |
138 | timeval_to_cputime(const struct timeval *value) | ||
139 | { | 122 | { |
140 | return value->tv_usec * 4096 + (u64) value->tv_sec * 4096000000ULL; | 123 | unsigned long long ret = value->tv_sec * 4096000000ULL; |
124 | return (__force cputime_t)(ret + value->tv_usec * 4096ULL); | ||
141 | } | 125 | } |
142 | 126 | ||
143 | static inline void | 127 | static inline void cputime_to_timeval(const cputime_t cputime, |
144 | cputime_to_timeval(const cputime_t cputime, struct timeval *value) | 128 | struct timeval *value) |
145 | { | 129 | { |
130 | unsigned long long __cputime = (__force unsigned long long) cputime; | ||
146 | #ifndef __s390x__ | 131 | #ifndef __s390x__ |
147 | register_pair rp; | 132 | register_pair rp; |
148 | 133 | ||
149 | rp.pair = cputime >> 1; | 134 | rp.pair = __cputime >> 1; |
150 | asm ("dr %0,%1" : "+d" (rp) : "d" (2048000000UL)); | 135 | asm ("dr %0,%1" : "+d" (rp) : "d" (2048000000UL)); |
151 | value->tv_usec = rp.subreg.even / 4096; | 136 | value->tv_usec = rp.subreg.even / 4096; |
152 | value->tv_sec = rp.subreg.odd; | 137 | value->tv_sec = rp.subreg.odd; |
153 | #else | 138 | #else |
154 | value->tv_usec = (cputime % 4096000000ULL) / 4096; | 139 | value->tv_usec = (__cputime % 4096000000ULL) / 4096; |
155 | value->tv_sec = cputime / 4096000000ULL; | 140 | value->tv_sec = __cputime / 4096000000ULL; |
156 | #endif | 141 | #endif |
157 | } | 142 | } |
158 | 143 | ||
159 | /* | 144 | /* |
160 | * Convert cputime to clock and back. | 145 | * Convert cputime to clock and back. |
161 | */ | 146 | */ |
162 | static inline clock_t | 147 | static inline clock_t cputime_to_clock_t(cputime_t cputime) |
163 | cputime_to_clock_t(cputime_t cputime) | ||
164 | { | 148 | { |
165 | return cputime_div(cputime, 4096000000ULL / USER_HZ); | 149 | unsigned long long clock = (__force unsigned long long) cputime; |
150 | do_div(clock, 4096000000ULL / USER_HZ); | ||
151 | return clock; | ||
166 | } | 152 | } |
167 | 153 | ||
168 | static inline cputime_t | 154 | static inline cputime_t clock_t_to_cputime(unsigned long x) |
169 | clock_t_to_cputime(unsigned long x) | ||
170 | { | 155 | { |
171 | return (cputime_t) x * (4096000000ULL / USER_HZ); | 156 | return (__force cputime_t)(x * (4096000000ULL / USER_HZ)); |
172 | } | 157 | } |
173 | 158 | ||
174 | /* | 159 | /* |
175 | * Convert cputime64 to clock. | 160 | * Convert cputime64 to clock. |
176 | */ | 161 | */ |
177 | static inline clock_t | 162 | static inline clock_t cputime64_to_clock_t(cputime64_t cputime) |
178 | cputime64_to_clock_t(cputime64_t cputime) | ||
179 | { | 163 | { |
180 | return cputime_div(cputime, 4096000000ULL / USER_HZ); | 164 | unsigned long long clock = (__force unsigned long long) cputime; |
165 | do_div(clock, 4096000000ULL / USER_HZ); | ||
166 | return clock; | ||
181 | } | 167 | } |
182 | 168 | ||
183 | struct s390_idle_data { | 169 | struct s390_idle_data { |
diff --git a/arch/x86/include/asm/i387.h b/arch/x86/include/asm/i387.h index c9e09ea05644..6919e936345b 100644 --- a/arch/x86/include/asm/i387.h +++ b/arch/x86/include/asm/i387.h | |||
@@ -218,7 +218,7 @@ static inline void fpu_fxsave(struct fpu *fpu) | |||
218 | #ifdef CONFIG_SMP | 218 | #ifdef CONFIG_SMP |
219 | #define safe_address (__per_cpu_offset[0]) | 219 | #define safe_address (__per_cpu_offset[0]) |
220 | #else | 220 | #else |
221 | #define safe_address (kstat_cpu(0).cpustat.user) | 221 | #define safe_address (__get_cpu_var(kernel_cpustat).cpustat[CPUTIME_USER]) |
222 | #endif | 222 | #endif |
223 | 223 | ||
224 | /* | 224 | /* |
diff --git a/drivers/cpufreq/cpufreq_conservative.c b/drivers/cpufreq/cpufreq_conservative.c index c97b468ee9f7..235a340e81f2 100644 --- a/drivers/cpufreq/cpufreq_conservative.c +++ b/drivers/cpufreq/cpufreq_conservative.c | |||
@@ -95,27 +95,26 @@ static struct dbs_tuners { | |||
95 | .freq_step = 5, | 95 | .freq_step = 5, |
96 | }; | 96 | }; |
97 | 97 | ||
98 | static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu, | 98 | static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) |
99 | cputime64_t *wall) | ||
100 | { | 99 | { |
101 | cputime64_t idle_time; | 100 | u64 idle_time; |
102 | cputime64_t cur_wall_time; | 101 | u64 cur_wall_time; |
103 | cputime64_t busy_time; | 102 | u64 busy_time; |
104 | 103 | ||
105 | cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); | 104 | cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); |
106 | busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user, | ||
107 | kstat_cpu(cpu).cpustat.system); | ||
108 | 105 | ||
109 | busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq); | 106 | busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; |
110 | busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq); | 107 | busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; |
111 | busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal); | 108 | busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; |
112 | busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice); | 109 | busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; |
110 | busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; | ||
111 | busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; | ||
113 | 112 | ||
114 | idle_time = cputime64_sub(cur_wall_time, busy_time); | 113 | idle_time = cur_wall_time - busy_time; |
115 | if (wall) | 114 | if (wall) |
116 | *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time); | 115 | *wall = jiffies_to_usecs(cur_wall_time); |
117 | 116 | ||
118 | return (cputime64_t)jiffies_to_usecs(idle_time); | 117 | return jiffies_to_usecs(idle_time); |
119 | } | 118 | } |
120 | 119 | ||
121 | static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall) | 120 | static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall) |
@@ -272,7 +271,7 @@ static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b, | |||
272 | dbs_info->prev_cpu_idle = get_cpu_idle_time(j, | 271 | dbs_info->prev_cpu_idle = get_cpu_idle_time(j, |
273 | &dbs_info->prev_cpu_wall); | 272 | &dbs_info->prev_cpu_wall); |
274 | if (dbs_tuners_ins.ignore_nice) | 273 | if (dbs_tuners_ins.ignore_nice) |
275 | dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice; | 274 | dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; |
276 | } | 275 | } |
277 | return count; | 276 | return count; |
278 | } | 277 | } |
@@ -353,20 +352,20 @@ static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info) | |||
353 | 352 | ||
354 | cur_idle_time = get_cpu_idle_time(j, &cur_wall_time); | 353 | cur_idle_time = get_cpu_idle_time(j, &cur_wall_time); |
355 | 354 | ||
356 | wall_time = (unsigned int) cputime64_sub(cur_wall_time, | 355 | wall_time = (unsigned int) |
357 | j_dbs_info->prev_cpu_wall); | 356 | (cur_wall_time - j_dbs_info->prev_cpu_wall); |
358 | j_dbs_info->prev_cpu_wall = cur_wall_time; | 357 | j_dbs_info->prev_cpu_wall = cur_wall_time; |
359 | 358 | ||
360 | idle_time = (unsigned int) cputime64_sub(cur_idle_time, | 359 | idle_time = (unsigned int) |
361 | j_dbs_info->prev_cpu_idle); | 360 | (cur_idle_time - j_dbs_info->prev_cpu_idle); |
362 | j_dbs_info->prev_cpu_idle = cur_idle_time; | 361 | j_dbs_info->prev_cpu_idle = cur_idle_time; |
363 | 362 | ||
364 | if (dbs_tuners_ins.ignore_nice) { | 363 | if (dbs_tuners_ins.ignore_nice) { |
365 | cputime64_t cur_nice; | 364 | u64 cur_nice; |
366 | unsigned long cur_nice_jiffies; | 365 | unsigned long cur_nice_jiffies; |
367 | 366 | ||
368 | cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice, | 367 | cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] - |
369 | j_dbs_info->prev_cpu_nice); | 368 | j_dbs_info->prev_cpu_nice; |
370 | /* | 369 | /* |
371 | * Assumption: nice time between sampling periods will | 370 | * Assumption: nice time between sampling periods will |
372 | * be less than 2^32 jiffies for 32 bit sys | 371 | * be less than 2^32 jiffies for 32 bit sys |
@@ -374,7 +373,7 @@ static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info) | |||
374 | cur_nice_jiffies = (unsigned long) | 373 | cur_nice_jiffies = (unsigned long) |
375 | cputime64_to_jiffies64(cur_nice); | 374 | cputime64_to_jiffies64(cur_nice); |
376 | 375 | ||
377 | j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice; | 376 | j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; |
378 | idle_time += jiffies_to_usecs(cur_nice_jiffies); | 377 | idle_time += jiffies_to_usecs(cur_nice_jiffies); |
379 | } | 378 | } |
380 | 379 | ||
@@ -501,10 +500,9 @@ static int cpufreq_governor_dbs(struct cpufreq_policy *policy, | |||
501 | 500 | ||
502 | j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j, | 501 | j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j, |
503 | &j_dbs_info->prev_cpu_wall); | 502 | &j_dbs_info->prev_cpu_wall); |
504 | if (dbs_tuners_ins.ignore_nice) { | 503 | if (dbs_tuners_ins.ignore_nice) |
505 | j_dbs_info->prev_cpu_nice = | 504 | j_dbs_info->prev_cpu_nice = |
506 | kstat_cpu(j).cpustat.nice; | 505 | kcpustat_cpu(j).cpustat[CPUTIME_NICE]; |
507 | } | ||
508 | } | 506 | } |
509 | this_dbs_info->down_skip = 0; | 507 | this_dbs_info->down_skip = 0; |
510 | this_dbs_info->requested_freq = policy->cur; | 508 | this_dbs_info->requested_freq = policy->cur; |
diff --git a/drivers/cpufreq/cpufreq_ondemand.c b/drivers/cpufreq/cpufreq_ondemand.c index fa8af4ebb1d6..3d679eee70a1 100644 --- a/drivers/cpufreq/cpufreq_ondemand.c +++ b/drivers/cpufreq/cpufreq_ondemand.c | |||
@@ -119,27 +119,26 @@ static struct dbs_tuners { | |||
119 | .powersave_bias = 0, | 119 | .powersave_bias = 0, |
120 | }; | 120 | }; |
121 | 121 | ||
122 | static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu, | 122 | static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) |
123 | cputime64_t *wall) | ||
124 | { | 123 | { |
125 | cputime64_t idle_time; | 124 | u64 idle_time; |
126 | cputime64_t cur_wall_time; | 125 | u64 cur_wall_time; |
127 | cputime64_t busy_time; | 126 | u64 busy_time; |
128 | 127 | ||
129 | cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); | 128 | cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); |
130 | busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user, | ||
131 | kstat_cpu(cpu).cpustat.system); | ||
132 | 129 | ||
133 | busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq); | 130 | busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; |
134 | busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq); | 131 | busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; |
135 | busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal); | 132 | busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; |
136 | busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice); | 133 | busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; |
134 | busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; | ||
135 | busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; | ||
137 | 136 | ||
138 | idle_time = cputime64_sub(cur_wall_time, busy_time); | 137 | idle_time = cur_wall_time - busy_time; |
139 | if (wall) | 138 | if (wall) |
140 | *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time); | 139 | *wall = jiffies_to_usecs(cur_wall_time); |
141 | 140 | ||
142 | return (cputime64_t)jiffies_to_usecs(idle_time); | 141 | return jiffies_to_usecs(idle_time); |
143 | } | 142 | } |
144 | 143 | ||
145 | static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall) | 144 | static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall) |
@@ -345,7 +344,7 @@ static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b, | |||
345 | dbs_info->prev_cpu_idle = get_cpu_idle_time(j, | 344 | dbs_info->prev_cpu_idle = get_cpu_idle_time(j, |
346 | &dbs_info->prev_cpu_wall); | 345 | &dbs_info->prev_cpu_wall); |
347 | if (dbs_tuners_ins.ignore_nice) | 346 | if (dbs_tuners_ins.ignore_nice) |
348 | dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice; | 347 | dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; |
349 | 348 | ||
350 | } | 349 | } |
351 | return count; | 350 | return count; |
@@ -442,24 +441,24 @@ static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info) | |||
442 | cur_idle_time = get_cpu_idle_time(j, &cur_wall_time); | 441 | cur_idle_time = get_cpu_idle_time(j, &cur_wall_time); |
443 | cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time); | 442 | cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time); |
444 | 443 | ||
445 | wall_time = (unsigned int) cputime64_sub(cur_wall_time, | 444 | wall_time = (unsigned int) |
446 | j_dbs_info->prev_cpu_wall); | 445 | (cur_wall_time - j_dbs_info->prev_cpu_wall); |
447 | j_dbs_info->prev_cpu_wall = cur_wall_time; | 446 | j_dbs_info->prev_cpu_wall = cur_wall_time; |
448 | 447 | ||
449 | idle_time = (unsigned int) cputime64_sub(cur_idle_time, | 448 | idle_time = (unsigned int) |
450 | j_dbs_info->prev_cpu_idle); | 449 | (cur_idle_time - j_dbs_info->prev_cpu_idle); |
451 | j_dbs_info->prev_cpu_idle = cur_idle_time; | 450 | j_dbs_info->prev_cpu_idle = cur_idle_time; |
452 | 451 | ||
453 | iowait_time = (unsigned int) cputime64_sub(cur_iowait_time, | 452 | iowait_time = (unsigned int) |
454 | j_dbs_info->prev_cpu_iowait); | 453 | (cur_iowait_time - j_dbs_info->prev_cpu_iowait); |
455 | j_dbs_info->prev_cpu_iowait = cur_iowait_time; | 454 | j_dbs_info->prev_cpu_iowait = cur_iowait_time; |
456 | 455 | ||
457 | if (dbs_tuners_ins.ignore_nice) { | 456 | if (dbs_tuners_ins.ignore_nice) { |
458 | cputime64_t cur_nice; | 457 | u64 cur_nice; |
459 | unsigned long cur_nice_jiffies; | 458 | unsigned long cur_nice_jiffies; |
460 | 459 | ||
461 | cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice, | 460 | cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] - |
462 | j_dbs_info->prev_cpu_nice); | 461 | j_dbs_info->prev_cpu_nice; |
463 | /* | 462 | /* |
464 | * Assumption: nice time between sampling periods will | 463 | * Assumption: nice time between sampling periods will |
465 | * be less than 2^32 jiffies for 32 bit sys | 464 | * be less than 2^32 jiffies for 32 bit sys |
@@ -467,7 +466,7 @@ static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info) | |||
467 | cur_nice_jiffies = (unsigned long) | 466 | cur_nice_jiffies = (unsigned long) |
468 | cputime64_to_jiffies64(cur_nice); | 467 | cputime64_to_jiffies64(cur_nice); |
469 | 468 | ||
470 | j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice; | 469 | j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; |
471 | idle_time += jiffies_to_usecs(cur_nice_jiffies); | 470 | idle_time += jiffies_to_usecs(cur_nice_jiffies); |
472 | } | 471 | } |
473 | 472 | ||
@@ -646,10 +645,9 @@ static int cpufreq_governor_dbs(struct cpufreq_policy *policy, | |||
646 | 645 | ||
647 | j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j, | 646 | j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j, |
648 | &j_dbs_info->prev_cpu_wall); | 647 | &j_dbs_info->prev_cpu_wall); |
649 | if (dbs_tuners_ins.ignore_nice) { | 648 | if (dbs_tuners_ins.ignore_nice) |
650 | j_dbs_info->prev_cpu_nice = | 649 | j_dbs_info->prev_cpu_nice = |
651 | kstat_cpu(j).cpustat.nice; | 650 | kcpustat_cpu(j).cpustat[CPUTIME_NICE]; |
652 | } | ||
653 | } | 651 | } |
654 | this_dbs_info->cpu = cpu; | 652 | this_dbs_info->cpu = cpu; |
655 | this_dbs_info->rate_mult = 1; | 653 | this_dbs_info->rate_mult = 1; |
diff --git a/drivers/cpufreq/cpufreq_stats.c b/drivers/cpufreq/cpufreq_stats.c index c5072a91e848..2a508edd768b 100644 --- a/drivers/cpufreq/cpufreq_stats.c +++ b/drivers/cpufreq/cpufreq_stats.c | |||
@@ -61,9 +61,8 @@ static int cpufreq_stats_update(unsigned int cpu) | |||
61 | spin_lock(&cpufreq_stats_lock); | 61 | spin_lock(&cpufreq_stats_lock); |
62 | stat = per_cpu(cpufreq_stats_table, cpu); | 62 | stat = per_cpu(cpufreq_stats_table, cpu); |
63 | if (stat->time_in_state) | 63 | if (stat->time_in_state) |
64 | stat->time_in_state[stat->last_index] = | 64 | stat->time_in_state[stat->last_index] += |
65 | cputime64_add(stat->time_in_state[stat->last_index], | 65 | cur_time - stat->last_time; |
66 | cputime_sub(cur_time, stat->last_time)); | ||
67 | stat->last_time = cur_time; | 66 | stat->last_time = cur_time; |
68 | spin_unlock(&cpufreq_stats_lock); | 67 | spin_unlock(&cpufreq_stats_lock); |
69 | return 0; | 68 | return 0; |
diff --git a/drivers/macintosh/rack-meter.c b/drivers/macintosh/rack-meter.c index 2637c139777b..6dc26b61219b 100644 --- a/drivers/macintosh/rack-meter.c +++ b/drivers/macintosh/rack-meter.c | |||
@@ -81,13 +81,13 @@ static int rackmeter_ignore_nice; | |||
81 | */ | 81 | */ |
82 | static inline cputime64_t get_cpu_idle_time(unsigned int cpu) | 82 | static inline cputime64_t get_cpu_idle_time(unsigned int cpu) |
83 | { | 83 | { |
84 | cputime64_t retval; | 84 | u64 retval; |
85 | 85 | ||
86 | retval = cputime64_add(kstat_cpu(cpu).cpustat.idle, | 86 | retval = kcpustat_cpu(cpu).cpustat[CPUTIME_IDLE] + |
87 | kstat_cpu(cpu).cpustat.iowait); | 87 | kcpustat_cpu(cpu).cpustat[CPUTIME_IOWAIT]; |
88 | 88 | ||
89 | if (rackmeter_ignore_nice) | 89 | if (rackmeter_ignore_nice) |
90 | retval = cputime64_add(retval, kstat_cpu(cpu).cpustat.nice); | 90 | retval += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; |
91 | 91 | ||
92 | return retval; | 92 | return retval; |
93 | } | 93 | } |
@@ -220,13 +220,11 @@ static void rackmeter_do_timer(struct work_struct *work) | |||
220 | int i, offset, load, cumm, pause; | 220 | int i, offset, load, cumm, pause; |
221 | 221 | ||
222 | cur_jiffies = jiffies64_to_cputime64(get_jiffies_64()); | 222 | cur_jiffies = jiffies64_to_cputime64(get_jiffies_64()); |
223 | total_ticks = (unsigned int)cputime64_sub(cur_jiffies, | 223 | total_ticks = (unsigned int) (cur_jiffies - rcpu->prev_wall); |
224 | rcpu->prev_wall); | ||
225 | rcpu->prev_wall = cur_jiffies; | 224 | rcpu->prev_wall = cur_jiffies; |
226 | 225 | ||
227 | total_idle_ticks = get_cpu_idle_time(cpu); | 226 | total_idle_ticks = get_cpu_idle_time(cpu); |
228 | idle_ticks = (unsigned int) cputime64_sub(total_idle_ticks, | 227 | idle_ticks = (unsigned int) (total_idle_ticks - rcpu->prev_idle); |
229 | rcpu->prev_idle); | ||
230 | rcpu->prev_idle = total_idle_ticks; | 228 | rcpu->prev_idle = total_idle_ticks; |
231 | 229 | ||
232 | /* We do a very dumb calculation to update the LEDs for now, | 230 | /* We do a very dumb calculation to update the LEDs for now, |
diff --git a/fs/proc/array.c b/fs/proc/array.c index 3a1dafd228d1..8c344f037bd0 100644 --- a/fs/proc/array.c +++ b/fs/proc/array.c | |||
@@ -394,8 +394,8 @@ static int do_task_stat(struct seq_file *m, struct pid_namespace *ns, | |||
394 | 394 | ||
395 | sigemptyset(&sigign); | 395 | sigemptyset(&sigign); |
396 | sigemptyset(&sigcatch); | 396 | sigemptyset(&sigcatch); |
397 | cutime = cstime = utime = stime = cputime_zero; | 397 | cutime = cstime = utime = stime = 0; |
398 | cgtime = gtime = cputime_zero; | 398 | cgtime = gtime = 0; |
399 | 399 | ||
400 | if (lock_task_sighand(task, &flags)) { | 400 | if (lock_task_sighand(task, &flags)) { |
401 | struct signal_struct *sig = task->signal; | 401 | struct signal_struct *sig = task->signal; |
@@ -423,14 +423,14 @@ static int do_task_stat(struct seq_file *m, struct pid_namespace *ns, | |||
423 | do { | 423 | do { |
424 | min_flt += t->min_flt; | 424 | min_flt += t->min_flt; |
425 | maj_flt += t->maj_flt; | 425 | maj_flt += t->maj_flt; |
426 | gtime = cputime_add(gtime, t->gtime); | 426 | gtime += t->gtime; |
427 | t = next_thread(t); | 427 | t = next_thread(t); |
428 | } while (t != task); | 428 | } while (t != task); |
429 | 429 | ||
430 | min_flt += sig->min_flt; | 430 | min_flt += sig->min_flt; |
431 | maj_flt += sig->maj_flt; | 431 | maj_flt += sig->maj_flt; |
432 | thread_group_times(task, &utime, &stime); | 432 | thread_group_times(task, &utime, &stime); |
433 | gtime = cputime_add(gtime, sig->gtime); | 433 | gtime += sig->gtime; |
434 | } | 434 | } |
435 | 435 | ||
436 | sid = task_session_nr_ns(task, ns); | 436 | sid = task_session_nr_ns(task, ns); |
diff --git a/fs/proc/stat.c b/fs/proc/stat.c index 0855e6f20391..d76ca6ae2b1b 100644 --- a/fs/proc/stat.c +++ b/fs/proc/stat.c | |||
@@ -22,29 +22,27 @@ | |||
22 | #define arch_idle_time(cpu) 0 | 22 | #define arch_idle_time(cpu) 0 |
23 | #endif | 23 | #endif |
24 | 24 | ||
25 | static cputime64_t get_idle_time(int cpu) | 25 | static u64 get_idle_time(int cpu) |
26 | { | 26 | { |
27 | u64 idle_time = get_cpu_idle_time_us(cpu, NULL); | 27 | u64 idle, idle_time = get_cpu_idle_time_us(cpu, NULL); |
28 | cputime64_t idle; | ||
29 | 28 | ||
30 | if (idle_time == -1ULL) { | 29 | if (idle_time == -1ULL) { |
31 | /* !NO_HZ so we can rely on cpustat.idle */ | 30 | /* !NO_HZ so we can rely on cpustat.idle */ |
32 | idle = kstat_cpu(cpu).cpustat.idle; | 31 | idle = kcpustat_cpu(cpu).cpustat[CPUTIME_IDLE]; |
33 | idle = cputime64_add(idle, arch_idle_time(cpu)); | 32 | idle += arch_idle_time(cpu); |
34 | } else | 33 | } else |
35 | idle = usecs_to_cputime64(idle_time); | 34 | idle = usecs_to_cputime64(idle_time); |
36 | 35 | ||
37 | return idle; | 36 | return idle; |
38 | } | 37 | } |
39 | 38 | ||
40 | static cputime64_t get_iowait_time(int cpu) | 39 | static u64 get_iowait_time(int cpu) |
41 | { | 40 | { |
42 | u64 iowait_time = get_cpu_iowait_time_us(cpu, NULL); | 41 | u64 iowait, iowait_time = get_cpu_iowait_time_us(cpu, NULL); |
43 | cputime64_t iowait; | ||
44 | 42 | ||
45 | if (iowait_time == -1ULL) | 43 | if (iowait_time == -1ULL) |
46 | /* !NO_HZ so we can rely on cpustat.iowait */ | 44 | /* !NO_HZ so we can rely on cpustat.iowait */ |
47 | iowait = kstat_cpu(cpu).cpustat.iowait; | 45 | iowait = kcpustat_cpu(cpu).cpustat[CPUTIME_IOWAIT]; |
48 | else | 46 | else |
49 | iowait = usecs_to_cputime64(iowait_time); | 47 | iowait = usecs_to_cputime64(iowait_time); |
50 | 48 | ||
@@ -55,33 +53,30 @@ static int show_stat(struct seq_file *p, void *v) | |||
55 | { | 53 | { |
56 | int i, j; | 54 | int i, j; |
57 | unsigned long jif; | 55 | unsigned long jif; |
58 | cputime64_t user, nice, system, idle, iowait, irq, softirq, steal; | 56 | u64 user, nice, system, idle, iowait, irq, softirq, steal; |
59 | cputime64_t guest, guest_nice; | 57 | u64 guest, guest_nice; |
60 | u64 sum = 0; | 58 | u64 sum = 0; |
61 | u64 sum_softirq = 0; | 59 | u64 sum_softirq = 0; |
62 | unsigned int per_softirq_sums[NR_SOFTIRQS] = {0}; | 60 | unsigned int per_softirq_sums[NR_SOFTIRQS] = {0}; |
63 | struct timespec boottime; | 61 | struct timespec boottime; |
64 | 62 | ||
65 | user = nice = system = idle = iowait = | 63 | user = nice = system = idle = iowait = |
66 | irq = softirq = steal = cputime64_zero; | 64 | irq = softirq = steal = 0; |
67 | guest = guest_nice = cputime64_zero; | 65 | guest = guest_nice = 0; |
68 | getboottime(&boottime); | 66 | getboottime(&boottime); |
69 | jif = boottime.tv_sec; | 67 | jif = boottime.tv_sec; |
70 | 68 | ||
71 | for_each_possible_cpu(i) { | 69 | for_each_possible_cpu(i) { |
72 | user = cputime64_add(user, kstat_cpu(i).cpustat.user); | 70 | user += kcpustat_cpu(i).cpustat[CPUTIME_USER]; |
73 | nice = cputime64_add(nice, kstat_cpu(i).cpustat.nice); | 71 | nice += kcpustat_cpu(i).cpustat[CPUTIME_NICE]; |
74 | system = cputime64_add(system, kstat_cpu(i).cpustat.system); | 72 | system += kcpustat_cpu(i).cpustat[CPUTIME_SYSTEM]; |
75 | idle = cputime64_add(idle, get_idle_time(i)); | 73 | idle += get_idle_time(i); |
76 | iowait = cputime64_add(iowait, get_iowait_time(i)); | 74 | iowait += get_iowait_time(i); |
77 | irq = cputime64_add(irq, kstat_cpu(i).cpustat.irq); | 75 | irq += kcpustat_cpu(i).cpustat[CPUTIME_IRQ]; |
78 | softirq = cputime64_add(softirq, kstat_cpu(i).cpustat.softirq); | 76 | softirq += kcpustat_cpu(i).cpustat[CPUTIME_SOFTIRQ]; |
79 | steal = cputime64_add(steal, kstat_cpu(i).cpustat.steal); | 77 | steal += kcpustat_cpu(i).cpustat[CPUTIME_STEAL]; |
80 | guest = cputime64_add(guest, kstat_cpu(i).cpustat.guest); | 78 | guest += kcpustat_cpu(i).cpustat[CPUTIME_GUEST]; |
81 | guest_nice = cputime64_add(guest_nice, | 79 | guest_nice += kcpustat_cpu(i).cpustat[CPUTIME_GUEST_NICE]; |
82 | kstat_cpu(i).cpustat.guest_nice); | ||
83 | sum += kstat_cpu_irqs_sum(i); | ||
84 | sum += arch_irq_stat_cpu(i); | ||
85 | 80 | ||
86 | for (j = 0; j < NR_SOFTIRQS; j++) { | 81 | for (j = 0; j < NR_SOFTIRQS; j++) { |
87 | unsigned int softirq_stat = kstat_softirqs_cpu(j, i); | 82 | unsigned int softirq_stat = kstat_softirqs_cpu(j, i); |
@@ -106,16 +101,16 @@ static int show_stat(struct seq_file *p, void *v) | |||
106 | (unsigned long long)cputime64_to_clock_t(guest_nice)); | 101 | (unsigned long long)cputime64_to_clock_t(guest_nice)); |
107 | for_each_online_cpu(i) { | 102 | for_each_online_cpu(i) { |
108 | /* Copy values here to work around gcc-2.95.3, gcc-2.96 */ | 103 | /* Copy values here to work around gcc-2.95.3, gcc-2.96 */ |
109 | user = kstat_cpu(i).cpustat.user; | 104 | user = kcpustat_cpu(i).cpustat[CPUTIME_USER]; |
110 | nice = kstat_cpu(i).cpustat.nice; | 105 | nice = kcpustat_cpu(i).cpustat[CPUTIME_NICE]; |
111 | system = kstat_cpu(i).cpustat.system; | 106 | system = kcpustat_cpu(i).cpustat[CPUTIME_SYSTEM]; |
112 | idle = get_idle_time(i); | 107 | idle = get_idle_time(i); |
113 | iowait = get_iowait_time(i); | 108 | iowait = get_iowait_time(i); |
114 | irq = kstat_cpu(i).cpustat.irq; | 109 | irq = kcpustat_cpu(i).cpustat[CPUTIME_IRQ]; |
115 | softirq = kstat_cpu(i).cpustat.softirq; | 110 | softirq = kcpustat_cpu(i).cpustat[CPUTIME_SOFTIRQ]; |
116 | steal = kstat_cpu(i).cpustat.steal; | 111 | steal = kcpustat_cpu(i).cpustat[CPUTIME_STEAL]; |
117 | guest = kstat_cpu(i).cpustat.guest; | 112 | guest = kcpustat_cpu(i).cpustat[CPUTIME_GUEST]; |
118 | guest_nice = kstat_cpu(i).cpustat.guest_nice; | 113 | guest_nice = kcpustat_cpu(i).cpustat[CPUTIME_GUEST_NICE]; |
119 | seq_printf(p, | 114 | seq_printf(p, |
120 | "cpu%d %llu %llu %llu %llu %llu %llu %llu %llu %llu " | 115 | "cpu%d %llu %llu %llu %llu %llu %llu %llu %llu %llu " |
121 | "%llu\n", | 116 | "%llu\n", |
diff --git a/fs/proc/uptime.c b/fs/proc/uptime.c index 766b1d456050..9610ac772d7e 100644 --- a/fs/proc/uptime.c +++ b/fs/proc/uptime.c | |||
@@ -11,15 +11,20 @@ static int uptime_proc_show(struct seq_file *m, void *v) | |||
11 | { | 11 | { |
12 | struct timespec uptime; | 12 | struct timespec uptime; |
13 | struct timespec idle; | 13 | struct timespec idle; |
14 | u64 idletime; | ||
15 | u64 nsec; | ||
16 | u32 rem; | ||
14 | int i; | 17 | int i; |
15 | cputime_t idletime = cputime_zero; | ||
16 | 18 | ||
19 | idletime = 0; | ||
17 | for_each_possible_cpu(i) | 20 | for_each_possible_cpu(i) |
18 | idletime = cputime64_add(idletime, kstat_cpu(i).cpustat.idle); | 21 | idletime += (__force u64) kcpustat_cpu(i).cpustat[CPUTIME_IDLE]; |
19 | 22 | ||
20 | do_posix_clock_monotonic_gettime(&uptime); | 23 | do_posix_clock_monotonic_gettime(&uptime); |
21 | monotonic_to_bootbased(&uptime); | 24 | monotonic_to_bootbased(&uptime); |
22 | cputime_to_timespec(idletime, &idle); | 25 | nsec = cputime64_to_jiffies64(idletime) * TICK_NSEC; |
26 | idle.tv_sec = div_u64_rem(nsec, NSEC_PER_SEC, &rem); | ||
27 | idle.tv_nsec = rem; | ||
23 | seq_printf(m, "%lu.%02lu %lu.%02lu\n", | 28 | seq_printf(m, "%lu.%02lu %lu.%02lu\n", |
24 | (unsigned long) uptime.tv_sec, | 29 | (unsigned long) uptime.tv_sec, |
25 | (uptime.tv_nsec / (NSEC_PER_SEC / 100)), | 30 | (uptime.tv_nsec / (NSEC_PER_SEC / 100)), |
diff --git a/include/asm-generic/cputime.h b/include/asm-generic/cputime.h index 12a1764f612b..9a62937c56ca 100644 --- a/include/asm-generic/cputime.h +++ b/include/asm-generic/cputime.h | |||
@@ -4,71 +4,66 @@ | |||
4 | #include <linux/time.h> | 4 | #include <linux/time.h> |
5 | #include <linux/jiffies.h> | 5 | #include <linux/jiffies.h> |
6 | 6 | ||
7 | typedef unsigned long cputime_t; | 7 | typedef unsigned long __nocast cputime_t; |
8 | 8 | ||
9 | #define cputime_zero (0UL) | ||
10 | #define cputime_one_jiffy jiffies_to_cputime(1) | 9 | #define cputime_one_jiffy jiffies_to_cputime(1) |
11 | #define cputime_max ((~0UL >> 1) - 1) | 10 | #define cputime_to_jiffies(__ct) (__force unsigned long)(__ct) |
12 | #define cputime_add(__a, __b) ((__a) + (__b)) | ||
13 | #define cputime_sub(__a, __b) ((__a) - (__b)) | ||
14 | #define cputime_div(__a, __n) ((__a) / (__n)) | ||
15 | #define cputime_halve(__a) ((__a) >> 1) | ||
16 | #define cputime_eq(__a, __b) ((__a) == (__b)) | ||
17 | #define cputime_gt(__a, __b) ((__a) > (__b)) | ||
18 | #define cputime_ge(__a, __b) ((__a) >= (__b)) | ||
19 | #define cputime_lt(__a, __b) ((__a) < (__b)) | ||
20 | #define cputime_le(__a, __b) ((__a) <= (__b)) | ||
21 | #define cputime_to_jiffies(__ct) (__ct) | ||
22 | #define cputime_to_scaled(__ct) (__ct) | 11 | #define cputime_to_scaled(__ct) (__ct) |
23 | #define jiffies_to_cputime(__hz) (__hz) | 12 | #define jiffies_to_cputime(__hz) (__force cputime_t)(__hz) |
24 | 13 | ||
25 | typedef u64 cputime64_t; | 14 | typedef u64 __nocast cputime64_t; |
26 | 15 | ||
27 | #define cputime64_zero (0ULL) | 16 | #define cputime64_to_jiffies64(__ct) (__force u64)(__ct) |
28 | #define cputime64_add(__a, __b) ((__a) + (__b)) | 17 | #define jiffies64_to_cputime64(__jif) (__force cputime64_t)(__jif) |
29 | #define cputime64_sub(__a, __b) ((__a) - (__b)) | ||
30 | #define cputime64_to_jiffies64(__ct) (__ct) | ||
31 | #define jiffies64_to_cputime64(__jif) (__jif) | ||
32 | #define cputime_to_cputime64(__ct) ((u64) __ct) | ||
33 | #define cputime64_gt(__a, __b) ((__a) > (__b)) | ||
34 | 18 | ||
35 | #define nsecs_to_cputime64(__ct) nsecs_to_jiffies64(__ct) | 19 | #define nsecs_to_cputime64(__ct) \ |
20 | jiffies64_to_cputime64(nsecs_to_jiffies64(__ct)) | ||
36 | 21 | ||
37 | 22 | ||
38 | /* | 23 | /* |
39 | * Convert cputime to microseconds and back. | 24 | * Convert cputime to microseconds and back. |
40 | */ | 25 | */ |
41 | #define cputime_to_usecs(__ct) jiffies_to_usecs(__ct) | 26 | #define cputime_to_usecs(__ct) \ |
42 | #define usecs_to_cputime(__msecs) usecs_to_jiffies(__msecs) | 27 | jiffies_to_usecs(cputime_to_jiffies(__ct)) |
43 | #define usecs_to_cputime64(__msecs) nsecs_to_jiffies64((__msecs) * 1000) | 28 | #define usecs_to_cputime(__usec) \ |
29 | jiffies_to_cputime(usecs_to_jiffies(__usec)) | ||
30 | #define usecs_to_cputime64(__usec) \ | ||
31 | jiffies64_to_cputime64(nsecs_to_jiffies64((__usec) * 1000)) | ||
44 | 32 | ||
45 | /* | 33 | /* |
46 | * Convert cputime to seconds and back. | 34 | * Convert cputime to seconds and back. |
47 | */ | 35 | */ |
48 | #define cputime_to_secs(jif) ((jif) / HZ) | 36 | #define cputime_to_secs(jif) (cputime_to_jiffies(jif) / HZ) |
49 | #define secs_to_cputime(sec) ((sec) * HZ) | 37 | #define secs_to_cputime(sec) jiffies_to_cputime((sec) * HZ) |
50 | 38 | ||
51 | /* | 39 | /* |
52 | * Convert cputime to timespec and back. | 40 | * Convert cputime to timespec and back. |
53 | */ | 41 | */ |
54 | #define timespec_to_cputime(__val) timespec_to_jiffies(__val) | 42 | #define timespec_to_cputime(__val) \ |
55 | #define cputime_to_timespec(__ct,__val) jiffies_to_timespec(__ct,__val) | 43 | jiffies_to_cputime(timespec_to_jiffies(__val)) |
44 | #define cputime_to_timespec(__ct,__val) \ | ||
45 | jiffies_to_timespec(cputime_to_jiffies(__ct),__val) | ||
56 | 46 | ||
57 | /* | 47 | /* |
58 | * Convert cputime to timeval and back. | 48 | * Convert cputime to timeval and back. |
59 | */ | 49 | */ |
60 | #define timeval_to_cputime(__val) timeval_to_jiffies(__val) | 50 | #define timeval_to_cputime(__val) \ |
61 | #define cputime_to_timeval(__ct,__val) jiffies_to_timeval(__ct,__val) | 51 | jiffies_to_cputime(timeval_to_jiffies(__val)) |
52 | #define cputime_to_timeval(__ct,__val) \ | ||
53 | jiffies_to_timeval(cputime_to_jiffies(__ct),__val) | ||
62 | 54 | ||
63 | /* | 55 | /* |
64 | * Convert cputime to clock and back. | 56 | * Convert cputime to clock and back. |
65 | */ | 57 | */ |
66 | #define cputime_to_clock_t(__ct) jiffies_to_clock_t(__ct) | 58 | #define cputime_to_clock_t(__ct) \ |
67 | #define clock_t_to_cputime(__x) clock_t_to_jiffies(__x) | 59 | jiffies_to_clock_t(cputime_to_jiffies(__ct)) |
60 | #define clock_t_to_cputime(__x) \ | ||
61 | jiffies_to_cputime(clock_t_to_jiffies(__x)) | ||
68 | 62 | ||
69 | /* | 63 | /* |
70 | * Convert cputime64 to clock. | 64 | * Convert cputime64 to clock. |
71 | */ | 65 | */ |
72 | #define cputime64_to_clock_t(__ct) jiffies_64_to_clock_t(__ct) | 66 | #define cputime64_to_clock_t(__ct) \ |
67 | jiffies_64_to_clock_t(cputime64_to_jiffies64(__ct)) | ||
73 | 68 | ||
74 | #endif | 69 | #endif |
diff --git a/include/linux/kernel_stat.h b/include/linux/kernel_stat.h index 0cce2db580c3..2fbd9053c2df 100644 --- a/include/linux/kernel_stat.h +++ b/include/linux/kernel_stat.h | |||
@@ -6,6 +6,7 @@ | |||
6 | #include <linux/percpu.h> | 6 | #include <linux/percpu.h> |
7 | #include <linux/cpumask.h> | 7 | #include <linux/cpumask.h> |
8 | #include <linux/interrupt.h> | 8 | #include <linux/interrupt.h> |
9 | #include <linux/sched.h> | ||
9 | #include <asm/irq.h> | 10 | #include <asm/irq.h> |
10 | #include <asm/cputime.h> | 11 | #include <asm/cputime.h> |
11 | 12 | ||
@@ -15,21 +16,25 @@ | |||
15 | * used by rstatd/perfmeter | 16 | * used by rstatd/perfmeter |
16 | */ | 17 | */ |
17 | 18 | ||
18 | struct cpu_usage_stat { | 19 | enum cpu_usage_stat { |
19 | cputime64_t user; | 20 | CPUTIME_USER, |
20 | cputime64_t nice; | 21 | CPUTIME_NICE, |
21 | cputime64_t system; | 22 | CPUTIME_SYSTEM, |
22 | cputime64_t softirq; | 23 | CPUTIME_SOFTIRQ, |
23 | cputime64_t irq; | 24 | CPUTIME_IRQ, |
24 | cputime64_t idle; | 25 | CPUTIME_IDLE, |
25 | cputime64_t iowait; | 26 | CPUTIME_IOWAIT, |
26 | cputime64_t steal; | 27 | CPUTIME_STEAL, |
27 | cputime64_t guest; | 28 | CPUTIME_GUEST, |
28 | cputime64_t guest_nice; | 29 | CPUTIME_GUEST_NICE, |
30 | NR_STATS, | ||
31 | }; | ||
32 | |||
33 | struct kernel_cpustat { | ||
34 | u64 cpustat[NR_STATS]; | ||
29 | }; | 35 | }; |
30 | 36 | ||
31 | struct kernel_stat { | 37 | struct kernel_stat { |
32 | struct cpu_usage_stat cpustat; | ||
33 | #ifndef CONFIG_GENERIC_HARDIRQS | 38 | #ifndef CONFIG_GENERIC_HARDIRQS |
34 | unsigned int irqs[NR_IRQS]; | 39 | unsigned int irqs[NR_IRQS]; |
35 | #endif | 40 | #endif |
@@ -38,10 +43,13 @@ struct kernel_stat { | |||
38 | }; | 43 | }; |
39 | 44 | ||
40 | DECLARE_PER_CPU(struct kernel_stat, kstat); | 45 | DECLARE_PER_CPU(struct kernel_stat, kstat); |
46 | DECLARE_PER_CPU(struct kernel_cpustat, kernel_cpustat); | ||
41 | 47 | ||
42 | #define kstat_cpu(cpu) per_cpu(kstat, cpu) | ||
43 | /* Must have preemption disabled for this to be meaningful. */ | 48 | /* Must have preemption disabled for this to be meaningful. */ |
44 | #define kstat_this_cpu __get_cpu_var(kstat) | 49 | #define kstat_this_cpu (&__get_cpu_var(kstat)) |
50 | #define kcpustat_this_cpu (&__get_cpu_var(kernel_cpustat)) | ||
51 | #define kstat_cpu(cpu) per_cpu(kstat, cpu) | ||
52 | #define kcpustat_cpu(cpu) per_cpu(kernel_cpustat, cpu) | ||
45 | 53 | ||
46 | extern unsigned long long nr_context_switches(void); | 54 | extern unsigned long long nr_context_switches(void); |
47 | 55 | ||
diff --git a/include/linux/latencytop.h b/include/linux/latencytop.h index b0e99898527c..e23121f9d82a 100644 --- a/include/linux/latencytop.h +++ b/include/linux/latencytop.h | |||
@@ -10,6 +10,8 @@ | |||
10 | #define _INCLUDE_GUARD_LATENCYTOP_H_ | 10 | #define _INCLUDE_GUARD_LATENCYTOP_H_ |
11 | 11 | ||
12 | #include <linux/compiler.h> | 12 | #include <linux/compiler.h> |
13 | struct task_struct; | ||
14 | |||
13 | #ifdef CONFIG_LATENCYTOP | 15 | #ifdef CONFIG_LATENCYTOP |
14 | 16 | ||
15 | #define LT_SAVECOUNT 32 | 17 | #define LT_SAVECOUNT 32 |
@@ -23,7 +25,6 @@ struct latency_record { | |||
23 | }; | 25 | }; |
24 | 26 | ||
25 | 27 | ||
26 | struct task_struct; | ||
27 | 28 | ||
28 | extern int latencytop_enabled; | 29 | extern int latencytop_enabled; |
29 | void __account_scheduler_latency(struct task_struct *task, int usecs, int inter); | 30 | void __account_scheduler_latency(struct task_struct *task, int usecs, int inter); |
diff --git a/include/linux/sched.h b/include/linux/sched.h index 4a7e4d333a27..cf0eb342bcba 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h | |||
@@ -273,9 +273,11 @@ extern int runqueue_is_locked(int cpu); | |||
273 | 273 | ||
274 | #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) | 274 | #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) |
275 | extern void select_nohz_load_balancer(int stop_tick); | 275 | extern void select_nohz_load_balancer(int stop_tick); |
276 | extern void set_cpu_sd_state_idle(void); | ||
276 | extern int get_nohz_timer_target(void); | 277 | extern int get_nohz_timer_target(void); |
277 | #else | 278 | #else |
278 | static inline void select_nohz_load_balancer(int stop_tick) { } | 279 | static inline void select_nohz_load_balancer(int stop_tick) { } |
280 | static inline void set_cpu_sd_state_idle(void) { } | ||
279 | #endif | 281 | #endif |
280 | 282 | ||
281 | /* | 283 | /* |
@@ -483,8 +485,8 @@ struct task_cputime { | |||
483 | 485 | ||
484 | #define INIT_CPUTIME \ | 486 | #define INIT_CPUTIME \ |
485 | (struct task_cputime) { \ | 487 | (struct task_cputime) { \ |
486 | .utime = cputime_zero, \ | 488 | .utime = 0, \ |
487 | .stime = cputime_zero, \ | 489 | .stime = 0, \ |
488 | .sum_exec_runtime = 0, \ | 490 | .sum_exec_runtime = 0, \ |
489 | } | 491 | } |
490 | 492 | ||
@@ -901,6 +903,10 @@ struct sched_group_power { | |||
901 | * single CPU. | 903 | * single CPU. |
902 | */ | 904 | */ |
903 | unsigned int power, power_orig; | 905 | unsigned int power, power_orig; |
906 | /* | ||
907 | * Number of busy cpus in this group. | ||
908 | */ | ||
909 | atomic_t nr_busy_cpus; | ||
904 | }; | 910 | }; |
905 | 911 | ||
906 | struct sched_group { | 912 | struct sched_group { |
@@ -925,6 +931,15 @@ static inline struct cpumask *sched_group_cpus(struct sched_group *sg) | |||
925 | return to_cpumask(sg->cpumask); | 931 | return to_cpumask(sg->cpumask); |
926 | } | 932 | } |
927 | 933 | ||
934 | /** | ||
935 | * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. | ||
936 | * @group: The group whose first cpu is to be returned. | ||
937 | */ | ||
938 | static inline unsigned int group_first_cpu(struct sched_group *group) | ||
939 | { | ||
940 | return cpumask_first(sched_group_cpus(group)); | ||
941 | } | ||
942 | |||
928 | struct sched_domain_attr { | 943 | struct sched_domain_attr { |
929 | int relax_domain_level; | 944 | int relax_domain_level; |
930 | }; | 945 | }; |
@@ -1315,8 +1330,8 @@ struct task_struct { | |||
1315 | * older sibling, respectively. (p->father can be replaced with | 1330 | * older sibling, respectively. (p->father can be replaced with |
1316 | * p->real_parent->pid) | 1331 | * p->real_parent->pid) |
1317 | */ | 1332 | */ |
1318 | struct task_struct *real_parent; /* real parent process */ | 1333 | struct task_struct __rcu *real_parent; /* real parent process */ |
1319 | struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */ | 1334 | struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ |
1320 | /* | 1335 | /* |
1321 | * children/sibling forms the list of my natural children | 1336 | * children/sibling forms the list of my natural children |
1322 | */ | 1337 | */ |
diff --git a/include/trace/events/sched.h b/include/trace/events/sched.h index 959ff18b63b6..6ba596b07a72 100644 --- a/include/trace/events/sched.h +++ b/include/trace/events/sched.h | |||
@@ -331,6 +331,13 @@ DEFINE_EVENT(sched_stat_template, sched_stat_iowait, | |||
331 | TP_ARGS(tsk, delay)); | 331 | TP_ARGS(tsk, delay)); |
332 | 332 | ||
333 | /* | 333 | /* |
334 | * Tracepoint for accounting blocked time (time the task is in uninterruptible). | ||
335 | */ | ||
336 | DEFINE_EVENT(sched_stat_template, sched_stat_blocked, | ||
337 | TP_PROTO(struct task_struct *tsk, u64 delay), | ||
338 | TP_ARGS(tsk, delay)); | ||
339 | |||
340 | /* | ||
334 | * Tracepoint for accounting runtime (time the task is executing | 341 | * Tracepoint for accounting runtime (time the task is executing |
335 | * on a CPU). | 342 | * on a CPU). |
336 | */ | 343 | */ |
@@ -363,6 +370,56 @@ TRACE_EVENT(sched_stat_runtime, | |||
363 | (unsigned long long)__entry->vruntime) | 370 | (unsigned long long)__entry->vruntime) |
364 | ); | 371 | ); |
365 | 372 | ||
373 | #ifdef CREATE_TRACE_POINTS | ||
374 | static inline u64 trace_get_sleeptime(struct task_struct *tsk) | ||
375 | { | ||
376 | #ifdef CONFIG_SCHEDSTATS | ||
377 | u64 block, sleep; | ||
378 | |||
379 | block = tsk->se.statistics.block_start; | ||
380 | sleep = tsk->se.statistics.sleep_start; | ||
381 | tsk->se.statistics.block_start = 0; | ||
382 | tsk->se.statistics.sleep_start = 0; | ||
383 | |||
384 | return block ? block : sleep ? sleep : 0; | ||
385 | #else | ||
386 | return 0; | ||
387 | #endif | ||
388 | } | ||
389 | #endif | ||
390 | |||
391 | /* | ||
392 | * Tracepoint for accounting sleeptime (time the task is sleeping | ||
393 | * or waiting for I/O). | ||
394 | */ | ||
395 | TRACE_EVENT(sched_stat_sleeptime, | ||
396 | |||
397 | TP_PROTO(struct task_struct *tsk, u64 now), | ||
398 | |||
399 | TP_ARGS(tsk, now), | ||
400 | |||
401 | TP_STRUCT__entry( | ||
402 | __array( char, comm, TASK_COMM_LEN ) | ||
403 | __field( pid_t, pid ) | ||
404 | __field( u64, sleeptime ) | ||
405 | ), | ||
406 | |||
407 | TP_fast_assign( | ||
408 | memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); | ||
409 | __entry->pid = tsk->pid; | ||
410 | __entry->sleeptime = trace_get_sleeptime(tsk); | ||
411 | __entry->sleeptime = __entry->sleeptime ? | ||
412 | now - __entry->sleeptime : 0; | ||
413 | ) | ||
414 | TP_perf_assign( | ||
415 | __perf_count(__entry->sleeptime); | ||
416 | ), | ||
417 | |||
418 | TP_printk("comm=%s pid=%d sleeptime=%Lu [ns]", | ||
419 | __entry->comm, __entry->pid, | ||
420 | (unsigned long long)__entry->sleeptime) | ||
421 | ); | ||
422 | |||
366 | /* | 423 | /* |
367 | * Tracepoint for showing priority inheritance modifying a tasks | 424 | * Tracepoint for showing priority inheritance modifying a tasks |
368 | * priority. | 425 | * priority. |
diff --git a/kernel/Makefile b/kernel/Makefile index e898c5b9d02c..f70396e5a24b 100644 --- a/kernel/Makefile +++ b/kernel/Makefile | |||
@@ -2,16 +2,15 @@ | |||
2 | # Makefile for the linux kernel. | 2 | # Makefile for the linux kernel. |
3 | # | 3 | # |
4 | 4 | ||
5 | obj-y = sched.o fork.o exec_domain.o panic.o printk.o \ | 5 | obj-y = fork.o exec_domain.o panic.o printk.o \ |
6 | cpu.o exit.o itimer.o time.o softirq.o resource.o \ | 6 | cpu.o exit.o itimer.o time.o softirq.o resource.o \ |
7 | sysctl.o sysctl_binary.o capability.o ptrace.o timer.o user.o \ | 7 | sysctl.o sysctl_binary.o capability.o ptrace.o timer.o user.o \ |
8 | signal.o sys.o kmod.o workqueue.o pid.o \ | 8 | signal.o sys.o kmod.o workqueue.o pid.o \ |
9 | rcupdate.o extable.o params.o posix-timers.o \ | 9 | rcupdate.o extable.o params.o posix-timers.o \ |
10 | kthread.o wait.o kfifo.o sys_ni.o posix-cpu-timers.o mutex.o \ | 10 | kthread.o wait.o kfifo.o sys_ni.o posix-cpu-timers.o mutex.o \ |
11 | hrtimer.o rwsem.o nsproxy.o srcu.o semaphore.o \ | 11 | hrtimer.o rwsem.o nsproxy.o srcu.o semaphore.o \ |
12 | notifier.o ksysfs.o sched_clock.o cred.o \ | 12 | notifier.o ksysfs.o cred.o \ |
13 | async.o range.o | 13 | async.o range.o groups.o |
14 | obj-y += groups.o | ||
15 | 14 | ||
16 | ifdef CONFIG_FUNCTION_TRACER | 15 | ifdef CONFIG_FUNCTION_TRACER |
17 | # Do not trace debug files and internal ftrace files | 16 | # Do not trace debug files and internal ftrace files |
@@ -20,10 +19,11 @@ CFLAGS_REMOVE_lockdep_proc.o = -pg | |||
20 | CFLAGS_REMOVE_mutex-debug.o = -pg | 19 | CFLAGS_REMOVE_mutex-debug.o = -pg |
21 | CFLAGS_REMOVE_rtmutex-debug.o = -pg | 20 | CFLAGS_REMOVE_rtmutex-debug.o = -pg |
22 | CFLAGS_REMOVE_cgroup-debug.o = -pg | 21 | CFLAGS_REMOVE_cgroup-debug.o = -pg |
23 | CFLAGS_REMOVE_sched_clock.o = -pg | ||
24 | CFLAGS_REMOVE_irq_work.o = -pg | 22 | CFLAGS_REMOVE_irq_work.o = -pg |
25 | endif | 23 | endif |
26 | 24 | ||
25 | obj-y += sched/ | ||
26 | |||
27 | obj-$(CONFIG_FREEZER) += freezer.o | 27 | obj-$(CONFIG_FREEZER) += freezer.o |
28 | obj-$(CONFIG_PROFILING) += profile.o | 28 | obj-$(CONFIG_PROFILING) += profile.o |
29 | obj-$(CONFIG_SYSCTL_SYSCALL_CHECK) += sysctl_check.o | 29 | obj-$(CONFIG_SYSCTL_SYSCALL_CHECK) += sysctl_check.o |
@@ -99,7 +99,6 @@ obj-$(CONFIG_TRACING) += trace/ | |||
99 | obj-$(CONFIG_X86_DS) += trace/ | 99 | obj-$(CONFIG_X86_DS) += trace/ |
100 | obj-$(CONFIG_RING_BUFFER) += trace/ | 100 | obj-$(CONFIG_RING_BUFFER) += trace/ |
101 | obj-$(CONFIG_TRACEPOINTS) += trace/ | 101 | obj-$(CONFIG_TRACEPOINTS) += trace/ |
102 | obj-$(CONFIG_SMP) += sched_cpupri.o | ||
103 | obj-$(CONFIG_IRQ_WORK) += irq_work.o | 102 | obj-$(CONFIG_IRQ_WORK) += irq_work.o |
104 | obj-$(CONFIG_CPU_PM) += cpu_pm.o | 103 | obj-$(CONFIG_CPU_PM) += cpu_pm.o |
105 | 104 | ||
@@ -110,15 +109,6 @@ obj-$(CONFIG_PADATA) += padata.o | |||
110 | obj-$(CONFIG_CRASH_DUMP) += crash_dump.o | 109 | obj-$(CONFIG_CRASH_DUMP) += crash_dump.o |
111 | obj-$(CONFIG_JUMP_LABEL) += jump_label.o | 110 | obj-$(CONFIG_JUMP_LABEL) += jump_label.o |
112 | 111 | ||
113 | ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) | ||
114 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is | ||
115 | # needed for x86 only. Why this used to be enabled for all architectures is beyond | ||
116 | # me. I suspect most platforms don't need this, but until we know that for sure | ||
117 | # I turn this off for IA-64 only. Andreas Schwab says it's also needed on m68k | ||
118 | # to get a correct value for the wait-channel (WCHAN in ps). --davidm | ||
119 | CFLAGS_sched.o := $(PROFILING) -fno-omit-frame-pointer | ||
120 | endif | ||
121 | |||
122 | $(obj)/configs.o: $(obj)/config_data.h | 112 | $(obj)/configs.o: $(obj)/config_data.h |
123 | 113 | ||
124 | # config_data.h contains the same information as ikconfig.h but gzipped. | 114 | # config_data.h contains the same information as ikconfig.h but gzipped. |
diff --git a/kernel/acct.c b/kernel/acct.c index fa7eb3de2ddc..203dfead2e06 100644 --- a/kernel/acct.c +++ b/kernel/acct.c | |||
@@ -613,8 +613,8 @@ void acct_collect(long exitcode, int group_dead) | |||
613 | pacct->ac_flag |= ACORE; | 613 | pacct->ac_flag |= ACORE; |
614 | if (current->flags & PF_SIGNALED) | 614 | if (current->flags & PF_SIGNALED) |
615 | pacct->ac_flag |= AXSIG; | 615 | pacct->ac_flag |= AXSIG; |
616 | pacct->ac_utime = cputime_add(pacct->ac_utime, current->utime); | 616 | pacct->ac_utime += current->utime; |
617 | pacct->ac_stime = cputime_add(pacct->ac_stime, current->stime); | 617 | pacct->ac_stime += current->stime; |
618 | pacct->ac_minflt += current->min_flt; | 618 | pacct->ac_minflt += current->min_flt; |
619 | pacct->ac_majflt += current->maj_flt; | 619 | pacct->ac_majflt += current->maj_flt; |
620 | spin_unlock_irq(¤t->sighand->siglock); | 620 | spin_unlock_irq(¤t->sighand->siglock); |
diff --git a/kernel/cpu.c b/kernel/cpu.c index 9d448ddb2247..5ca38d5d238a 100644 --- a/kernel/cpu.c +++ b/kernel/cpu.c | |||
@@ -178,8 +178,7 @@ static inline void check_for_tasks(int cpu) | |||
178 | write_lock_irq(&tasklist_lock); | 178 | write_lock_irq(&tasklist_lock); |
179 | for_each_process(p) { | 179 | for_each_process(p) { |
180 | if (task_cpu(p) == cpu && p->state == TASK_RUNNING && | 180 | if (task_cpu(p) == cpu && p->state == TASK_RUNNING && |
181 | (!cputime_eq(p->utime, cputime_zero) || | 181 | (p->utime || p->stime)) |
182 | !cputime_eq(p->stime, cputime_zero))) | ||
183 | printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d " | 182 | printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d " |
184 | "(state = %ld, flags = %x)\n", | 183 | "(state = %ld, flags = %x)\n", |
185 | p->comm, task_pid_nr(p), cpu, | 184 | p->comm, task_pid_nr(p), cpu, |
diff --git a/kernel/exit.c b/kernel/exit.c index e6e01b959a0e..d579a459309d 100644 --- a/kernel/exit.c +++ b/kernel/exit.c | |||
@@ -121,9 +121,9 @@ static void __exit_signal(struct task_struct *tsk) | |||
121 | * We won't ever get here for the group leader, since it | 121 | * We won't ever get here for the group leader, since it |
122 | * will have been the last reference on the signal_struct. | 122 | * will have been the last reference on the signal_struct. |
123 | */ | 123 | */ |
124 | sig->utime = cputime_add(sig->utime, tsk->utime); | 124 | sig->utime += tsk->utime; |
125 | sig->stime = cputime_add(sig->stime, tsk->stime); | 125 | sig->stime += tsk->stime; |
126 | sig->gtime = cputime_add(sig->gtime, tsk->gtime); | 126 | sig->gtime += tsk->gtime; |
127 | sig->min_flt += tsk->min_flt; | 127 | sig->min_flt += tsk->min_flt; |
128 | sig->maj_flt += tsk->maj_flt; | 128 | sig->maj_flt += tsk->maj_flt; |
129 | sig->nvcsw += tsk->nvcsw; | 129 | sig->nvcsw += tsk->nvcsw; |
@@ -1255,19 +1255,9 @@ static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) | |||
1255 | spin_lock_irq(&p->real_parent->sighand->siglock); | 1255 | spin_lock_irq(&p->real_parent->sighand->siglock); |
1256 | psig = p->real_parent->signal; | 1256 | psig = p->real_parent->signal; |
1257 | sig = p->signal; | 1257 | sig = p->signal; |
1258 | psig->cutime = | 1258 | psig->cutime += tgutime + sig->cutime; |
1259 | cputime_add(psig->cutime, | 1259 | psig->cstime += tgstime + sig->cstime; |
1260 | cputime_add(tgutime, | 1260 | psig->cgtime += p->gtime + sig->gtime + sig->cgtime; |
1261 | sig->cutime)); | ||
1262 | psig->cstime = | ||
1263 | cputime_add(psig->cstime, | ||
1264 | cputime_add(tgstime, | ||
1265 | sig->cstime)); | ||
1266 | psig->cgtime = | ||
1267 | cputime_add(psig->cgtime, | ||
1268 | cputime_add(p->gtime, | ||
1269 | cputime_add(sig->gtime, | ||
1270 | sig->cgtime))); | ||
1271 | psig->cmin_flt += | 1261 | psig->cmin_flt += |
1272 | p->min_flt + sig->min_flt + sig->cmin_flt; | 1262 | p->min_flt + sig->min_flt + sig->cmin_flt; |
1273 | psig->cmaj_flt += | 1263 | psig->cmaj_flt += |
diff --git a/kernel/fork.c b/kernel/fork.c index da4a6a10d088..b058c5820ecd 100644 --- a/kernel/fork.c +++ b/kernel/fork.c | |||
@@ -1023,8 +1023,8 @@ void mm_init_owner(struct mm_struct *mm, struct task_struct *p) | |||
1023 | */ | 1023 | */ |
1024 | static void posix_cpu_timers_init(struct task_struct *tsk) | 1024 | static void posix_cpu_timers_init(struct task_struct *tsk) |
1025 | { | 1025 | { |
1026 | tsk->cputime_expires.prof_exp = cputime_zero; | 1026 | tsk->cputime_expires.prof_exp = 0; |
1027 | tsk->cputime_expires.virt_exp = cputime_zero; | 1027 | tsk->cputime_expires.virt_exp = 0; |
1028 | tsk->cputime_expires.sched_exp = 0; | 1028 | tsk->cputime_expires.sched_exp = 0; |
1029 | INIT_LIST_HEAD(&tsk->cpu_timers[0]); | 1029 | INIT_LIST_HEAD(&tsk->cpu_timers[0]); |
1030 | INIT_LIST_HEAD(&tsk->cpu_timers[1]); | 1030 | INIT_LIST_HEAD(&tsk->cpu_timers[1]); |
@@ -1132,14 +1132,10 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
1132 | 1132 | ||
1133 | init_sigpending(&p->pending); | 1133 | init_sigpending(&p->pending); |
1134 | 1134 | ||
1135 | p->utime = cputime_zero; | 1135 | p->utime = p->stime = p->gtime = 0; |
1136 | p->stime = cputime_zero; | 1136 | p->utimescaled = p->stimescaled = 0; |
1137 | p->gtime = cputime_zero; | ||
1138 | p->utimescaled = cputime_zero; | ||
1139 | p->stimescaled = cputime_zero; | ||
1140 | #ifndef CONFIG_VIRT_CPU_ACCOUNTING | 1137 | #ifndef CONFIG_VIRT_CPU_ACCOUNTING |
1141 | p->prev_utime = cputime_zero; | 1138 | p->prev_utime = p->prev_stime = 0; |
1142 | p->prev_stime = cputime_zero; | ||
1143 | #endif | 1139 | #endif |
1144 | #if defined(SPLIT_RSS_COUNTING) | 1140 | #if defined(SPLIT_RSS_COUNTING) |
1145 | memset(&p->rss_stat, 0, sizeof(p->rss_stat)); | 1141 | memset(&p->rss_stat, 0, sizeof(p->rss_stat)); |
diff --git a/kernel/itimer.c b/kernel/itimer.c index d802883153da..22000c3db0dd 100644 --- a/kernel/itimer.c +++ b/kernel/itimer.c | |||
@@ -52,22 +52,22 @@ static void get_cpu_itimer(struct task_struct *tsk, unsigned int clock_id, | |||
52 | 52 | ||
53 | cval = it->expires; | 53 | cval = it->expires; |
54 | cinterval = it->incr; | 54 | cinterval = it->incr; |
55 | if (!cputime_eq(cval, cputime_zero)) { | 55 | if (cval) { |
56 | struct task_cputime cputime; | 56 | struct task_cputime cputime; |
57 | cputime_t t; | 57 | cputime_t t; |
58 | 58 | ||
59 | thread_group_cputimer(tsk, &cputime); | 59 | thread_group_cputimer(tsk, &cputime); |
60 | if (clock_id == CPUCLOCK_PROF) | 60 | if (clock_id == CPUCLOCK_PROF) |
61 | t = cputime_add(cputime.utime, cputime.stime); | 61 | t = cputime.utime + cputime.stime; |
62 | else | 62 | else |
63 | /* CPUCLOCK_VIRT */ | 63 | /* CPUCLOCK_VIRT */ |
64 | t = cputime.utime; | 64 | t = cputime.utime; |
65 | 65 | ||
66 | if (cputime_le(cval, t)) | 66 | if (cval < t) |
67 | /* about to fire */ | 67 | /* about to fire */ |
68 | cval = cputime_one_jiffy; | 68 | cval = cputime_one_jiffy; |
69 | else | 69 | else |
70 | cval = cputime_sub(cval, t); | 70 | cval = cval - t; |
71 | } | 71 | } |
72 | 72 | ||
73 | spin_unlock_irq(&tsk->sighand->siglock); | 73 | spin_unlock_irq(&tsk->sighand->siglock); |
@@ -161,10 +161,9 @@ static void set_cpu_itimer(struct task_struct *tsk, unsigned int clock_id, | |||
161 | 161 | ||
162 | cval = it->expires; | 162 | cval = it->expires; |
163 | cinterval = it->incr; | 163 | cinterval = it->incr; |
164 | if (!cputime_eq(cval, cputime_zero) || | 164 | if (cval || nval) { |
165 | !cputime_eq(nval, cputime_zero)) { | 165 | if (nval > 0) |
166 | if (cputime_gt(nval, cputime_zero)) | 166 | nval += cputime_one_jiffy; |
167 | nval = cputime_add(nval, cputime_one_jiffy); | ||
168 | set_process_cpu_timer(tsk, clock_id, &nval, &cval); | 167 | set_process_cpu_timer(tsk, clock_id, &nval, &cval); |
169 | } | 168 | } |
170 | it->expires = nval; | 169 | it->expires = nval; |
diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c index e7cb76dc18f5..125cb67daa21 100644 --- a/kernel/posix-cpu-timers.c +++ b/kernel/posix-cpu-timers.c | |||
@@ -78,7 +78,7 @@ static inline int cpu_time_before(const clockid_t which_clock, | |||
78 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | 78 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { |
79 | return now.sched < then.sched; | 79 | return now.sched < then.sched; |
80 | } else { | 80 | } else { |
81 | return cputime_lt(now.cpu, then.cpu); | 81 | return now.cpu < then.cpu; |
82 | } | 82 | } |
83 | } | 83 | } |
84 | static inline void cpu_time_add(const clockid_t which_clock, | 84 | static inline void cpu_time_add(const clockid_t which_clock, |
@@ -88,7 +88,7 @@ static inline void cpu_time_add(const clockid_t which_clock, | |||
88 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | 88 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { |
89 | acc->sched += val.sched; | 89 | acc->sched += val.sched; |
90 | } else { | 90 | } else { |
91 | acc->cpu = cputime_add(acc->cpu, val.cpu); | 91 | acc->cpu += val.cpu; |
92 | } | 92 | } |
93 | } | 93 | } |
94 | static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock, | 94 | static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock, |
@@ -98,25 +98,12 @@ static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock, | |||
98 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | 98 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { |
99 | a.sched -= b.sched; | 99 | a.sched -= b.sched; |
100 | } else { | 100 | } else { |
101 | a.cpu = cputime_sub(a.cpu, b.cpu); | 101 | a.cpu -= b.cpu; |
102 | } | 102 | } |
103 | return a; | 103 | return a; |
104 | } | 104 | } |
105 | 105 | ||
106 | /* | 106 | /* |
107 | * Divide and limit the result to res >= 1 | ||
108 | * | ||
109 | * This is necessary to prevent signal delivery starvation, when the result of | ||
110 | * the division would be rounded down to 0. | ||
111 | */ | ||
112 | static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div) | ||
113 | { | ||
114 | cputime_t res = cputime_div(time, div); | ||
115 | |||
116 | return max_t(cputime_t, res, 1); | ||
117 | } | ||
118 | |||
119 | /* | ||
120 | * Update expiry time from increment, and increase overrun count, | 107 | * Update expiry time from increment, and increase overrun count, |
121 | * given the current clock sample. | 108 | * given the current clock sample. |
122 | */ | 109 | */ |
@@ -148,28 +135,26 @@ static void bump_cpu_timer(struct k_itimer *timer, | |||
148 | } else { | 135 | } else { |
149 | cputime_t delta, incr; | 136 | cputime_t delta, incr; |
150 | 137 | ||
151 | if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu)) | 138 | if (now.cpu < timer->it.cpu.expires.cpu) |
152 | return; | 139 | return; |
153 | incr = timer->it.cpu.incr.cpu; | 140 | incr = timer->it.cpu.incr.cpu; |
154 | delta = cputime_sub(cputime_add(now.cpu, incr), | 141 | delta = now.cpu + incr - timer->it.cpu.expires.cpu; |
155 | timer->it.cpu.expires.cpu); | ||
156 | /* Don't use (incr*2 < delta), incr*2 might overflow. */ | 142 | /* Don't use (incr*2 < delta), incr*2 might overflow. */ |
157 | for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++) | 143 | for (i = 0; incr < delta - incr; i++) |
158 | incr = cputime_add(incr, incr); | 144 | incr += incr; |
159 | for (; i >= 0; incr = cputime_halve(incr), i--) { | 145 | for (; i >= 0; incr = incr >> 1, i--) { |
160 | if (cputime_lt(delta, incr)) | 146 | if (delta < incr) |
161 | continue; | 147 | continue; |
162 | timer->it.cpu.expires.cpu = | 148 | timer->it.cpu.expires.cpu += incr; |
163 | cputime_add(timer->it.cpu.expires.cpu, incr); | ||
164 | timer->it_overrun += 1 << i; | 149 | timer->it_overrun += 1 << i; |
165 | delta = cputime_sub(delta, incr); | 150 | delta -= incr; |
166 | } | 151 | } |
167 | } | 152 | } |
168 | } | 153 | } |
169 | 154 | ||
170 | static inline cputime_t prof_ticks(struct task_struct *p) | 155 | static inline cputime_t prof_ticks(struct task_struct *p) |
171 | { | 156 | { |
172 | return cputime_add(p->utime, p->stime); | 157 | return p->utime + p->stime; |
173 | } | 158 | } |
174 | static inline cputime_t virt_ticks(struct task_struct *p) | 159 | static inline cputime_t virt_ticks(struct task_struct *p) |
175 | { | 160 | { |
@@ -248,8 +233,8 @@ void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) | |||
248 | 233 | ||
249 | t = tsk; | 234 | t = tsk; |
250 | do { | 235 | do { |
251 | times->utime = cputime_add(times->utime, t->utime); | 236 | times->utime += t->utime; |
252 | times->stime = cputime_add(times->stime, t->stime); | 237 | times->stime += t->stime; |
253 | times->sum_exec_runtime += task_sched_runtime(t); | 238 | times->sum_exec_runtime += task_sched_runtime(t); |
254 | } while_each_thread(tsk, t); | 239 | } while_each_thread(tsk, t); |
255 | out: | 240 | out: |
@@ -258,10 +243,10 @@ out: | |||
258 | 243 | ||
259 | static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b) | 244 | static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b) |
260 | { | 245 | { |
261 | if (cputime_gt(b->utime, a->utime)) | 246 | if (b->utime > a->utime) |
262 | a->utime = b->utime; | 247 | a->utime = b->utime; |
263 | 248 | ||
264 | if (cputime_gt(b->stime, a->stime)) | 249 | if (b->stime > a->stime) |
265 | a->stime = b->stime; | 250 | a->stime = b->stime; |
266 | 251 | ||
267 | if (b->sum_exec_runtime > a->sum_exec_runtime) | 252 | if (b->sum_exec_runtime > a->sum_exec_runtime) |
@@ -306,7 +291,7 @@ static int cpu_clock_sample_group(const clockid_t which_clock, | |||
306 | return -EINVAL; | 291 | return -EINVAL; |
307 | case CPUCLOCK_PROF: | 292 | case CPUCLOCK_PROF: |
308 | thread_group_cputime(p, &cputime); | 293 | thread_group_cputime(p, &cputime); |
309 | cpu->cpu = cputime_add(cputime.utime, cputime.stime); | 294 | cpu->cpu = cputime.utime + cputime.stime; |
310 | break; | 295 | break; |
311 | case CPUCLOCK_VIRT: | 296 | case CPUCLOCK_VIRT: |
312 | thread_group_cputime(p, &cputime); | 297 | thread_group_cputime(p, &cputime); |
@@ -470,26 +455,24 @@ static void cleanup_timers(struct list_head *head, | |||
470 | unsigned long long sum_exec_runtime) | 455 | unsigned long long sum_exec_runtime) |
471 | { | 456 | { |
472 | struct cpu_timer_list *timer, *next; | 457 | struct cpu_timer_list *timer, *next; |
473 | cputime_t ptime = cputime_add(utime, stime); | 458 | cputime_t ptime = utime + stime; |
474 | 459 | ||
475 | list_for_each_entry_safe(timer, next, head, entry) { | 460 | list_for_each_entry_safe(timer, next, head, entry) { |
476 | list_del_init(&timer->entry); | 461 | list_del_init(&timer->entry); |
477 | if (cputime_lt(timer->expires.cpu, ptime)) { | 462 | if (timer->expires.cpu < ptime) { |
478 | timer->expires.cpu = cputime_zero; | 463 | timer->expires.cpu = 0; |
479 | } else { | 464 | } else { |
480 | timer->expires.cpu = cputime_sub(timer->expires.cpu, | 465 | timer->expires.cpu -= ptime; |
481 | ptime); | ||
482 | } | 466 | } |
483 | } | 467 | } |
484 | 468 | ||
485 | ++head; | 469 | ++head; |
486 | list_for_each_entry_safe(timer, next, head, entry) { | 470 | list_for_each_entry_safe(timer, next, head, entry) { |
487 | list_del_init(&timer->entry); | 471 | list_del_init(&timer->entry); |
488 | if (cputime_lt(timer->expires.cpu, utime)) { | 472 | if (timer->expires.cpu < utime) { |
489 | timer->expires.cpu = cputime_zero; | 473 | timer->expires.cpu = 0; |
490 | } else { | 474 | } else { |
491 | timer->expires.cpu = cputime_sub(timer->expires.cpu, | 475 | timer->expires.cpu -= utime; |
492 | utime); | ||
493 | } | 476 | } |
494 | } | 477 | } |
495 | 478 | ||
@@ -520,8 +503,7 @@ void posix_cpu_timers_exit_group(struct task_struct *tsk) | |||
520 | struct signal_struct *const sig = tsk->signal; | 503 | struct signal_struct *const sig = tsk->signal; |
521 | 504 | ||
522 | cleanup_timers(tsk->signal->cpu_timers, | 505 | cleanup_timers(tsk->signal->cpu_timers, |
523 | cputime_add(tsk->utime, sig->utime), | 506 | tsk->utime + sig->utime, tsk->stime + sig->stime, |
524 | cputime_add(tsk->stime, sig->stime), | ||
525 | tsk->se.sum_exec_runtime + sig->sum_sched_runtime); | 507 | tsk->se.sum_exec_runtime + sig->sum_sched_runtime); |
526 | } | 508 | } |
527 | 509 | ||
@@ -540,8 +522,7 @@ static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now) | |||
540 | 522 | ||
541 | static inline int expires_gt(cputime_t expires, cputime_t new_exp) | 523 | static inline int expires_gt(cputime_t expires, cputime_t new_exp) |
542 | { | 524 | { |
543 | return cputime_eq(expires, cputime_zero) || | 525 | return expires == 0 || expires > new_exp; |
544 | cputime_gt(expires, new_exp); | ||
545 | } | 526 | } |
546 | 527 | ||
547 | /* | 528 | /* |
@@ -651,7 +632,7 @@ static int cpu_timer_sample_group(const clockid_t which_clock, | |||
651 | default: | 632 | default: |
652 | return -EINVAL; | 633 | return -EINVAL; |
653 | case CPUCLOCK_PROF: | 634 | case CPUCLOCK_PROF: |
654 | cpu->cpu = cputime_add(cputime.utime, cputime.stime); | 635 | cpu->cpu = cputime.utime + cputime.stime; |
655 | break; | 636 | break; |
656 | case CPUCLOCK_VIRT: | 637 | case CPUCLOCK_VIRT: |
657 | cpu->cpu = cputime.utime; | 638 | cpu->cpu = cputime.utime; |
@@ -918,12 +899,12 @@ static void check_thread_timers(struct task_struct *tsk, | |||
918 | unsigned long soft; | 899 | unsigned long soft; |
919 | 900 | ||
920 | maxfire = 20; | 901 | maxfire = 20; |
921 | tsk->cputime_expires.prof_exp = cputime_zero; | 902 | tsk->cputime_expires.prof_exp = 0; |
922 | while (!list_empty(timers)) { | 903 | while (!list_empty(timers)) { |
923 | struct cpu_timer_list *t = list_first_entry(timers, | 904 | struct cpu_timer_list *t = list_first_entry(timers, |
924 | struct cpu_timer_list, | 905 | struct cpu_timer_list, |
925 | entry); | 906 | entry); |
926 | if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) { | 907 | if (!--maxfire || prof_ticks(tsk) < t->expires.cpu) { |
927 | tsk->cputime_expires.prof_exp = t->expires.cpu; | 908 | tsk->cputime_expires.prof_exp = t->expires.cpu; |
928 | break; | 909 | break; |
929 | } | 910 | } |
@@ -933,12 +914,12 @@ static void check_thread_timers(struct task_struct *tsk, | |||
933 | 914 | ||
934 | ++timers; | 915 | ++timers; |
935 | maxfire = 20; | 916 | maxfire = 20; |
936 | tsk->cputime_expires.virt_exp = cputime_zero; | 917 | tsk->cputime_expires.virt_exp = 0; |
937 | while (!list_empty(timers)) { | 918 | while (!list_empty(timers)) { |
938 | struct cpu_timer_list *t = list_first_entry(timers, | 919 | struct cpu_timer_list *t = list_first_entry(timers, |
939 | struct cpu_timer_list, | 920 | struct cpu_timer_list, |
940 | entry); | 921 | entry); |
941 | if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) { | 922 | if (!--maxfire || virt_ticks(tsk) < t->expires.cpu) { |
942 | tsk->cputime_expires.virt_exp = t->expires.cpu; | 923 | tsk->cputime_expires.virt_exp = t->expires.cpu; |
943 | break; | 924 | break; |
944 | } | 925 | } |
@@ -1009,20 +990,19 @@ static u32 onecputick; | |||
1009 | static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, | 990 | static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, |
1010 | cputime_t *expires, cputime_t cur_time, int signo) | 991 | cputime_t *expires, cputime_t cur_time, int signo) |
1011 | { | 992 | { |
1012 | if (cputime_eq(it->expires, cputime_zero)) | 993 | if (!it->expires) |
1013 | return; | 994 | return; |
1014 | 995 | ||
1015 | if (cputime_ge(cur_time, it->expires)) { | 996 | if (cur_time >= it->expires) { |
1016 | if (!cputime_eq(it->incr, cputime_zero)) { | 997 | if (it->incr) { |
1017 | it->expires = cputime_add(it->expires, it->incr); | 998 | it->expires += it->incr; |
1018 | it->error += it->incr_error; | 999 | it->error += it->incr_error; |
1019 | if (it->error >= onecputick) { | 1000 | if (it->error >= onecputick) { |
1020 | it->expires = cputime_sub(it->expires, | 1001 | it->expires -= cputime_one_jiffy; |
1021 | cputime_one_jiffy); | ||
1022 | it->error -= onecputick; | 1002 | it->error -= onecputick; |
1023 | } | 1003 | } |
1024 | } else { | 1004 | } else { |
1025 | it->expires = cputime_zero; | 1005 | it->expires = 0; |
1026 | } | 1006 | } |
1027 | 1007 | ||
1028 | trace_itimer_expire(signo == SIGPROF ? | 1008 | trace_itimer_expire(signo == SIGPROF ? |
@@ -1031,9 +1011,7 @@ static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, | |||
1031 | __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); | 1011 | __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); |
1032 | } | 1012 | } |
1033 | 1013 | ||
1034 | if (!cputime_eq(it->expires, cputime_zero) && | 1014 | if (it->expires && (!*expires || it->expires < *expires)) { |
1035 | (cputime_eq(*expires, cputime_zero) || | ||
1036 | cputime_lt(it->expires, *expires))) { | ||
1037 | *expires = it->expires; | 1015 | *expires = it->expires; |
1038 | } | 1016 | } |
1039 | } | 1017 | } |
@@ -1048,9 +1026,7 @@ static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, | |||
1048 | */ | 1026 | */ |
1049 | static inline int task_cputime_zero(const struct task_cputime *cputime) | 1027 | static inline int task_cputime_zero(const struct task_cputime *cputime) |
1050 | { | 1028 | { |
1051 | if (cputime_eq(cputime->utime, cputime_zero) && | 1029 | if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime) |
1052 | cputime_eq(cputime->stime, cputime_zero) && | ||
1053 | cputime->sum_exec_runtime == 0) | ||
1054 | return 1; | 1030 | return 1; |
1055 | return 0; | 1031 | return 0; |
1056 | } | 1032 | } |
@@ -1076,15 +1052,15 @@ static void check_process_timers(struct task_struct *tsk, | |||
1076 | */ | 1052 | */ |
1077 | thread_group_cputimer(tsk, &cputime); | 1053 | thread_group_cputimer(tsk, &cputime); |
1078 | utime = cputime.utime; | 1054 | utime = cputime.utime; |
1079 | ptime = cputime_add(utime, cputime.stime); | 1055 | ptime = utime + cputime.stime; |
1080 | sum_sched_runtime = cputime.sum_exec_runtime; | 1056 | sum_sched_runtime = cputime.sum_exec_runtime; |
1081 | maxfire = 20; | 1057 | maxfire = 20; |
1082 | prof_expires = cputime_zero; | 1058 | prof_expires = 0; |
1083 | while (!list_empty(timers)) { | 1059 | while (!list_empty(timers)) { |
1084 | struct cpu_timer_list *tl = list_first_entry(timers, | 1060 | struct cpu_timer_list *tl = list_first_entry(timers, |
1085 | struct cpu_timer_list, | 1061 | struct cpu_timer_list, |
1086 | entry); | 1062 | entry); |
1087 | if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) { | 1063 | if (!--maxfire || ptime < tl->expires.cpu) { |
1088 | prof_expires = tl->expires.cpu; | 1064 | prof_expires = tl->expires.cpu; |
1089 | break; | 1065 | break; |
1090 | } | 1066 | } |
@@ -1094,12 +1070,12 @@ static void check_process_timers(struct task_struct *tsk, | |||
1094 | 1070 | ||
1095 | ++timers; | 1071 | ++timers; |
1096 | maxfire = 20; | 1072 | maxfire = 20; |
1097 | virt_expires = cputime_zero; | 1073 | virt_expires = 0; |
1098 | while (!list_empty(timers)) { | 1074 | while (!list_empty(timers)) { |
1099 | struct cpu_timer_list *tl = list_first_entry(timers, | 1075 | struct cpu_timer_list *tl = list_first_entry(timers, |
1100 | struct cpu_timer_list, | 1076 | struct cpu_timer_list, |
1101 | entry); | 1077 | entry); |
1102 | if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) { | 1078 | if (!--maxfire || utime < tl->expires.cpu) { |
1103 | virt_expires = tl->expires.cpu; | 1079 | virt_expires = tl->expires.cpu; |
1104 | break; | 1080 | break; |
1105 | } | 1081 | } |
@@ -1154,8 +1130,7 @@ static void check_process_timers(struct task_struct *tsk, | |||
1154 | } | 1130 | } |
1155 | } | 1131 | } |
1156 | x = secs_to_cputime(soft); | 1132 | x = secs_to_cputime(soft); |
1157 | if (cputime_eq(prof_expires, cputime_zero) || | 1133 | if (!prof_expires || x < prof_expires) { |
1158 | cputime_lt(x, prof_expires)) { | ||
1159 | prof_expires = x; | 1134 | prof_expires = x; |
1160 | } | 1135 | } |
1161 | } | 1136 | } |
@@ -1249,12 +1224,9 @@ out: | |||
1249 | static inline int task_cputime_expired(const struct task_cputime *sample, | 1224 | static inline int task_cputime_expired(const struct task_cputime *sample, |
1250 | const struct task_cputime *expires) | 1225 | const struct task_cputime *expires) |
1251 | { | 1226 | { |
1252 | if (!cputime_eq(expires->utime, cputime_zero) && | 1227 | if (expires->utime && sample->utime >= expires->utime) |
1253 | cputime_ge(sample->utime, expires->utime)) | ||
1254 | return 1; | 1228 | return 1; |
1255 | if (!cputime_eq(expires->stime, cputime_zero) && | 1229 | if (expires->stime && sample->utime + sample->stime >= expires->stime) |
1256 | cputime_ge(cputime_add(sample->utime, sample->stime), | ||
1257 | expires->stime)) | ||
1258 | return 1; | 1230 | return 1; |
1259 | if (expires->sum_exec_runtime != 0 && | 1231 | if (expires->sum_exec_runtime != 0 && |
1260 | sample->sum_exec_runtime >= expires->sum_exec_runtime) | 1232 | sample->sum_exec_runtime >= expires->sum_exec_runtime) |
@@ -1389,18 +1361,18 @@ void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, | |||
1389 | * it to be relative, *newval argument is relative and we update | 1361 | * it to be relative, *newval argument is relative and we update |
1390 | * it to be absolute. | 1362 | * it to be absolute. |
1391 | */ | 1363 | */ |
1392 | if (!cputime_eq(*oldval, cputime_zero)) { | 1364 | if (*oldval) { |
1393 | if (cputime_le(*oldval, now.cpu)) { | 1365 | if (*oldval <= now.cpu) { |
1394 | /* Just about to fire. */ | 1366 | /* Just about to fire. */ |
1395 | *oldval = cputime_one_jiffy; | 1367 | *oldval = cputime_one_jiffy; |
1396 | } else { | 1368 | } else { |
1397 | *oldval = cputime_sub(*oldval, now.cpu); | 1369 | *oldval -= now.cpu; |
1398 | } | 1370 | } |
1399 | } | 1371 | } |
1400 | 1372 | ||
1401 | if (cputime_eq(*newval, cputime_zero)) | 1373 | if (!*newval) |
1402 | return; | 1374 | return; |
1403 | *newval = cputime_add(*newval, now.cpu); | 1375 | *newval += now.cpu; |
1404 | } | 1376 | } |
1405 | 1377 | ||
1406 | /* | 1378 | /* |
diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile new file mode 100644 index 000000000000..9a7dd35102a3 --- /dev/null +++ b/kernel/sched/Makefile | |||
@@ -0,0 +1,20 @@ | |||
1 | ifdef CONFIG_FUNCTION_TRACER | ||
2 | CFLAGS_REMOVE_clock.o = -pg | ||
3 | endif | ||
4 | |||
5 | ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) | ||
6 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is | ||
7 | # needed for x86 only. Why this used to be enabled for all architectures is beyond | ||
8 | # me. I suspect most platforms don't need this, but until we know that for sure | ||
9 | # I turn this off for IA-64 only. Andreas Schwab says it's also needed on m68k | ||
10 | # to get a correct value for the wait-channel (WCHAN in ps). --davidm | ||
11 | CFLAGS_core.o := $(PROFILING) -fno-omit-frame-pointer | ||
12 | endif | ||
13 | |||
14 | obj-y += core.o clock.o idle_task.o fair.o rt.o stop_task.o | ||
15 | obj-$(CONFIG_SMP) += cpupri.o | ||
16 | obj-$(CONFIG_SCHED_AUTOGROUP) += auto_group.o | ||
17 | obj-$(CONFIG_SCHEDSTATS) += stats.o | ||
18 | obj-$(CONFIG_SCHED_DEBUG) += debug.o | ||
19 | |||
20 | |||
diff --git a/kernel/sched_autogroup.c b/kernel/sched/auto_group.c index 429242f3c484..e8a1f83ee0e7 100644 --- a/kernel/sched_autogroup.c +++ b/kernel/sched/auto_group.c | |||
@@ -1,15 +1,19 @@ | |||
1 | #ifdef CONFIG_SCHED_AUTOGROUP | 1 | #ifdef CONFIG_SCHED_AUTOGROUP |
2 | 2 | ||
3 | #include "sched.h" | ||
4 | |||
3 | #include <linux/proc_fs.h> | 5 | #include <linux/proc_fs.h> |
4 | #include <linux/seq_file.h> | 6 | #include <linux/seq_file.h> |
5 | #include <linux/kallsyms.h> | 7 | #include <linux/kallsyms.h> |
6 | #include <linux/utsname.h> | 8 | #include <linux/utsname.h> |
9 | #include <linux/security.h> | ||
10 | #include <linux/export.h> | ||
7 | 11 | ||
8 | unsigned int __read_mostly sysctl_sched_autogroup_enabled = 1; | 12 | unsigned int __read_mostly sysctl_sched_autogroup_enabled = 1; |
9 | static struct autogroup autogroup_default; | 13 | static struct autogroup autogroup_default; |
10 | static atomic_t autogroup_seq_nr; | 14 | static atomic_t autogroup_seq_nr; |
11 | 15 | ||
12 | static void __init autogroup_init(struct task_struct *init_task) | 16 | void __init autogroup_init(struct task_struct *init_task) |
13 | { | 17 | { |
14 | autogroup_default.tg = &root_task_group; | 18 | autogroup_default.tg = &root_task_group; |
15 | kref_init(&autogroup_default.kref); | 19 | kref_init(&autogroup_default.kref); |
@@ -17,7 +21,7 @@ static void __init autogroup_init(struct task_struct *init_task) | |||
17 | init_task->signal->autogroup = &autogroup_default; | 21 | init_task->signal->autogroup = &autogroup_default; |
18 | } | 22 | } |
19 | 23 | ||
20 | static inline void autogroup_free(struct task_group *tg) | 24 | void autogroup_free(struct task_group *tg) |
21 | { | 25 | { |
22 | kfree(tg->autogroup); | 26 | kfree(tg->autogroup); |
23 | } | 27 | } |
@@ -59,10 +63,6 @@ static inline struct autogroup *autogroup_task_get(struct task_struct *p) | |||
59 | return ag; | 63 | return ag; |
60 | } | 64 | } |
61 | 65 | ||
62 | #ifdef CONFIG_RT_GROUP_SCHED | ||
63 | static void free_rt_sched_group(struct task_group *tg); | ||
64 | #endif | ||
65 | |||
66 | static inline struct autogroup *autogroup_create(void) | 66 | static inline struct autogroup *autogroup_create(void) |
67 | { | 67 | { |
68 | struct autogroup *ag = kzalloc(sizeof(*ag), GFP_KERNEL); | 68 | struct autogroup *ag = kzalloc(sizeof(*ag), GFP_KERNEL); |
@@ -108,8 +108,7 @@ out_fail: | |||
108 | return autogroup_kref_get(&autogroup_default); | 108 | return autogroup_kref_get(&autogroup_default); |
109 | } | 109 | } |
110 | 110 | ||
111 | static inline bool | 111 | bool task_wants_autogroup(struct task_struct *p, struct task_group *tg) |
112 | task_wants_autogroup(struct task_struct *p, struct task_group *tg) | ||
113 | { | 112 | { |
114 | if (tg != &root_task_group) | 113 | if (tg != &root_task_group) |
115 | return false; | 114 | return false; |
@@ -127,22 +126,6 @@ task_wants_autogroup(struct task_struct *p, struct task_group *tg) | |||
127 | return true; | 126 | return true; |
128 | } | 127 | } |
129 | 128 | ||
130 | static inline bool task_group_is_autogroup(struct task_group *tg) | ||
131 | { | ||
132 | return !!tg->autogroup; | ||
133 | } | ||
134 | |||
135 | static inline struct task_group * | ||
136 | autogroup_task_group(struct task_struct *p, struct task_group *tg) | ||
137 | { | ||
138 | int enabled = ACCESS_ONCE(sysctl_sched_autogroup_enabled); | ||
139 | |||
140 | if (enabled && task_wants_autogroup(p, tg)) | ||
141 | return p->signal->autogroup->tg; | ||
142 | |||
143 | return tg; | ||
144 | } | ||
145 | |||
146 | static void | 129 | static void |
147 | autogroup_move_group(struct task_struct *p, struct autogroup *ag) | 130 | autogroup_move_group(struct task_struct *p, struct autogroup *ag) |
148 | { | 131 | { |
@@ -263,7 +246,7 @@ out: | |||
263 | #endif /* CONFIG_PROC_FS */ | 246 | #endif /* CONFIG_PROC_FS */ |
264 | 247 | ||
265 | #ifdef CONFIG_SCHED_DEBUG | 248 | #ifdef CONFIG_SCHED_DEBUG |
266 | static inline int autogroup_path(struct task_group *tg, char *buf, int buflen) | 249 | int autogroup_path(struct task_group *tg, char *buf, int buflen) |
267 | { | 250 | { |
268 | if (!task_group_is_autogroup(tg)) | 251 | if (!task_group_is_autogroup(tg)) |
269 | return 0; | 252 | return 0; |
diff --git a/kernel/sched_autogroup.h b/kernel/sched/auto_group.h index c2f0e7248dca..8bd047142816 100644 --- a/kernel/sched_autogroup.h +++ b/kernel/sched/auto_group.h | |||
@@ -1,5 +1,8 @@ | |||
1 | #ifdef CONFIG_SCHED_AUTOGROUP | 1 | #ifdef CONFIG_SCHED_AUTOGROUP |
2 | 2 | ||
3 | #include <linux/kref.h> | ||
4 | #include <linux/rwsem.h> | ||
5 | |||
3 | struct autogroup { | 6 | struct autogroup { |
4 | /* | 7 | /* |
5 | * reference doesn't mean how many thread attach to this | 8 | * reference doesn't mean how many thread attach to this |
@@ -13,9 +16,28 @@ struct autogroup { | |||
13 | int nice; | 16 | int nice; |
14 | }; | 17 | }; |
15 | 18 | ||
16 | static inline bool task_group_is_autogroup(struct task_group *tg); | 19 | extern void autogroup_init(struct task_struct *init_task); |
20 | extern void autogroup_free(struct task_group *tg); | ||
21 | |||
22 | static inline bool task_group_is_autogroup(struct task_group *tg) | ||
23 | { | ||
24 | return !!tg->autogroup; | ||
25 | } | ||
26 | |||
27 | extern bool task_wants_autogroup(struct task_struct *p, struct task_group *tg); | ||
28 | |||
17 | static inline struct task_group * | 29 | static inline struct task_group * |
18 | autogroup_task_group(struct task_struct *p, struct task_group *tg); | 30 | autogroup_task_group(struct task_struct *p, struct task_group *tg) |
31 | { | ||
32 | int enabled = ACCESS_ONCE(sysctl_sched_autogroup_enabled); | ||
33 | |||
34 | if (enabled && task_wants_autogroup(p, tg)) | ||
35 | return p->signal->autogroup->tg; | ||
36 | |||
37 | return tg; | ||
38 | } | ||
39 | |||
40 | extern int autogroup_path(struct task_group *tg, char *buf, int buflen); | ||
19 | 41 | ||
20 | #else /* !CONFIG_SCHED_AUTOGROUP */ | 42 | #else /* !CONFIG_SCHED_AUTOGROUP */ |
21 | 43 | ||
diff --git a/kernel/sched_clock.c b/kernel/sched/clock.c index c685e31492df..c685e31492df 100644 --- a/kernel/sched_clock.c +++ b/kernel/sched/clock.c | |||
diff --git a/kernel/sched.c b/kernel/sched/core.c index d6b149ccf925..4dbfd04a2148 100644 --- a/kernel/sched.c +++ b/kernel/sched/core.c | |||
@@ -1,5 +1,5 @@ | |||
1 | /* | 1 | /* |
2 | * kernel/sched.c | 2 | * kernel/sched/core.c |
3 | * | 3 | * |
4 | * Kernel scheduler and related syscalls | 4 | * Kernel scheduler and related syscalls |
5 | * | 5 | * |
@@ -56,7 +56,6 @@ | |||
56 | #include <linux/percpu.h> | 56 | #include <linux/percpu.h> |
57 | #include <linux/proc_fs.h> | 57 | #include <linux/proc_fs.h> |
58 | #include <linux/seq_file.h> | 58 | #include <linux/seq_file.h> |
59 | #include <linux/stop_machine.h> | ||
60 | #include <linux/sysctl.h> | 59 | #include <linux/sysctl.h> |
61 | #include <linux/syscalls.h> | 60 | #include <linux/syscalls.h> |
62 | #include <linux/times.h> | 61 | #include <linux/times.h> |
@@ -75,129 +74,17 @@ | |||
75 | 74 | ||
76 | #include <asm/tlb.h> | 75 | #include <asm/tlb.h> |
77 | #include <asm/irq_regs.h> | 76 | #include <asm/irq_regs.h> |
78 | #include <asm/mutex.h> | ||
79 | #ifdef CONFIG_PARAVIRT | 77 | #ifdef CONFIG_PARAVIRT |
80 | #include <asm/paravirt.h> | 78 | #include <asm/paravirt.h> |
81 | #endif | 79 | #endif |
82 | 80 | ||
83 | #include "sched_cpupri.h" | 81 | #include "sched.h" |
84 | #include "workqueue_sched.h" | 82 | #include "../workqueue_sched.h" |
85 | #include "sched_autogroup.h" | ||
86 | 83 | ||
87 | #define CREATE_TRACE_POINTS | 84 | #define CREATE_TRACE_POINTS |
88 | #include <trace/events/sched.h> | 85 | #include <trace/events/sched.h> |
89 | 86 | ||
90 | /* | 87 | void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) |
91 | * Convert user-nice values [ -20 ... 0 ... 19 ] | ||
92 | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | ||
93 | * and back. | ||
94 | */ | ||
95 | #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) | ||
96 | #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) | ||
97 | #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) | ||
98 | |||
99 | /* | ||
100 | * 'User priority' is the nice value converted to something we | ||
101 | * can work with better when scaling various scheduler parameters, | ||
102 | * it's a [ 0 ... 39 ] range. | ||
103 | */ | ||
104 | #define USER_PRIO(p) ((p)-MAX_RT_PRIO) | ||
105 | #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) | ||
106 | #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) | ||
107 | |||
108 | /* | ||
109 | * Helpers for converting nanosecond timing to jiffy resolution | ||
110 | */ | ||
111 | #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) | ||
112 | |||
113 | #define NICE_0_LOAD SCHED_LOAD_SCALE | ||
114 | #define NICE_0_SHIFT SCHED_LOAD_SHIFT | ||
115 | |||
116 | /* | ||
117 | * These are the 'tuning knobs' of the scheduler: | ||
118 | * | ||
119 | * default timeslice is 100 msecs (used only for SCHED_RR tasks). | ||
120 | * Timeslices get refilled after they expire. | ||
121 | */ | ||
122 | #define DEF_TIMESLICE (100 * HZ / 1000) | ||
123 | |||
124 | /* | ||
125 | * single value that denotes runtime == period, ie unlimited time. | ||
126 | */ | ||
127 | #define RUNTIME_INF ((u64)~0ULL) | ||
128 | |||
129 | static inline int rt_policy(int policy) | ||
130 | { | ||
131 | if (policy == SCHED_FIFO || policy == SCHED_RR) | ||
132 | return 1; | ||
133 | return 0; | ||
134 | } | ||
135 | |||
136 | static inline int task_has_rt_policy(struct task_struct *p) | ||
137 | { | ||
138 | return rt_policy(p->policy); | ||
139 | } | ||
140 | |||
141 | /* | ||
142 | * This is the priority-queue data structure of the RT scheduling class: | ||
143 | */ | ||
144 | struct rt_prio_array { | ||
145 | DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ | ||
146 | struct list_head queue[MAX_RT_PRIO]; | ||
147 | }; | ||
148 | |||
149 | struct rt_bandwidth { | ||
150 | /* nests inside the rq lock: */ | ||
151 | raw_spinlock_t rt_runtime_lock; | ||
152 | ktime_t rt_period; | ||
153 | u64 rt_runtime; | ||
154 | struct hrtimer rt_period_timer; | ||
155 | }; | ||
156 | |||
157 | static struct rt_bandwidth def_rt_bandwidth; | ||
158 | |||
159 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); | ||
160 | |||
161 | static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) | ||
162 | { | ||
163 | struct rt_bandwidth *rt_b = | ||
164 | container_of(timer, struct rt_bandwidth, rt_period_timer); | ||
165 | ktime_t now; | ||
166 | int overrun; | ||
167 | int idle = 0; | ||
168 | |||
169 | for (;;) { | ||
170 | now = hrtimer_cb_get_time(timer); | ||
171 | overrun = hrtimer_forward(timer, now, rt_b->rt_period); | ||
172 | |||
173 | if (!overrun) | ||
174 | break; | ||
175 | |||
176 | idle = do_sched_rt_period_timer(rt_b, overrun); | ||
177 | } | ||
178 | |||
179 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | ||
180 | } | ||
181 | |||
182 | static | ||
183 | void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) | ||
184 | { | ||
185 | rt_b->rt_period = ns_to_ktime(period); | ||
186 | rt_b->rt_runtime = runtime; | ||
187 | |||
188 | raw_spin_lock_init(&rt_b->rt_runtime_lock); | ||
189 | |||
190 | hrtimer_init(&rt_b->rt_period_timer, | ||
191 | CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
192 | rt_b->rt_period_timer.function = sched_rt_period_timer; | ||
193 | } | ||
194 | |||
195 | static inline int rt_bandwidth_enabled(void) | ||
196 | { | ||
197 | return sysctl_sched_rt_runtime >= 0; | ||
198 | } | ||
199 | |||
200 | static void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) | ||
201 | { | 88 | { |
202 | unsigned long delta; | 89 | unsigned long delta; |
203 | ktime_t soft, hard, now; | 90 | ktime_t soft, hard, now; |
@@ -217,580 +104,12 @@ static void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) | |||
217 | } | 104 | } |
218 | } | 105 | } |
219 | 106 | ||
220 | static void start_rt_bandwidth(struct rt_bandwidth *rt_b) | 107 | DEFINE_MUTEX(sched_domains_mutex); |
221 | { | 108 | DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); |
222 | if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) | ||
223 | return; | ||
224 | |||
225 | if (hrtimer_active(&rt_b->rt_period_timer)) | ||
226 | return; | ||
227 | |||
228 | raw_spin_lock(&rt_b->rt_runtime_lock); | ||
229 | start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period); | ||
230 | raw_spin_unlock(&rt_b->rt_runtime_lock); | ||
231 | } | ||
232 | |||
233 | #ifdef CONFIG_RT_GROUP_SCHED | ||
234 | static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) | ||
235 | { | ||
236 | hrtimer_cancel(&rt_b->rt_period_timer); | ||
237 | } | ||
238 | #endif | ||
239 | |||
240 | /* | ||
241 | * sched_domains_mutex serializes calls to init_sched_domains, | ||
242 | * detach_destroy_domains and partition_sched_domains. | ||
243 | */ | ||
244 | static DEFINE_MUTEX(sched_domains_mutex); | ||
245 | |||
246 | #ifdef CONFIG_CGROUP_SCHED | ||
247 | |||
248 | #include <linux/cgroup.h> | ||
249 | |||
250 | struct cfs_rq; | ||
251 | |||
252 | static LIST_HEAD(task_groups); | ||
253 | |||
254 | struct cfs_bandwidth { | ||
255 | #ifdef CONFIG_CFS_BANDWIDTH | ||
256 | raw_spinlock_t lock; | ||
257 | ktime_t period; | ||
258 | u64 quota, runtime; | ||
259 | s64 hierarchal_quota; | ||
260 | u64 runtime_expires; | ||
261 | |||
262 | int idle, timer_active; | ||
263 | struct hrtimer period_timer, slack_timer; | ||
264 | struct list_head throttled_cfs_rq; | ||
265 | |||
266 | /* statistics */ | ||
267 | int nr_periods, nr_throttled; | ||
268 | u64 throttled_time; | ||
269 | #endif | ||
270 | }; | ||
271 | |||
272 | /* task group related information */ | ||
273 | struct task_group { | ||
274 | struct cgroup_subsys_state css; | ||
275 | |||
276 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
277 | /* schedulable entities of this group on each cpu */ | ||
278 | struct sched_entity **se; | ||
279 | /* runqueue "owned" by this group on each cpu */ | ||
280 | struct cfs_rq **cfs_rq; | ||
281 | unsigned long shares; | ||
282 | |||
283 | atomic_t load_weight; | ||
284 | #endif | ||
285 | |||
286 | #ifdef CONFIG_RT_GROUP_SCHED | ||
287 | struct sched_rt_entity **rt_se; | ||
288 | struct rt_rq **rt_rq; | ||
289 | |||
290 | struct rt_bandwidth rt_bandwidth; | ||
291 | #endif | ||
292 | |||
293 | struct rcu_head rcu; | ||
294 | struct list_head list; | ||
295 | |||
296 | struct task_group *parent; | ||
297 | struct list_head siblings; | ||
298 | struct list_head children; | ||
299 | |||
300 | #ifdef CONFIG_SCHED_AUTOGROUP | ||
301 | struct autogroup *autogroup; | ||
302 | #endif | ||
303 | |||
304 | struct cfs_bandwidth cfs_bandwidth; | ||
305 | }; | ||
306 | |||
307 | /* task_group_lock serializes the addition/removal of task groups */ | ||
308 | static DEFINE_SPINLOCK(task_group_lock); | ||
309 | |||
310 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
311 | |||
312 | # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD | ||
313 | |||
314 | /* | ||
315 | * A weight of 0 or 1 can cause arithmetics problems. | ||
316 | * A weight of a cfs_rq is the sum of weights of which entities | ||
317 | * are queued on this cfs_rq, so a weight of a entity should not be | ||
318 | * too large, so as the shares value of a task group. | ||
319 | * (The default weight is 1024 - so there's no practical | ||
320 | * limitation from this.) | ||
321 | */ | ||
322 | #define MIN_SHARES (1UL << 1) | ||
323 | #define MAX_SHARES (1UL << 18) | ||
324 | |||
325 | static int root_task_group_load = ROOT_TASK_GROUP_LOAD; | ||
326 | #endif | ||
327 | |||
328 | /* Default task group. | ||
329 | * Every task in system belong to this group at bootup. | ||
330 | */ | ||
331 | struct task_group root_task_group; | ||
332 | |||
333 | #endif /* CONFIG_CGROUP_SCHED */ | ||
334 | |||
335 | /* CFS-related fields in a runqueue */ | ||
336 | struct cfs_rq { | ||
337 | struct load_weight load; | ||
338 | unsigned long nr_running, h_nr_running; | ||
339 | |||
340 | u64 exec_clock; | ||
341 | u64 min_vruntime; | ||
342 | #ifndef CONFIG_64BIT | ||
343 | u64 min_vruntime_copy; | ||
344 | #endif | ||
345 | |||
346 | struct rb_root tasks_timeline; | ||
347 | struct rb_node *rb_leftmost; | ||
348 | |||
349 | struct list_head tasks; | ||
350 | struct list_head *balance_iterator; | ||
351 | |||
352 | /* | ||
353 | * 'curr' points to currently running entity on this cfs_rq. | ||
354 | * It is set to NULL otherwise (i.e when none are currently running). | ||
355 | */ | ||
356 | struct sched_entity *curr, *next, *last, *skip; | ||
357 | |||
358 | #ifdef CONFIG_SCHED_DEBUG | ||
359 | unsigned int nr_spread_over; | ||
360 | #endif | ||
361 | |||
362 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
363 | struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ | ||
364 | |||
365 | /* | ||
366 | * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in | ||
367 | * a hierarchy). Non-leaf lrqs hold other higher schedulable entities | ||
368 | * (like users, containers etc.) | ||
369 | * | ||
370 | * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This | ||
371 | * list is used during load balance. | ||
372 | */ | ||
373 | int on_list; | ||
374 | struct list_head leaf_cfs_rq_list; | ||
375 | struct task_group *tg; /* group that "owns" this runqueue */ | ||
376 | |||
377 | #ifdef CONFIG_SMP | ||
378 | /* | ||
379 | * the part of load.weight contributed by tasks | ||
380 | */ | ||
381 | unsigned long task_weight; | ||
382 | |||
383 | /* | ||
384 | * h_load = weight * f(tg) | ||
385 | * | ||
386 | * Where f(tg) is the recursive weight fraction assigned to | ||
387 | * this group. | ||
388 | */ | ||
389 | unsigned long h_load; | ||
390 | |||
391 | /* | ||
392 | * Maintaining per-cpu shares distribution for group scheduling | ||
393 | * | ||
394 | * load_stamp is the last time we updated the load average | ||
395 | * load_last is the last time we updated the load average and saw load | ||
396 | * load_unacc_exec_time is currently unaccounted execution time | ||
397 | */ | ||
398 | u64 load_avg; | ||
399 | u64 load_period; | ||
400 | u64 load_stamp, load_last, load_unacc_exec_time; | ||
401 | |||
402 | unsigned long load_contribution; | ||
403 | #endif | ||
404 | #ifdef CONFIG_CFS_BANDWIDTH | ||
405 | int runtime_enabled; | ||
406 | u64 runtime_expires; | ||
407 | s64 runtime_remaining; | ||
408 | |||
409 | u64 throttled_timestamp; | ||
410 | int throttled, throttle_count; | ||
411 | struct list_head throttled_list; | ||
412 | #endif | ||
413 | #endif | ||
414 | }; | ||
415 | |||
416 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
417 | #ifdef CONFIG_CFS_BANDWIDTH | ||
418 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) | ||
419 | { | ||
420 | return &tg->cfs_bandwidth; | ||
421 | } | ||
422 | |||
423 | static inline u64 default_cfs_period(void); | ||
424 | static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun); | ||
425 | static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b); | ||
426 | |||
427 | static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) | ||
428 | { | ||
429 | struct cfs_bandwidth *cfs_b = | ||
430 | container_of(timer, struct cfs_bandwidth, slack_timer); | ||
431 | do_sched_cfs_slack_timer(cfs_b); | ||
432 | |||
433 | return HRTIMER_NORESTART; | ||
434 | } | ||
435 | |||
436 | static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) | ||
437 | { | ||
438 | struct cfs_bandwidth *cfs_b = | ||
439 | container_of(timer, struct cfs_bandwidth, period_timer); | ||
440 | ktime_t now; | ||
441 | int overrun; | ||
442 | int idle = 0; | ||
443 | |||
444 | for (;;) { | ||
445 | now = hrtimer_cb_get_time(timer); | ||
446 | overrun = hrtimer_forward(timer, now, cfs_b->period); | ||
447 | |||
448 | if (!overrun) | ||
449 | break; | ||
450 | |||
451 | idle = do_sched_cfs_period_timer(cfs_b, overrun); | ||
452 | } | ||
453 | |||
454 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | ||
455 | } | ||
456 | |||
457 | static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | ||
458 | { | ||
459 | raw_spin_lock_init(&cfs_b->lock); | ||
460 | cfs_b->runtime = 0; | ||
461 | cfs_b->quota = RUNTIME_INF; | ||
462 | cfs_b->period = ns_to_ktime(default_cfs_period()); | ||
463 | |||
464 | INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); | ||
465 | hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
466 | cfs_b->period_timer.function = sched_cfs_period_timer; | ||
467 | hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
468 | cfs_b->slack_timer.function = sched_cfs_slack_timer; | ||
469 | } | ||
470 | |||
471 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) | ||
472 | { | ||
473 | cfs_rq->runtime_enabled = 0; | ||
474 | INIT_LIST_HEAD(&cfs_rq->throttled_list); | ||
475 | } | ||
476 | |||
477 | /* requires cfs_b->lock, may release to reprogram timer */ | ||
478 | static void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | ||
479 | { | ||
480 | /* | ||
481 | * The timer may be active because we're trying to set a new bandwidth | ||
482 | * period or because we're racing with the tear-down path | ||
483 | * (timer_active==0 becomes visible before the hrtimer call-back | ||
484 | * terminates). In either case we ensure that it's re-programmed | ||
485 | */ | ||
486 | while (unlikely(hrtimer_active(&cfs_b->period_timer))) { | ||
487 | raw_spin_unlock(&cfs_b->lock); | ||
488 | /* ensure cfs_b->lock is available while we wait */ | ||
489 | hrtimer_cancel(&cfs_b->period_timer); | ||
490 | |||
491 | raw_spin_lock(&cfs_b->lock); | ||
492 | /* if someone else restarted the timer then we're done */ | ||
493 | if (cfs_b->timer_active) | ||
494 | return; | ||
495 | } | ||
496 | |||
497 | cfs_b->timer_active = 1; | ||
498 | start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); | ||
499 | } | ||
500 | |||
501 | static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | ||
502 | { | ||
503 | hrtimer_cancel(&cfs_b->period_timer); | ||
504 | hrtimer_cancel(&cfs_b->slack_timer); | ||
505 | } | ||
506 | #else | ||
507 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} | ||
508 | static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} | ||
509 | static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} | ||
510 | |||
511 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) | ||
512 | { | ||
513 | return NULL; | ||
514 | } | ||
515 | #endif /* CONFIG_CFS_BANDWIDTH */ | ||
516 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | ||
517 | |||
518 | /* Real-Time classes' related field in a runqueue: */ | ||
519 | struct rt_rq { | ||
520 | struct rt_prio_array active; | ||
521 | unsigned long rt_nr_running; | ||
522 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | ||
523 | struct { | ||
524 | int curr; /* highest queued rt task prio */ | ||
525 | #ifdef CONFIG_SMP | ||
526 | int next; /* next highest */ | ||
527 | #endif | ||
528 | } highest_prio; | ||
529 | #endif | ||
530 | #ifdef CONFIG_SMP | ||
531 | unsigned long rt_nr_migratory; | ||
532 | unsigned long rt_nr_total; | ||
533 | int overloaded; | ||
534 | struct plist_head pushable_tasks; | ||
535 | #endif | ||
536 | int rt_throttled; | ||
537 | u64 rt_time; | ||
538 | u64 rt_runtime; | ||
539 | /* Nests inside the rq lock: */ | ||
540 | raw_spinlock_t rt_runtime_lock; | ||
541 | |||
542 | #ifdef CONFIG_RT_GROUP_SCHED | ||
543 | unsigned long rt_nr_boosted; | ||
544 | |||
545 | struct rq *rq; | ||
546 | struct list_head leaf_rt_rq_list; | ||
547 | struct task_group *tg; | ||
548 | #endif | ||
549 | }; | ||
550 | |||
551 | #ifdef CONFIG_SMP | ||
552 | |||
553 | /* | ||
554 | * We add the notion of a root-domain which will be used to define per-domain | ||
555 | * variables. Each exclusive cpuset essentially defines an island domain by | ||
556 | * fully partitioning the member cpus from any other cpuset. Whenever a new | ||
557 | * exclusive cpuset is created, we also create and attach a new root-domain | ||
558 | * object. | ||
559 | * | ||
560 | */ | ||
561 | struct root_domain { | ||
562 | atomic_t refcount; | ||
563 | atomic_t rto_count; | ||
564 | struct rcu_head rcu; | ||
565 | cpumask_var_t span; | ||
566 | cpumask_var_t online; | ||
567 | |||
568 | /* | ||
569 | * The "RT overload" flag: it gets set if a CPU has more than | ||
570 | * one runnable RT task. | ||
571 | */ | ||
572 | cpumask_var_t rto_mask; | ||
573 | struct cpupri cpupri; | ||
574 | }; | ||
575 | |||
576 | /* | ||
577 | * By default the system creates a single root-domain with all cpus as | ||
578 | * members (mimicking the global state we have today). | ||
579 | */ | ||
580 | static struct root_domain def_root_domain; | ||
581 | |||
582 | #endif /* CONFIG_SMP */ | ||
583 | |||
584 | /* | ||
585 | * This is the main, per-CPU runqueue data structure. | ||
586 | * | ||
587 | * Locking rule: those places that want to lock multiple runqueues | ||
588 | * (such as the load balancing or the thread migration code), lock | ||
589 | * acquire operations must be ordered by ascending &runqueue. | ||
590 | */ | ||
591 | struct rq { | ||
592 | /* runqueue lock: */ | ||
593 | raw_spinlock_t lock; | ||
594 | |||
595 | /* | ||
596 | * nr_running and cpu_load should be in the same cacheline because | ||
597 | * remote CPUs use both these fields when doing load calculation. | ||
598 | */ | ||
599 | unsigned long nr_running; | ||
600 | #define CPU_LOAD_IDX_MAX 5 | ||
601 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | ||
602 | unsigned long last_load_update_tick; | ||
603 | #ifdef CONFIG_NO_HZ | ||
604 | u64 nohz_stamp; | ||
605 | unsigned char nohz_balance_kick; | ||
606 | #endif | ||
607 | int skip_clock_update; | ||
608 | |||
609 | /* capture load from *all* tasks on this cpu: */ | ||
610 | struct load_weight load; | ||
611 | unsigned long nr_load_updates; | ||
612 | u64 nr_switches; | ||
613 | |||
614 | struct cfs_rq cfs; | ||
615 | struct rt_rq rt; | ||
616 | |||
617 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
618 | /* list of leaf cfs_rq on this cpu: */ | ||
619 | struct list_head leaf_cfs_rq_list; | ||
620 | #endif | ||
621 | #ifdef CONFIG_RT_GROUP_SCHED | ||
622 | struct list_head leaf_rt_rq_list; | ||
623 | #endif | ||
624 | |||
625 | /* | ||
626 | * This is part of a global counter where only the total sum | ||
627 | * over all CPUs matters. A task can increase this counter on | ||
628 | * one CPU and if it got migrated afterwards it may decrease | ||
629 | * it on another CPU. Always updated under the runqueue lock: | ||
630 | */ | ||
631 | unsigned long nr_uninterruptible; | ||
632 | |||
633 | struct task_struct *curr, *idle, *stop; | ||
634 | unsigned long next_balance; | ||
635 | struct mm_struct *prev_mm; | ||
636 | |||
637 | u64 clock; | ||
638 | u64 clock_task; | ||
639 | |||
640 | atomic_t nr_iowait; | ||
641 | |||
642 | #ifdef CONFIG_SMP | ||
643 | struct root_domain *rd; | ||
644 | struct sched_domain *sd; | ||
645 | |||
646 | unsigned long cpu_power; | ||
647 | |||
648 | unsigned char idle_balance; | ||
649 | /* For active balancing */ | ||
650 | int post_schedule; | ||
651 | int active_balance; | ||
652 | int push_cpu; | ||
653 | struct cpu_stop_work active_balance_work; | ||
654 | /* cpu of this runqueue: */ | ||
655 | int cpu; | ||
656 | int online; | ||
657 | |||
658 | u64 rt_avg; | ||
659 | u64 age_stamp; | ||
660 | u64 idle_stamp; | ||
661 | u64 avg_idle; | ||
662 | #endif | ||
663 | |||
664 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | ||
665 | u64 prev_irq_time; | ||
666 | #endif | ||
667 | #ifdef CONFIG_PARAVIRT | ||
668 | u64 prev_steal_time; | ||
669 | #endif | ||
670 | #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING | ||
671 | u64 prev_steal_time_rq; | ||
672 | #endif | ||
673 | |||
674 | /* calc_load related fields */ | ||
675 | unsigned long calc_load_update; | ||
676 | long calc_load_active; | ||
677 | |||
678 | #ifdef CONFIG_SCHED_HRTICK | ||
679 | #ifdef CONFIG_SMP | ||
680 | int hrtick_csd_pending; | ||
681 | struct call_single_data hrtick_csd; | ||
682 | #endif | ||
683 | struct hrtimer hrtick_timer; | ||
684 | #endif | ||
685 | |||
686 | #ifdef CONFIG_SCHEDSTATS | ||
687 | /* latency stats */ | ||
688 | struct sched_info rq_sched_info; | ||
689 | unsigned long long rq_cpu_time; | ||
690 | /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ | ||
691 | |||
692 | /* sys_sched_yield() stats */ | ||
693 | unsigned int yld_count; | ||
694 | |||
695 | /* schedule() stats */ | ||
696 | unsigned int sched_switch; | ||
697 | unsigned int sched_count; | ||
698 | unsigned int sched_goidle; | ||
699 | |||
700 | /* try_to_wake_up() stats */ | ||
701 | unsigned int ttwu_count; | ||
702 | unsigned int ttwu_local; | ||
703 | #endif | ||
704 | |||
705 | #ifdef CONFIG_SMP | ||
706 | struct llist_head wake_list; | ||
707 | #endif | ||
708 | }; | ||
709 | |||
710 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); | ||
711 | |||
712 | |||
713 | static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); | ||
714 | |||
715 | static inline int cpu_of(struct rq *rq) | ||
716 | { | ||
717 | #ifdef CONFIG_SMP | ||
718 | return rq->cpu; | ||
719 | #else | ||
720 | return 0; | ||
721 | #endif | ||
722 | } | ||
723 | |||
724 | #define rcu_dereference_check_sched_domain(p) \ | ||
725 | rcu_dereference_check((p), \ | ||
726 | lockdep_is_held(&sched_domains_mutex)) | ||
727 | |||
728 | /* | ||
729 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | ||
730 | * See detach_destroy_domains: synchronize_sched for details. | ||
731 | * | ||
732 | * The domain tree of any CPU may only be accessed from within | ||
733 | * preempt-disabled sections. | ||
734 | */ | ||
735 | #define for_each_domain(cpu, __sd) \ | ||
736 | for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) | ||
737 | |||
738 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) | ||
739 | #define this_rq() (&__get_cpu_var(runqueues)) | ||
740 | #define task_rq(p) cpu_rq(task_cpu(p)) | ||
741 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) | ||
742 | #define raw_rq() (&__raw_get_cpu_var(runqueues)) | ||
743 | |||
744 | #ifdef CONFIG_CGROUP_SCHED | ||
745 | |||
746 | /* | ||
747 | * Return the group to which this tasks belongs. | ||
748 | * | ||
749 | * We use task_subsys_state_check() and extend the RCU verification with | ||
750 | * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each | ||
751 | * task it moves into the cgroup. Therefore by holding either of those locks, | ||
752 | * we pin the task to the current cgroup. | ||
753 | */ | ||
754 | static inline struct task_group *task_group(struct task_struct *p) | ||
755 | { | ||
756 | struct task_group *tg; | ||
757 | struct cgroup_subsys_state *css; | ||
758 | |||
759 | css = task_subsys_state_check(p, cpu_cgroup_subsys_id, | ||
760 | lockdep_is_held(&p->pi_lock) || | ||
761 | lockdep_is_held(&task_rq(p)->lock)); | ||
762 | tg = container_of(css, struct task_group, css); | ||
763 | |||
764 | return autogroup_task_group(p, tg); | ||
765 | } | ||
766 | |||
767 | /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ | ||
768 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) | ||
769 | { | ||
770 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
771 | p->se.cfs_rq = task_group(p)->cfs_rq[cpu]; | ||
772 | p->se.parent = task_group(p)->se[cpu]; | ||
773 | #endif | ||
774 | |||
775 | #ifdef CONFIG_RT_GROUP_SCHED | ||
776 | p->rt.rt_rq = task_group(p)->rt_rq[cpu]; | ||
777 | p->rt.parent = task_group(p)->rt_se[cpu]; | ||
778 | #endif | ||
779 | } | ||
780 | |||
781 | #else /* CONFIG_CGROUP_SCHED */ | ||
782 | |||
783 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | ||
784 | static inline struct task_group *task_group(struct task_struct *p) | ||
785 | { | ||
786 | return NULL; | ||
787 | } | ||
788 | |||
789 | #endif /* CONFIG_CGROUP_SCHED */ | ||
790 | 109 | ||
791 | static void update_rq_clock_task(struct rq *rq, s64 delta); | 110 | static void update_rq_clock_task(struct rq *rq, s64 delta); |
792 | 111 | ||
793 | static void update_rq_clock(struct rq *rq) | 112 | void update_rq_clock(struct rq *rq) |
794 | { | 113 | { |
795 | s64 delta; | 114 | s64 delta; |
796 | 115 | ||
@@ -803,44 +122,14 @@ static void update_rq_clock(struct rq *rq) | |||
803 | } | 122 | } |
804 | 123 | ||
805 | /* | 124 | /* |
806 | * Tunables that become constants when CONFIG_SCHED_DEBUG is off: | ||
807 | */ | ||
808 | #ifdef CONFIG_SCHED_DEBUG | ||
809 | # define const_debug __read_mostly | ||
810 | #else | ||
811 | # define const_debug static const | ||
812 | #endif | ||
813 | |||
814 | /** | ||
815 | * runqueue_is_locked - Returns true if the current cpu runqueue is locked | ||
816 | * @cpu: the processor in question. | ||
817 | * | ||
818 | * This interface allows printk to be called with the runqueue lock | ||
819 | * held and know whether or not it is OK to wake up the klogd. | ||
820 | */ | ||
821 | int runqueue_is_locked(int cpu) | ||
822 | { | ||
823 | return raw_spin_is_locked(&cpu_rq(cpu)->lock); | ||
824 | } | ||
825 | |||
826 | /* | ||
827 | * Debugging: various feature bits | 125 | * Debugging: various feature bits |
828 | */ | 126 | */ |
829 | 127 | ||
830 | #define SCHED_FEAT(name, enabled) \ | 128 | #define SCHED_FEAT(name, enabled) \ |
831 | __SCHED_FEAT_##name , | ||
832 | |||
833 | enum { | ||
834 | #include "sched_features.h" | ||
835 | }; | ||
836 | |||
837 | #undef SCHED_FEAT | ||
838 | |||
839 | #define SCHED_FEAT(name, enabled) \ | ||
840 | (1UL << __SCHED_FEAT_##name) * enabled | | 129 | (1UL << __SCHED_FEAT_##name) * enabled | |
841 | 130 | ||
842 | const_debug unsigned int sysctl_sched_features = | 131 | const_debug unsigned int sysctl_sched_features = |
843 | #include "sched_features.h" | 132 | #include "features.h" |
844 | 0; | 133 | 0; |
845 | 134 | ||
846 | #undef SCHED_FEAT | 135 | #undef SCHED_FEAT |
@@ -850,7 +139,7 @@ const_debug unsigned int sysctl_sched_features = | |||
850 | #name , | 139 | #name , |
851 | 140 | ||
852 | static __read_mostly char *sched_feat_names[] = { | 141 | static __read_mostly char *sched_feat_names[] = { |
853 | #include "sched_features.h" | 142 | #include "features.h" |
854 | NULL | 143 | NULL |
855 | }; | 144 | }; |
856 | 145 | ||
@@ -860,7 +149,7 @@ static int sched_feat_show(struct seq_file *m, void *v) | |||
860 | { | 149 | { |
861 | int i; | 150 | int i; |
862 | 151 | ||
863 | for (i = 0; sched_feat_names[i]; i++) { | 152 | for (i = 0; i < __SCHED_FEAT_NR; i++) { |
864 | if (!(sysctl_sched_features & (1UL << i))) | 153 | if (!(sysctl_sched_features & (1UL << i))) |
865 | seq_puts(m, "NO_"); | 154 | seq_puts(m, "NO_"); |
866 | seq_printf(m, "%s ", sched_feat_names[i]); | 155 | seq_printf(m, "%s ", sched_feat_names[i]); |
@@ -870,6 +159,36 @@ static int sched_feat_show(struct seq_file *m, void *v) | |||
870 | return 0; | 159 | return 0; |
871 | } | 160 | } |
872 | 161 | ||
162 | #ifdef HAVE_JUMP_LABEL | ||
163 | |||
164 | #define jump_label_key__true jump_label_key_enabled | ||
165 | #define jump_label_key__false jump_label_key_disabled | ||
166 | |||
167 | #define SCHED_FEAT(name, enabled) \ | ||
168 | jump_label_key__##enabled , | ||
169 | |||
170 | struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = { | ||
171 | #include "features.h" | ||
172 | }; | ||
173 | |||
174 | #undef SCHED_FEAT | ||
175 | |||
176 | static void sched_feat_disable(int i) | ||
177 | { | ||
178 | if (jump_label_enabled(&sched_feat_keys[i])) | ||
179 | jump_label_dec(&sched_feat_keys[i]); | ||
180 | } | ||
181 | |||
182 | static void sched_feat_enable(int i) | ||
183 | { | ||
184 | if (!jump_label_enabled(&sched_feat_keys[i])) | ||
185 | jump_label_inc(&sched_feat_keys[i]); | ||
186 | } | ||
187 | #else | ||
188 | static void sched_feat_disable(int i) { }; | ||
189 | static void sched_feat_enable(int i) { }; | ||
190 | #endif /* HAVE_JUMP_LABEL */ | ||
191 | |||
873 | static ssize_t | 192 | static ssize_t |
874 | sched_feat_write(struct file *filp, const char __user *ubuf, | 193 | sched_feat_write(struct file *filp, const char __user *ubuf, |
875 | size_t cnt, loff_t *ppos) | 194 | size_t cnt, loff_t *ppos) |
@@ -893,17 +212,20 @@ sched_feat_write(struct file *filp, const char __user *ubuf, | |||
893 | cmp += 3; | 212 | cmp += 3; |
894 | } | 213 | } |
895 | 214 | ||
896 | for (i = 0; sched_feat_names[i]; i++) { | 215 | for (i = 0; i < __SCHED_FEAT_NR; i++) { |
897 | if (strcmp(cmp, sched_feat_names[i]) == 0) { | 216 | if (strcmp(cmp, sched_feat_names[i]) == 0) { |
898 | if (neg) | 217 | if (neg) { |
899 | sysctl_sched_features &= ~(1UL << i); | 218 | sysctl_sched_features &= ~(1UL << i); |
900 | else | 219 | sched_feat_disable(i); |
220 | } else { | ||
901 | sysctl_sched_features |= (1UL << i); | 221 | sysctl_sched_features |= (1UL << i); |
222 | sched_feat_enable(i); | ||
223 | } | ||
902 | break; | 224 | break; |
903 | } | 225 | } |
904 | } | 226 | } |
905 | 227 | ||
906 | if (!sched_feat_names[i]) | 228 | if (i == __SCHED_FEAT_NR) |
907 | return -EINVAL; | 229 | return -EINVAL; |
908 | 230 | ||
909 | *ppos += cnt; | 231 | *ppos += cnt; |
@@ -932,10 +254,7 @@ static __init int sched_init_debug(void) | |||
932 | return 0; | 254 | return 0; |
933 | } | 255 | } |
934 | late_initcall(sched_init_debug); | 256 | late_initcall(sched_init_debug); |
935 | 257 | #endif /* CONFIG_SCHED_DEBUG */ | |
936 | #endif | ||
937 | |||
938 | #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) | ||
939 | 258 | ||
940 | /* | 259 | /* |
941 | * Number of tasks to iterate in a single balance run. | 260 | * Number of tasks to iterate in a single balance run. |
@@ -957,7 +276,7 @@ const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; | |||
957 | */ | 276 | */ |
958 | unsigned int sysctl_sched_rt_period = 1000000; | 277 | unsigned int sysctl_sched_rt_period = 1000000; |
959 | 278 | ||
960 | static __read_mostly int scheduler_running; | 279 | __read_mostly int scheduler_running; |
961 | 280 | ||
962 | /* | 281 | /* |
963 | * part of the period that we allow rt tasks to run in us. | 282 | * part of the period that we allow rt tasks to run in us. |
@@ -965,112 +284,7 @@ static __read_mostly int scheduler_running; | |||
965 | */ | 284 | */ |
966 | int sysctl_sched_rt_runtime = 950000; | 285 | int sysctl_sched_rt_runtime = 950000; |
967 | 286 | ||
968 | static inline u64 global_rt_period(void) | ||
969 | { | ||
970 | return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; | ||
971 | } | ||
972 | 287 | ||
973 | static inline u64 global_rt_runtime(void) | ||
974 | { | ||
975 | if (sysctl_sched_rt_runtime < 0) | ||
976 | return RUNTIME_INF; | ||
977 | |||
978 | return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; | ||
979 | } | ||
980 | |||
981 | #ifndef prepare_arch_switch | ||
982 | # define prepare_arch_switch(next) do { } while (0) | ||
983 | #endif | ||
984 | #ifndef finish_arch_switch | ||
985 | # define finish_arch_switch(prev) do { } while (0) | ||
986 | #endif | ||
987 | |||
988 | static inline int task_current(struct rq *rq, struct task_struct *p) | ||
989 | { | ||
990 | return rq->curr == p; | ||
991 | } | ||
992 | |||
993 | static inline int task_running(struct rq *rq, struct task_struct *p) | ||
994 | { | ||
995 | #ifdef CONFIG_SMP | ||
996 | return p->on_cpu; | ||
997 | #else | ||
998 | return task_current(rq, p); | ||
999 | #endif | ||
1000 | } | ||
1001 | |||
1002 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | ||
1003 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | ||
1004 | { | ||
1005 | #ifdef CONFIG_SMP | ||
1006 | /* | ||
1007 | * We can optimise this out completely for !SMP, because the | ||
1008 | * SMP rebalancing from interrupt is the only thing that cares | ||
1009 | * here. | ||
1010 | */ | ||
1011 | next->on_cpu = 1; | ||
1012 | #endif | ||
1013 | } | ||
1014 | |||
1015 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | ||
1016 | { | ||
1017 | #ifdef CONFIG_SMP | ||
1018 | /* | ||
1019 | * After ->on_cpu is cleared, the task can be moved to a different CPU. | ||
1020 | * We must ensure this doesn't happen until the switch is completely | ||
1021 | * finished. | ||
1022 | */ | ||
1023 | smp_wmb(); | ||
1024 | prev->on_cpu = 0; | ||
1025 | #endif | ||
1026 | #ifdef CONFIG_DEBUG_SPINLOCK | ||
1027 | /* this is a valid case when another task releases the spinlock */ | ||
1028 | rq->lock.owner = current; | ||
1029 | #endif | ||
1030 | /* | ||
1031 | * If we are tracking spinlock dependencies then we have to | ||
1032 | * fix up the runqueue lock - which gets 'carried over' from | ||
1033 | * prev into current: | ||
1034 | */ | ||
1035 | spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); | ||
1036 | |||
1037 | raw_spin_unlock_irq(&rq->lock); | ||
1038 | } | ||
1039 | |||
1040 | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ | ||
1041 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | ||
1042 | { | ||
1043 | #ifdef CONFIG_SMP | ||
1044 | /* | ||
1045 | * We can optimise this out completely for !SMP, because the | ||
1046 | * SMP rebalancing from interrupt is the only thing that cares | ||
1047 | * here. | ||
1048 | */ | ||
1049 | next->on_cpu = 1; | ||
1050 | #endif | ||
1051 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | ||
1052 | raw_spin_unlock_irq(&rq->lock); | ||
1053 | #else | ||
1054 | raw_spin_unlock(&rq->lock); | ||
1055 | #endif | ||
1056 | } | ||
1057 | |||
1058 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | ||
1059 | { | ||
1060 | #ifdef CONFIG_SMP | ||
1061 | /* | ||
1062 | * After ->on_cpu is cleared, the task can be moved to a different CPU. | ||
1063 | * We must ensure this doesn't happen until the switch is completely | ||
1064 | * finished. | ||
1065 | */ | ||
1066 | smp_wmb(); | ||
1067 | prev->on_cpu = 0; | ||
1068 | #endif | ||
1069 | #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW | ||
1070 | local_irq_enable(); | ||
1071 | #endif | ||
1072 | } | ||
1073 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | ||
1074 | 288 | ||
1075 | /* | 289 | /* |
1076 | * __task_rq_lock - lock the rq @p resides on. | 290 | * __task_rq_lock - lock the rq @p resides on. |
@@ -1153,20 +367,6 @@ static struct rq *this_rq_lock(void) | |||
1153 | * rq->lock. | 367 | * rq->lock. |
1154 | */ | 368 | */ |
1155 | 369 | ||
1156 | /* | ||
1157 | * Use hrtick when: | ||
1158 | * - enabled by features | ||
1159 | * - hrtimer is actually high res | ||
1160 | */ | ||
1161 | static inline int hrtick_enabled(struct rq *rq) | ||
1162 | { | ||
1163 | if (!sched_feat(HRTICK)) | ||
1164 | return 0; | ||
1165 | if (!cpu_active(cpu_of(rq))) | ||
1166 | return 0; | ||
1167 | return hrtimer_is_hres_active(&rq->hrtick_timer); | ||
1168 | } | ||
1169 | |||
1170 | static void hrtick_clear(struct rq *rq) | 370 | static void hrtick_clear(struct rq *rq) |
1171 | { | 371 | { |
1172 | if (hrtimer_active(&rq->hrtick_timer)) | 372 | if (hrtimer_active(&rq->hrtick_timer)) |
@@ -1210,7 +410,7 @@ static void __hrtick_start(void *arg) | |||
1210 | * | 410 | * |
1211 | * called with rq->lock held and irqs disabled | 411 | * called with rq->lock held and irqs disabled |
1212 | */ | 412 | */ |
1213 | static void hrtick_start(struct rq *rq, u64 delay) | 413 | void hrtick_start(struct rq *rq, u64 delay) |
1214 | { | 414 | { |
1215 | struct hrtimer *timer = &rq->hrtick_timer; | 415 | struct hrtimer *timer = &rq->hrtick_timer; |
1216 | ktime_t time = ktime_add_ns(timer->base->get_time(), delay); | 416 | ktime_t time = ktime_add_ns(timer->base->get_time(), delay); |
@@ -1254,7 +454,7 @@ static __init void init_hrtick(void) | |||
1254 | * | 454 | * |
1255 | * called with rq->lock held and irqs disabled | 455 | * called with rq->lock held and irqs disabled |
1256 | */ | 456 | */ |
1257 | static void hrtick_start(struct rq *rq, u64 delay) | 457 | void hrtick_start(struct rq *rq, u64 delay) |
1258 | { | 458 | { |
1259 | __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, | 459 | __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, |
1260 | HRTIMER_MODE_REL_PINNED, 0); | 460 | HRTIMER_MODE_REL_PINNED, 0); |
@@ -1305,7 +505,7 @@ static inline void init_hrtick(void) | |||
1305 | #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) | 505 | #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) |
1306 | #endif | 506 | #endif |
1307 | 507 | ||
1308 | static void resched_task(struct task_struct *p) | 508 | void resched_task(struct task_struct *p) |
1309 | { | 509 | { |
1310 | int cpu; | 510 | int cpu; |
1311 | 511 | ||
@@ -1326,7 +526,7 @@ static void resched_task(struct task_struct *p) | |||
1326 | smp_send_reschedule(cpu); | 526 | smp_send_reschedule(cpu); |
1327 | } | 527 | } |
1328 | 528 | ||
1329 | static void resched_cpu(int cpu) | 529 | void resched_cpu(int cpu) |
1330 | { | 530 | { |
1331 | struct rq *rq = cpu_rq(cpu); | 531 | struct rq *rq = cpu_rq(cpu); |
1332 | unsigned long flags; | 532 | unsigned long flags; |
@@ -1407,7 +607,8 @@ void wake_up_idle_cpu(int cpu) | |||
1407 | 607 | ||
1408 | static inline bool got_nohz_idle_kick(void) | 608 | static inline bool got_nohz_idle_kick(void) |
1409 | { | 609 | { |
1410 | return idle_cpu(smp_processor_id()) && this_rq()->nohz_balance_kick; | 610 | int cpu = smp_processor_id(); |
611 | return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); | ||
1411 | } | 612 | } |
1412 | 613 | ||
1413 | #else /* CONFIG_NO_HZ */ | 614 | #else /* CONFIG_NO_HZ */ |
@@ -1419,12 +620,7 @@ static inline bool got_nohz_idle_kick(void) | |||
1419 | 620 | ||
1420 | #endif /* CONFIG_NO_HZ */ | 621 | #endif /* CONFIG_NO_HZ */ |
1421 | 622 | ||
1422 | static u64 sched_avg_period(void) | 623 | void sched_avg_update(struct rq *rq) |
1423 | { | ||
1424 | return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; | ||
1425 | } | ||
1426 | |||
1427 | static void sched_avg_update(struct rq *rq) | ||
1428 | { | 624 | { |
1429 | s64 period = sched_avg_period(); | 625 | s64 period = sched_avg_period(); |
1430 | 626 | ||
@@ -1440,193 +636,23 @@ static void sched_avg_update(struct rq *rq) | |||
1440 | } | 636 | } |
1441 | } | 637 | } |
1442 | 638 | ||
1443 | static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) | ||
1444 | { | ||
1445 | rq->rt_avg += rt_delta; | ||
1446 | sched_avg_update(rq); | ||
1447 | } | ||
1448 | |||
1449 | #else /* !CONFIG_SMP */ | 639 | #else /* !CONFIG_SMP */ |
1450 | static void resched_task(struct task_struct *p) | 640 | void resched_task(struct task_struct *p) |
1451 | { | 641 | { |
1452 | assert_raw_spin_locked(&task_rq(p)->lock); | 642 | assert_raw_spin_locked(&task_rq(p)->lock); |
1453 | set_tsk_need_resched(p); | 643 | set_tsk_need_resched(p); |
1454 | } | 644 | } |
1455 | |||
1456 | static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) | ||
1457 | { | ||
1458 | } | ||
1459 | |||
1460 | static void sched_avg_update(struct rq *rq) | ||
1461 | { | ||
1462 | } | ||
1463 | #endif /* CONFIG_SMP */ | 645 | #endif /* CONFIG_SMP */ |
1464 | 646 | ||
1465 | #if BITS_PER_LONG == 32 | ||
1466 | # define WMULT_CONST (~0UL) | ||
1467 | #else | ||
1468 | # define WMULT_CONST (1UL << 32) | ||
1469 | #endif | ||
1470 | |||
1471 | #define WMULT_SHIFT 32 | ||
1472 | |||
1473 | /* | ||
1474 | * Shift right and round: | ||
1475 | */ | ||
1476 | #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) | ||
1477 | |||
1478 | /* | ||
1479 | * delta *= weight / lw | ||
1480 | */ | ||
1481 | static unsigned long | ||
1482 | calc_delta_mine(unsigned long delta_exec, unsigned long weight, | ||
1483 | struct load_weight *lw) | ||
1484 | { | ||
1485 | u64 tmp; | ||
1486 | |||
1487 | /* | ||
1488 | * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched | ||
1489 | * entities since MIN_SHARES = 2. Treat weight as 1 if less than | ||
1490 | * 2^SCHED_LOAD_RESOLUTION. | ||
1491 | */ | ||
1492 | if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION))) | ||
1493 | tmp = (u64)delta_exec * scale_load_down(weight); | ||
1494 | else | ||
1495 | tmp = (u64)delta_exec; | ||
1496 | |||
1497 | if (!lw->inv_weight) { | ||
1498 | unsigned long w = scale_load_down(lw->weight); | ||
1499 | |||
1500 | if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) | ||
1501 | lw->inv_weight = 1; | ||
1502 | else if (unlikely(!w)) | ||
1503 | lw->inv_weight = WMULT_CONST; | ||
1504 | else | ||
1505 | lw->inv_weight = WMULT_CONST / w; | ||
1506 | } | ||
1507 | |||
1508 | /* | ||
1509 | * Check whether we'd overflow the 64-bit multiplication: | ||
1510 | */ | ||
1511 | if (unlikely(tmp > WMULT_CONST)) | ||
1512 | tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, | ||
1513 | WMULT_SHIFT/2); | ||
1514 | else | ||
1515 | tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); | ||
1516 | |||
1517 | return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); | ||
1518 | } | ||
1519 | |||
1520 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) | ||
1521 | { | ||
1522 | lw->weight += inc; | ||
1523 | lw->inv_weight = 0; | ||
1524 | } | ||
1525 | |||
1526 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) | ||
1527 | { | ||
1528 | lw->weight -= dec; | ||
1529 | lw->inv_weight = 0; | ||
1530 | } | ||
1531 | |||
1532 | static inline void update_load_set(struct load_weight *lw, unsigned long w) | ||
1533 | { | ||
1534 | lw->weight = w; | ||
1535 | lw->inv_weight = 0; | ||
1536 | } | ||
1537 | |||
1538 | /* | ||
1539 | * To aid in avoiding the subversion of "niceness" due to uneven distribution | ||
1540 | * of tasks with abnormal "nice" values across CPUs the contribution that | ||
1541 | * each task makes to its run queue's load is weighted according to its | ||
1542 | * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a | ||
1543 | * scaled version of the new time slice allocation that they receive on time | ||
1544 | * slice expiry etc. | ||
1545 | */ | ||
1546 | |||
1547 | #define WEIGHT_IDLEPRIO 3 | ||
1548 | #define WMULT_IDLEPRIO 1431655765 | ||
1549 | |||
1550 | /* | ||
1551 | * Nice levels are multiplicative, with a gentle 10% change for every | ||
1552 | * nice level changed. I.e. when a CPU-bound task goes from nice 0 to | ||
1553 | * nice 1, it will get ~10% less CPU time than another CPU-bound task | ||
1554 | * that remained on nice 0. | ||
1555 | * | ||
1556 | * The "10% effect" is relative and cumulative: from _any_ nice level, | ||
1557 | * if you go up 1 level, it's -10% CPU usage, if you go down 1 level | ||
1558 | * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. | ||
1559 | * If a task goes up by ~10% and another task goes down by ~10% then | ||
1560 | * the relative distance between them is ~25%.) | ||
1561 | */ | ||
1562 | static const int prio_to_weight[40] = { | ||
1563 | /* -20 */ 88761, 71755, 56483, 46273, 36291, | ||
1564 | /* -15 */ 29154, 23254, 18705, 14949, 11916, | ||
1565 | /* -10 */ 9548, 7620, 6100, 4904, 3906, | ||
1566 | /* -5 */ 3121, 2501, 1991, 1586, 1277, | ||
1567 | /* 0 */ 1024, 820, 655, 526, 423, | ||
1568 | /* 5 */ 335, 272, 215, 172, 137, | ||
1569 | /* 10 */ 110, 87, 70, 56, 45, | ||
1570 | /* 15 */ 36, 29, 23, 18, 15, | ||
1571 | }; | ||
1572 | |||
1573 | /* | ||
1574 | * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. | ||
1575 | * | ||
1576 | * In cases where the weight does not change often, we can use the | ||
1577 | * precalculated inverse to speed up arithmetics by turning divisions | ||
1578 | * into multiplications: | ||
1579 | */ | ||
1580 | static const u32 prio_to_wmult[40] = { | ||
1581 | /* -20 */ 48388, 59856, 76040, 92818, 118348, | ||
1582 | /* -15 */ 147320, 184698, 229616, 287308, 360437, | ||
1583 | /* -10 */ 449829, 563644, 704093, 875809, 1099582, | ||
1584 | /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, | ||
1585 | /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, | ||
1586 | /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, | ||
1587 | /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, | ||
1588 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, | ||
1589 | }; | ||
1590 | |||
1591 | /* Time spent by the tasks of the cpu accounting group executing in ... */ | ||
1592 | enum cpuacct_stat_index { | ||
1593 | CPUACCT_STAT_USER, /* ... user mode */ | ||
1594 | CPUACCT_STAT_SYSTEM, /* ... kernel mode */ | ||
1595 | |||
1596 | CPUACCT_STAT_NSTATS, | ||
1597 | }; | ||
1598 | |||
1599 | #ifdef CONFIG_CGROUP_CPUACCT | ||
1600 | static void cpuacct_charge(struct task_struct *tsk, u64 cputime); | ||
1601 | static void cpuacct_update_stats(struct task_struct *tsk, | ||
1602 | enum cpuacct_stat_index idx, cputime_t val); | ||
1603 | #else | ||
1604 | static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} | ||
1605 | static inline void cpuacct_update_stats(struct task_struct *tsk, | ||
1606 | enum cpuacct_stat_index idx, cputime_t val) {} | ||
1607 | #endif | ||
1608 | |||
1609 | static inline void inc_cpu_load(struct rq *rq, unsigned long load) | ||
1610 | { | ||
1611 | update_load_add(&rq->load, load); | ||
1612 | } | ||
1613 | |||
1614 | static inline void dec_cpu_load(struct rq *rq, unsigned long load) | ||
1615 | { | ||
1616 | update_load_sub(&rq->load, load); | ||
1617 | } | ||
1618 | |||
1619 | #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ | 647 | #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ |
1620 | (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) | 648 | (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) |
1621 | typedef int (*tg_visitor)(struct task_group *, void *); | ||
1622 | |||
1623 | /* | 649 | /* |
1624 | * Iterate task_group tree rooted at *from, calling @down when first entering a | 650 | * Iterate task_group tree rooted at *from, calling @down when first entering a |
1625 | * node and @up when leaving it for the final time. | 651 | * node and @up when leaving it for the final time. |
1626 | * | 652 | * |
1627 | * Caller must hold rcu_lock or sufficient equivalent. | 653 | * Caller must hold rcu_lock or sufficient equivalent. |
1628 | */ | 654 | */ |
1629 | static int walk_tg_tree_from(struct task_group *from, | 655 | int walk_tg_tree_from(struct task_group *from, |
1630 | tg_visitor down, tg_visitor up, void *data) | 656 | tg_visitor down, tg_visitor up, void *data) |
1631 | { | 657 | { |
1632 | struct task_group *parent, *child; | 658 | struct task_group *parent, *child; |
@@ -1657,270 +683,13 @@ out: | |||
1657 | return ret; | 683 | return ret; |
1658 | } | 684 | } |
1659 | 685 | ||
1660 | /* | 686 | int tg_nop(struct task_group *tg, void *data) |
1661 | * Iterate the full tree, calling @down when first entering a node and @up when | ||
1662 | * leaving it for the final time. | ||
1663 | * | ||
1664 | * Caller must hold rcu_lock or sufficient equivalent. | ||
1665 | */ | ||
1666 | |||
1667 | static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) | ||
1668 | { | ||
1669 | return walk_tg_tree_from(&root_task_group, down, up, data); | ||
1670 | } | ||
1671 | |||
1672 | static int tg_nop(struct task_group *tg, void *data) | ||
1673 | { | 687 | { |
1674 | return 0; | 688 | return 0; |
1675 | } | 689 | } |
1676 | #endif | 690 | #endif |
1677 | 691 | ||
1678 | #ifdef CONFIG_SMP | 692 | void update_cpu_load(struct rq *this_rq); |
1679 | /* Used instead of source_load when we know the type == 0 */ | ||
1680 | static unsigned long weighted_cpuload(const int cpu) | ||
1681 | { | ||
1682 | return cpu_rq(cpu)->load.weight; | ||
1683 | } | ||
1684 | |||
1685 | /* | ||
1686 | * Return a low guess at the load of a migration-source cpu weighted | ||
1687 | * according to the scheduling class and "nice" value. | ||
1688 | * | ||
1689 | * We want to under-estimate the load of migration sources, to | ||
1690 | * balance conservatively. | ||
1691 | */ | ||
1692 | static unsigned long source_load(int cpu, int type) | ||
1693 | { | ||
1694 | struct rq *rq = cpu_rq(cpu); | ||
1695 | unsigned long total = weighted_cpuload(cpu); | ||
1696 | |||
1697 | if (type == 0 || !sched_feat(LB_BIAS)) | ||
1698 | return total; | ||
1699 | |||
1700 | return min(rq->cpu_load[type-1], total); | ||
1701 | } | ||
1702 | |||
1703 | /* | ||
1704 | * Return a high guess at the load of a migration-target cpu weighted | ||
1705 | * according to the scheduling class and "nice" value. | ||
1706 | */ | ||
1707 | static unsigned long target_load(int cpu, int type) | ||
1708 | { | ||
1709 | struct rq *rq = cpu_rq(cpu); | ||
1710 | unsigned long total = weighted_cpuload(cpu); | ||
1711 | |||
1712 | if (type == 0 || !sched_feat(LB_BIAS)) | ||
1713 | return total; | ||
1714 | |||
1715 | return max(rq->cpu_load[type-1], total); | ||
1716 | } | ||
1717 | |||
1718 | static unsigned long power_of(int cpu) | ||
1719 | { | ||
1720 | return cpu_rq(cpu)->cpu_power; | ||
1721 | } | ||
1722 | |||
1723 | static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); | ||
1724 | |||
1725 | static unsigned long cpu_avg_load_per_task(int cpu) | ||
1726 | { | ||
1727 | struct rq *rq = cpu_rq(cpu); | ||
1728 | unsigned long nr_running = ACCESS_ONCE(rq->nr_running); | ||
1729 | |||
1730 | if (nr_running) | ||
1731 | return rq->load.weight / nr_running; | ||
1732 | |||
1733 | return 0; | ||
1734 | } | ||
1735 | |||
1736 | #ifdef CONFIG_PREEMPT | ||
1737 | |||
1738 | static void double_rq_lock(struct rq *rq1, struct rq *rq2); | ||
1739 | |||
1740 | /* | ||
1741 | * fair double_lock_balance: Safely acquires both rq->locks in a fair | ||
1742 | * way at the expense of forcing extra atomic operations in all | ||
1743 | * invocations. This assures that the double_lock is acquired using the | ||
1744 | * same underlying policy as the spinlock_t on this architecture, which | ||
1745 | * reduces latency compared to the unfair variant below. However, it | ||
1746 | * also adds more overhead and therefore may reduce throughput. | ||
1747 | */ | ||
1748 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | ||
1749 | __releases(this_rq->lock) | ||
1750 | __acquires(busiest->lock) | ||
1751 | __acquires(this_rq->lock) | ||
1752 | { | ||
1753 | raw_spin_unlock(&this_rq->lock); | ||
1754 | double_rq_lock(this_rq, busiest); | ||
1755 | |||
1756 | return 1; | ||
1757 | } | ||
1758 | |||
1759 | #else | ||
1760 | /* | ||
1761 | * Unfair double_lock_balance: Optimizes throughput at the expense of | ||
1762 | * latency by eliminating extra atomic operations when the locks are | ||
1763 | * already in proper order on entry. This favors lower cpu-ids and will | ||
1764 | * grant the double lock to lower cpus over higher ids under contention, | ||
1765 | * regardless of entry order into the function. | ||
1766 | */ | ||
1767 | static int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | ||
1768 | __releases(this_rq->lock) | ||
1769 | __acquires(busiest->lock) | ||
1770 | __acquires(this_rq->lock) | ||
1771 | { | ||
1772 | int ret = 0; | ||
1773 | |||
1774 | if (unlikely(!raw_spin_trylock(&busiest->lock))) { | ||
1775 | if (busiest < this_rq) { | ||
1776 | raw_spin_unlock(&this_rq->lock); | ||
1777 | raw_spin_lock(&busiest->lock); | ||
1778 | raw_spin_lock_nested(&this_rq->lock, | ||
1779 | SINGLE_DEPTH_NESTING); | ||
1780 | ret = 1; | ||
1781 | } else | ||
1782 | raw_spin_lock_nested(&busiest->lock, | ||
1783 | SINGLE_DEPTH_NESTING); | ||
1784 | } | ||
1785 | return ret; | ||
1786 | } | ||
1787 | |||
1788 | #endif /* CONFIG_PREEMPT */ | ||
1789 | |||
1790 | /* | ||
1791 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | ||
1792 | */ | ||
1793 | static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | ||
1794 | { | ||
1795 | if (unlikely(!irqs_disabled())) { | ||
1796 | /* printk() doesn't work good under rq->lock */ | ||
1797 | raw_spin_unlock(&this_rq->lock); | ||
1798 | BUG_ON(1); | ||
1799 | } | ||
1800 | |||
1801 | return _double_lock_balance(this_rq, busiest); | ||
1802 | } | ||
1803 | |||
1804 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | ||
1805 | __releases(busiest->lock) | ||
1806 | { | ||
1807 | raw_spin_unlock(&busiest->lock); | ||
1808 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); | ||
1809 | } | ||
1810 | |||
1811 | /* | ||
1812 | * double_rq_lock - safely lock two runqueues | ||
1813 | * | ||
1814 | * Note this does not disable interrupts like task_rq_lock, | ||
1815 | * you need to do so manually before calling. | ||
1816 | */ | ||
1817 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) | ||
1818 | __acquires(rq1->lock) | ||
1819 | __acquires(rq2->lock) | ||
1820 | { | ||
1821 | BUG_ON(!irqs_disabled()); | ||
1822 | if (rq1 == rq2) { | ||
1823 | raw_spin_lock(&rq1->lock); | ||
1824 | __acquire(rq2->lock); /* Fake it out ;) */ | ||
1825 | } else { | ||
1826 | if (rq1 < rq2) { | ||
1827 | raw_spin_lock(&rq1->lock); | ||
1828 | raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); | ||
1829 | } else { | ||
1830 | raw_spin_lock(&rq2->lock); | ||
1831 | raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | ||
1832 | } | ||
1833 | } | ||
1834 | } | ||
1835 | |||
1836 | /* | ||
1837 | * double_rq_unlock - safely unlock two runqueues | ||
1838 | * | ||
1839 | * Note this does not restore interrupts like task_rq_unlock, | ||
1840 | * you need to do so manually after calling. | ||
1841 | */ | ||
1842 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) | ||
1843 | __releases(rq1->lock) | ||
1844 | __releases(rq2->lock) | ||
1845 | { | ||
1846 | raw_spin_unlock(&rq1->lock); | ||
1847 | if (rq1 != rq2) | ||
1848 | raw_spin_unlock(&rq2->lock); | ||
1849 | else | ||
1850 | __release(rq2->lock); | ||
1851 | } | ||
1852 | |||
1853 | #else /* CONFIG_SMP */ | ||
1854 | |||
1855 | /* | ||
1856 | * double_rq_lock - safely lock two runqueues | ||
1857 | * | ||
1858 | * Note this does not disable interrupts like task_rq_lock, | ||
1859 | * you need to do so manually before calling. | ||
1860 | */ | ||
1861 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) | ||
1862 | __acquires(rq1->lock) | ||
1863 | __acquires(rq2->lock) | ||
1864 | { | ||
1865 | BUG_ON(!irqs_disabled()); | ||
1866 | BUG_ON(rq1 != rq2); | ||
1867 | raw_spin_lock(&rq1->lock); | ||
1868 | __acquire(rq2->lock); /* Fake it out ;) */ | ||
1869 | } | ||
1870 | |||
1871 | /* | ||
1872 | * double_rq_unlock - safely unlock two runqueues | ||
1873 | * | ||
1874 | * Note this does not restore interrupts like task_rq_unlock, | ||
1875 | * you need to do so manually after calling. | ||
1876 | */ | ||
1877 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) | ||
1878 | __releases(rq1->lock) | ||
1879 | __releases(rq2->lock) | ||
1880 | { | ||
1881 | BUG_ON(rq1 != rq2); | ||
1882 | raw_spin_unlock(&rq1->lock); | ||
1883 | __release(rq2->lock); | ||
1884 | } | ||
1885 | |||
1886 | #endif | ||
1887 | |||
1888 | static void calc_load_account_idle(struct rq *this_rq); | ||
1889 | static void update_sysctl(void); | ||
1890 | static int get_update_sysctl_factor(void); | ||
1891 | static void update_cpu_load(struct rq *this_rq); | ||
1892 | |||
1893 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) | ||
1894 | { | ||
1895 | set_task_rq(p, cpu); | ||
1896 | #ifdef CONFIG_SMP | ||
1897 | /* | ||
1898 | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be | ||
1899 | * successfully executed on another CPU. We must ensure that updates of | ||
1900 | * per-task data have been completed by this moment. | ||
1901 | */ | ||
1902 | smp_wmb(); | ||
1903 | task_thread_info(p)->cpu = cpu; | ||
1904 | #endif | ||
1905 | } | ||
1906 | |||
1907 | static const struct sched_class rt_sched_class; | ||
1908 | |||
1909 | #define sched_class_highest (&stop_sched_class) | ||
1910 | #define for_each_class(class) \ | ||
1911 | for (class = sched_class_highest; class; class = class->next) | ||
1912 | |||
1913 | #include "sched_stats.h" | ||
1914 | |||
1915 | static void inc_nr_running(struct rq *rq) | ||
1916 | { | ||
1917 | rq->nr_running++; | ||
1918 | } | ||
1919 | |||
1920 | static void dec_nr_running(struct rq *rq) | ||
1921 | { | ||
1922 | rq->nr_running--; | ||
1923 | } | ||
1924 | 693 | ||
1925 | static void set_load_weight(struct task_struct *p) | 694 | static void set_load_weight(struct task_struct *p) |
1926 | { | 695 | { |
@@ -1957,7 +726,7 @@ static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) | |||
1957 | /* | 726 | /* |
1958 | * activate_task - move a task to the runqueue. | 727 | * activate_task - move a task to the runqueue. |
1959 | */ | 728 | */ |
1960 | static void activate_task(struct rq *rq, struct task_struct *p, int flags) | 729 | void activate_task(struct rq *rq, struct task_struct *p, int flags) |
1961 | { | 730 | { |
1962 | if (task_contributes_to_load(p)) | 731 | if (task_contributes_to_load(p)) |
1963 | rq->nr_uninterruptible--; | 732 | rq->nr_uninterruptible--; |
@@ -1968,7 +737,7 @@ static void activate_task(struct rq *rq, struct task_struct *p, int flags) | |||
1968 | /* | 737 | /* |
1969 | * deactivate_task - remove a task from the runqueue. | 738 | * deactivate_task - remove a task from the runqueue. |
1970 | */ | 739 | */ |
1971 | static void deactivate_task(struct rq *rq, struct task_struct *p, int flags) | 740 | void deactivate_task(struct rq *rq, struct task_struct *p, int flags) |
1972 | { | 741 | { |
1973 | if (task_contributes_to_load(p)) | 742 | if (task_contributes_to_load(p)) |
1974 | rq->nr_uninterruptible++; | 743 | rq->nr_uninterruptible++; |
@@ -2159,14 +928,14 @@ static void update_rq_clock_task(struct rq *rq, s64 delta) | |||
2159 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | 928 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
2160 | static int irqtime_account_hi_update(void) | 929 | static int irqtime_account_hi_update(void) |
2161 | { | 930 | { |
2162 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 931 | u64 *cpustat = kcpustat_this_cpu->cpustat; |
2163 | unsigned long flags; | 932 | unsigned long flags; |
2164 | u64 latest_ns; | 933 | u64 latest_ns; |
2165 | int ret = 0; | 934 | int ret = 0; |
2166 | 935 | ||
2167 | local_irq_save(flags); | 936 | local_irq_save(flags); |
2168 | latest_ns = this_cpu_read(cpu_hardirq_time); | 937 | latest_ns = this_cpu_read(cpu_hardirq_time); |
2169 | if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq)) | 938 | if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ]) |
2170 | ret = 1; | 939 | ret = 1; |
2171 | local_irq_restore(flags); | 940 | local_irq_restore(flags); |
2172 | return ret; | 941 | return ret; |
@@ -2174,14 +943,14 @@ static int irqtime_account_hi_update(void) | |||
2174 | 943 | ||
2175 | static int irqtime_account_si_update(void) | 944 | static int irqtime_account_si_update(void) |
2176 | { | 945 | { |
2177 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 946 | u64 *cpustat = kcpustat_this_cpu->cpustat; |
2178 | unsigned long flags; | 947 | unsigned long flags; |
2179 | u64 latest_ns; | 948 | u64 latest_ns; |
2180 | int ret = 0; | 949 | int ret = 0; |
2181 | 950 | ||
2182 | local_irq_save(flags); | 951 | local_irq_save(flags); |
2183 | latest_ns = this_cpu_read(cpu_softirq_time); | 952 | latest_ns = this_cpu_read(cpu_softirq_time); |
2184 | if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq)) | 953 | if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ]) |
2185 | ret = 1; | 954 | ret = 1; |
2186 | local_irq_restore(flags); | 955 | local_irq_restore(flags); |
2187 | return ret; | 956 | return ret; |
@@ -2193,15 +962,6 @@ static int irqtime_account_si_update(void) | |||
2193 | 962 | ||
2194 | #endif | 963 | #endif |
2195 | 964 | ||
2196 | #include "sched_idletask.c" | ||
2197 | #include "sched_fair.c" | ||
2198 | #include "sched_rt.c" | ||
2199 | #include "sched_autogroup.c" | ||
2200 | #include "sched_stoptask.c" | ||
2201 | #ifdef CONFIG_SCHED_DEBUG | ||
2202 | # include "sched_debug.c" | ||
2203 | #endif | ||
2204 | |||
2205 | void sched_set_stop_task(int cpu, struct task_struct *stop) | 965 | void sched_set_stop_task(int cpu, struct task_struct *stop) |
2206 | { | 966 | { |
2207 | struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; | 967 | struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; |
@@ -2299,7 +1059,7 @@ static inline void check_class_changed(struct rq *rq, struct task_struct *p, | |||
2299 | p->sched_class->prio_changed(rq, p, oldprio); | 1059 | p->sched_class->prio_changed(rq, p, oldprio); |
2300 | } | 1060 | } |
2301 | 1061 | ||
2302 | static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) | 1062 | void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) |
2303 | { | 1063 | { |
2304 | const struct sched_class *class; | 1064 | const struct sched_class *class; |
2305 | 1065 | ||
@@ -2325,38 +1085,6 @@ static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) | |||
2325 | } | 1085 | } |
2326 | 1086 | ||
2327 | #ifdef CONFIG_SMP | 1087 | #ifdef CONFIG_SMP |
2328 | /* | ||
2329 | * Is this task likely cache-hot: | ||
2330 | */ | ||
2331 | static int | ||
2332 | task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) | ||
2333 | { | ||
2334 | s64 delta; | ||
2335 | |||
2336 | if (p->sched_class != &fair_sched_class) | ||
2337 | return 0; | ||
2338 | |||
2339 | if (unlikely(p->policy == SCHED_IDLE)) | ||
2340 | return 0; | ||
2341 | |||
2342 | /* | ||
2343 | * Buddy candidates are cache hot: | ||
2344 | */ | ||
2345 | if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && | ||
2346 | (&p->se == cfs_rq_of(&p->se)->next || | ||
2347 | &p->se == cfs_rq_of(&p->se)->last)) | ||
2348 | return 1; | ||
2349 | |||
2350 | if (sysctl_sched_migration_cost == -1) | ||
2351 | return 1; | ||
2352 | if (sysctl_sched_migration_cost == 0) | ||
2353 | return 0; | ||
2354 | |||
2355 | delta = now - p->se.exec_start; | ||
2356 | |||
2357 | return delta < (s64)sysctl_sched_migration_cost; | ||
2358 | } | ||
2359 | |||
2360 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) | 1088 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) |
2361 | { | 1089 | { |
2362 | #ifdef CONFIG_SCHED_DEBUG | 1090 | #ifdef CONFIG_SCHED_DEBUG |
@@ -2783,6 +1511,11 @@ static int ttwu_activate_remote(struct task_struct *p, int wake_flags) | |||
2783 | 1511 | ||
2784 | } | 1512 | } |
2785 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ | 1513 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ |
1514 | |||
1515 | static inline int ttwu_share_cache(int this_cpu, int that_cpu) | ||
1516 | { | ||
1517 | return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); | ||
1518 | } | ||
2786 | #endif /* CONFIG_SMP */ | 1519 | #endif /* CONFIG_SMP */ |
2787 | 1520 | ||
2788 | static void ttwu_queue(struct task_struct *p, int cpu) | 1521 | static void ttwu_queue(struct task_struct *p, int cpu) |
@@ -2790,7 +1523,7 @@ static void ttwu_queue(struct task_struct *p, int cpu) | |||
2790 | struct rq *rq = cpu_rq(cpu); | 1523 | struct rq *rq = cpu_rq(cpu); |
2791 | 1524 | ||
2792 | #if defined(CONFIG_SMP) | 1525 | #if defined(CONFIG_SMP) |
2793 | if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) { | 1526 | if (sched_feat(TTWU_QUEUE) && !ttwu_share_cache(smp_processor_id(), cpu)) { |
2794 | sched_clock_cpu(cpu); /* sync clocks x-cpu */ | 1527 | sched_clock_cpu(cpu); /* sync clocks x-cpu */ |
2795 | ttwu_queue_remote(p, cpu); | 1528 | ttwu_queue_remote(p, cpu); |
2796 | return; | 1529 | return; |
@@ -3204,6 +1937,7 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
3204 | local_irq_enable(); | 1937 | local_irq_enable(); |
3205 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ | 1938 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ |
3206 | finish_lock_switch(rq, prev); | 1939 | finish_lock_switch(rq, prev); |
1940 | trace_sched_stat_sleeptime(current, rq->clock); | ||
3207 | 1941 | ||
3208 | fire_sched_in_preempt_notifiers(current); | 1942 | fire_sched_in_preempt_notifiers(current); |
3209 | if (mm) | 1943 | if (mm) |
@@ -3439,7 +2173,7 @@ calc_load(unsigned long load, unsigned long exp, unsigned long active) | |||
3439 | */ | 2173 | */ |
3440 | static atomic_long_t calc_load_tasks_idle; | 2174 | static atomic_long_t calc_load_tasks_idle; |
3441 | 2175 | ||
3442 | static void calc_load_account_idle(struct rq *this_rq) | 2176 | void calc_load_account_idle(struct rq *this_rq) |
3443 | { | 2177 | { |
3444 | long delta; | 2178 | long delta; |
3445 | 2179 | ||
@@ -3583,7 +2317,7 @@ static void calc_global_nohz(unsigned long ticks) | |||
3583 | */ | 2317 | */ |
3584 | } | 2318 | } |
3585 | #else | 2319 | #else |
3586 | static void calc_load_account_idle(struct rq *this_rq) | 2320 | void calc_load_account_idle(struct rq *this_rq) |
3587 | { | 2321 | { |
3588 | } | 2322 | } |
3589 | 2323 | ||
@@ -3726,7 +2460,7 @@ decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) | |||
3726 | * scheduler tick (TICK_NSEC). With tickless idle this will not be called | 2460 | * scheduler tick (TICK_NSEC). With tickless idle this will not be called |
3727 | * every tick. We fix it up based on jiffies. | 2461 | * every tick. We fix it up based on jiffies. |
3728 | */ | 2462 | */ |
3729 | static void update_cpu_load(struct rq *this_rq) | 2463 | void update_cpu_load(struct rq *this_rq) |
3730 | { | 2464 | { |
3731 | unsigned long this_load = this_rq->load.weight; | 2465 | unsigned long this_load = this_rq->load.weight; |
3732 | unsigned long curr_jiffies = jiffies; | 2466 | unsigned long curr_jiffies = jiffies; |
@@ -3804,8 +2538,10 @@ unlock: | |||
3804 | #endif | 2538 | #endif |
3805 | 2539 | ||
3806 | DEFINE_PER_CPU(struct kernel_stat, kstat); | 2540 | DEFINE_PER_CPU(struct kernel_stat, kstat); |
2541 | DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); | ||
3807 | 2542 | ||
3808 | EXPORT_PER_CPU_SYMBOL(kstat); | 2543 | EXPORT_PER_CPU_SYMBOL(kstat); |
2544 | EXPORT_PER_CPU_SYMBOL(kernel_cpustat); | ||
3809 | 2545 | ||
3810 | /* | 2546 | /* |
3811 | * Return any ns on the sched_clock that have not yet been accounted in | 2547 | * Return any ns on the sched_clock that have not yet been accounted in |
@@ -3858,6 +2594,42 @@ unsigned long long task_sched_runtime(struct task_struct *p) | |||
3858 | return ns; | 2594 | return ns; |
3859 | } | 2595 | } |
3860 | 2596 | ||
2597 | #ifdef CONFIG_CGROUP_CPUACCT | ||
2598 | struct cgroup_subsys cpuacct_subsys; | ||
2599 | struct cpuacct root_cpuacct; | ||
2600 | #endif | ||
2601 | |||
2602 | static inline void task_group_account_field(struct task_struct *p, int index, | ||
2603 | u64 tmp) | ||
2604 | { | ||
2605 | #ifdef CONFIG_CGROUP_CPUACCT | ||
2606 | struct kernel_cpustat *kcpustat; | ||
2607 | struct cpuacct *ca; | ||
2608 | #endif | ||
2609 | /* | ||
2610 | * Since all updates are sure to touch the root cgroup, we | ||
2611 | * get ourselves ahead and touch it first. If the root cgroup | ||
2612 | * is the only cgroup, then nothing else should be necessary. | ||
2613 | * | ||
2614 | */ | ||
2615 | __get_cpu_var(kernel_cpustat).cpustat[index] += tmp; | ||
2616 | |||
2617 | #ifdef CONFIG_CGROUP_CPUACCT | ||
2618 | if (unlikely(!cpuacct_subsys.active)) | ||
2619 | return; | ||
2620 | |||
2621 | rcu_read_lock(); | ||
2622 | ca = task_ca(p); | ||
2623 | while (ca && (ca != &root_cpuacct)) { | ||
2624 | kcpustat = this_cpu_ptr(ca->cpustat); | ||
2625 | kcpustat->cpustat[index] += tmp; | ||
2626 | ca = parent_ca(ca); | ||
2627 | } | ||
2628 | rcu_read_unlock(); | ||
2629 | #endif | ||
2630 | } | ||
2631 | |||
2632 | |||
3861 | /* | 2633 | /* |
3862 | * Account user cpu time to a process. | 2634 | * Account user cpu time to a process. |
3863 | * @p: the process that the cpu time gets accounted to | 2635 | * @p: the process that the cpu time gets accounted to |
@@ -3867,22 +2639,18 @@ unsigned long long task_sched_runtime(struct task_struct *p) | |||
3867 | void account_user_time(struct task_struct *p, cputime_t cputime, | 2639 | void account_user_time(struct task_struct *p, cputime_t cputime, |
3868 | cputime_t cputime_scaled) | 2640 | cputime_t cputime_scaled) |
3869 | { | 2641 | { |
3870 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 2642 | int index; |
3871 | cputime64_t tmp; | ||
3872 | 2643 | ||
3873 | /* Add user time to process. */ | 2644 | /* Add user time to process. */ |
3874 | p->utime = cputime_add(p->utime, cputime); | 2645 | p->utime += cputime; |
3875 | p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); | 2646 | p->utimescaled += cputime_scaled; |
3876 | account_group_user_time(p, cputime); | 2647 | account_group_user_time(p, cputime); |
3877 | 2648 | ||
2649 | index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; | ||
2650 | |||
3878 | /* Add user time to cpustat. */ | 2651 | /* Add user time to cpustat. */ |
3879 | tmp = cputime_to_cputime64(cputime); | 2652 | task_group_account_field(p, index, (__force u64) cputime); |
3880 | if (TASK_NICE(p) > 0) | ||
3881 | cpustat->nice = cputime64_add(cpustat->nice, tmp); | ||
3882 | else | ||
3883 | cpustat->user = cputime64_add(cpustat->user, tmp); | ||
3884 | 2653 | ||
3885 | cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime); | ||
3886 | /* Account for user time used */ | 2654 | /* Account for user time used */ |
3887 | acct_update_integrals(p); | 2655 | acct_update_integrals(p); |
3888 | } | 2656 | } |
@@ -3896,24 +2664,21 @@ void account_user_time(struct task_struct *p, cputime_t cputime, | |||
3896 | static void account_guest_time(struct task_struct *p, cputime_t cputime, | 2664 | static void account_guest_time(struct task_struct *p, cputime_t cputime, |
3897 | cputime_t cputime_scaled) | 2665 | cputime_t cputime_scaled) |
3898 | { | 2666 | { |
3899 | cputime64_t tmp; | 2667 | u64 *cpustat = kcpustat_this_cpu->cpustat; |
3900 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | ||
3901 | |||
3902 | tmp = cputime_to_cputime64(cputime); | ||
3903 | 2668 | ||
3904 | /* Add guest time to process. */ | 2669 | /* Add guest time to process. */ |
3905 | p->utime = cputime_add(p->utime, cputime); | 2670 | p->utime += cputime; |
3906 | p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); | 2671 | p->utimescaled += cputime_scaled; |
3907 | account_group_user_time(p, cputime); | 2672 | account_group_user_time(p, cputime); |
3908 | p->gtime = cputime_add(p->gtime, cputime); | 2673 | p->gtime += cputime; |
3909 | 2674 | ||
3910 | /* Add guest time to cpustat. */ | 2675 | /* Add guest time to cpustat. */ |
3911 | if (TASK_NICE(p) > 0) { | 2676 | if (TASK_NICE(p) > 0) { |
3912 | cpustat->nice = cputime64_add(cpustat->nice, tmp); | 2677 | cpustat[CPUTIME_NICE] += (__force u64) cputime; |
3913 | cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp); | 2678 | cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime; |
3914 | } else { | 2679 | } else { |
3915 | cpustat->user = cputime64_add(cpustat->user, tmp); | 2680 | cpustat[CPUTIME_USER] += (__force u64) cputime; |
3916 | cpustat->guest = cputime64_add(cpustat->guest, tmp); | 2681 | cpustat[CPUTIME_GUEST] += (__force u64) cputime; |
3917 | } | 2682 | } |
3918 | } | 2683 | } |
3919 | 2684 | ||
@@ -3926,18 +2691,15 @@ static void account_guest_time(struct task_struct *p, cputime_t cputime, | |||
3926 | */ | 2691 | */ |
3927 | static inline | 2692 | static inline |
3928 | void __account_system_time(struct task_struct *p, cputime_t cputime, | 2693 | void __account_system_time(struct task_struct *p, cputime_t cputime, |
3929 | cputime_t cputime_scaled, cputime64_t *target_cputime64) | 2694 | cputime_t cputime_scaled, int index) |
3930 | { | 2695 | { |
3931 | cputime64_t tmp = cputime_to_cputime64(cputime); | ||
3932 | |||
3933 | /* Add system time to process. */ | 2696 | /* Add system time to process. */ |
3934 | p->stime = cputime_add(p->stime, cputime); | 2697 | p->stime += cputime; |
3935 | p->stimescaled = cputime_add(p->stimescaled, cputime_scaled); | 2698 | p->stimescaled += cputime_scaled; |
3936 | account_group_system_time(p, cputime); | 2699 | account_group_system_time(p, cputime); |
3937 | 2700 | ||
3938 | /* Add system time to cpustat. */ | 2701 | /* Add system time to cpustat. */ |
3939 | *target_cputime64 = cputime64_add(*target_cputime64, tmp); | 2702 | task_group_account_field(p, index, (__force u64) cputime); |
3940 | cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime); | ||
3941 | 2703 | ||
3942 | /* Account for system time used */ | 2704 | /* Account for system time used */ |
3943 | acct_update_integrals(p); | 2705 | acct_update_integrals(p); |
@@ -3953,8 +2715,7 @@ void __account_system_time(struct task_struct *p, cputime_t cputime, | |||
3953 | void account_system_time(struct task_struct *p, int hardirq_offset, | 2715 | void account_system_time(struct task_struct *p, int hardirq_offset, |
3954 | cputime_t cputime, cputime_t cputime_scaled) | 2716 | cputime_t cputime, cputime_t cputime_scaled) |
3955 | { | 2717 | { |
3956 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 2718 | int index; |
3957 | cputime64_t *target_cputime64; | ||
3958 | 2719 | ||
3959 | if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { | 2720 | if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { |
3960 | account_guest_time(p, cputime, cputime_scaled); | 2721 | account_guest_time(p, cputime, cputime_scaled); |
@@ -3962,13 +2723,13 @@ void account_system_time(struct task_struct *p, int hardirq_offset, | |||
3962 | } | 2723 | } |
3963 | 2724 | ||
3964 | if (hardirq_count() - hardirq_offset) | 2725 | if (hardirq_count() - hardirq_offset) |
3965 | target_cputime64 = &cpustat->irq; | 2726 | index = CPUTIME_IRQ; |
3966 | else if (in_serving_softirq()) | 2727 | else if (in_serving_softirq()) |
3967 | target_cputime64 = &cpustat->softirq; | 2728 | index = CPUTIME_SOFTIRQ; |
3968 | else | 2729 | else |
3969 | target_cputime64 = &cpustat->system; | 2730 | index = CPUTIME_SYSTEM; |
3970 | 2731 | ||
3971 | __account_system_time(p, cputime, cputime_scaled, target_cputime64); | 2732 | __account_system_time(p, cputime, cputime_scaled, index); |
3972 | } | 2733 | } |
3973 | 2734 | ||
3974 | /* | 2735 | /* |
@@ -3977,10 +2738,9 @@ void account_system_time(struct task_struct *p, int hardirq_offset, | |||
3977 | */ | 2738 | */ |
3978 | void account_steal_time(cputime_t cputime) | 2739 | void account_steal_time(cputime_t cputime) |
3979 | { | 2740 | { |
3980 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 2741 | u64 *cpustat = kcpustat_this_cpu->cpustat; |
3981 | cputime64_t cputime64 = cputime_to_cputime64(cputime); | ||
3982 | 2742 | ||
3983 | cpustat->steal = cputime64_add(cpustat->steal, cputime64); | 2743 | cpustat[CPUTIME_STEAL] += (__force u64) cputime; |
3984 | } | 2744 | } |
3985 | 2745 | ||
3986 | /* | 2746 | /* |
@@ -3989,14 +2749,13 @@ void account_steal_time(cputime_t cputime) | |||
3989 | */ | 2749 | */ |
3990 | void account_idle_time(cputime_t cputime) | 2750 | void account_idle_time(cputime_t cputime) |
3991 | { | 2751 | { |
3992 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 2752 | u64 *cpustat = kcpustat_this_cpu->cpustat; |
3993 | cputime64_t cputime64 = cputime_to_cputime64(cputime); | ||
3994 | struct rq *rq = this_rq(); | 2753 | struct rq *rq = this_rq(); |
3995 | 2754 | ||
3996 | if (atomic_read(&rq->nr_iowait) > 0) | 2755 | if (atomic_read(&rq->nr_iowait) > 0) |
3997 | cpustat->iowait = cputime64_add(cpustat->iowait, cputime64); | 2756 | cpustat[CPUTIME_IOWAIT] += (__force u64) cputime; |
3998 | else | 2757 | else |
3999 | cpustat->idle = cputime64_add(cpustat->idle, cputime64); | 2758 | cpustat[CPUTIME_IDLE] += (__force u64) cputime; |
4000 | } | 2759 | } |
4001 | 2760 | ||
4002 | static __always_inline bool steal_account_process_tick(void) | 2761 | static __always_inline bool steal_account_process_tick(void) |
@@ -4046,16 +2805,15 @@ static void irqtime_account_process_tick(struct task_struct *p, int user_tick, | |||
4046 | struct rq *rq) | 2805 | struct rq *rq) |
4047 | { | 2806 | { |
4048 | cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); | 2807 | cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); |
4049 | cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy); | 2808 | u64 *cpustat = kcpustat_this_cpu->cpustat; |
4050 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | ||
4051 | 2809 | ||
4052 | if (steal_account_process_tick()) | 2810 | if (steal_account_process_tick()) |
4053 | return; | 2811 | return; |
4054 | 2812 | ||
4055 | if (irqtime_account_hi_update()) { | 2813 | if (irqtime_account_hi_update()) { |
4056 | cpustat->irq = cputime64_add(cpustat->irq, tmp); | 2814 | cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy; |
4057 | } else if (irqtime_account_si_update()) { | 2815 | } else if (irqtime_account_si_update()) { |
4058 | cpustat->softirq = cputime64_add(cpustat->softirq, tmp); | 2816 | cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy; |
4059 | } else if (this_cpu_ksoftirqd() == p) { | 2817 | } else if (this_cpu_ksoftirqd() == p) { |
4060 | /* | 2818 | /* |
4061 | * ksoftirqd time do not get accounted in cpu_softirq_time. | 2819 | * ksoftirqd time do not get accounted in cpu_softirq_time. |
@@ -4063,7 +2821,7 @@ static void irqtime_account_process_tick(struct task_struct *p, int user_tick, | |||
4063 | * Also, p->stime needs to be updated for ksoftirqd. | 2821 | * Also, p->stime needs to be updated for ksoftirqd. |
4064 | */ | 2822 | */ |
4065 | __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, | 2823 | __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, |
4066 | &cpustat->softirq); | 2824 | CPUTIME_SOFTIRQ); |
4067 | } else if (user_tick) { | 2825 | } else if (user_tick) { |
4068 | account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); | 2826 | account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); |
4069 | } else if (p == rq->idle) { | 2827 | } else if (p == rq->idle) { |
@@ -4072,7 +2830,7 @@ static void irqtime_account_process_tick(struct task_struct *p, int user_tick, | |||
4072 | account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled); | 2830 | account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled); |
4073 | } else { | 2831 | } else { |
4074 | __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, | 2832 | __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, |
4075 | &cpustat->system); | 2833 | CPUTIME_SYSTEM); |
4076 | } | 2834 | } |
4077 | } | 2835 | } |
4078 | 2836 | ||
@@ -4171,7 +2929,7 @@ void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | |||
4171 | 2929 | ||
4172 | void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | 2930 | void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) |
4173 | { | 2931 | { |
4174 | cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime); | 2932 | cputime_t rtime, utime = p->utime, total = utime + p->stime; |
4175 | 2933 | ||
4176 | /* | 2934 | /* |
4177 | * Use CFS's precise accounting: | 2935 | * Use CFS's precise accounting: |
@@ -4179,11 +2937,11 @@ void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | |||
4179 | rtime = nsecs_to_cputime(p->se.sum_exec_runtime); | 2937 | rtime = nsecs_to_cputime(p->se.sum_exec_runtime); |
4180 | 2938 | ||
4181 | if (total) { | 2939 | if (total) { |
4182 | u64 temp = rtime; | 2940 | u64 temp = (__force u64) rtime; |
4183 | 2941 | ||
4184 | temp *= utime; | 2942 | temp *= (__force u64) utime; |
4185 | do_div(temp, total); | 2943 | do_div(temp, (__force u32) total); |
4186 | utime = (cputime_t)temp; | 2944 | utime = (__force cputime_t) temp; |
4187 | } else | 2945 | } else |
4188 | utime = rtime; | 2946 | utime = rtime; |
4189 | 2947 | ||
@@ -4191,7 +2949,7 @@ void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | |||
4191 | * Compare with previous values, to keep monotonicity: | 2949 | * Compare with previous values, to keep monotonicity: |
4192 | */ | 2950 | */ |
4193 | p->prev_utime = max(p->prev_utime, utime); | 2951 | p->prev_utime = max(p->prev_utime, utime); |
4194 | p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime)); | 2952 | p->prev_stime = max(p->prev_stime, rtime - p->prev_utime); |
4195 | 2953 | ||
4196 | *ut = p->prev_utime; | 2954 | *ut = p->prev_utime; |
4197 | *st = p->prev_stime; | 2955 | *st = p->prev_stime; |
@@ -4208,21 +2966,20 @@ void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | |||
4208 | 2966 | ||
4209 | thread_group_cputime(p, &cputime); | 2967 | thread_group_cputime(p, &cputime); |
4210 | 2968 | ||
4211 | total = cputime_add(cputime.utime, cputime.stime); | 2969 | total = cputime.utime + cputime.stime; |
4212 | rtime = nsecs_to_cputime(cputime.sum_exec_runtime); | 2970 | rtime = nsecs_to_cputime(cputime.sum_exec_runtime); |
4213 | 2971 | ||
4214 | if (total) { | 2972 | if (total) { |
4215 | u64 temp = rtime; | 2973 | u64 temp = (__force u64) rtime; |
4216 | 2974 | ||
4217 | temp *= cputime.utime; | 2975 | temp *= (__force u64) cputime.utime; |
4218 | do_div(temp, total); | 2976 | do_div(temp, (__force u32) total); |
4219 | utime = (cputime_t)temp; | 2977 | utime = (__force cputime_t) temp; |
4220 | } else | 2978 | } else |
4221 | utime = rtime; | 2979 | utime = rtime; |
4222 | 2980 | ||
4223 | sig->prev_utime = max(sig->prev_utime, utime); | 2981 | sig->prev_utime = max(sig->prev_utime, utime); |
4224 | sig->prev_stime = max(sig->prev_stime, | 2982 | sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime); |
4225 | cputime_sub(rtime, sig->prev_utime)); | ||
4226 | 2983 | ||
4227 | *ut = sig->prev_utime; | 2984 | *ut = sig->prev_utime; |
4228 | *st = sig->prev_stime; | 2985 | *st = sig->prev_stime; |
@@ -4321,6 +3078,9 @@ static noinline void __schedule_bug(struct task_struct *prev) | |||
4321 | { | 3078 | { |
4322 | struct pt_regs *regs = get_irq_regs(); | 3079 | struct pt_regs *regs = get_irq_regs(); |
4323 | 3080 | ||
3081 | if (oops_in_progress) | ||
3082 | return; | ||
3083 | |||
4324 | printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", | 3084 | printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", |
4325 | prev->comm, prev->pid, preempt_count()); | 3085 | prev->comm, prev->pid, preempt_count()); |
4326 | 3086 | ||
@@ -5852,6 +4612,13 @@ again: | |||
5852 | */ | 4612 | */ |
5853 | if (preempt && rq != p_rq) | 4613 | if (preempt && rq != p_rq) |
5854 | resched_task(p_rq->curr); | 4614 | resched_task(p_rq->curr); |
4615 | } else { | ||
4616 | /* | ||
4617 | * We might have set it in task_yield_fair(), but are | ||
4618 | * not going to schedule(), so don't want to skip | ||
4619 | * the next update. | ||
4620 | */ | ||
4621 | rq->skip_clock_update = 0; | ||
5855 | } | 4622 | } |
5856 | 4623 | ||
5857 | out: | 4624 | out: |
@@ -6019,7 +4786,7 @@ void sched_show_task(struct task_struct *p) | |||
6019 | free = stack_not_used(p); | 4786 | free = stack_not_used(p); |
6020 | #endif | 4787 | #endif |
6021 | printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, | 4788 | printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, |
6022 | task_pid_nr(p), task_pid_nr(p->real_parent), | 4789 | task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)), |
6023 | (unsigned long)task_thread_info(p)->flags); | 4790 | (unsigned long)task_thread_info(p)->flags); |
6024 | 4791 | ||
6025 | show_stack(p, NULL); | 4792 | show_stack(p, NULL); |
@@ -6118,53 +4885,6 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu) | |||
6118 | #endif | 4885 | #endif |
6119 | } | 4886 | } |
6120 | 4887 | ||
6121 | /* | ||
6122 | * Increase the granularity value when there are more CPUs, | ||
6123 | * because with more CPUs the 'effective latency' as visible | ||
6124 | * to users decreases. But the relationship is not linear, | ||
6125 | * so pick a second-best guess by going with the log2 of the | ||
6126 | * number of CPUs. | ||
6127 | * | ||
6128 | * This idea comes from the SD scheduler of Con Kolivas: | ||
6129 | */ | ||
6130 | static int get_update_sysctl_factor(void) | ||
6131 | { | ||
6132 | unsigned int cpus = min_t(int, num_online_cpus(), 8); | ||
6133 | unsigned int factor; | ||
6134 | |||
6135 | switch (sysctl_sched_tunable_scaling) { | ||
6136 | case SCHED_TUNABLESCALING_NONE: | ||
6137 | factor = 1; | ||
6138 | break; | ||
6139 | case SCHED_TUNABLESCALING_LINEAR: | ||
6140 | factor = cpus; | ||
6141 | break; | ||
6142 | case SCHED_TUNABLESCALING_LOG: | ||
6143 | default: | ||
6144 | factor = 1 + ilog2(cpus); | ||
6145 | break; | ||
6146 | } | ||
6147 | |||
6148 | return factor; | ||
6149 | } | ||
6150 | |||
6151 | static void update_sysctl(void) | ||
6152 | { | ||
6153 | unsigned int factor = get_update_sysctl_factor(); | ||
6154 | |||
6155 | #define SET_SYSCTL(name) \ | ||
6156 | (sysctl_##name = (factor) * normalized_sysctl_##name) | ||
6157 | SET_SYSCTL(sched_min_granularity); | ||
6158 | SET_SYSCTL(sched_latency); | ||
6159 | SET_SYSCTL(sched_wakeup_granularity); | ||
6160 | #undef SET_SYSCTL | ||
6161 | } | ||
6162 | |||
6163 | static inline void sched_init_granularity(void) | ||
6164 | { | ||
6165 | update_sysctl(); | ||
6166 | } | ||
6167 | |||
6168 | #ifdef CONFIG_SMP | 4888 | #ifdef CONFIG_SMP |
6169 | void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) | 4889 | void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) |
6170 | { | 4890 | { |
@@ -6351,30 +5071,6 @@ static void calc_global_load_remove(struct rq *rq) | |||
6351 | rq->calc_load_active = 0; | 5071 | rq->calc_load_active = 0; |
6352 | } | 5072 | } |
6353 | 5073 | ||
6354 | #ifdef CONFIG_CFS_BANDWIDTH | ||
6355 | static void unthrottle_offline_cfs_rqs(struct rq *rq) | ||
6356 | { | ||
6357 | struct cfs_rq *cfs_rq; | ||
6358 | |||
6359 | for_each_leaf_cfs_rq(rq, cfs_rq) { | ||
6360 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | ||
6361 | |||
6362 | if (!cfs_rq->runtime_enabled) | ||
6363 | continue; | ||
6364 | |||
6365 | /* | ||
6366 | * clock_task is not advancing so we just need to make sure | ||
6367 | * there's some valid quota amount | ||
6368 | */ | ||
6369 | cfs_rq->runtime_remaining = cfs_b->quota; | ||
6370 | if (cfs_rq_throttled(cfs_rq)) | ||
6371 | unthrottle_cfs_rq(cfs_rq); | ||
6372 | } | ||
6373 | } | ||
6374 | #else | ||
6375 | static void unthrottle_offline_cfs_rqs(struct rq *rq) {} | ||
6376 | #endif | ||
6377 | |||
6378 | /* | 5074 | /* |
6379 | * Migrate all tasks from the rq, sleeping tasks will be migrated by | 5075 | * Migrate all tasks from the rq, sleeping tasks will be migrated by |
6380 | * try_to_wake_up()->select_task_rq(). | 5076 | * try_to_wake_up()->select_task_rq(). |
@@ -6980,6 +5676,12 @@ out: | |||
6980 | return -ENOMEM; | 5676 | return -ENOMEM; |
6981 | } | 5677 | } |
6982 | 5678 | ||
5679 | /* | ||
5680 | * By default the system creates a single root-domain with all cpus as | ||
5681 | * members (mimicking the global state we have today). | ||
5682 | */ | ||
5683 | struct root_domain def_root_domain; | ||
5684 | |||
6983 | static void init_defrootdomain(void) | 5685 | static void init_defrootdomain(void) |
6984 | { | 5686 | { |
6985 | init_rootdomain(&def_root_domain); | 5687 | init_rootdomain(&def_root_domain); |
@@ -7051,6 +5753,31 @@ static void destroy_sched_domains(struct sched_domain *sd, int cpu) | |||
7051 | } | 5753 | } |
7052 | 5754 | ||
7053 | /* | 5755 | /* |
5756 | * Keep a special pointer to the highest sched_domain that has | ||
5757 | * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this | ||
5758 | * allows us to avoid some pointer chasing select_idle_sibling(). | ||
5759 | * | ||
5760 | * Also keep a unique ID per domain (we use the first cpu number in | ||
5761 | * the cpumask of the domain), this allows us to quickly tell if | ||
5762 | * two cpus are in the same cache domain, see ttwu_share_cache(). | ||
5763 | */ | ||
5764 | DEFINE_PER_CPU(struct sched_domain *, sd_llc); | ||
5765 | DEFINE_PER_CPU(int, sd_llc_id); | ||
5766 | |||
5767 | static void update_top_cache_domain(int cpu) | ||
5768 | { | ||
5769 | struct sched_domain *sd; | ||
5770 | int id = cpu; | ||
5771 | |||
5772 | sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); | ||
5773 | if (sd) | ||
5774 | id = cpumask_first(sched_domain_span(sd)); | ||
5775 | |||
5776 | rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); | ||
5777 | per_cpu(sd_llc_id, cpu) = id; | ||
5778 | } | ||
5779 | |||
5780 | /* | ||
7054 | * Attach the domain 'sd' to 'cpu' as its base domain. Callers must | 5781 | * Attach the domain 'sd' to 'cpu' as its base domain. Callers must |
7055 | * hold the hotplug lock. | 5782 | * hold the hotplug lock. |
7056 | */ | 5783 | */ |
@@ -7089,6 +5816,8 @@ cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) | |||
7089 | tmp = rq->sd; | 5816 | tmp = rq->sd; |
7090 | rcu_assign_pointer(rq->sd, sd); | 5817 | rcu_assign_pointer(rq->sd, sd); |
7091 | destroy_sched_domains(tmp, cpu); | 5818 | destroy_sched_domains(tmp, cpu); |
5819 | |||
5820 | update_top_cache_domain(cpu); | ||
7092 | } | 5821 | } |
7093 | 5822 | ||
7094 | /* cpus with isolated domains */ | 5823 | /* cpus with isolated domains */ |
@@ -7248,7 +5977,7 @@ build_overlap_sched_groups(struct sched_domain *sd, int cpu) | |||
7248 | continue; | 5977 | continue; |
7249 | 5978 | ||
7250 | sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), | 5979 | sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), |
7251 | GFP_KERNEL, cpu_to_node(i)); | 5980 | GFP_KERNEL, cpu_to_node(cpu)); |
7252 | 5981 | ||
7253 | if (!sg) | 5982 | if (!sg) |
7254 | goto fail; | 5983 | goto fail; |
@@ -7386,6 +6115,12 @@ static void init_sched_groups_power(int cpu, struct sched_domain *sd) | |||
7386 | return; | 6115 | return; |
7387 | 6116 | ||
7388 | update_group_power(sd, cpu); | 6117 | update_group_power(sd, cpu); |
6118 | atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight); | ||
6119 | } | ||
6120 | |||
6121 | int __weak arch_sd_sibling_asym_packing(void) | ||
6122 | { | ||
6123 | return 0*SD_ASYM_PACKING; | ||
7389 | } | 6124 | } |
7390 | 6125 | ||
7391 | /* | 6126 | /* |
@@ -8023,29 +6758,6 @@ static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, | |||
8023 | } | 6758 | } |
8024 | } | 6759 | } |
8025 | 6760 | ||
8026 | static int update_runtime(struct notifier_block *nfb, | ||
8027 | unsigned long action, void *hcpu) | ||
8028 | { | ||
8029 | int cpu = (int)(long)hcpu; | ||
8030 | |||
8031 | switch (action) { | ||
8032 | case CPU_DOWN_PREPARE: | ||
8033 | case CPU_DOWN_PREPARE_FROZEN: | ||
8034 | disable_runtime(cpu_rq(cpu)); | ||
8035 | return NOTIFY_OK; | ||
8036 | |||
8037 | case CPU_DOWN_FAILED: | ||
8038 | case CPU_DOWN_FAILED_FROZEN: | ||
8039 | case CPU_ONLINE: | ||
8040 | case CPU_ONLINE_FROZEN: | ||
8041 | enable_runtime(cpu_rq(cpu)); | ||
8042 | return NOTIFY_OK; | ||
8043 | |||
8044 | default: | ||
8045 | return NOTIFY_DONE; | ||
8046 | } | ||
8047 | } | ||
8048 | |||
8049 | void __init sched_init_smp(void) | 6761 | void __init sched_init_smp(void) |
8050 | { | 6762 | { |
8051 | cpumask_var_t non_isolated_cpus; | 6763 | cpumask_var_t non_isolated_cpus; |
@@ -8094,104 +6806,11 @@ int in_sched_functions(unsigned long addr) | |||
8094 | && addr < (unsigned long)__sched_text_end); | 6806 | && addr < (unsigned long)__sched_text_end); |
8095 | } | 6807 | } |
8096 | 6808 | ||
8097 | static void init_cfs_rq(struct cfs_rq *cfs_rq) | 6809 | #ifdef CONFIG_CGROUP_SCHED |
8098 | { | 6810 | struct task_group root_task_group; |
8099 | cfs_rq->tasks_timeline = RB_ROOT; | ||
8100 | INIT_LIST_HEAD(&cfs_rq->tasks); | ||
8101 | cfs_rq->min_vruntime = (u64)(-(1LL << 20)); | ||
8102 | #ifndef CONFIG_64BIT | ||
8103 | cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; | ||
8104 | #endif | ||
8105 | } | ||
8106 | |||
8107 | static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) | ||
8108 | { | ||
8109 | struct rt_prio_array *array; | ||
8110 | int i; | ||
8111 | |||
8112 | array = &rt_rq->active; | ||
8113 | for (i = 0; i < MAX_RT_PRIO; i++) { | ||
8114 | INIT_LIST_HEAD(array->queue + i); | ||
8115 | __clear_bit(i, array->bitmap); | ||
8116 | } | ||
8117 | /* delimiter for bitsearch: */ | ||
8118 | __set_bit(MAX_RT_PRIO, array->bitmap); | ||
8119 | |||
8120 | #if defined CONFIG_SMP | ||
8121 | rt_rq->highest_prio.curr = MAX_RT_PRIO; | ||
8122 | rt_rq->highest_prio.next = MAX_RT_PRIO; | ||
8123 | rt_rq->rt_nr_migratory = 0; | ||
8124 | rt_rq->overloaded = 0; | ||
8125 | plist_head_init(&rt_rq->pushable_tasks); | ||
8126 | #endif | ||
8127 | |||
8128 | rt_rq->rt_time = 0; | ||
8129 | rt_rq->rt_throttled = 0; | ||
8130 | rt_rq->rt_runtime = 0; | ||
8131 | raw_spin_lock_init(&rt_rq->rt_runtime_lock); | ||
8132 | } | ||
8133 | |||
8134 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
8135 | static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, | ||
8136 | struct sched_entity *se, int cpu, | ||
8137 | struct sched_entity *parent) | ||
8138 | { | ||
8139 | struct rq *rq = cpu_rq(cpu); | ||
8140 | |||
8141 | cfs_rq->tg = tg; | ||
8142 | cfs_rq->rq = rq; | ||
8143 | #ifdef CONFIG_SMP | ||
8144 | /* allow initial update_cfs_load() to truncate */ | ||
8145 | cfs_rq->load_stamp = 1; | ||
8146 | #endif | ||
8147 | init_cfs_rq_runtime(cfs_rq); | ||
8148 | |||
8149 | tg->cfs_rq[cpu] = cfs_rq; | ||
8150 | tg->se[cpu] = se; | ||
8151 | |||
8152 | /* se could be NULL for root_task_group */ | ||
8153 | if (!se) | ||
8154 | return; | ||
8155 | |||
8156 | if (!parent) | ||
8157 | se->cfs_rq = &rq->cfs; | ||
8158 | else | ||
8159 | se->cfs_rq = parent->my_q; | ||
8160 | |||
8161 | se->my_q = cfs_rq; | ||
8162 | update_load_set(&se->load, 0); | ||
8163 | se->parent = parent; | ||
8164 | } | ||
8165 | #endif | 6811 | #endif |
8166 | 6812 | ||
8167 | #ifdef CONFIG_RT_GROUP_SCHED | 6813 | DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask); |
8168 | static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, | ||
8169 | struct sched_rt_entity *rt_se, int cpu, | ||
8170 | struct sched_rt_entity *parent) | ||
8171 | { | ||
8172 | struct rq *rq = cpu_rq(cpu); | ||
8173 | |||
8174 | rt_rq->highest_prio.curr = MAX_RT_PRIO; | ||
8175 | rt_rq->rt_nr_boosted = 0; | ||
8176 | rt_rq->rq = rq; | ||
8177 | rt_rq->tg = tg; | ||
8178 | |||
8179 | tg->rt_rq[cpu] = rt_rq; | ||
8180 | tg->rt_se[cpu] = rt_se; | ||
8181 | |||
8182 | if (!rt_se) | ||
8183 | return; | ||
8184 | |||
8185 | if (!parent) | ||
8186 | rt_se->rt_rq = &rq->rt; | ||
8187 | else | ||
8188 | rt_se->rt_rq = parent->my_q; | ||
8189 | |||
8190 | rt_se->my_q = rt_rq; | ||
8191 | rt_se->parent = parent; | ||
8192 | INIT_LIST_HEAD(&rt_se->run_list); | ||
8193 | } | ||
8194 | #endif | ||
8195 | 6814 | ||
8196 | void __init sched_init(void) | 6815 | void __init sched_init(void) |
8197 | { | 6816 | { |
@@ -8249,9 +6868,17 @@ void __init sched_init(void) | |||
8249 | #ifdef CONFIG_CGROUP_SCHED | 6868 | #ifdef CONFIG_CGROUP_SCHED |
8250 | list_add(&root_task_group.list, &task_groups); | 6869 | list_add(&root_task_group.list, &task_groups); |
8251 | INIT_LIST_HEAD(&root_task_group.children); | 6870 | INIT_LIST_HEAD(&root_task_group.children); |
6871 | INIT_LIST_HEAD(&root_task_group.siblings); | ||
8252 | autogroup_init(&init_task); | 6872 | autogroup_init(&init_task); |
6873 | |||
8253 | #endif /* CONFIG_CGROUP_SCHED */ | 6874 | #endif /* CONFIG_CGROUP_SCHED */ |
8254 | 6875 | ||
6876 | #ifdef CONFIG_CGROUP_CPUACCT | ||
6877 | root_cpuacct.cpustat = &kernel_cpustat; | ||
6878 | root_cpuacct.cpuusage = alloc_percpu(u64); | ||
6879 | /* Too early, not expected to fail */ | ||
6880 | BUG_ON(!root_cpuacct.cpuusage); | ||
6881 | #endif | ||
8255 | for_each_possible_cpu(i) { | 6882 | for_each_possible_cpu(i) { |
8256 | struct rq *rq; | 6883 | struct rq *rq; |
8257 | 6884 | ||
@@ -8263,7 +6890,7 @@ void __init sched_init(void) | |||
8263 | init_cfs_rq(&rq->cfs); | 6890 | init_cfs_rq(&rq->cfs); |
8264 | init_rt_rq(&rq->rt, rq); | 6891 | init_rt_rq(&rq->rt, rq); |
8265 | #ifdef CONFIG_FAIR_GROUP_SCHED | 6892 | #ifdef CONFIG_FAIR_GROUP_SCHED |
8266 | root_task_group.shares = root_task_group_load; | 6893 | root_task_group.shares = ROOT_TASK_GROUP_LOAD; |
8267 | INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); | 6894 | INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); |
8268 | /* | 6895 | /* |
8269 | * How much cpu bandwidth does root_task_group get? | 6896 | * How much cpu bandwidth does root_task_group get? |
@@ -8313,7 +6940,7 @@ void __init sched_init(void) | |||
8313 | rq->avg_idle = 2*sysctl_sched_migration_cost; | 6940 | rq->avg_idle = 2*sysctl_sched_migration_cost; |
8314 | rq_attach_root(rq, &def_root_domain); | 6941 | rq_attach_root(rq, &def_root_domain); |
8315 | #ifdef CONFIG_NO_HZ | 6942 | #ifdef CONFIG_NO_HZ |
8316 | rq->nohz_balance_kick = 0; | 6943 | rq->nohz_flags = 0; |
8317 | #endif | 6944 | #endif |
8318 | #endif | 6945 | #endif |
8319 | init_rq_hrtick(rq); | 6946 | init_rq_hrtick(rq); |
@@ -8326,10 +6953,6 @@ void __init sched_init(void) | |||
8326 | INIT_HLIST_HEAD(&init_task.preempt_notifiers); | 6953 | INIT_HLIST_HEAD(&init_task.preempt_notifiers); |
8327 | #endif | 6954 | #endif |
8328 | 6955 | ||
8329 | #ifdef CONFIG_SMP | ||
8330 | open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); | ||
8331 | #endif | ||
8332 | |||
8333 | #ifdef CONFIG_RT_MUTEXES | 6956 | #ifdef CONFIG_RT_MUTEXES |
8334 | plist_head_init(&init_task.pi_waiters); | 6957 | plist_head_init(&init_task.pi_waiters); |
8335 | #endif | 6958 | #endif |
@@ -8357,17 +6980,11 @@ void __init sched_init(void) | |||
8357 | 6980 | ||
8358 | #ifdef CONFIG_SMP | 6981 | #ifdef CONFIG_SMP |
8359 | zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); | 6982 | zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); |
8360 | #ifdef CONFIG_NO_HZ | ||
8361 | zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); | ||
8362 | alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT); | ||
8363 | atomic_set(&nohz.load_balancer, nr_cpu_ids); | ||
8364 | atomic_set(&nohz.first_pick_cpu, nr_cpu_ids); | ||
8365 | atomic_set(&nohz.second_pick_cpu, nr_cpu_ids); | ||
8366 | #endif | ||
8367 | /* May be allocated at isolcpus cmdline parse time */ | 6983 | /* May be allocated at isolcpus cmdline parse time */ |
8368 | if (cpu_isolated_map == NULL) | 6984 | if (cpu_isolated_map == NULL) |
8369 | zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); | 6985 | zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); |
8370 | #endif /* SMP */ | 6986 | #endif |
6987 | init_sched_fair_class(); | ||
8371 | 6988 | ||
8372 | scheduler_running = 1; | 6989 | scheduler_running = 1; |
8373 | } | 6990 | } |
@@ -8519,169 +7136,14 @@ void set_curr_task(int cpu, struct task_struct *p) | |||
8519 | 7136 | ||
8520 | #endif | 7137 | #endif |
8521 | 7138 | ||
8522 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
8523 | static void free_fair_sched_group(struct task_group *tg) | ||
8524 | { | ||
8525 | int i; | ||
8526 | |||
8527 | destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); | ||
8528 | |||
8529 | for_each_possible_cpu(i) { | ||
8530 | if (tg->cfs_rq) | ||
8531 | kfree(tg->cfs_rq[i]); | ||
8532 | if (tg->se) | ||
8533 | kfree(tg->se[i]); | ||
8534 | } | ||
8535 | |||
8536 | kfree(tg->cfs_rq); | ||
8537 | kfree(tg->se); | ||
8538 | } | ||
8539 | |||
8540 | static | ||
8541 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | ||
8542 | { | ||
8543 | struct cfs_rq *cfs_rq; | ||
8544 | struct sched_entity *se; | ||
8545 | int i; | ||
8546 | |||
8547 | tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); | ||
8548 | if (!tg->cfs_rq) | ||
8549 | goto err; | ||
8550 | tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); | ||
8551 | if (!tg->se) | ||
8552 | goto err; | ||
8553 | |||
8554 | tg->shares = NICE_0_LOAD; | ||
8555 | |||
8556 | init_cfs_bandwidth(tg_cfs_bandwidth(tg)); | ||
8557 | |||
8558 | for_each_possible_cpu(i) { | ||
8559 | cfs_rq = kzalloc_node(sizeof(struct cfs_rq), | ||
8560 | GFP_KERNEL, cpu_to_node(i)); | ||
8561 | if (!cfs_rq) | ||
8562 | goto err; | ||
8563 | |||
8564 | se = kzalloc_node(sizeof(struct sched_entity), | ||
8565 | GFP_KERNEL, cpu_to_node(i)); | ||
8566 | if (!se) | ||
8567 | goto err_free_rq; | ||
8568 | |||
8569 | init_cfs_rq(cfs_rq); | ||
8570 | init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); | ||
8571 | } | ||
8572 | |||
8573 | return 1; | ||
8574 | |||
8575 | err_free_rq: | ||
8576 | kfree(cfs_rq); | ||
8577 | err: | ||
8578 | return 0; | ||
8579 | } | ||
8580 | |||
8581 | static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) | ||
8582 | { | ||
8583 | struct rq *rq = cpu_rq(cpu); | ||
8584 | unsigned long flags; | ||
8585 | |||
8586 | /* | ||
8587 | * Only empty task groups can be destroyed; so we can speculatively | ||
8588 | * check on_list without danger of it being re-added. | ||
8589 | */ | ||
8590 | if (!tg->cfs_rq[cpu]->on_list) | ||
8591 | return; | ||
8592 | |||
8593 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
8594 | list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); | ||
8595 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
8596 | } | ||
8597 | #else /* !CONFIG_FAIR_GROUP_SCHED */ | ||
8598 | static inline void free_fair_sched_group(struct task_group *tg) | ||
8599 | { | ||
8600 | } | ||
8601 | |||
8602 | static inline | ||
8603 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | ||
8604 | { | ||
8605 | return 1; | ||
8606 | } | ||
8607 | |||
8608 | static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) | ||
8609 | { | ||
8610 | } | ||
8611 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | ||
8612 | |||
8613 | #ifdef CONFIG_RT_GROUP_SCHED | 7139 | #ifdef CONFIG_RT_GROUP_SCHED |
8614 | static void free_rt_sched_group(struct task_group *tg) | ||
8615 | { | ||
8616 | int i; | ||
8617 | |||
8618 | if (tg->rt_se) | ||
8619 | destroy_rt_bandwidth(&tg->rt_bandwidth); | ||
8620 | |||
8621 | for_each_possible_cpu(i) { | ||
8622 | if (tg->rt_rq) | ||
8623 | kfree(tg->rt_rq[i]); | ||
8624 | if (tg->rt_se) | ||
8625 | kfree(tg->rt_se[i]); | ||
8626 | } | ||
8627 | |||
8628 | kfree(tg->rt_rq); | ||
8629 | kfree(tg->rt_se); | ||
8630 | } | ||
8631 | |||
8632 | static | ||
8633 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | ||
8634 | { | ||
8635 | struct rt_rq *rt_rq; | ||
8636 | struct sched_rt_entity *rt_se; | ||
8637 | int i; | ||
8638 | |||
8639 | tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); | ||
8640 | if (!tg->rt_rq) | ||
8641 | goto err; | ||
8642 | tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); | ||
8643 | if (!tg->rt_se) | ||
8644 | goto err; | ||
8645 | |||
8646 | init_rt_bandwidth(&tg->rt_bandwidth, | ||
8647 | ktime_to_ns(def_rt_bandwidth.rt_period), 0); | ||
8648 | |||
8649 | for_each_possible_cpu(i) { | ||
8650 | rt_rq = kzalloc_node(sizeof(struct rt_rq), | ||
8651 | GFP_KERNEL, cpu_to_node(i)); | ||
8652 | if (!rt_rq) | ||
8653 | goto err; | ||
8654 | |||
8655 | rt_se = kzalloc_node(sizeof(struct sched_rt_entity), | ||
8656 | GFP_KERNEL, cpu_to_node(i)); | ||
8657 | if (!rt_se) | ||
8658 | goto err_free_rq; | ||
8659 | |||
8660 | init_rt_rq(rt_rq, cpu_rq(i)); | ||
8661 | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; | ||
8662 | init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); | ||
8663 | } | ||
8664 | |||
8665 | return 1; | ||
8666 | |||
8667 | err_free_rq: | ||
8668 | kfree(rt_rq); | ||
8669 | err: | ||
8670 | return 0; | ||
8671 | } | ||
8672 | #else /* !CONFIG_RT_GROUP_SCHED */ | 7140 | #else /* !CONFIG_RT_GROUP_SCHED */ |
8673 | static inline void free_rt_sched_group(struct task_group *tg) | ||
8674 | { | ||
8675 | } | ||
8676 | |||
8677 | static inline | ||
8678 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | ||
8679 | { | ||
8680 | return 1; | ||
8681 | } | ||
8682 | #endif /* CONFIG_RT_GROUP_SCHED */ | 7141 | #endif /* CONFIG_RT_GROUP_SCHED */ |
8683 | 7142 | ||
8684 | #ifdef CONFIG_CGROUP_SCHED | 7143 | #ifdef CONFIG_CGROUP_SCHED |
7144 | /* task_group_lock serializes the addition/removal of task groups */ | ||
7145 | static DEFINE_SPINLOCK(task_group_lock); | ||
7146 | |||
8685 | static void free_sched_group(struct task_group *tg) | 7147 | static void free_sched_group(struct task_group *tg) |
8686 | { | 7148 | { |
8687 | free_fair_sched_group(tg); | 7149 | free_fair_sched_group(tg); |
@@ -8787,47 +7249,6 @@ void sched_move_task(struct task_struct *tsk) | |||
8787 | #endif /* CONFIG_CGROUP_SCHED */ | 7249 | #endif /* CONFIG_CGROUP_SCHED */ |
8788 | 7250 | ||
8789 | #ifdef CONFIG_FAIR_GROUP_SCHED | 7251 | #ifdef CONFIG_FAIR_GROUP_SCHED |
8790 | static DEFINE_MUTEX(shares_mutex); | ||
8791 | |||
8792 | int sched_group_set_shares(struct task_group *tg, unsigned long shares) | ||
8793 | { | ||
8794 | int i; | ||
8795 | unsigned long flags; | ||
8796 | |||
8797 | /* | ||
8798 | * We can't change the weight of the root cgroup. | ||
8799 | */ | ||
8800 | if (!tg->se[0]) | ||
8801 | return -EINVAL; | ||
8802 | |||
8803 | shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); | ||
8804 | |||
8805 | mutex_lock(&shares_mutex); | ||
8806 | if (tg->shares == shares) | ||
8807 | goto done; | ||
8808 | |||
8809 | tg->shares = shares; | ||
8810 | for_each_possible_cpu(i) { | ||
8811 | struct rq *rq = cpu_rq(i); | ||
8812 | struct sched_entity *se; | ||
8813 | |||
8814 | se = tg->se[i]; | ||
8815 | /* Propagate contribution to hierarchy */ | ||
8816 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
8817 | for_each_sched_entity(se) | ||
8818 | update_cfs_shares(group_cfs_rq(se)); | ||
8819 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
8820 | } | ||
8821 | |||
8822 | done: | ||
8823 | mutex_unlock(&shares_mutex); | ||
8824 | return 0; | ||
8825 | } | ||
8826 | |||
8827 | unsigned long sched_group_shares(struct task_group *tg) | ||
8828 | { | ||
8829 | return tg->shares; | ||
8830 | } | ||
8831 | #endif | 7252 | #endif |
8832 | 7253 | ||
8833 | #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH) | 7254 | #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH) |
@@ -8852,7 +7273,7 @@ static inline int tg_has_rt_tasks(struct task_group *tg) | |||
8852 | struct task_struct *g, *p; | 7273 | struct task_struct *g, *p; |
8853 | 7274 | ||
8854 | do_each_thread(g, p) { | 7275 | do_each_thread(g, p) { |
8855 | if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg) | 7276 | if (rt_task(p) && task_rq(p)->rt.tg == tg) |
8856 | return 1; | 7277 | return 1; |
8857 | } while_each_thread(g, p); | 7278 | } while_each_thread(g, p); |
8858 | 7279 | ||
@@ -9203,8 +7624,8 @@ static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); | |||
9203 | 7624 | ||
9204 | static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) | 7625 | static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) |
9205 | { | 7626 | { |
9206 | int i, ret = 0, runtime_enabled; | 7627 | int i, ret = 0, runtime_enabled, runtime_was_enabled; |
9207 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); | 7628 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; |
9208 | 7629 | ||
9209 | if (tg == &root_task_group) | 7630 | if (tg == &root_task_group) |
9210 | return -EINVAL; | 7631 | return -EINVAL; |
@@ -9231,6 +7652,8 @@ static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) | |||
9231 | goto out_unlock; | 7652 | goto out_unlock; |
9232 | 7653 | ||
9233 | runtime_enabled = quota != RUNTIME_INF; | 7654 | runtime_enabled = quota != RUNTIME_INF; |
7655 | runtime_was_enabled = cfs_b->quota != RUNTIME_INF; | ||
7656 | account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled); | ||
9234 | raw_spin_lock_irq(&cfs_b->lock); | 7657 | raw_spin_lock_irq(&cfs_b->lock); |
9235 | cfs_b->period = ns_to_ktime(period); | 7658 | cfs_b->period = ns_to_ktime(period); |
9236 | cfs_b->quota = quota; | 7659 | cfs_b->quota = quota; |
@@ -9246,13 +7669,13 @@ static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) | |||
9246 | 7669 | ||
9247 | for_each_possible_cpu(i) { | 7670 | for_each_possible_cpu(i) { |
9248 | struct cfs_rq *cfs_rq = tg->cfs_rq[i]; | 7671 | struct cfs_rq *cfs_rq = tg->cfs_rq[i]; |
9249 | struct rq *rq = rq_of(cfs_rq); | 7672 | struct rq *rq = cfs_rq->rq; |
9250 | 7673 | ||
9251 | raw_spin_lock_irq(&rq->lock); | 7674 | raw_spin_lock_irq(&rq->lock); |
9252 | cfs_rq->runtime_enabled = runtime_enabled; | 7675 | cfs_rq->runtime_enabled = runtime_enabled; |
9253 | cfs_rq->runtime_remaining = 0; | 7676 | cfs_rq->runtime_remaining = 0; |
9254 | 7677 | ||
9255 | if (cfs_rq_throttled(cfs_rq)) | 7678 | if (cfs_rq->throttled) |
9256 | unthrottle_cfs_rq(cfs_rq); | 7679 | unthrottle_cfs_rq(cfs_rq); |
9257 | raw_spin_unlock_irq(&rq->lock); | 7680 | raw_spin_unlock_irq(&rq->lock); |
9258 | } | 7681 | } |
@@ -9266,7 +7689,7 @@ int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) | |||
9266 | { | 7689 | { |
9267 | u64 quota, period; | 7690 | u64 quota, period; |
9268 | 7691 | ||
9269 | period = ktime_to_ns(tg_cfs_bandwidth(tg)->period); | 7692 | period = ktime_to_ns(tg->cfs_bandwidth.period); |
9270 | if (cfs_quota_us < 0) | 7693 | if (cfs_quota_us < 0) |
9271 | quota = RUNTIME_INF; | 7694 | quota = RUNTIME_INF; |
9272 | else | 7695 | else |
@@ -9279,10 +7702,10 @@ long tg_get_cfs_quota(struct task_group *tg) | |||
9279 | { | 7702 | { |
9280 | u64 quota_us; | 7703 | u64 quota_us; |
9281 | 7704 | ||
9282 | if (tg_cfs_bandwidth(tg)->quota == RUNTIME_INF) | 7705 | if (tg->cfs_bandwidth.quota == RUNTIME_INF) |
9283 | return -1; | 7706 | return -1; |
9284 | 7707 | ||
9285 | quota_us = tg_cfs_bandwidth(tg)->quota; | 7708 | quota_us = tg->cfs_bandwidth.quota; |
9286 | do_div(quota_us, NSEC_PER_USEC); | 7709 | do_div(quota_us, NSEC_PER_USEC); |
9287 | 7710 | ||
9288 | return quota_us; | 7711 | return quota_us; |
@@ -9293,10 +7716,7 @@ int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) | |||
9293 | u64 quota, period; | 7716 | u64 quota, period; |
9294 | 7717 | ||
9295 | period = (u64)cfs_period_us * NSEC_PER_USEC; | 7718 | period = (u64)cfs_period_us * NSEC_PER_USEC; |
9296 | quota = tg_cfs_bandwidth(tg)->quota; | 7719 | quota = tg->cfs_bandwidth.quota; |
9297 | |||
9298 | if (period <= 0) | ||
9299 | return -EINVAL; | ||
9300 | 7720 | ||
9301 | return tg_set_cfs_bandwidth(tg, period, quota); | 7721 | return tg_set_cfs_bandwidth(tg, period, quota); |
9302 | } | 7722 | } |
@@ -9305,7 +7725,7 @@ long tg_get_cfs_period(struct task_group *tg) | |||
9305 | { | 7725 | { |
9306 | u64 cfs_period_us; | 7726 | u64 cfs_period_us; |
9307 | 7727 | ||
9308 | cfs_period_us = ktime_to_ns(tg_cfs_bandwidth(tg)->period); | 7728 | cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); |
9309 | do_div(cfs_period_us, NSEC_PER_USEC); | 7729 | do_div(cfs_period_us, NSEC_PER_USEC); |
9310 | 7730 | ||
9311 | return cfs_period_us; | 7731 | return cfs_period_us; |
@@ -9365,13 +7785,13 @@ static u64 normalize_cfs_quota(struct task_group *tg, | |||
9365 | static int tg_cfs_schedulable_down(struct task_group *tg, void *data) | 7785 | static int tg_cfs_schedulable_down(struct task_group *tg, void *data) |
9366 | { | 7786 | { |
9367 | struct cfs_schedulable_data *d = data; | 7787 | struct cfs_schedulable_data *d = data; |
9368 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); | 7788 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; |
9369 | s64 quota = 0, parent_quota = -1; | 7789 | s64 quota = 0, parent_quota = -1; |
9370 | 7790 | ||
9371 | if (!tg->parent) { | 7791 | if (!tg->parent) { |
9372 | quota = RUNTIME_INF; | 7792 | quota = RUNTIME_INF; |
9373 | } else { | 7793 | } else { |
9374 | struct cfs_bandwidth *parent_b = tg_cfs_bandwidth(tg->parent); | 7794 | struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; |
9375 | 7795 | ||
9376 | quota = normalize_cfs_quota(tg, d); | 7796 | quota = normalize_cfs_quota(tg, d); |
9377 | parent_quota = parent_b->hierarchal_quota; | 7797 | parent_quota = parent_b->hierarchal_quota; |
@@ -9415,7 +7835,7 @@ static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft, | |||
9415 | struct cgroup_map_cb *cb) | 7835 | struct cgroup_map_cb *cb) |
9416 | { | 7836 | { |
9417 | struct task_group *tg = cgroup_tg(cgrp); | 7837 | struct task_group *tg = cgroup_tg(cgrp); |
9418 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); | 7838 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; |
9419 | 7839 | ||
9420 | cb->fill(cb, "nr_periods", cfs_b->nr_periods); | 7840 | cb->fill(cb, "nr_periods", cfs_b->nr_periods); |
9421 | cb->fill(cb, "nr_throttled", cfs_b->nr_throttled); | 7841 | cb->fill(cb, "nr_throttled", cfs_b->nr_throttled); |
@@ -9516,38 +7936,16 @@ struct cgroup_subsys cpu_cgroup_subsys = { | |||
9516 | * (balbir@in.ibm.com). | 7936 | * (balbir@in.ibm.com). |
9517 | */ | 7937 | */ |
9518 | 7938 | ||
9519 | /* track cpu usage of a group of tasks and its child groups */ | ||
9520 | struct cpuacct { | ||
9521 | struct cgroup_subsys_state css; | ||
9522 | /* cpuusage holds pointer to a u64-type object on every cpu */ | ||
9523 | u64 __percpu *cpuusage; | ||
9524 | struct percpu_counter cpustat[CPUACCT_STAT_NSTATS]; | ||
9525 | struct cpuacct *parent; | ||
9526 | }; | ||
9527 | |||
9528 | struct cgroup_subsys cpuacct_subsys; | ||
9529 | |||
9530 | /* return cpu accounting group corresponding to this container */ | ||
9531 | static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) | ||
9532 | { | ||
9533 | return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), | ||
9534 | struct cpuacct, css); | ||
9535 | } | ||
9536 | |||
9537 | /* return cpu accounting group to which this task belongs */ | ||
9538 | static inline struct cpuacct *task_ca(struct task_struct *tsk) | ||
9539 | { | ||
9540 | return container_of(task_subsys_state(tsk, cpuacct_subsys_id), | ||
9541 | struct cpuacct, css); | ||
9542 | } | ||
9543 | |||
9544 | /* create a new cpu accounting group */ | 7939 | /* create a new cpu accounting group */ |
9545 | static struct cgroup_subsys_state *cpuacct_create( | 7940 | static struct cgroup_subsys_state *cpuacct_create( |
9546 | struct cgroup_subsys *ss, struct cgroup *cgrp) | 7941 | struct cgroup_subsys *ss, struct cgroup *cgrp) |
9547 | { | 7942 | { |
9548 | struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL); | 7943 | struct cpuacct *ca; |
9549 | int i; | ||
9550 | 7944 | ||
7945 | if (!cgrp->parent) | ||
7946 | return &root_cpuacct.css; | ||
7947 | |||
7948 | ca = kzalloc(sizeof(*ca), GFP_KERNEL); | ||
9551 | if (!ca) | 7949 | if (!ca) |
9552 | goto out; | 7950 | goto out; |
9553 | 7951 | ||
@@ -9555,18 +7953,13 @@ static struct cgroup_subsys_state *cpuacct_create( | |||
9555 | if (!ca->cpuusage) | 7953 | if (!ca->cpuusage) |
9556 | goto out_free_ca; | 7954 | goto out_free_ca; |
9557 | 7955 | ||
9558 | for (i = 0; i < CPUACCT_STAT_NSTATS; i++) | 7956 | ca->cpustat = alloc_percpu(struct kernel_cpustat); |
9559 | if (percpu_counter_init(&ca->cpustat[i], 0)) | 7957 | if (!ca->cpustat) |
9560 | goto out_free_counters; | 7958 | goto out_free_cpuusage; |
9561 | |||
9562 | if (cgrp->parent) | ||
9563 | ca->parent = cgroup_ca(cgrp->parent); | ||
9564 | 7959 | ||
9565 | return &ca->css; | 7960 | return &ca->css; |
9566 | 7961 | ||
9567 | out_free_counters: | 7962 | out_free_cpuusage: |
9568 | while (--i >= 0) | ||
9569 | percpu_counter_destroy(&ca->cpustat[i]); | ||
9570 | free_percpu(ca->cpuusage); | 7963 | free_percpu(ca->cpuusage); |
9571 | out_free_ca: | 7964 | out_free_ca: |
9572 | kfree(ca); | 7965 | kfree(ca); |
@@ -9579,10 +7972,8 @@ static void | |||
9579 | cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | 7972 | cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) |
9580 | { | 7973 | { |
9581 | struct cpuacct *ca = cgroup_ca(cgrp); | 7974 | struct cpuacct *ca = cgroup_ca(cgrp); |
9582 | int i; | ||
9583 | 7975 | ||
9584 | for (i = 0; i < CPUACCT_STAT_NSTATS; i++) | 7976 | free_percpu(ca->cpustat); |
9585 | percpu_counter_destroy(&ca->cpustat[i]); | ||
9586 | free_percpu(ca->cpuusage); | 7977 | free_percpu(ca->cpuusage); |
9587 | kfree(ca); | 7978 | kfree(ca); |
9588 | } | 7979 | } |
@@ -9675,16 +8066,31 @@ static const char *cpuacct_stat_desc[] = { | |||
9675 | }; | 8066 | }; |
9676 | 8067 | ||
9677 | static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, | 8068 | static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, |
9678 | struct cgroup_map_cb *cb) | 8069 | struct cgroup_map_cb *cb) |
9679 | { | 8070 | { |
9680 | struct cpuacct *ca = cgroup_ca(cgrp); | 8071 | struct cpuacct *ca = cgroup_ca(cgrp); |
9681 | int i; | 8072 | int cpu; |
8073 | s64 val = 0; | ||
8074 | |||
8075 | for_each_online_cpu(cpu) { | ||
8076 | struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); | ||
8077 | val += kcpustat->cpustat[CPUTIME_USER]; | ||
8078 | val += kcpustat->cpustat[CPUTIME_NICE]; | ||
8079 | } | ||
8080 | val = cputime64_to_clock_t(val); | ||
8081 | cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val); | ||
9682 | 8082 | ||
9683 | for (i = 0; i < CPUACCT_STAT_NSTATS; i++) { | 8083 | val = 0; |
9684 | s64 val = percpu_counter_read(&ca->cpustat[i]); | 8084 | for_each_online_cpu(cpu) { |
9685 | val = cputime64_to_clock_t(val); | 8085 | struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); |
9686 | cb->fill(cb, cpuacct_stat_desc[i], val); | 8086 | val += kcpustat->cpustat[CPUTIME_SYSTEM]; |
8087 | val += kcpustat->cpustat[CPUTIME_IRQ]; | ||
8088 | val += kcpustat->cpustat[CPUTIME_SOFTIRQ]; | ||
9687 | } | 8089 | } |
8090 | |||
8091 | val = cputime64_to_clock_t(val); | ||
8092 | cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val); | ||
8093 | |||
9688 | return 0; | 8094 | return 0; |
9689 | } | 8095 | } |
9690 | 8096 | ||
@@ -9714,7 +8120,7 @@ static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) | |||
9714 | * | 8120 | * |
9715 | * called with rq->lock held. | 8121 | * called with rq->lock held. |
9716 | */ | 8122 | */ |
9717 | static void cpuacct_charge(struct task_struct *tsk, u64 cputime) | 8123 | void cpuacct_charge(struct task_struct *tsk, u64 cputime) |
9718 | { | 8124 | { |
9719 | struct cpuacct *ca; | 8125 | struct cpuacct *ca; |
9720 | int cpu; | 8126 | int cpu; |
@@ -9728,7 +8134,7 @@ static void cpuacct_charge(struct task_struct *tsk, u64 cputime) | |||
9728 | 8134 | ||
9729 | ca = task_ca(tsk); | 8135 | ca = task_ca(tsk); |
9730 | 8136 | ||
9731 | for (; ca; ca = ca->parent) { | 8137 | for (; ca; ca = parent_ca(ca)) { |
9732 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); | 8138 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); |
9733 | *cpuusage += cputime; | 8139 | *cpuusage += cputime; |
9734 | } | 8140 | } |
@@ -9736,45 +8142,6 @@ static void cpuacct_charge(struct task_struct *tsk, u64 cputime) | |||
9736 | rcu_read_unlock(); | 8142 | rcu_read_unlock(); |
9737 | } | 8143 | } |
9738 | 8144 | ||
9739 | /* | ||
9740 | * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large | ||
9741 | * in cputime_t units. As a result, cpuacct_update_stats calls | ||
9742 | * percpu_counter_add with values large enough to always overflow the | ||
9743 | * per cpu batch limit causing bad SMP scalability. | ||
9744 | * | ||
9745 | * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we | ||
9746 | * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled | ||
9747 | * and enabled. We cap it at INT_MAX which is the largest allowed batch value. | ||
9748 | */ | ||
9749 | #ifdef CONFIG_SMP | ||
9750 | #define CPUACCT_BATCH \ | ||
9751 | min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX) | ||
9752 | #else | ||
9753 | #define CPUACCT_BATCH 0 | ||
9754 | #endif | ||
9755 | |||
9756 | /* | ||
9757 | * Charge the system/user time to the task's accounting group. | ||
9758 | */ | ||
9759 | static void cpuacct_update_stats(struct task_struct *tsk, | ||
9760 | enum cpuacct_stat_index idx, cputime_t val) | ||
9761 | { | ||
9762 | struct cpuacct *ca; | ||
9763 | int batch = CPUACCT_BATCH; | ||
9764 | |||
9765 | if (unlikely(!cpuacct_subsys.active)) | ||
9766 | return; | ||
9767 | |||
9768 | rcu_read_lock(); | ||
9769 | ca = task_ca(tsk); | ||
9770 | |||
9771 | do { | ||
9772 | __percpu_counter_add(&ca->cpustat[idx], val, batch); | ||
9773 | ca = ca->parent; | ||
9774 | } while (ca); | ||
9775 | rcu_read_unlock(); | ||
9776 | } | ||
9777 | |||
9778 | struct cgroup_subsys cpuacct_subsys = { | 8145 | struct cgroup_subsys cpuacct_subsys = { |
9779 | .name = "cpuacct", | 8146 | .name = "cpuacct", |
9780 | .create = cpuacct_create, | 8147 | .create = cpuacct_create, |
diff --git a/kernel/sched_cpupri.c b/kernel/sched/cpupri.c index a86cf9d9eb11..b0d798eaf130 100644 --- a/kernel/sched_cpupri.c +++ b/kernel/sched/cpupri.c | |||
@@ -1,5 +1,5 @@ | |||
1 | /* | 1 | /* |
2 | * kernel/sched_cpupri.c | 2 | * kernel/sched/cpupri.c |
3 | * | 3 | * |
4 | * CPU priority management | 4 | * CPU priority management |
5 | * | 5 | * |
@@ -28,7 +28,7 @@ | |||
28 | */ | 28 | */ |
29 | 29 | ||
30 | #include <linux/gfp.h> | 30 | #include <linux/gfp.h> |
31 | #include "sched_cpupri.h" | 31 | #include "cpupri.h" |
32 | 32 | ||
33 | /* Convert between a 140 based task->prio, and our 102 based cpupri */ | 33 | /* Convert between a 140 based task->prio, and our 102 based cpupri */ |
34 | static int convert_prio(int prio) | 34 | static int convert_prio(int prio) |
diff --git a/kernel/sched_cpupri.h b/kernel/sched/cpupri.h index f6d756173491..f6d756173491 100644 --- a/kernel/sched_cpupri.h +++ b/kernel/sched/cpupri.h | |||
diff --git a/kernel/sched_debug.c b/kernel/sched/debug.c index a6710a112b4f..2a075e10004b 100644 --- a/kernel/sched_debug.c +++ b/kernel/sched/debug.c | |||
@@ -1,5 +1,5 @@ | |||
1 | /* | 1 | /* |
2 | * kernel/time/sched_debug.c | 2 | * kernel/sched/debug.c |
3 | * | 3 | * |
4 | * Print the CFS rbtree | 4 | * Print the CFS rbtree |
5 | * | 5 | * |
@@ -16,6 +16,8 @@ | |||
16 | #include <linux/kallsyms.h> | 16 | #include <linux/kallsyms.h> |
17 | #include <linux/utsname.h> | 17 | #include <linux/utsname.h> |
18 | 18 | ||
19 | #include "sched.h" | ||
20 | |||
19 | static DEFINE_SPINLOCK(sched_debug_lock); | 21 | static DEFINE_SPINLOCK(sched_debug_lock); |
20 | 22 | ||
21 | /* | 23 | /* |
@@ -373,7 +375,7 @@ static int sched_debug_show(struct seq_file *m, void *v) | |||
373 | return 0; | 375 | return 0; |
374 | } | 376 | } |
375 | 377 | ||
376 | static void sysrq_sched_debug_show(void) | 378 | void sysrq_sched_debug_show(void) |
377 | { | 379 | { |
378 | sched_debug_show(NULL, NULL); | 380 | sched_debug_show(NULL, NULL); |
379 | } | 381 | } |
diff --git a/kernel/sched_fair.c b/kernel/sched/fair.c index 8a39fa3e3c6c..8e42de9105f8 100644 --- a/kernel/sched_fair.c +++ b/kernel/sched/fair.c | |||
@@ -23,6 +23,13 @@ | |||
23 | #include <linux/latencytop.h> | 23 | #include <linux/latencytop.h> |
24 | #include <linux/sched.h> | 24 | #include <linux/sched.h> |
25 | #include <linux/cpumask.h> | 25 | #include <linux/cpumask.h> |
26 | #include <linux/slab.h> | ||
27 | #include <linux/profile.h> | ||
28 | #include <linux/interrupt.h> | ||
29 | |||
30 | #include <trace/events/sched.h> | ||
31 | |||
32 | #include "sched.h" | ||
26 | 33 | ||
27 | /* | 34 | /* |
28 | * Targeted preemption latency for CPU-bound tasks: | 35 | * Targeted preemption latency for CPU-bound tasks: |
@@ -103,7 +110,110 @@ unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; | |||
103 | unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; | 110 | unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; |
104 | #endif | 111 | #endif |
105 | 112 | ||
106 | static const struct sched_class fair_sched_class; | 113 | /* |
114 | * Increase the granularity value when there are more CPUs, | ||
115 | * because with more CPUs the 'effective latency' as visible | ||
116 | * to users decreases. But the relationship is not linear, | ||
117 | * so pick a second-best guess by going with the log2 of the | ||
118 | * number of CPUs. | ||
119 | * | ||
120 | * This idea comes from the SD scheduler of Con Kolivas: | ||
121 | */ | ||
122 | static int get_update_sysctl_factor(void) | ||
123 | { | ||
124 | unsigned int cpus = min_t(int, num_online_cpus(), 8); | ||
125 | unsigned int factor; | ||
126 | |||
127 | switch (sysctl_sched_tunable_scaling) { | ||
128 | case SCHED_TUNABLESCALING_NONE: | ||
129 | factor = 1; | ||
130 | break; | ||
131 | case SCHED_TUNABLESCALING_LINEAR: | ||
132 | factor = cpus; | ||
133 | break; | ||
134 | case SCHED_TUNABLESCALING_LOG: | ||
135 | default: | ||
136 | factor = 1 + ilog2(cpus); | ||
137 | break; | ||
138 | } | ||
139 | |||
140 | return factor; | ||
141 | } | ||
142 | |||
143 | static void update_sysctl(void) | ||
144 | { | ||
145 | unsigned int factor = get_update_sysctl_factor(); | ||
146 | |||
147 | #define SET_SYSCTL(name) \ | ||
148 | (sysctl_##name = (factor) * normalized_sysctl_##name) | ||
149 | SET_SYSCTL(sched_min_granularity); | ||
150 | SET_SYSCTL(sched_latency); | ||
151 | SET_SYSCTL(sched_wakeup_granularity); | ||
152 | #undef SET_SYSCTL | ||
153 | } | ||
154 | |||
155 | void sched_init_granularity(void) | ||
156 | { | ||
157 | update_sysctl(); | ||
158 | } | ||
159 | |||
160 | #if BITS_PER_LONG == 32 | ||
161 | # define WMULT_CONST (~0UL) | ||
162 | #else | ||
163 | # define WMULT_CONST (1UL << 32) | ||
164 | #endif | ||
165 | |||
166 | #define WMULT_SHIFT 32 | ||
167 | |||
168 | /* | ||
169 | * Shift right and round: | ||
170 | */ | ||
171 | #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) | ||
172 | |||
173 | /* | ||
174 | * delta *= weight / lw | ||
175 | */ | ||
176 | static unsigned long | ||
177 | calc_delta_mine(unsigned long delta_exec, unsigned long weight, | ||
178 | struct load_weight *lw) | ||
179 | { | ||
180 | u64 tmp; | ||
181 | |||
182 | /* | ||
183 | * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched | ||
184 | * entities since MIN_SHARES = 2. Treat weight as 1 if less than | ||
185 | * 2^SCHED_LOAD_RESOLUTION. | ||
186 | */ | ||
187 | if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION))) | ||
188 | tmp = (u64)delta_exec * scale_load_down(weight); | ||
189 | else | ||
190 | tmp = (u64)delta_exec; | ||
191 | |||
192 | if (!lw->inv_weight) { | ||
193 | unsigned long w = scale_load_down(lw->weight); | ||
194 | |||
195 | if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) | ||
196 | lw->inv_weight = 1; | ||
197 | else if (unlikely(!w)) | ||
198 | lw->inv_weight = WMULT_CONST; | ||
199 | else | ||
200 | lw->inv_weight = WMULT_CONST / w; | ||
201 | } | ||
202 | |||
203 | /* | ||
204 | * Check whether we'd overflow the 64-bit multiplication: | ||
205 | */ | ||
206 | if (unlikely(tmp > WMULT_CONST)) | ||
207 | tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, | ||
208 | WMULT_SHIFT/2); | ||
209 | else | ||
210 | tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); | ||
211 | |||
212 | return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); | ||
213 | } | ||
214 | |||
215 | |||
216 | const struct sched_class fair_sched_class; | ||
107 | 217 | ||
108 | /************************************************************** | 218 | /************************************************************** |
109 | * CFS operations on generic schedulable entities: | 219 | * CFS operations on generic schedulable entities: |
@@ -413,7 +523,7 @@ static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | |||
413 | rb_erase(&se->run_node, &cfs_rq->tasks_timeline); | 523 | rb_erase(&se->run_node, &cfs_rq->tasks_timeline); |
414 | } | 524 | } |
415 | 525 | ||
416 | static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) | 526 | struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) |
417 | { | 527 | { |
418 | struct rb_node *left = cfs_rq->rb_leftmost; | 528 | struct rb_node *left = cfs_rq->rb_leftmost; |
419 | 529 | ||
@@ -434,7 +544,7 @@ static struct sched_entity *__pick_next_entity(struct sched_entity *se) | |||
434 | } | 544 | } |
435 | 545 | ||
436 | #ifdef CONFIG_SCHED_DEBUG | 546 | #ifdef CONFIG_SCHED_DEBUG |
437 | static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) | 547 | struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) |
438 | { | 548 | { |
439 | struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); | 549 | struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); |
440 | 550 | ||
@@ -684,7 +794,7 @@ account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | |||
684 | { | 794 | { |
685 | update_load_add(&cfs_rq->load, se->load.weight); | 795 | update_load_add(&cfs_rq->load, se->load.weight); |
686 | if (!parent_entity(se)) | 796 | if (!parent_entity(se)) |
687 | inc_cpu_load(rq_of(cfs_rq), se->load.weight); | 797 | update_load_add(&rq_of(cfs_rq)->load, se->load.weight); |
688 | if (entity_is_task(se)) { | 798 | if (entity_is_task(se)) { |
689 | add_cfs_task_weight(cfs_rq, se->load.weight); | 799 | add_cfs_task_weight(cfs_rq, se->load.weight); |
690 | list_add(&se->group_node, &cfs_rq->tasks); | 800 | list_add(&se->group_node, &cfs_rq->tasks); |
@@ -697,7 +807,7 @@ account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | |||
697 | { | 807 | { |
698 | update_load_sub(&cfs_rq->load, se->load.weight); | 808 | update_load_sub(&cfs_rq->load, se->load.weight); |
699 | if (!parent_entity(se)) | 809 | if (!parent_entity(se)) |
700 | dec_cpu_load(rq_of(cfs_rq), se->load.weight); | 810 | update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); |
701 | if (entity_is_task(se)) { | 811 | if (entity_is_task(se)) { |
702 | add_cfs_task_weight(cfs_rq, -se->load.weight); | 812 | add_cfs_task_weight(cfs_rq, -se->load.weight); |
703 | list_del_init(&se->group_node); | 813 | list_del_init(&se->group_node); |
@@ -893,7 +1003,6 @@ static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) | |||
893 | if (unlikely(delta > se->statistics.sleep_max)) | 1003 | if (unlikely(delta > se->statistics.sleep_max)) |
894 | se->statistics.sleep_max = delta; | 1004 | se->statistics.sleep_max = delta; |
895 | 1005 | ||
896 | se->statistics.sleep_start = 0; | ||
897 | se->statistics.sum_sleep_runtime += delta; | 1006 | se->statistics.sum_sleep_runtime += delta; |
898 | 1007 | ||
899 | if (tsk) { | 1008 | if (tsk) { |
@@ -910,7 +1019,6 @@ static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) | |||
910 | if (unlikely(delta > se->statistics.block_max)) | 1019 | if (unlikely(delta > se->statistics.block_max)) |
911 | se->statistics.block_max = delta; | 1020 | se->statistics.block_max = delta; |
912 | 1021 | ||
913 | se->statistics.block_start = 0; | ||
914 | se->statistics.sum_sleep_runtime += delta; | 1022 | se->statistics.sum_sleep_runtime += delta; |
915 | 1023 | ||
916 | if (tsk) { | 1024 | if (tsk) { |
@@ -920,6 +1028,8 @@ static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) | |||
920 | trace_sched_stat_iowait(tsk, delta); | 1028 | trace_sched_stat_iowait(tsk, delta); |
921 | } | 1029 | } |
922 | 1030 | ||
1031 | trace_sched_stat_blocked(tsk, delta); | ||
1032 | |||
923 | /* | 1033 | /* |
924 | * Blocking time is in units of nanosecs, so shift by | 1034 | * Blocking time is in units of nanosecs, so shift by |
925 | * 20 to get a milliseconds-range estimation of the | 1035 | * 20 to get a milliseconds-range estimation of the |
@@ -1287,6 +1397,32 @@ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) | |||
1287 | */ | 1397 | */ |
1288 | 1398 | ||
1289 | #ifdef CONFIG_CFS_BANDWIDTH | 1399 | #ifdef CONFIG_CFS_BANDWIDTH |
1400 | |||
1401 | #ifdef HAVE_JUMP_LABEL | ||
1402 | static struct jump_label_key __cfs_bandwidth_used; | ||
1403 | |||
1404 | static inline bool cfs_bandwidth_used(void) | ||
1405 | { | ||
1406 | return static_branch(&__cfs_bandwidth_used); | ||
1407 | } | ||
1408 | |||
1409 | void account_cfs_bandwidth_used(int enabled, int was_enabled) | ||
1410 | { | ||
1411 | /* only need to count groups transitioning between enabled/!enabled */ | ||
1412 | if (enabled && !was_enabled) | ||
1413 | jump_label_inc(&__cfs_bandwidth_used); | ||
1414 | else if (!enabled && was_enabled) | ||
1415 | jump_label_dec(&__cfs_bandwidth_used); | ||
1416 | } | ||
1417 | #else /* HAVE_JUMP_LABEL */ | ||
1418 | static bool cfs_bandwidth_used(void) | ||
1419 | { | ||
1420 | return true; | ||
1421 | } | ||
1422 | |||
1423 | void account_cfs_bandwidth_used(int enabled, int was_enabled) {} | ||
1424 | #endif /* HAVE_JUMP_LABEL */ | ||
1425 | |||
1290 | /* | 1426 | /* |
1291 | * default period for cfs group bandwidth. | 1427 | * default period for cfs group bandwidth. |
1292 | * default: 0.1s, units: nanoseconds | 1428 | * default: 0.1s, units: nanoseconds |
@@ -1308,7 +1444,7 @@ static inline u64 sched_cfs_bandwidth_slice(void) | |||
1308 | * | 1444 | * |
1309 | * requires cfs_b->lock | 1445 | * requires cfs_b->lock |
1310 | */ | 1446 | */ |
1311 | static void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) | 1447 | void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) |
1312 | { | 1448 | { |
1313 | u64 now; | 1449 | u64 now; |
1314 | 1450 | ||
@@ -1320,6 +1456,11 @@ static void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) | |||
1320 | cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); | 1456 | cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); |
1321 | } | 1457 | } |
1322 | 1458 | ||
1459 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) | ||
1460 | { | ||
1461 | return &tg->cfs_bandwidth; | ||
1462 | } | ||
1463 | |||
1323 | /* returns 0 on failure to allocate runtime */ | 1464 | /* returns 0 on failure to allocate runtime */ |
1324 | static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 1465 | static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) |
1325 | { | 1466 | { |
@@ -1421,7 +1562,7 @@ static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, | |||
1421 | static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, | 1562 | static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, |
1422 | unsigned long delta_exec) | 1563 | unsigned long delta_exec) |
1423 | { | 1564 | { |
1424 | if (!cfs_rq->runtime_enabled) | 1565 | if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) |
1425 | return; | 1566 | return; |
1426 | 1567 | ||
1427 | __account_cfs_rq_runtime(cfs_rq, delta_exec); | 1568 | __account_cfs_rq_runtime(cfs_rq, delta_exec); |
@@ -1429,13 +1570,13 @@ static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, | |||
1429 | 1570 | ||
1430 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) | 1571 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) |
1431 | { | 1572 | { |
1432 | return cfs_rq->throttled; | 1573 | return cfs_bandwidth_used() && cfs_rq->throttled; |
1433 | } | 1574 | } |
1434 | 1575 | ||
1435 | /* check whether cfs_rq, or any parent, is throttled */ | 1576 | /* check whether cfs_rq, or any parent, is throttled */ |
1436 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) | 1577 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) |
1437 | { | 1578 | { |
1438 | return cfs_rq->throttle_count; | 1579 | return cfs_bandwidth_used() && cfs_rq->throttle_count; |
1439 | } | 1580 | } |
1440 | 1581 | ||
1441 | /* | 1582 | /* |
@@ -1530,7 +1671,7 @@ static void throttle_cfs_rq(struct cfs_rq *cfs_rq) | |||
1530 | raw_spin_unlock(&cfs_b->lock); | 1671 | raw_spin_unlock(&cfs_b->lock); |
1531 | } | 1672 | } |
1532 | 1673 | ||
1533 | static void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) | 1674 | void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) |
1534 | { | 1675 | { |
1535 | struct rq *rq = rq_of(cfs_rq); | 1676 | struct rq *rq = rq_of(cfs_rq); |
1536 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | 1677 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); |
@@ -1756,6 +1897,9 @@ static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |||
1756 | 1897 | ||
1757 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 1898 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) |
1758 | { | 1899 | { |
1900 | if (!cfs_bandwidth_used()) | ||
1901 | return; | ||
1902 | |||
1759 | if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) | 1903 | if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) |
1760 | return; | 1904 | return; |
1761 | 1905 | ||
@@ -1801,6 +1945,9 @@ static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) | |||
1801 | */ | 1945 | */ |
1802 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) | 1946 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) |
1803 | { | 1947 | { |
1948 | if (!cfs_bandwidth_used()) | ||
1949 | return; | ||
1950 | |||
1804 | /* an active group must be handled by the update_curr()->put() path */ | 1951 | /* an active group must be handled by the update_curr()->put() path */ |
1805 | if (!cfs_rq->runtime_enabled || cfs_rq->curr) | 1952 | if (!cfs_rq->runtime_enabled || cfs_rq->curr) |
1806 | return; | 1953 | return; |
@@ -1818,6 +1965,9 @@ static void check_enqueue_throttle(struct cfs_rq *cfs_rq) | |||
1818 | /* conditionally throttle active cfs_rq's from put_prev_entity() */ | 1965 | /* conditionally throttle active cfs_rq's from put_prev_entity() */ |
1819 | static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 1966 | static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) |
1820 | { | 1967 | { |
1968 | if (!cfs_bandwidth_used()) | ||
1969 | return; | ||
1970 | |||
1821 | if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) | 1971 | if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) |
1822 | return; | 1972 | return; |
1823 | 1973 | ||
@@ -1830,7 +1980,112 @@ static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |||
1830 | 1980 | ||
1831 | throttle_cfs_rq(cfs_rq); | 1981 | throttle_cfs_rq(cfs_rq); |
1832 | } | 1982 | } |
1833 | #else | 1983 | |
1984 | static inline u64 default_cfs_period(void); | ||
1985 | static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun); | ||
1986 | static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b); | ||
1987 | |||
1988 | static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) | ||
1989 | { | ||
1990 | struct cfs_bandwidth *cfs_b = | ||
1991 | container_of(timer, struct cfs_bandwidth, slack_timer); | ||
1992 | do_sched_cfs_slack_timer(cfs_b); | ||
1993 | |||
1994 | return HRTIMER_NORESTART; | ||
1995 | } | ||
1996 | |||
1997 | static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) | ||
1998 | { | ||
1999 | struct cfs_bandwidth *cfs_b = | ||
2000 | container_of(timer, struct cfs_bandwidth, period_timer); | ||
2001 | ktime_t now; | ||
2002 | int overrun; | ||
2003 | int idle = 0; | ||
2004 | |||
2005 | for (;;) { | ||
2006 | now = hrtimer_cb_get_time(timer); | ||
2007 | overrun = hrtimer_forward(timer, now, cfs_b->period); | ||
2008 | |||
2009 | if (!overrun) | ||
2010 | break; | ||
2011 | |||
2012 | idle = do_sched_cfs_period_timer(cfs_b, overrun); | ||
2013 | } | ||
2014 | |||
2015 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | ||
2016 | } | ||
2017 | |||
2018 | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | ||
2019 | { | ||
2020 | raw_spin_lock_init(&cfs_b->lock); | ||
2021 | cfs_b->runtime = 0; | ||
2022 | cfs_b->quota = RUNTIME_INF; | ||
2023 | cfs_b->period = ns_to_ktime(default_cfs_period()); | ||
2024 | |||
2025 | INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); | ||
2026 | hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
2027 | cfs_b->period_timer.function = sched_cfs_period_timer; | ||
2028 | hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
2029 | cfs_b->slack_timer.function = sched_cfs_slack_timer; | ||
2030 | } | ||
2031 | |||
2032 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) | ||
2033 | { | ||
2034 | cfs_rq->runtime_enabled = 0; | ||
2035 | INIT_LIST_HEAD(&cfs_rq->throttled_list); | ||
2036 | } | ||
2037 | |||
2038 | /* requires cfs_b->lock, may release to reprogram timer */ | ||
2039 | void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | ||
2040 | { | ||
2041 | /* | ||
2042 | * The timer may be active because we're trying to set a new bandwidth | ||
2043 | * period or because we're racing with the tear-down path | ||
2044 | * (timer_active==0 becomes visible before the hrtimer call-back | ||
2045 | * terminates). In either case we ensure that it's re-programmed | ||
2046 | */ | ||
2047 | while (unlikely(hrtimer_active(&cfs_b->period_timer))) { | ||
2048 | raw_spin_unlock(&cfs_b->lock); | ||
2049 | /* ensure cfs_b->lock is available while we wait */ | ||
2050 | hrtimer_cancel(&cfs_b->period_timer); | ||
2051 | |||
2052 | raw_spin_lock(&cfs_b->lock); | ||
2053 | /* if someone else restarted the timer then we're done */ | ||
2054 | if (cfs_b->timer_active) | ||
2055 | return; | ||
2056 | } | ||
2057 | |||
2058 | cfs_b->timer_active = 1; | ||
2059 | start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); | ||
2060 | } | ||
2061 | |||
2062 | static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | ||
2063 | { | ||
2064 | hrtimer_cancel(&cfs_b->period_timer); | ||
2065 | hrtimer_cancel(&cfs_b->slack_timer); | ||
2066 | } | ||
2067 | |||
2068 | void unthrottle_offline_cfs_rqs(struct rq *rq) | ||
2069 | { | ||
2070 | struct cfs_rq *cfs_rq; | ||
2071 | |||
2072 | for_each_leaf_cfs_rq(rq, cfs_rq) { | ||
2073 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | ||
2074 | |||
2075 | if (!cfs_rq->runtime_enabled) | ||
2076 | continue; | ||
2077 | |||
2078 | /* | ||
2079 | * clock_task is not advancing so we just need to make sure | ||
2080 | * there's some valid quota amount | ||
2081 | */ | ||
2082 | cfs_rq->runtime_remaining = cfs_b->quota; | ||
2083 | if (cfs_rq_throttled(cfs_rq)) | ||
2084 | unthrottle_cfs_rq(cfs_rq); | ||
2085 | } | ||
2086 | } | ||
2087 | |||
2088 | #else /* CONFIG_CFS_BANDWIDTH */ | ||
1834 | static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, | 2089 | static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, |
1835 | unsigned long delta_exec) {} | 2090 | unsigned long delta_exec) {} |
1836 | static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} | 2091 | static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} |
@@ -1852,8 +2107,22 @@ static inline int throttled_lb_pair(struct task_group *tg, | |||
1852 | { | 2107 | { |
1853 | return 0; | 2108 | return 0; |
1854 | } | 2109 | } |
2110 | |||
2111 | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} | ||
2112 | |||
2113 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
2114 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} | ||
1855 | #endif | 2115 | #endif |
1856 | 2116 | ||
2117 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) | ||
2118 | { | ||
2119 | return NULL; | ||
2120 | } | ||
2121 | static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} | ||
2122 | void unthrottle_offline_cfs_rqs(struct rq *rq) {} | ||
2123 | |||
2124 | #endif /* CONFIG_CFS_BANDWIDTH */ | ||
2125 | |||
1857 | /************************************************** | 2126 | /************************************************** |
1858 | * CFS operations on tasks: | 2127 | * CFS operations on tasks: |
1859 | */ | 2128 | */ |
@@ -1866,7 +2135,7 @@ static void hrtick_start_fair(struct rq *rq, struct task_struct *p) | |||
1866 | 2135 | ||
1867 | WARN_ON(task_rq(p) != rq); | 2136 | WARN_ON(task_rq(p) != rq); |
1868 | 2137 | ||
1869 | if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) { | 2138 | if (cfs_rq->nr_running > 1) { |
1870 | u64 slice = sched_slice(cfs_rq, se); | 2139 | u64 slice = sched_slice(cfs_rq, se); |
1871 | u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; | 2140 | u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; |
1872 | s64 delta = slice - ran; | 2141 | s64 delta = slice - ran; |
@@ -1897,7 +2166,7 @@ static void hrtick_update(struct rq *rq) | |||
1897 | { | 2166 | { |
1898 | struct task_struct *curr = rq->curr; | 2167 | struct task_struct *curr = rq->curr; |
1899 | 2168 | ||
1900 | if (curr->sched_class != &fair_sched_class) | 2169 | if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) |
1901 | return; | 2170 | return; |
1902 | 2171 | ||
1903 | if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) | 2172 | if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) |
@@ -2020,6 +2289,61 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) | |||
2020 | } | 2289 | } |
2021 | 2290 | ||
2022 | #ifdef CONFIG_SMP | 2291 | #ifdef CONFIG_SMP |
2292 | /* Used instead of source_load when we know the type == 0 */ | ||
2293 | static unsigned long weighted_cpuload(const int cpu) | ||
2294 | { | ||
2295 | return cpu_rq(cpu)->load.weight; | ||
2296 | } | ||
2297 | |||
2298 | /* | ||
2299 | * Return a low guess at the load of a migration-source cpu weighted | ||
2300 | * according to the scheduling class and "nice" value. | ||
2301 | * | ||
2302 | * We want to under-estimate the load of migration sources, to | ||
2303 | * balance conservatively. | ||
2304 | */ | ||
2305 | static unsigned long source_load(int cpu, int type) | ||
2306 | { | ||
2307 | struct rq *rq = cpu_rq(cpu); | ||
2308 | unsigned long total = weighted_cpuload(cpu); | ||
2309 | |||
2310 | if (type == 0 || !sched_feat(LB_BIAS)) | ||
2311 | return total; | ||
2312 | |||
2313 | return min(rq->cpu_load[type-1], total); | ||
2314 | } | ||
2315 | |||
2316 | /* | ||
2317 | * Return a high guess at the load of a migration-target cpu weighted | ||
2318 | * according to the scheduling class and "nice" value. | ||
2319 | */ | ||
2320 | static unsigned long target_load(int cpu, int type) | ||
2321 | { | ||
2322 | struct rq *rq = cpu_rq(cpu); | ||
2323 | unsigned long total = weighted_cpuload(cpu); | ||
2324 | |||
2325 | if (type == 0 || !sched_feat(LB_BIAS)) | ||
2326 | return total; | ||
2327 | |||
2328 | return max(rq->cpu_load[type-1], total); | ||
2329 | } | ||
2330 | |||
2331 | static unsigned long power_of(int cpu) | ||
2332 | { | ||
2333 | return cpu_rq(cpu)->cpu_power; | ||
2334 | } | ||
2335 | |||
2336 | static unsigned long cpu_avg_load_per_task(int cpu) | ||
2337 | { | ||
2338 | struct rq *rq = cpu_rq(cpu); | ||
2339 | unsigned long nr_running = ACCESS_ONCE(rq->nr_running); | ||
2340 | |||
2341 | if (nr_running) | ||
2342 | return rq->load.weight / nr_running; | ||
2343 | |||
2344 | return 0; | ||
2345 | } | ||
2346 | |||
2023 | 2347 | ||
2024 | static void task_waking_fair(struct task_struct *p) | 2348 | static void task_waking_fair(struct task_struct *p) |
2025 | { | 2349 | { |
@@ -2327,7 +2651,7 @@ static int select_idle_sibling(struct task_struct *p, int target) | |||
2327 | int prev_cpu = task_cpu(p); | 2651 | int prev_cpu = task_cpu(p); |
2328 | struct sched_domain *sd; | 2652 | struct sched_domain *sd; |
2329 | struct sched_group *sg; | 2653 | struct sched_group *sg; |
2330 | int i, smt = 0; | 2654 | int i; |
2331 | 2655 | ||
2332 | /* | 2656 | /* |
2333 | * If the task is going to be woken-up on this cpu and if it is | 2657 | * If the task is going to be woken-up on this cpu and if it is |
@@ -2347,17 +2671,9 @@ static int select_idle_sibling(struct task_struct *p, int target) | |||
2347 | * Otherwise, iterate the domains and find an elegible idle cpu. | 2671 | * Otherwise, iterate the domains and find an elegible idle cpu. |
2348 | */ | 2672 | */ |
2349 | rcu_read_lock(); | 2673 | rcu_read_lock(); |
2350 | again: | ||
2351 | for_each_domain(target, sd) { | ||
2352 | if (!smt && (sd->flags & SD_SHARE_CPUPOWER)) | ||
2353 | continue; | ||
2354 | |||
2355 | if (smt && !(sd->flags & SD_SHARE_CPUPOWER)) | ||
2356 | break; | ||
2357 | |||
2358 | if (!(sd->flags & SD_SHARE_PKG_RESOURCES)) | ||
2359 | break; | ||
2360 | 2674 | ||
2675 | sd = rcu_dereference(per_cpu(sd_llc, target)); | ||
2676 | for_each_lower_domain(sd) { | ||
2361 | sg = sd->groups; | 2677 | sg = sd->groups; |
2362 | do { | 2678 | do { |
2363 | if (!cpumask_intersects(sched_group_cpus(sg), | 2679 | if (!cpumask_intersects(sched_group_cpus(sg), |
@@ -2376,10 +2692,6 @@ next: | |||
2376 | sg = sg->next; | 2692 | sg = sg->next; |
2377 | } while (sg != sd->groups); | 2693 | } while (sg != sd->groups); |
2378 | } | 2694 | } |
2379 | if (!smt) { | ||
2380 | smt = 1; | ||
2381 | goto again; | ||
2382 | } | ||
2383 | done: | 2695 | done: |
2384 | rcu_read_unlock(); | 2696 | rcu_read_unlock(); |
2385 | 2697 | ||
@@ -2408,6 +2720,9 @@ select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) | |||
2408 | int want_sd = 1; | 2720 | int want_sd = 1; |
2409 | int sync = wake_flags & WF_SYNC; | 2721 | int sync = wake_flags & WF_SYNC; |
2410 | 2722 | ||
2723 | if (p->rt.nr_cpus_allowed == 1) | ||
2724 | return prev_cpu; | ||
2725 | |||
2411 | if (sd_flag & SD_BALANCE_WAKE) { | 2726 | if (sd_flag & SD_BALANCE_WAKE) { |
2412 | if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) | 2727 | if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) |
2413 | want_affine = 1; | 2728 | want_affine = 1; |
@@ -2692,7 +3007,8 @@ static struct task_struct *pick_next_task_fair(struct rq *rq) | |||
2692 | } while (cfs_rq); | 3007 | } while (cfs_rq); |
2693 | 3008 | ||
2694 | p = task_of(se); | 3009 | p = task_of(se); |
2695 | hrtick_start_fair(rq, p); | 3010 | if (hrtick_enabled(rq)) |
3011 | hrtick_start_fair(rq, p); | ||
2696 | 3012 | ||
2697 | return p; | 3013 | return p; |
2698 | } | 3014 | } |
@@ -2736,6 +3052,12 @@ static void yield_task_fair(struct rq *rq) | |||
2736 | * Update run-time statistics of the 'current'. | 3052 | * Update run-time statistics of the 'current'. |
2737 | */ | 3053 | */ |
2738 | update_curr(cfs_rq); | 3054 | update_curr(cfs_rq); |
3055 | /* | ||
3056 | * Tell update_rq_clock() that we've just updated, | ||
3057 | * so we don't do microscopic update in schedule() | ||
3058 | * and double the fastpath cost. | ||
3059 | */ | ||
3060 | rq->skip_clock_update = 1; | ||
2739 | } | 3061 | } |
2740 | 3062 | ||
2741 | set_skip_buddy(se); | 3063 | set_skip_buddy(se); |
@@ -2776,12 +3098,48 @@ static void pull_task(struct rq *src_rq, struct task_struct *p, | |||
2776 | } | 3098 | } |
2777 | 3099 | ||
2778 | /* | 3100 | /* |
3101 | * Is this task likely cache-hot: | ||
3102 | */ | ||
3103 | static int | ||
3104 | task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) | ||
3105 | { | ||
3106 | s64 delta; | ||
3107 | |||
3108 | if (p->sched_class != &fair_sched_class) | ||
3109 | return 0; | ||
3110 | |||
3111 | if (unlikely(p->policy == SCHED_IDLE)) | ||
3112 | return 0; | ||
3113 | |||
3114 | /* | ||
3115 | * Buddy candidates are cache hot: | ||
3116 | */ | ||
3117 | if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && | ||
3118 | (&p->se == cfs_rq_of(&p->se)->next || | ||
3119 | &p->se == cfs_rq_of(&p->se)->last)) | ||
3120 | return 1; | ||
3121 | |||
3122 | if (sysctl_sched_migration_cost == -1) | ||
3123 | return 1; | ||
3124 | if (sysctl_sched_migration_cost == 0) | ||
3125 | return 0; | ||
3126 | |||
3127 | delta = now - p->se.exec_start; | ||
3128 | |||
3129 | return delta < (s64)sysctl_sched_migration_cost; | ||
3130 | } | ||
3131 | |||
3132 | #define LBF_ALL_PINNED 0x01 | ||
3133 | #define LBF_NEED_BREAK 0x02 | ||
3134 | #define LBF_ABORT 0x04 | ||
3135 | |||
3136 | /* | ||
2779 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | 3137 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? |
2780 | */ | 3138 | */ |
2781 | static | 3139 | static |
2782 | int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | 3140 | int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, |
2783 | struct sched_domain *sd, enum cpu_idle_type idle, | 3141 | struct sched_domain *sd, enum cpu_idle_type idle, |
2784 | int *all_pinned) | 3142 | int *lb_flags) |
2785 | { | 3143 | { |
2786 | int tsk_cache_hot = 0; | 3144 | int tsk_cache_hot = 0; |
2787 | /* | 3145 | /* |
@@ -2794,7 +3152,7 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | |||
2794 | schedstat_inc(p, se.statistics.nr_failed_migrations_affine); | 3152 | schedstat_inc(p, se.statistics.nr_failed_migrations_affine); |
2795 | return 0; | 3153 | return 0; |
2796 | } | 3154 | } |
2797 | *all_pinned = 0; | 3155 | *lb_flags &= ~LBF_ALL_PINNED; |
2798 | 3156 | ||
2799 | if (task_running(rq, p)) { | 3157 | if (task_running(rq, p)) { |
2800 | schedstat_inc(p, se.statistics.nr_failed_migrations_running); | 3158 | schedstat_inc(p, se.statistics.nr_failed_migrations_running); |
@@ -2868,7 +3226,7 @@ move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | |||
2868 | static unsigned long | 3226 | static unsigned long |
2869 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | 3227 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, |
2870 | unsigned long max_load_move, struct sched_domain *sd, | 3228 | unsigned long max_load_move, struct sched_domain *sd, |
2871 | enum cpu_idle_type idle, int *all_pinned, | 3229 | enum cpu_idle_type idle, int *lb_flags, |
2872 | struct cfs_rq *busiest_cfs_rq) | 3230 | struct cfs_rq *busiest_cfs_rq) |
2873 | { | 3231 | { |
2874 | int loops = 0, pulled = 0; | 3232 | int loops = 0, pulled = 0; |
@@ -2879,12 +3237,14 @@ balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | |||
2879 | goto out; | 3237 | goto out; |
2880 | 3238 | ||
2881 | list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) { | 3239 | list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) { |
2882 | if (loops++ > sysctl_sched_nr_migrate) | 3240 | if (loops++ > sysctl_sched_nr_migrate) { |
3241 | *lb_flags |= LBF_NEED_BREAK; | ||
2883 | break; | 3242 | break; |
3243 | } | ||
2884 | 3244 | ||
2885 | if ((p->se.load.weight >> 1) > rem_load_move || | 3245 | if ((p->se.load.weight >> 1) > rem_load_move || |
2886 | !can_migrate_task(p, busiest, this_cpu, sd, idle, | 3246 | !can_migrate_task(p, busiest, this_cpu, sd, idle, |
2887 | all_pinned)) | 3247 | lb_flags)) |
2888 | continue; | 3248 | continue; |
2889 | 3249 | ||
2890 | pull_task(busiest, p, this_rq, this_cpu); | 3250 | pull_task(busiest, p, this_rq, this_cpu); |
@@ -2897,8 +3257,10 @@ balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | |||
2897 | * kernels will stop after the first task is pulled to minimize | 3257 | * kernels will stop after the first task is pulled to minimize |
2898 | * the critical section. | 3258 | * the critical section. |
2899 | */ | 3259 | */ |
2900 | if (idle == CPU_NEWLY_IDLE) | 3260 | if (idle == CPU_NEWLY_IDLE) { |
3261 | *lb_flags |= LBF_ABORT; | ||
2901 | break; | 3262 | break; |
3263 | } | ||
2902 | #endif | 3264 | #endif |
2903 | 3265 | ||
2904 | /* | 3266 | /* |
@@ -3003,7 +3365,7 @@ static unsigned long | |||
3003 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | 3365 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, |
3004 | unsigned long max_load_move, | 3366 | unsigned long max_load_move, |
3005 | struct sched_domain *sd, enum cpu_idle_type idle, | 3367 | struct sched_domain *sd, enum cpu_idle_type idle, |
3006 | int *all_pinned) | 3368 | int *lb_flags) |
3007 | { | 3369 | { |
3008 | long rem_load_move = max_load_move; | 3370 | long rem_load_move = max_load_move; |
3009 | struct cfs_rq *busiest_cfs_rq; | 3371 | struct cfs_rq *busiest_cfs_rq; |
@@ -3016,6 +3378,9 @@ load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | |||
3016 | unsigned long busiest_weight = busiest_cfs_rq->load.weight; | 3378 | unsigned long busiest_weight = busiest_cfs_rq->load.weight; |
3017 | u64 rem_load, moved_load; | 3379 | u64 rem_load, moved_load; |
3018 | 3380 | ||
3381 | if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT)) | ||
3382 | break; | ||
3383 | |||
3019 | /* | 3384 | /* |
3020 | * empty group or part of a throttled hierarchy | 3385 | * empty group or part of a throttled hierarchy |
3021 | */ | 3386 | */ |
@@ -3027,7 +3392,7 @@ load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | |||
3027 | rem_load = div_u64(rem_load, busiest_h_load + 1); | 3392 | rem_load = div_u64(rem_load, busiest_h_load + 1); |
3028 | 3393 | ||
3029 | moved_load = balance_tasks(this_rq, this_cpu, busiest, | 3394 | moved_load = balance_tasks(this_rq, this_cpu, busiest, |
3030 | rem_load, sd, idle, all_pinned, | 3395 | rem_load, sd, idle, lb_flags, |
3031 | busiest_cfs_rq); | 3396 | busiest_cfs_rq); |
3032 | 3397 | ||
3033 | if (!moved_load) | 3398 | if (!moved_load) |
@@ -3053,10 +3418,10 @@ static unsigned long | |||
3053 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | 3418 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, |
3054 | unsigned long max_load_move, | 3419 | unsigned long max_load_move, |
3055 | struct sched_domain *sd, enum cpu_idle_type idle, | 3420 | struct sched_domain *sd, enum cpu_idle_type idle, |
3056 | int *all_pinned) | 3421 | int *lb_flags) |
3057 | { | 3422 | { |
3058 | return balance_tasks(this_rq, this_cpu, busiest, | 3423 | return balance_tasks(this_rq, this_cpu, busiest, |
3059 | max_load_move, sd, idle, all_pinned, | 3424 | max_load_move, sd, idle, lb_flags, |
3060 | &busiest->cfs); | 3425 | &busiest->cfs); |
3061 | } | 3426 | } |
3062 | #endif | 3427 | #endif |
@@ -3071,29 +3436,30 @@ load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | |||
3071 | static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | 3436 | static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, |
3072 | unsigned long max_load_move, | 3437 | unsigned long max_load_move, |
3073 | struct sched_domain *sd, enum cpu_idle_type idle, | 3438 | struct sched_domain *sd, enum cpu_idle_type idle, |
3074 | int *all_pinned) | 3439 | int *lb_flags) |
3075 | { | 3440 | { |
3076 | unsigned long total_load_moved = 0, load_moved; | 3441 | unsigned long total_load_moved = 0, load_moved; |
3077 | 3442 | ||
3078 | do { | 3443 | do { |
3079 | load_moved = load_balance_fair(this_rq, this_cpu, busiest, | 3444 | load_moved = load_balance_fair(this_rq, this_cpu, busiest, |
3080 | max_load_move - total_load_moved, | 3445 | max_load_move - total_load_moved, |
3081 | sd, idle, all_pinned); | 3446 | sd, idle, lb_flags); |
3082 | 3447 | ||
3083 | total_load_moved += load_moved; | 3448 | total_load_moved += load_moved; |
3084 | 3449 | ||
3450 | if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT)) | ||
3451 | break; | ||
3452 | |||
3085 | #ifdef CONFIG_PREEMPT | 3453 | #ifdef CONFIG_PREEMPT |
3086 | /* | 3454 | /* |
3087 | * NEWIDLE balancing is a source of latency, so preemptible | 3455 | * NEWIDLE balancing is a source of latency, so preemptible |
3088 | * kernels will stop after the first task is pulled to minimize | 3456 | * kernels will stop after the first task is pulled to minimize |
3089 | * the critical section. | 3457 | * the critical section. |
3090 | */ | 3458 | */ |
3091 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) | 3459 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) { |
3092 | break; | 3460 | *lb_flags |= LBF_ABORT; |
3093 | |||
3094 | if (raw_spin_is_contended(&this_rq->lock) || | ||
3095 | raw_spin_is_contended(&busiest->lock)) | ||
3096 | break; | 3461 | break; |
3462 | } | ||
3097 | #endif | 3463 | #endif |
3098 | } while (load_moved && max_load_move > total_load_moved); | 3464 | } while (load_moved && max_load_move > total_load_moved); |
3099 | 3465 | ||
@@ -3155,15 +3521,6 @@ struct sg_lb_stats { | |||
3155 | }; | 3521 | }; |
3156 | 3522 | ||
3157 | /** | 3523 | /** |
3158 | * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. | ||
3159 | * @group: The group whose first cpu is to be returned. | ||
3160 | */ | ||
3161 | static inline unsigned int group_first_cpu(struct sched_group *group) | ||
3162 | { | ||
3163 | return cpumask_first(sched_group_cpus(group)); | ||
3164 | } | ||
3165 | |||
3166 | /** | ||
3167 | * get_sd_load_idx - Obtain the load index for a given sched domain. | 3524 | * get_sd_load_idx - Obtain the load index for a given sched domain. |
3168 | * @sd: The sched_domain whose load_idx is to be obtained. | 3525 | * @sd: The sched_domain whose load_idx is to be obtained. |
3169 | * @idle: The Idle status of the CPU for whose sd load_icx is obtained. | 3526 | * @idle: The Idle status of the CPU for whose sd load_icx is obtained. |
@@ -3412,7 +3769,7 @@ static void update_cpu_power(struct sched_domain *sd, int cpu) | |||
3412 | sdg->sgp->power = power; | 3769 | sdg->sgp->power = power; |
3413 | } | 3770 | } |
3414 | 3771 | ||
3415 | static void update_group_power(struct sched_domain *sd, int cpu) | 3772 | void update_group_power(struct sched_domain *sd, int cpu) |
3416 | { | 3773 | { |
3417 | struct sched_domain *child = sd->child; | 3774 | struct sched_domain *child = sd->child; |
3418 | struct sched_group *group, *sdg = sd->groups; | 3775 | struct sched_group *group, *sdg = sd->groups; |
@@ -3678,11 +4035,6 @@ static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, | |||
3678 | } while (sg != sd->groups); | 4035 | } while (sg != sd->groups); |
3679 | } | 4036 | } |
3680 | 4037 | ||
3681 | int __weak arch_sd_sibling_asym_packing(void) | ||
3682 | { | ||
3683 | return 0*SD_ASYM_PACKING; | ||
3684 | } | ||
3685 | |||
3686 | /** | 4038 | /** |
3687 | * check_asym_packing - Check to see if the group is packed into the | 4039 | * check_asym_packing - Check to see if the group is packed into the |
3688 | * sched doman. | 4040 | * sched doman. |
@@ -4046,7 +4398,7 @@ find_busiest_queue(struct sched_domain *sd, struct sched_group *group, | |||
4046 | #define MAX_PINNED_INTERVAL 512 | 4398 | #define MAX_PINNED_INTERVAL 512 |
4047 | 4399 | ||
4048 | /* Working cpumask for load_balance and load_balance_newidle. */ | 4400 | /* Working cpumask for load_balance and load_balance_newidle. */ |
4049 | static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); | 4401 | DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); |
4050 | 4402 | ||
4051 | static int need_active_balance(struct sched_domain *sd, int idle, | 4403 | static int need_active_balance(struct sched_domain *sd, int idle, |
4052 | int busiest_cpu, int this_cpu) | 4404 | int busiest_cpu, int this_cpu) |
@@ -4097,7 +4449,7 @@ static int load_balance(int this_cpu, struct rq *this_rq, | |||
4097 | struct sched_domain *sd, enum cpu_idle_type idle, | 4449 | struct sched_domain *sd, enum cpu_idle_type idle, |
4098 | int *balance) | 4450 | int *balance) |
4099 | { | 4451 | { |
4100 | int ld_moved, all_pinned = 0, active_balance = 0; | 4452 | int ld_moved, lb_flags = 0, active_balance = 0; |
4101 | struct sched_group *group; | 4453 | struct sched_group *group; |
4102 | unsigned long imbalance; | 4454 | unsigned long imbalance; |
4103 | struct rq *busiest; | 4455 | struct rq *busiest; |
@@ -4138,11 +4490,11 @@ redo: | |||
4138 | * still unbalanced. ld_moved simply stays zero, so it is | 4490 | * still unbalanced. ld_moved simply stays zero, so it is |
4139 | * correctly treated as an imbalance. | 4491 | * correctly treated as an imbalance. |
4140 | */ | 4492 | */ |
4141 | all_pinned = 1; | 4493 | lb_flags |= LBF_ALL_PINNED; |
4142 | local_irq_save(flags); | 4494 | local_irq_save(flags); |
4143 | double_rq_lock(this_rq, busiest); | 4495 | double_rq_lock(this_rq, busiest); |
4144 | ld_moved = move_tasks(this_rq, this_cpu, busiest, | 4496 | ld_moved = move_tasks(this_rq, this_cpu, busiest, |
4145 | imbalance, sd, idle, &all_pinned); | 4497 | imbalance, sd, idle, &lb_flags); |
4146 | double_rq_unlock(this_rq, busiest); | 4498 | double_rq_unlock(this_rq, busiest); |
4147 | local_irq_restore(flags); | 4499 | local_irq_restore(flags); |
4148 | 4500 | ||
@@ -4152,8 +4504,16 @@ redo: | |||
4152 | if (ld_moved && this_cpu != smp_processor_id()) | 4504 | if (ld_moved && this_cpu != smp_processor_id()) |
4153 | resched_cpu(this_cpu); | 4505 | resched_cpu(this_cpu); |
4154 | 4506 | ||
4507 | if (lb_flags & LBF_ABORT) | ||
4508 | goto out_balanced; | ||
4509 | |||
4510 | if (lb_flags & LBF_NEED_BREAK) { | ||
4511 | lb_flags &= ~LBF_NEED_BREAK; | ||
4512 | goto redo; | ||
4513 | } | ||
4514 | |||
4155 | /* All tasks on this runqueue were pinned by CPU affinity */ | 4515 | /* All tasks on this runqueue were pinned by CPU affinity */ |
4156 | if (unlikely(all_pinned)) { | 4516 | if (unlikely(lb_flags & LBF_ALL_PINNED)) { |
4157 | cpumask_clear_cpu(cpu_of(busiest), cpus); | 4517 | cpumask_clear_cpu(cpu_of(busiest), cpus); |
4158 | if (!cpumask_empty(cpus)) | 4518 | if (!cpumask_empty(cpus)) |
4159 | goto redo; | 4519 | goto redo; |
@@ -4183,7 +4543,7 @@ redo: | |||
4183 | tsk_cpus_allowed(busiest->curr))) { | 4543 | tsk_cpus_allowed(busiest->curr))) { |
4184 | raw_spin_unlock_irqrestore(&busiest->lock, | 4544 | raw_spin_unlock_irqrestore(&busiest->lock, |
4185 | flags); | 4545 | flags); |
4186 | all_pinned = 1; | 4546 | lb_flags |= LBF_ALL_PINNED; |
4187 | goto out_one_pinned; | 4547 | goto out_one_pinned; |
4188 | } | 4548 | } |
4189 | 4549 | ||
@@ -4236,7 +4596,8 @@ out_balanced: | |||
4236 | 4596 | ||
4237 | out_one_pinned: | 4597 | out_one_pinned: |
4238 | /* tune up the balancing interval */ | 4598 | /* tune up the balancing interval */ |
4239 | if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || | 4599 | if (((lb_flags & LBF_ALL_PINNED) && |
4600 | sd->balance_interval < MAX_PINNED_INTERVAL) || | ||
4240 | (sd->balance_interval < sd->max_interval)) | 4601 | (sd->balance_interval < sd->max_interval)) |
4241 | sd->balance_interval *= 2; | 4602 | sd->balance_interval *= 2; |
4242 | 4603 | ||
@@ -4249,7 +4610,7 @@ out: | |||
4249 | * idle_balance is called by schedule() if this_cpu is about to become | 4610 | * idle_balance is called by schedule() if this_cpu is about to become |
4250 | * idle. Attempts to pull tasks from other CPUs. | 4611 | * idle. Attempts to pull tasks from other CPUs. |
4251 | */ | 4612 | */ |
4252 | static void idle_balance(int this_cpu, struct rq *this_rq) | 4613 | void idle_balance(int this_cpu, struct rq *this_rq) |
4253 | { | 4614 | { |
4254 | struct sched_domain *sd; | 4615 | struct sched_domain *sd; |
4255 | int pulled_task = 0; | 4616 | int pulled_task = 0; |
@@ -4364,28 +4725,16 @@ out_unlock: | |||
4364 | #ifdef CONFIG_NO_HZ | 4725 | #ifdef CONFIG_NO_HZ |
4365 | /* | 4726 | /* |
4366 | * idle load balancing details | 4727 | * idle load balancing details |
4367 | * - One of the idle CPUs nominates itself as idle load_balancer, while | ||
4368 | * entering idle. | ||
4369 | * - This idle load balancer CPU will also go into tickless mode when | ||
4370 | * it is idle, just like all other idle CPUs | ||
4371 | * - When one of the busy CPUs notice that there may be an idle rebalancing | 4728 | * - When one of the busy CPUs notice that there may be an idle rebalancing |
4372 | * needed, they will kick the idle load balancer, which then does idle | 4729 | * needed, they will kick the idle load balancer, which then does idle |
4373 | * load balancing for all the idle CPUs. | 4730 | * load balancing for all the idle CPUs. |
4374 | */ | 4731 | */ |
4375 | static struct { | 4732 | static struct { |
4376 | atomic_t load_balancer; | ||
4377 | atomic_t first_pick_cpu; | ||
4378 | atomic_t second_pick_cpu; | ||
4379 | cpumask_var_t idle_cpus_mask; | 4733 | cpumask_var_t idle_cpus_mask; |
4380 | cpumask_var_t grp_idle_mask; | 4734 | atomic_t nr_cpus; |
4381 | unsigned long next_balance; /* in jiffy units */ | 4735 | unsigned long next_balance; /* in jiffy units */ |
4382 | } nohz ____cacheline_aligned; | 4736 | } nohz ____cacheline_aligned; |
4383 | 4737 | ||
4384 | int get_nohz_load_balancer(void) | ||
4385 | { | ||
4386 | return atomic_read(&nohz.load_balancer); | ||
4387 | } | ||
4388 | |||
4389 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 4738 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
4390 | /** | 4739 | /** |
4391 | * lowest_flag_domain - Return lowest sched_domain containing flag. | 4740 | * lowest_flag_domain - Return lowest sched_domain containing flag. |
@@ -4422,33 +4771,6 @@ static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) | |||
4422 | (sd && (sd->flags & flag)); sd = sd->parent) | 4771 | (sd && (sd->flags & flag)); sd = sd->parent) |
4423 | 4772 | ||
4424 | /** | 4773 | /** |
4425 | * is_semi_idle_group - Checks if the given sched_group is semi-idle. | ||
4426 | * @ilb_group: group to be checked for semi-idleness | ||
4427 | * | ||
4428 | * Returns: 1 if the group is semi-idle. 0 otherwise. | ||
4429 | * | ||
4430 | * We define a sched_group to be semi idle if it has atleast one idle-CPU | ||
4431 | * and atleast one non-idle CPU. This helper function checks if the given | ||
4432 | * sched_group is semi-idle or not. | ||
4433 | */ | ||
4434 | static inline int is_semi_idle_group(struct sched_group *ilb_group) | ||
4435 | { | ||
4436 | cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask, | ||
4437 | sched_group_cpus(ilb_group)); | ||
4438 | |||
4439 | /* | ||
4440 | * A sched_group is semi-idle when it has atleast one busy cpu | ||
4441 | * and atleast one idle cpu. | ||
4442 | */ | ||
4443 | if (cpumask_empty(nohz.grp_idle_mask)) | ||
4444 | return 0; | ||
4445 | |||
4446 | if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group))) | ||
4447 | return 0; | ||
4448 | |||
4449 | return 1; | ||
4450 | } | ||
4451 | /** | ||
4452 | * find_new_ilb - Finds the optimum idle load balancer for nomination. | 4774 | * find_new_ilb - Finds the optimum idle load balancer for nomination. |
4453 | * @cpu: The cpu which is nominating a new idle_load_balancer. | 4775 | * @cpu: The cpu which is nominating a new idle_load_balancer. |
4454 | * | 4776 | * |
@@ -4462,9 +4784,9 @@ static inline int is_semi_idle_group(struct sched_group *ilb_group) | |||
4462 | */ | 4784 | */ |
4463 | static int find_new_ilb(int cpu) | 4785 | static int find_new_ilb(int cpu) |
4464 | { | 4786 | { |
4787 | int ilb = cpumask_first(nohz.idle_cpus_mask); | ||
4788 | struct sched_group *ilbg; | ||
4465 | struct sched_domain *sd; | 4789 | struct sched_domain *sd; |
4466 | struct sched_group *ilb_group; | ||
4467 | int ilb = nr_cpu_ids; | ||
4468 | 4790 | ||
4469 | /* | 4791 | /* |
4470 | * Have idle load balancer selection from semi-idle packages only | 4792 | * Have idle load balancer selection from semi-idle packages only |
@@ -4482,23 +4804,28 @@ static int find_new_ilb(int cpu) | |||
4482 | 4804 | ||
4483 | rcu_read_lock(); | 4805 | rcu_read_lock(); |
4484 | for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) { | 4806 | for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) { |
4485 | ilb_group = sd->groups; | 4807 | ilbg = sd->groups; |
4486 | 4808 | ||
4487 | do { | 4809 | do { |
4488 | if (is_semi_idle_group(ilb_group)) { | 4810 | if (ilbg->group_weight != |
4489 | ilb = cpumask_first(nohz.grp_idle_mask); | 4811 | atomic_read(&ilbg->sgp->nr_busy_cpus)) { |
4812 | ilb = cpumask_first_and(nohz.idle_cpus_mask, | ||
4813 | sched_group_cpus(ilbg)); | ||
4490 | goto unlock; | 4814 | goto unlock; |
4491 | } | 4815 | } |
4492 | 4816 | ||
4493 | ilb_group = ilb_group->next; | 4817 | ilbg = ilbg->next; |
4494 | 4818 | ||
4495 | } while (ilb_group != sd->groups); | 4819 | } while (ilbg != sd->groups); |
4496 | } | 4820 | } |
4497 | unlock: | 4821 | unlock: |
4498 | rcu_read_unlock(); | 4822 | rcu_read_unlock(); |
4499 | 4823 | ||
4500 | out_done: | 4824 | out_done: |
4501 | return ilb; | 4825 | if (ilb < nr_cpu_ids && idle_cpu(ilb)) |
4826 | return ilb; | ||
4827 | |||
4828 | return nr_cpu_ids; | ||
4502 | } | 4829 | } |
4503 | #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ | 4830 | #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ |
4504 | static inline int find_new_ilb(int call_cpu) | 4831 | static inline int find_new_ilb(int call_cpu) |
@@ -4518,99 +4845,68 @@ static void nohz_balancer_kick(int cpu) | |||
4518 | 4845 | ||
4519 | nohz.next_balance++; | 4846 | nohz.next_balance++; |
4520 | 4847 | ||
4521 | ilb_cpu = get_nohz_load_balancer(); | 4848 | ilb_cpu = find_new_ilb(cpu); |
4522 | |||
4523 | if (ilb_cpu >= nr_cpu_ids) { | ||
4524 | ilb_cpu = cpumask_first(nohz.idle_cpus_mask); | ||
4525 | if (ilb_cpu >= nr_cpu_ids) | ||
4526 | return; | ||
4527 | } | ||
4528 | 4849 | ||
4529 | if (!cpu_rq(ilb_cpu)->nohz_balance_kick) { | 4850 | if (ilb_cpu >= nr_cpu_ids) |
4530 | cpu_rq(ilb_cpu)->nohz_balance_kick = 1; | 4851 | return; |
4531 | 4852 | ||
4532 | smp_mb(); | 4853 | if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) |
4533 | /* | 4854 | return; |
4534 | * Use smp_send_reschedule() instead of resched_cpu(). | 4855 | /* |
4535 | * This way we generate a sched IPI on the target cpu which | 4856 | * Use smp_send_reschedule() instead of resched_cpu(). |
4536 | * is idle. And the softirq performing nohz idle load balance | 4857 | * This way we generate a sched IPI on the target cpu which |
4537 | * will be run before returning from the IPI. | 4858 | * is idle. And the softirq performing nohz idle load balance |
4538 | */ | 4859 | * will be run before returning from the IPI. |
4539 | smp_send_reschedule(ilb_cpu); | 4860 | */ |
4540 | } | 4861 | smp_send_reschedule(ilb_cpu); |
4541 | return; | 4862 | return; |
4542 | } | 4863 | } |
4543 | 4864 | ||
4544 | /* | 4865 | static inline void set_cpu_sd_state_busy(void) |
4545 | * This routine will try to nominate the ilb (idle load balancing) | ||
4546 | * owner among the cpus whose ticks are stopped. ilb owner will do the idle | ||
4547 | * load balancing on behalf of all those cpus. | ||
4548 | * | ||
4549 | * When the ilb owner becomes busy, we will not have new ilb owner until some | ||
4550 | * idle CPU wakes up and goes back to idle or some busy CPU tries to kick | ||
4551 | * idle load balancing by kicking one of the idle CPUs. | ||
4552 | * | ||
4553 | * Ticks are stopped for the ilb owner as well, with busy CPU kicking this | ||
4554 | * ilb owner CPU in future (when there is a need for idle load balancing on | ||
4555 | * behalf of all idle CPUs). | ||
4556 | */ | ||
4557 | void select_nohz_load_balancer(int stop_tick) | ||
4558 | { | 4866 | { |
4867 | struct sched_domain *sd; | ||
4559 | int cpu = smp_processor_id(); | 4868 | int cpu = smp_processor_id(); |
4560 | 4869 | ||
4561 | if (stop_tick) { | 4870 | if (!test_bit(NOHZ_IDLE, nohz_flags(cpu))) |
4562 | if (!cpu_active(cpu)) { | 4871 | return; |
4563 | if (atomic_read(&nohz.load_balancer) != cpu) | 4872 | clear_bit(NOHZ_IDLE, nohz_flags(cpu)); |
4564 | return; | ||
4565 | |||
4566 | /* | ||
4567 | * If we are going offline and still the leader, | ||
4568 | * give up! | ||
4569 | */ | ||
4570 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, | ||
4571 | nr_cpu_ids) != cpu) | ||
4572 | BUG(); | ||
4573 | 4873 | ||
4574 | return; | 4874 | rcu_read_lock(); |
4575 | } | 4875 | for_each_domain(cpu, sd) |
4876 | atomic_inc(&sd->groups->sgp->nr_busy_cpus); | ||
4877 | rcu_read_unlock(); | ||
4878 | } | ||
4576 | 4879 | ||
4577 | cpumask_set_cpu(cpu, nohz.idle_cpus_mask); | 4880 | void set_cpu_sd_state_idle(void) |
4881 | { | ||
4882 | struct sched_domain *sd; | ||
4883 | int cpu = smp_processor_id(); | ||
4578 | 4884 | ||
4579 | if (atomic_read(&nohz.first_pick_cpu) == cpu) | 4885 | if (test_bit(NOHZ_IDLE, nohz_flags(cpu))) |
4580 | atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids); | 4886 | return; |
4581 | if (atomic_read(&nohz.second_pick_cpu) == cpu) | 4887 | set_bit(NOHZ_IDLE, nohz_flags(cpu)); |
4582 | atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids); | ||
4583 | 4888 | ||
4584 | if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) { | 4889 | rcu_read_lock(); |
4585 | int new_ilb; | 4890 | for_each_domain(cpu, sd) |
4891 | atomic_dec(&sd->groups->sgp->nr_busy_cpus); | ||
4892 | rcu_read_unlock(); | ||
4893 | } | ||
4586 | 4894 | ||
4587 | /* make me the ilb owner */ | 4895 | /* |
4588 | if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids, | 4896 | * This routine will record that this cpu is going idle with tick stopped. |
4589 | cpu) != nr_cpu_ids) | 4897 | * This info will be used in performing idle load balancing in the future. |
4590 | return; | 4898 | */ |
4899 | void select_nohz_load_balancer(int stop_tick) | ||
4900 | { | ||
4901 | int cpu = smp_processor_id(); | ||
4591 | 4902 | ||
4592 | /* | 4903 | if (stop_tick) { |
4593 | * Check to see if there is a more power-efficient | 4904 | if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) |
4594 | * ilb. | ||
4595 | */ | ||
4596 | new_ilb = find_new_ilb(cpu); | ||
4597 | if (new_ilb < nr_cpu_ids && new_ilb != cpu) { | ||
4598 | atomic_set(&nohz.load_balancer, nr_cpu_ids); | ||
4599 | resched_cpu(new_ilb); | ||
4600 | return; | ||
4601 | } | ||
4602 | return; | ||
4603 | } | ||
4604 | } else { | ||
4605 | if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) | ||
4606 | return; | 4905 | return; |
4607 | 4906 | ||
4608 | cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); | 4907 | cpumask_set_cpu(cpu, nohz.idle_cpus_mask); |
4609 | 4908 | atomic_inc(&nohz.nr_cpus); | |
4610 | if (atomic_read(&nohz.load_balancer) == cpu) | 4909 | set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); |
4611 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, | ||
4612 | nr_cpu_ids) != cpu) | ||
4613 | BUG(); | ||
4614 | } | 4910 | } |
4615 | return; | 4911 | return; |
4616 | } | 4912 | } |
@@ -4624,7 +4920,7 @@ static unsigned long __read_mostly max_load_balance_interval = HZ/10; | |||
4624 | * Scale the max load_balance interval with the number of CPUs in the system. | 4920 | * Scale the max load_balance interval with the number of CPUs in the system. |
4625 | * This trades load-balance latency on larger machines for less cross talk. | 4921 | * This trades load-balance latency on larger machines for less cross talk. |
4626 | */ | 4922 | */ |
4627 | static void update_max_interval(void) | 4923 | void update_max_interval(void) |
4628 | { | 4924 | { |
4629 | max_load_balance_interval = HZ*num_online_cpus()/10; | 4925 | max_load_balance_interval = HZ*num_online_cpus()/10; |
4630 | } | 4926 | } |
@@ -4716,11 +5012,12 @@ static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) | |||
4716 | struct rq *rq; | 5012 | struct rq *rq; |
4717 | int balance_cpu; | 5013 | int balance_cpu; |
4718 | 5014 | ||
4719 | if (idle != CPU_IDLE || !this_rq->nohz_balance_kick) | 5015 | if (idle != CPU_IDLE || |
4720 | return; | 5016 | !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) |
5017 | goto end; | ||
4721 | 5018 | ||
4722 | for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { | 5019 | for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { |
4723 | if (balance_cpu == this_cpu) | 5020 | if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) |
4724 | continue; | 5021 | continue; |
4725 | 5022 | ||
4726 | /* | 5023 | /* |
@@ -4728,10 +5025,8 @@ static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) | |||
4728 | * work being done for other cpus. Next load | 5025 | * work being done for other cpus. Next load |
4729 | * balancing owner will pick it up. | 5026 | * balancing owner will pick it up. |
4730 | */ | 5027 | */ |
4731 | if (need_resched()) { | 5028 | if (need_resched()) |
4732 | this_rq->nohz_balance_kick = 0; | ||
4733 | break; | 5029 | break; |
4734 | } | ||
4735 | 5030 | ||
4736 | raw_spin_lock_irq(&this_rq->lock); | 5031 | raw_spin_lock_irq(&this_rq->lock); |
4737 | update_rq_clock(this_rq); | 5032 | update_rq_clock(this_rq); |
@@ -4745,53 +5040,75 @@ static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) | |||
4745 | this_rq->next_balance = rq->next_balance; | 5040 | this_rq->next_balance = rq->next_balance; |
4746 | } | 5041 | } |
4747 | nohz.next_balance = this_rq->next_balance; | 5042 | nohz.next_balance = this_rq->next_balance; |
4748 | this_rq->nohz_balance_kick = 0; | 5043 | end: |
5044 | clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); | ||
4749 | } | 5045 | } |
4750 | 5046 | ||
4751 | /* | 5047 | /* |
4752 | * Current heuristic for kicking the idle load balancer | 5048 | * Current heuristic for kicking the idle load balancer in the presence |
4753 | * - first_pick_cpu is the one of the busy CPUs. It will kick | 5049 | * of an idle cpu is the system. |
4754 | * idle load balancer when it has more than one process active. This | 5050 | * - This rq has more than one task. |
4755 | * eliminates the need for idle load balancing altogether when we have | 5051 | * - At any scheduler domain level, this cpu's scheduler group has multiple |
4756 | * only one running process in the system (common case). | 5052 | * busy cpu's exceeding the group's power. |
4757 | * - If there are more than one busy CPU, idle load balancer may have | 5053 | * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler |
4758 | * to run for active_load_balance to happen (i.e., two busy CPUs are | 5054 | * domain span are idle. |
4759 | * SMT or core siblings and can run better if they move to different | ||
4760 | * physical CPUs). So, second_pick_cpu is the second of the busy CPUs | ||
4761 | * which will kick idle load balancer as soon as it has any load. | ||
4762 | */ | 5055 | */ |
4763 | static inline int nohz_kick_needed(struct rq *rq, int cpu) | 5056 | static inline int nohz_kick_needed(struct rq *rq, int cpu) |
4764 | { | 5057 | { |
4765 | unsigned long now = jiffies; | 5058 | unsigned long now = jiffies; |
4766 | int ret; | 5059 | struct sched_domain *sd; |
4767 | int first_pick_cpu, second_pick_cpu; | ||
4768 | 5060 | ||
4769 | if (time_before(now, nohz.next_balance)) | 5061 | if (unlikely(idle_cpu(cpu))) |
4770 | return 0; | 5062 | return 0; |
4771 | 5063 | ||
4772 | if (idle_cpu(cpu)) | 5064 | /* |
4773 | return 0; | 5065 | * We may be recently in ticked or tickless idle mode. At the first |
5066 | * busy tick after returning from idle, we will update the busy stats. | ||
5067 | */ | ||
5068 | set_cpu_sd_state_busy(); | ||
5069 | if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { | ||
5070 | clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); | ||
5071 | cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); | ||
5072 | atomic_dec(&nohz.nr_cpus); | ||
5073 | } | ||
4774 | 5074 | ||
4775 | first_pick_cpu = atomic_read(&nohz.first_pick_cpu); | 5075 | /* |
4776 | second_pick_cpu = atomic_read(&nohz.second_pick_cpu); | 5076 | * None are in tickless mode and hence no need for NOHZ idle load |
5077 | * balancing. | ||
5078 | */ | ||
5079 | if (likely(!atomic_read(&nohz.nr_cpus))) | ||
5080 | return 0; | ||
4777 | 5081 | ||
4778 | if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu && | 5082 | if (time_before(now, nohz.next_balance)) |
4779 | second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu) | ||
4780 | return 0; | 5083 | return 0; |
4781 | 5084 | ||
4782 | ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu); | 5085 | if (rq->nr_running >= 2) |
4783 | if (ret == nr_cpu_ids || ret == cpu) { | 5086 | goto need_kick; |
4784 | atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids); | 5087 | |
4785 | if (rq->nr_running > 1) | 5088 | rcu_read_lock(); |
4786 | return 1; | 5089 | for_each_domain(cpu, sd) { |
4787 | } else { | 5090 | struct sched_group *sg = sd->groups; |
4788 | ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu); | 5091 | struct sched_group_power *sgp = sg->sgp; |
4789 | if (ret == nr_cpu_ids || ret == cpu) { | 5092 | int nr_busy = atomic_read(&sgp->nr_busy_cpus); |
4790 | if (rq->nr_running) | 5093 | |
4791 | return 1; | 5094 | if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1) |
4792 | } | 5095 | goto need_kick_unlock; |
5096 | |||
5097 | if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight | ||
5098 | && (cpumask_first_and(nohz.idle_cpus_mask, | ||
5099 | sched_domain_span(sd)) < cpu)) | ||
5100 | goto need_kick_unlock; | ||
5101 | |||
5102 | if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING))) | ||
5103 | break; | ||
4793 | } | 5104 | } |
5105 | rcu_read_unlock(); | ||
4794 | return 0; | 5106 | return 0; |
5107 | |||
5108 | need_kick_unlock: | ||
5109 | rcu_read_unlock(); | ||
5110 | need_kick: | ||
5111 | return 1; | ||
4795 | } | 5112 | } |
4796 | #else | 5113 | #else |
4797 | static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { } | 5114 | static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { } |
@@ -4826,14 +5143,14 @@ static inline int on_null_domain(int cpu) | |||
4826 | /* | 5143 | /* |
4827 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | 5144 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. |
4828 | */ | 5145 | */ |
4829 | static inline void trigger_load_balance(struct rq *rq, int cpu) | 5146 | void trigger_load_balance(struct rq *rq, int cpu) |
4830 | { | 5147 | { |
4831 | /* Don't need to rebalance while attached to NULL domain */ | 5148 | /* Don't need to rebalance while attached to NULL domain */ |
4832 | if (time_after_eq(jiffies, rq->next_balance) && | 5149 | if (time_after_eq(jiffies, rq->next_balance) && |
4833 | likely(!on_null_domain(cpu))) | 5150 | likely(!on_null_domain(cpu))) |
4834 | raise_softirq(SCHED_SOFTIRQ); | 5151 | raise_softirq(SCHED_SOFTIRQ); |
4835 | #ifdef CONFIG_NO_HZ | 5152 | #ifdef CONFIG_NO_HZ |
4836 | else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu))) | 5153 | if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu))) |
4837 | nohz_balancer_kick(cpu); | 5154 | nohz_balancer_kick(cpu); |
4838 | #endif | 5155 | #endif |
4839 | } | 5156 | } |
@@ -4848,15 +5165,6 @@ static void rq_offline_fair(struct rq *rq) | |||
4848 | update_sysctl(); | 5165 | update_sysctl(); |
4849 | } | 5166 | } |
4850 | 5167 | ||
4851 | #else /* CONFIG_SMP */ | ||
4852 | |||
4853 | /* | ||
4854 | * on UP we do not need to balance between CPUs: | ||
4855 | */ | ||
4856 | static inline void idle_balance(int cpu, struct rq *rq) | ||
4857 | { | ||
4858 | } | ||
4859 | |||
4860 | #endif /* CONFIG_SMP */ | 5168 | #endif /* CONFIG_SMP */ |
4861 | 5169 | ||
4862 | /* | 5170 | /* |
@@ -4880,8 +5188,8 @@ static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) | |||
4880 | */ | 5188 | */ |
4881 | static void task_fork_fair(struct task_struct *p) | 5189 | static void task_fork_fair(struct task_struct *p) |
4882 | { | 5190 | { |
4883 | struct cfs_rq *cfs_rq = task_cfs_rq(current); | 5191 | struct cfs_rq *cfs_rq; |
4884 | struct sched_entity *se = &p->se, *curr = cfs_rq->curr; | 5192 | struct sched_entity *se = &p->se, *curr; |
4885 | int this_cpu = smp_processor_id(); | 5193 | int this_cpu = smp_processor_id(); |
4886 | struct rq *rq = this_rq(); | 5194 | struct rq *rq = this_rq(); |
4887 | unsigned long flags; | 5195 | unsigned long flags; |
@@ -4890,6 +5198,9 @@ static void task_fork_fair(struct task_struct *p) | |||
4890 | 5198 | ||
4891 | update_rq_clock(rq); | 5199 | update_rq_clock(rq); |
4892 | 5200 | ||
5201 | cfs_rq = task_cfs_rq(current); | ||
5202 | curr = cfs_rq->curr; | ||
5203 | |||
4893 | if (unlikely(task_cpu(p) != this_cpu)) { | 5204 | if (unlikely(task_cpu(p) != this_cpu)) { |
4894 | rcu_read_lock(); | 5205 | rcu_read_lock(); |
4895 | __set_task_cpu(p, this_cpu); | 5206 | __set_task_cpu(p, this_cpu); |
@@ -4999,6 +5310,16 @@ static void set_curr_task_fair(struct rq *rq) | |||
4999 | } | 5310 | } |
5000 | } | 5311 | } |
5001 | 5312 | ||
5313 | void init_cfs_rq(struct cfs_rq *cfs_rq) | ||
5314 | { | ||
5315 | cfs_rq->tasks_timeline = RB_ROOT; | ||
5316 | INIT_LIST_HEAD(&cfs_rq->tasks); | ||
5317 | cfs_rq->min_vruntime = (u64)(-(1LL << 20)); | ||
5318 | #ifndef CONFIG_64BIT | ||
5319 | cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; | ||
5320 | #endif | ||
5321 | } | ||
5322 | |||
5002 | #ifdef CONFIG_FAIR_GROUP_SCHED | 5323 | #ifdef CONFIG_FAIR_GROUP_SCHED |
5003 | static void task_move_group_fair(struct task_struct *p, int on_rq) | 5324 | static void task_move_group_fair(struct task_struct *p, int on_rq) |
5004 | { | 5325 | { |
@@ -5015,13 +5336,182 @@ static void task_move_group_fair(struct task_struct *p, int on_rq) | |||
5015 | * to another cgroup's rq. This does somewhat interfere with the | 5336 | * to another cgroup's rq. This does somewhat interfere with the |
5016 | * fair sleeper stuff for the first placement, but who cares. | 5337 | * fair sleeper stuff for the first placement, but who cares. |
5017 | */ | 5338 | */ |
5339 | /* | ||
5340 | * When !on_rq, vruntime of the task has usually NOT been normalized. | ||
5341 | * But there are some cases where it has already been normalized: | ||
5342 | * | ||
5343 | * - Moving a forked child which is waiting for being woken up by | ||
5344 | * wake_up_new_task(). | ||
5345 | * - Moving a task which has been woken up by try_to_wake_up() and | ||
5346 | * waiting for actually being woken up by sched_ttwu_pending(). | ||
5347 | * | ||
5348 | * To prevent boost or penalty in the new cfs_rq caused by delta | ||
5349 | * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. | ||
5350 | */ | ||
5351 | if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING)) | ||
5352 | on_rq = 1; | ||
5353 | |||
5018 | if (!on_rq) | 5354 | if (!on_rq) |
5019 | p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime; | 5355 | p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime; |
5020 | set_task_rq(p, task_cpu(p)); | 5356 | set_task_rq(p, task_cpu(p)); |
5021 | if (!on_rq) | 5357 | if (!on_rq) |
5022 | p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime; | 5358 | p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime; |
5023 | } | 5359 | } |
5360 | |||
5361 | void free_fair_sched_group(struct task_group *tg) | ||
5362 | { | ||
5363 | int i; | ||
5364 | |||
5365 | destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); | ||
5366 | |||
5367 | for_each_possible_cpu(i) { | ||
5368 | if (tg->cfs_rq) | ||
5369 | kfree(tg->cfs_rq[i]); | ||
5370 | if (tg->se) | ||
5371 | kfree(tg->se[i]); | ||
5372 | } | ||
5373 | |||
5374 | kfree(tg->cfs_rq); | ||
5375 | kfree(tg->se); | ||
5376 | } | ||
5377 | |||
5378 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | ||
5379 | { | ||
5380 | struct cfs_rq *cfs_rq; | ||
5381 | struct sched_entity *se; | ||
5382 | int i; | ||
5383 | |||
5384 | tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); | ||
5385 | if (!tg->cfs_rq) | ||
5386 | goto err; | ||
5387 | tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); | ||
5388 | if (!tg->se) | ||
5389 | goto err; | ||
5390 | |||
5391 | tg->shares = NICE_0_LOAD; | ||
5392 | |||
5393 | init_cfs_bandwidth(tg_cfs_bandwidth(tg)); | ||
5394 | |||
5395 | for_each_possible_cpu(i) { | ||
5396 | cfs_rq = kzalloc_node(sizeof(struct cfs_rq), | ||
5397 | GFP_KERNEL, cpu_to_node(i)); | ||
5398 | if (!cfs_rq) | ||
5399 | goto err; | ||
5400 | |||
5401 | se = kzalloc_node(sizeof(struct sched_entity), | ||
5402 | GFP_KERNEL, cpu_to_node(i)); | ||
5403 | if (!se) | ||
5404 | goto err_free_rq; | ||
5405 | |||
5406 | init_cfs_rq(cfs_rq); | ||
5407 | init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); | ||
5408 | } | ||
5409 | |||
5410 | return 1; | ||
5411 | |||
5412 | err_free_rq: | ||
5413 | kfree(cfs_rq); | ||
5414 | err: | ||
5415 | return 0; | ||
5416 | } | ||
5417 | |||
5418 | void unregister_fair_sched_group(struct task_group *tg, int cpu) | ||
5419 | { | ||
5420 | struct rq *rq = cpu_rq(cpu); | ||
5421 | unsigned long flags; | ||
5422 | |||
5423 | /* | ||
5424 | * Only empty task groups can be destroyed; so we can speculatively | ||
5425 | * check on_list without danger of it being re-added. | ||
5426 | */ | ||
5427 | if (!tg->cfs_rq[cpu]->on_list) | ||
5428 | return; | ||
5429 | |||
5430 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
5431 | list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); | ||
5432 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
5433 | } | ||
5434 | |||
5435 | void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, | ||
5436 | struct sched_entity *se, int cpu, | ||
5437 | struct sched_entity *parent) | ||
5438 | { | ||
5439 | struct rq *rq = cpu_rq(cpu); | ||
5440 | |||
5441 | cfs_rq->tg = tg; | ||
5442 | cfs_rq->rq = rq; | ||
5443 | #ifdef CONFIG_SMP | ||
5444 | /* allow initial update_cfs_load() to truncate */ | ||
5445 | cfs_rq->load_stamp = 1; | ||
5024 | #endif | 5446 | #endif |
5447 | init_cfs_rq_runtime(cfs_rq); | ||
5448 | |||
5449 | tg->cfs_rq[cpu] = cfs_rq; | ||
5450 | tg->se[cpu] = se; | ||
5451 | |||
5452 | /* se could be NULL for root_task_group */ | ||
5453 | if (!se) | ||
5454 | return; | ||
5455 | |||
5456 | if (!parent) | ||
5457 | se->cfs_rq = &rq->cfs; | ||
5458 | else | ||
5459 | se->cfs_rq = parent->my_q; | ||
5460 | |||
5461 | se->my_q = cfs_rq; | ||
5462 | update_load_set(&se->load, 0); | ||
5463 | se->parent = parent; | ||
5464 | } | ||
5465 | |||
5466 | static DEFINE_MUTEX(shares_mutex); | ||
5467 | |||
5468 | int sched_group_set_shares(struct task_group *tg, unsigned long shares) | ||
5469 | { | ||
5470 | int i; | ||
5471 | unsigned long flags; | ||
5472 | |||
5473 | /* | ||
5474 | * We can't change the weight of the root cgroup. | ||
5475 | */ | ||
5476 | if (!tg->se[0]) | ||
5477 | return -EINVAL; | ||
5478 | |||
5479 | shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); | ||
5480 | |||
5481 | mutex_lock(&shares_mutex); | ||
5482 | if (tg->shares == shares) | ||
5483 | goto done; | ||
5484 | |||
5485 | tg->shares = shares; | ||
5486 | for_each_possible_cpu(i) { | ||
5487 | struct rq *rq = cpu_rq(i); | ||
5488 | struct sched_entity *se; | ||
5489 | |||
5490 | se = tg->se[i]; | ||
5491 | /* Propagate contribution to hierarchy */ | ||
5492 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
5493 | for_each_sched_entity(se) | ||
5494 | update_cfs_shares(group_cfs_rq(se)); | ||
5495 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
5496 | } | ||
5497 | |||
5498 | done: | ||
5499 | mutex_unlock(&shares_mutex); | ||
5500 | return 0; | ||
5501 | } | ||
5502 | #else /* CONFIG_FAIR_GROUP_SCHED */ | ||
5503 | |||
5504 | void free_fair_sched_group(struct task_group *tg) { } | ||
5505 | |||
5506 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | ||
5507 | { | ||
5508 | return 1; | ||
5509 | } | ||
5510 | |||
5511 | void unregister_fair_sched_group(struct task_group *tg, int cpu) { } | ||
5512 | |||
5513 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | ||
5514 | |||
5025 | 5515 | ||
5026 | static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) | 5516 | static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) |
5027 | { | 5517 | { |
@@ -5041,7 +5531,7 @@ static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task | |||
5041 | /* | 5531 | /* |
5042 | * All the scheduling class methods: | 5532 | * All the scheduling class methods: |
5043 | */ | 5533 | */ |
5044 | static const struct sched_class fair_sched_class = { | 5534 | const struct sched_class fair_sched_class = { |
5045 | .next = &idle_sched_class, | 5535 | .next = &idle_sched_class, |
5046 | .enqueue_task = enqueue_task_fair, | 5536 | .enqueue_task = enqueue_task_fair, |
5047 | .dequeue_task = dequeue_task_fair, | 5537 | .dequeue_task = dequeue_task_fair, |
@@ -5078,7 +5568,7 @@ static const struct sched_class fair_sched_class = { | |||
5078 | }; | 5568 | }; |
5079 | 5569 | ||
5080 | #ifdef CONFIG_SCHED_DEBUG | 5570 | #ifdef CONFIG_SCHED_DEBUG |
5081 | static void print_cfs_stats(struct seq_file *m, int cpu) | 5571 | void print_cfs_stats(struct seq_file *m, int cpu) |
5082 | { | 5572 | { |
5083 | struct cfs_rq *cfs_rq; | 5573 | struct cfs_rq *cfs_rq; |
5084 | 5574 | ||
@@ -5088,3 +5578,15 @@ static void print_cfs_stats(struct seq_file *m, int cpu) | |||
5088 | rcu_read_unlock(); | 5578 | rcu_read_unlock(); |
5089 | } | 5579 | } |
5090 | #endif | 5580 | #endif |
5581 | |||
5582 | __init void init_sched_fair_class(void) | ||
5583 | { | ||
5584 | #ifdef CONFIG_SMP | ||
5585 | open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); | ||
5586 | |||
5587 | #ifdef CONFIG_NO_HZ | ||
5588 | zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); | ||
5589 | #endif | ||
5590 | #endif /* SMP */ | ||
5591 | |||
5592 | } | ||
diff --git a/kernel/sched_features.h b/kernel/sched/features.h index 84802245abd2..e61fd73913d0 100644 --- a/kernel/sched_features.h +++ b/kernel/sched/features.h | |||
@@ -3,13 +3,13 @@ | |||
3 | * them to run sooner, but does not allow tons of sleepers to | 3 | * them to run sooner, but does not allow tons of sleepers to |
4 | * rip the spread apart. | 4 | * rip the spread apart. |
5 | */ | 5 | */ |
6 | SCHED_FEAT(GENTLE_FAIR_SLEEPERS, 1) | 6 | SCHED_FEAT(GENTLE_FAIR_SLEEPERS, true) |
7 | 7 | ||
8 | /* | 8 | /* |
9 | * Place new tasks ahead so that they do not starve already running | 9 | * Place new tasks ahead so that they do not starve already running |
10 | * tasks | 10 | * tasks |
11 | */ | 11 | */ |
12 | SCHED_FEAT(START_DEBIT, 1) | 12 | SCHED_FEAT(START_DEBIT, true) |
13 | 13 | ||
14 | /* | 14 | /* |
15 | * Based on load and program behaviour, see if it makes sense to place | 15 | * Based on load and program behaviour, see if it makes sense to place |
@@ -17,54 +17,54 @@ SCHED_FEAT(START_DEBIT, 1) | |||
17 | * improve cache locality. Typically used with SYNC wakeups as | 17 | * improve cache locality. Typically used with SYNC wakeups as |
18 | * generated by pipes and the like, see also SYNC_WAKEUPS. | 18 | * generated by pipes and the like, see also SYNC_WAKEUPS. |
19 | */ | 19 | */ |
20 | SCHED_FEAT(AFFINE_WAKEUPS, 1) | 20 | SCHED_FEAT(AFFINE_WAKEUPS, true) |
21 | 21 | ||
22 | /* | 22 | /* |
23 | * Prefer to schedule the task we woke last (assuming it failed | 23 | * Prefer to schedule the task we woke last (assuming it failed |
24 | * wakeup-preemption), since its likely going to consume data we | 24 | * wakeup-preemption), since its likely going to consume data we |
25 | * touched, increases cache locality. | 25 | * touched, increases cache locality. |
26 | */ | 26 | */ |
27 | SCHED_FEAT(NEXT_BUDDY, 0) | 27 | SCHED_FEAT(NEXT_BUDDY, false) |
28 | 28 | ||
29 | /* | 29 | /* |
30 | * Prefer to schedule the task that ran last (when we did | 30 | * Prefer to schedule the task that ran last (when we did |
31 | * wake-preempt) as that likely will touch the same data, increases | 31 | * wake-preempt) as that likely will touch the same data, increases |
32 | * cache locality. | 32 | * cache locality. |
33 | */ | 33 | */ |
34 | SCHED_FEAT(LAST_BUDDY, 1) | 34 | SCHED_FEAT(LAST_BUDDY, true) |
35 | 35 | ||
36 | /* | 36 | /* |
37 | * Consider buddies to be cache hot, decreases the likelyness of a | 37 | * Consider buddies to be cache hot, decreases the likelyness of a |
38 | * cache buddy being migrated away, increases cache locality. | 38 | * cache buddy being migrated away, increases cache locality. |
39 | */ | 39 | */ |
40 | SCHED_FEAT(CACHE_HOT_BUDDY, 1) | 40 | SCHED_FEAT(CACHE_HOT_BUDDY, true) |
41 | 41 | ||
42 | /* | 42 | /* |
43 | * Use arch dependent cpu power functions | 43 | * Use arch dependent cpu power functions |
44 | */ | 44 | */ |
45 | SCHED_FEAT(ARCH_POWER, 0) | 45 | SCHED_FEAT(ARCH_POWER, false) |
46 | 46 | ||
47 | SCHED_FEAT(HRTICK, 0) | 47 | SCHED_FEAT(HRTICK, false) |
48 | SCHED_FEAT(DOUBLE_TICK, 0) | 48 | SCHED_FEAT(DOUBLE_TICK, false) |
49 | SCHED_FEAT(LB_BIAS, 1) | 49 | SCHED_FEAT(LB_BIAS, true) |
50 | 50 | ||
51 | /* | 51 | /* |
52 | * Spin-wait on mutex acquisition when the mutex owner is running on | 52 | * Spin-wait on mutex acquisition when the mutex owner is running on |
53 | * another cpu -- assumes that when the owner is running, it will soon | 53 | * another cpu -- assumes that when the owner is running, it will soon |
54 | * release the lock. Decreases scheduling overhead. | 54 | * release the lock. Decreases scheduling overhead. |
55 | */ | 55 | */ |
56 | SCHED_FEAT(OWNER_SPIN, 1) | 56 | SCHED_FEAT(OWNER_SPIN, true) |
57 | 57 | ||
58 | /* | 58 | /* |
59 | * Decrement CPU power based on time not spent running tasks | 59 | * Decrement CPU power based on time not spent running tasks |
60 | */ | 60 | */ |
61 | SCHED_FEAT(NONTASK_POWER, 1) | 61 | SCHED_FEAT(NONTASK_POWER, true) |
62 | 62 | ||
63 | /* | 63 | /* |
64 | * Queue remote wakeups on the target CPU and process them | 64 | * Queue remote wakeups on the target CPU and process them |
65 | * using the scheduler IPI. Reduces rq->lock contention/bounces. | 65 | * using the scheduler IPI. Reduces rq->lock contention/bounces. |
66 | */ | 66 | */ |
67 | SCHED_FEAT(TTWU_QUEUE, 1) | 67 | SCHED_FEAT(TTWU_QUEUE, true) |
68 | 68 | ||
69 | SCHED_FEAT(FORCE_SD_OVERLAP, 0) | 69 | SCHED_FEAT(FORCE_SD_OVERLAP, false) |
70 | SCHED_FEAT(RT_RUNTIME_SHARE, 1) | 70 | SCHED_FEAT(RT_RUNTIME_SHARE, true) |
diff --git a/kernel/sched_idletask.c b/kernel/sched/idle_task.c index 0a51882534ea..91b4c957f289 100644 --- a/kernel/sched_idletask.c +++ b/kernel/sched/idle_task.c | |||
@@ -1,3 +1,5 @@ | |||
1 | #include "sched.h" | ||
2 | |||
1 | /* | 3 | /* |
2 | * idle-task scheduling class. | 4 | * idle-task scheduling class. |
3 | * | 5 | * |
@@ -71,7 +73,7 @@ static unsigned int get_rr_interval_idle(struct rq *rq, struct task_struct *task | |||
71 | /* | 73 | /* |
72 | * Simple, special scheduling class for the per-CPU idle tasks: | 74 | * Simple, special scheduling class for the per-CPU idle tasks: |
73 | */ | 75 | */ |
74 | static const struct sched_class idle_sched_class = { | 76 | const struct sched_class idle_sched_class = { |
75 | /* .next is NULL */ | 77 | /* .next is NULL */ |
76 | /* no enqueue/yield_task for idle tasks */ | 78 | /* no enqueue/yield_task for idle tasks */ |
77 | 79 | ||
diff --git a/kernel/sched_rt.c b/kernel/sched/rt.c index 583a1368afe6..3640ebbb466b 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched/rt.c | |||
@@ -3,7 +3,92 @@ | |||
3 | * policies) | 3 | * policies) |
4 | */ | 4 | */ |
5 | 5 | ||
6 | #include "sched.h" | ||
7 | |||
8 | #include <linux/slab.h> | ||
9 | |||
10 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); | ||
11 | |||
12 | struct rt_bandwidth def_rt_bandwidth; | ||
13 | |||
14 | static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) | ||
15 | { | ||
16 | struct rt_bandwidth *rt_b = | ||
17 | container_of(timer, struct rt_bandwidth, rt_period_timer); | ||
18 | ktime_t now; | ||
19 | int overrun; | ||
20 | int idle = 0; | ||
21 | |||
22 | for (;;) { | ||
23 | now = hrtimer_cb_get_time(timer); | ||
24 | overrun = hrtimer_forward(timer, now, rt_b->rt_period); | ||
25 | |||
26 | if (!overrun) | ||
27 | break; | ||
28 | |||
29 | idle = do_sched_rt_period_timer(rt_b, overrun); | ||
30 | } | ||
31 | |||
32 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | ||
33 | } | ||
34 | |||
35 | void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) | ||
36 | { | ||
37 | rt_b->rt_period = ns_to_ktime(period); | ||
38 | rt_b->rt_runtime = runtime; | ||
39 | |||
40 | raw_spin_lock_init(&rt_b->rt_runtime_lock); | ||
41 | |||
42 | hrtimer_init(&rt_b->rt_period_timer, | ||
43 | CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
44 | rt_b->rt_period_timer.function = sched_rt_period_timer; | ||
45 | } | ||
46 | |||
47 | static void start_rt_bandwidth(struct rt_bandwidth *rt_b) | ||
48 | { | ||
49 | if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) | ||
50 | return; | ||
51 | |||
52 | if (hrtimer_active(&rt_b->rt_period_timer)) | ||
53 | return; | ||
54 | |||
55 | raw_spin_lock(&rt_b->rt_runtime_lock); | ||
56 | start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period); | ||
57 | raw_spin_unlock(&rt_b->rt_runtime_lock); | ||
58 | } | ||
59 | |||
60 | void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) | ||
61 | { | ||
62 | struct rt_prio_array *array; | ||
63 | int i; | ||
64 | |||
65 | array = &rt_rq->active; | ||
66 | for (i = 0; i < MAX_RT_PRIO; i++) { | ||
67 | INIT_LIST_HEAD(array->queue + i); | ||
68 | __clear_bit(i, array->bitmap); | ||
69 | } | ||
70 | /* delimiter for bitsearch: */ | ||
71 | __set_bit(MAX_RT_PRIO, array->bitmap); | ||
72 | |||
73 | #if defined CONFIG_SMP | ||
74 | rt_rq->highest_prio.curr = MAX_RT_PRIO; | ||
75 | rt_rq->highest_prio.next = MAX_RT_PRIO; | ||
76 | rt_rq->rt_nr_migratory = 0; | ||
77 | rt_rq->overloaded = 0; | ||
78 | plist_head_init(&rt_rq->pushable_tasks); | ||
79 | #endif | ||
80 | |||
81 | rt_rq->rt_time = 0; | ||
82 | rt_rq->rt_throttled = 0; | ||
83 | rt_rq->rt_runtime = 0; | ||
84 | raw_spin_lock_init(&rt_rq->rt_runtime_lock); | ||
85 | } | ||
86 | |||
6 | #ifdef CONFIG_RT_GROUP_SCHED | 87 | #ifdef CONFIG_RT_GROUP_SCHED |
88 | static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) | ||
89 | { | ||
90 | hrtimer_cancel(&rt_b->rt_period_timer); | ||
91 | } | ||
7 | 92 | ||
8 | #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) | 93 | #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) |
9 | 94 | ||
@@ -25,6 +110,91 @@ static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | |||
25 | return rt_se->rt_rq; | 110 | return rt_se->rt_rq; |
26 | } | 111 | } |
27 | 112 | ||
113 | void free_rt_sched_group(struct task_group *tg) | ||
114 | { | ||
115 | int i; | ||
116 | |||
117 | if (tg->rt_se) | ||
118 | destroy_rt_bandwidth(&tg->rt_bandwidth); | ||
119 | |||
120 | for_each_possible_cpu(i) { | ||
121 | if (tg->rt_rq) | ||
122 | kfree(tg->rt_rq[i]); | ||
123 | if (tg->rt_se) | ||
124 | kfree(tg->rt_se[i]); | ||
125 | } | ||
126 | |||
127 | kfree(tg->rt_rq); | ||
128 | kfree(tg->rt_se); | ||
129 | } | ||
130 | |||
131 | void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, | ||
132 | struct sched_rt_entity *rt_se, int cpu, | ||
133 | struct sched_rt_entity *parent) | ||
134 | { | ||
135 | struct rq *rq = cpu_rq(cpu); | ||
136 | |||
137 | rt_rq->highest_prio.curr = MAX_RT_PRIO; | ||
138 | rt_rq->rt_nr_boosted = 0; | ||
139 | rt_rq->rq = rq; | ||
140 | rt_rq->tg = tg; | ||
141 | |||
142 | tg->rt_rq[cpu] = rt_rq; | ||
143 | tg->rt_se[cpu] = rt_se; | ||
144 | |||
145 | if (!rt_se) | ||
146 | return; | ||
147 | |||
148 | if (!parent) | ||
149 | rt_se->rt_rq = &rq->rt; | ||
150 | else | ||
151 | rt_se->rt_rq = parent->my_q; | ||
152 | |||
153 | rt_se->my_q = rt_rq; | ||
154 | rt_se->parent = parent; | ||
155 | INIT_LIST_HEAD(&rt_se->run_list); | ||
156 | } | ||
157 | |||
158 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | ||
159 | { | ||
160 | struct rt_rq *rt_rq; | ||
161 | struct sched_rt_entity *rt_se; | ||
162 | int i; | ||
163 | |||
164 | tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); | ||
165 | if (!tg->rt_rq) | ||
166 | goto err; | ||
167 | tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); | ||
168 | if (!tg->rt_se) | ||
169 | goto err; | ||
170 | |||
171 | init_rt_bandwidth(&tg->rt_bandwidth, | ||
172 | ktime_to_ns(def_rt_bandwidth.rt_period), 0); | ||
173 | |||
174 | for_each_possible_cpu(i) { | ||
175 | rt_rq = kzalloc_node(sizeof(struct rt_rq), | ||
176 | GFP_KERNEL, cpu_to_node(i)); | ||
177 | if (!rt_rq) | ||
178 | goto err; | ||
179 | |||
180 | rt_se = kzalloc_node(sizeof(struct sched_rt_entity), | ||
181 | GFP_KERNEL, cpu_to_node(i)); | ||
182 | if (!rt_se) | ||
183 | goto err_free_rq; | ||
184 | |||
185 | init_rt_rq(rt_rq, cpu_rq(i)); | ||
186 | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; | ||
187 | init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); | ||
188 | } | ||
189 | |||
190 | return 1; | ||
191 | |||
192 | err_free_rq: | ||
193 | kfree(rt_rq); | ||
194 | err: | ||
195 | return 0; | ||
196 | } | ||
197 | |||
28 | #else /* CONFIG_RT_GROUP_SCHED */ | 198 | #else /* CONFIG_RT_GROUP_SCHED */ |
29 | 199 | ||
30 | #define rt_entity_is_task(rt_se) (1) | 200 | #define rt_entity_is_task(rt_se) (1) |
@@ -47,6 +217,12 @@ static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | |||
47 | return &rq->rt; | 217 | return &rq->rt; |
48 | } | 218 | } |
49 | 219 | ||
220 | void free_rt_sched_group(struct task_group *tg) { } | ||
221 | |||
222 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | ||
223 | { | ||
224 | return 1; | ||
225 | } | ||
50 | #endif /* CONFIG_RT_GROUP_SCHED */ | 226 | #endif /* CONFIG_RT_GROUP_SCHED */ |
51 | 227 | ||
52 | #ifdef CONFIG_SMP | 228 | #ifdef CONFIG_SMP |
@@ -556,6 +732,28 @@ static void enable_runtime(struct rq *rq) | |||
556 | raw_spin_unlock_irqrestore(&rq->lock, flags); | 732 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
557 | } | 733 | } |
558 | 734 | ||
735 | int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu) | ||
736 | { | ||
737 | int cpu = (int)(long)hcpu; | ||
738 | |||
739 | switch (action) { | ||
740 | case CPU_DOWN_PREPARE: | ||
741 | case CPU_DOWN_PREPARE_FROZEN: | ||
742 | disable_runtime(cpu_rq(cpu)); | ||
743 | return NOTIFY_OK; | ||
744 | |||
745 | case CPU_DOWN_FAILED: | ||
746 | case CPU_DOWN_FAILED_FROZEN: | ||
747 | case CPU_ONLINE: | ||
748 | case CPU_ONLINE_FROZEN: | ||
749 | enable_runtime(cpu_rq(cpu)); | ||
750 | return NOTIFY_OK; | ||
751 | |||
752 | default: | ||
753 | return NOTIFY_DONE; | ||
754 | } | ||
755 | } | ||
756 | |||
559 | static int balance_runtime(struct rt_rq *rt_rq) | 757 | static int balance_runtime(struct rt_rq *rt_rq) |
560 | { | 758 | { |
561 | int more = 0; | 759 | int more = 0; |
@@ -648,7 +846,7 @@ static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) | |||
648 | if (rt_rq->rt_throttled) | 846 | if (rt_rq->rt_throttled) |
649 | return rt_rq_throttled(rt_rq); | 847 | return rt_rq_throttled(rt_rq); |
650 | 848 | ||
651 | if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq)) | 849 | if (runtime >= sched_rt_period(rt_rq)) |
652 | return 0; | 850 | return 0; |
653 | 851 | ||
654 | balance_runtime(rt_rq); | 852 | balance_runtime(rt_rq); |
@@ -957,8 +1155,8 @@ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) | |||
957 | } | 1155 | } |
958 | 1156 | ||
959 | /* | 1157 | /* |
960 | * Put task to the end of the run list without the overhead of dequeue | 1158 | * Put task to the head or the end of the run list without the overhead of |
961 | * followed by enqueue. | 1159 | * dequeue followed by enqueue. |
962 | */ | 1160 | */ |
963 | static void | 1161 | static void |
964 | requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) | 1162 | requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) |
@@ -1002,6 +1200,9 @@ select_task_rq_rt(struct task_struct *p, int sd_flag, int flags) | |||
1002 | 1200 | ||
1003 | cpu = task_cpu(p); | 1201 | cpu = task_cpu(p); |
1004 | 1202 | ||
1203 | if (p->rt.nr_cpus_allowed == 1) | ||
1204 | goto out; | ||
1205 | |||
1005 | /* For anything but wake ups, just return the task_cpu */ | 1206 | /* For anything but wake ups, just return the task_cpu */ |
1006 | if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) | 1207 | if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) |
1007 | goto out; | 1208 | goto out; |
@@ -1178,8 +1379,6 @@ static void put_prev_task_rt(struct rq *rq, struct task_struct *p) | |||
1178 | /* Only try algorithms three times */ | 1379 | /* Only try algorithms three times */ |
1179 | #define RT_MAX_TRIES 3 | 1380 | #define RT_MAX_TRIES 3 |
1180 | 1381 | ||
1181 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep); | ||
1182 | |||
1183 | static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) | 1382 | static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) |
1184 | { | 1383 | { |
1185 | if (!task_running(rq, p) && | 1384 | if (!task_running(rq, p) && |
@@ -1653,13 +1852,14 @@ static void switched_from_rt(struct rq *rq, struct task_struct *p) | |||
1653 | pull_rt_task(rq); | 1852 | pull_rt_task(rq); |
1654 | } | 1853 | } |
1655 | 1854 | ||
1656 | static inline void init_sched_rt_class(void) | 1855 | void init_sched_rt_class(void) |
1657 | { | 1856 | { |
1658 | unsigned int i; | 1857 | unsigned int i; |
1659 | 1858 | ||
1660 | for_each_possible_cpu(i) | 1859 | for_each_possible_cpu(i) { |
1661 | zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), | 1860 | zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), |
1662 | GFP_KERNEL, cpu_to_node(i)); | 1861 | GFP_KERNEL, cpu_to_node(i)); |
1862 | } | ||
1663 | } | 1863 | } |
1664 | #endif /* CONFIG_SMP */ | 1864 | #endif /* CONFIG_SMP */ |
1665 | 1865 | ||
@@ -1800,7 +2000,7 @@ static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) | |||
1800 | return 0; | 2000 | return 0; |
1801 | } | 2001 | } |
1802 | 2002 | ||
1803 | static const struct sched_class rt_sched_class = { | 2003 | const struct sched_class rt_sched_class = { |
1804 | .next = &fair_sched_class, | 2004 | .next = &fair_sched_class, |
1805 | .enqueue_task = enqueue_task_rt, | 2005 | .enqueue_task = enqueue_task_rt, |
1806 | .dequeue_task = dequeue_task_rt, | 2006 | .dequeue_task = dequeue_task_rt, |
@@ -1835,7 +2035,7 @@ static const struct sched_class rt_sched_class = { | |||
1835 | #ifdef CONFIG_SCHED_DEBUG | 2035 | #ifdef CONFIG_SCHED_DEBUG |
1836 | extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); | 2036 | extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); |
1837 | 2037 | ||
1838 | static void print_rt_stats(struct seq_file *m, int cpu) | 2038 | void print_rt_stats(struct seq_file *m, int cpu) |
1839 | { | 2039 | { |
1840 | rt_rq_iter_t iter; | 2040 | rt_rq_iter_t iter; |
1841 | struct rt_rq *rt_rq; | 2041 | struct rt_rq *rt_rq; |
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h new file mode 100644 index 000000000000..98c0c2623db8 --- /dev/null +++ b/kernel/sched/sched.h | |||
@@ -0,0 +1,1166 @@ | |||
1 | |||
2 | #include <linux/sched.h> | ||
3 | #include <linux/mutex.h> | ||
4 | #include <linux/spinlock.h> | ||
5 | #include <linux/stop_machine.h> | ||
6 | |||
7 | #include "cpupri.h" | ||
8 | |||
9 | extern __read_mostly int scheduler_running; | ||
10 | |||
11 | /* | ||
12 | * Convert user-nice values [ -20 ... 0 ... 19 ] | ||
13 | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | ||
14 | * and back. | ||
15 | */ | ||
16 | #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) | ||
17 | #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) | ||
18 | #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) | ||
19 | |||
20 | /* | ||
21 | * 'User priority' is the nice value converted to something we | ||
22 | * can work with better when scaling various scheduler parameters, | ||
23 | * it's a [ 0 ... 39 ] range. | ||
24 | */ | ||
25 | #define USER_PRIO(p) ((p)-MAX_RT_PRIO) | ||
26 | #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) | ||
27 | #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) | ||
28 | |||
29 | /* | ||
30 | * Helpers for converting nanosecond timing to jiffy resolution | ||
31 | */ | ||
32 | #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) | ||
33 | |||
34 | #define NICE_0_LOAD SCHED_LOAD_SCALE | ||
35 | #define NICE_0_SHIFT SCHED_LOAD_SHIFT | ||
36 | |||
37 | /* | ||
38 | * These are the 'tuning knobs' of the scheduler: | ||
39 | * | ||
40 | * default timeslice is 100 msecs (used only for SCHED_RR tasks). | ||
41 | * Timeslices get refilled after they expire. | ||
42 | */ | ||
43 | #define DEF_TIMESLICE (100 * HZ / 1000) | ||
44 | |||
45 | /* | ||
46 | * single value that denotes runtime == period, ie unlimited time. | ||
47 | */ | ||
48 | #define RUNTIME_INF ((u64)~0ULL) | ||
49 | |||
50 | static inline int rt_policy(int policy) | ||
51 | { | ||
52 | if (policy == SCHED_FIFO || policy == SCHED_RR) | ||
53 | return 1; | ||
54 | return 0; | ||
55 | } | ||
56 | |||
57 | static inline int task_has_rt_policy(struct task_struct *p) | ||
58 | { | ||
59 | return rt_policy(p->policy); | ||
60 | } | ||
61 | |||
62 | /* | ||
63 | * This is the priority-queue data structure of the RT scheduling class: | ||
64 | */ | ||
65 | struct rt_prio_array { | ||
66 | DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ | ||
67 | struct list_head queue[MAX_RT_PRIO]; | ||
68 | }; | ||
69 | |||
70 | struct rt_bandwidth { | ||
71 | /* nests inside the rq lock: */ | ||
72 | raw_spinlock_t rt_runtime_lock; | ||
73 | ktime_t rt_period; | ||
74 | u64 rt_runtime; | ||
75 | struct hrtimer rt_period_timer; | ||
76 | }; | ||
77 | |||
78 | extern struct mutex sched_domains_mutex; | ||
79 | |||
80 | #ifdef CONFIG_CGROUP_SCHED | ||
81 | |||
82 | #include <linux/cgroup.h> | ||
83 | |||
84 | struct cfs_rq; | ||
85 | struct rt_rq; | ||
86 | |||
87 | static LIST_HEAD(task_groups); | ||
88 | |||
89 | struct cfs_bandwidth { | ||
90 | #ifdef CONFIG_CFS_BANDWIDTH | ||
91 | raw_spinlock_t lock; | ||
92 | ktime_t period; | ||
93 | u64 quota, runtime; | ||
94 | s64 hierarchal_quota; | ||
95 | u64 runtime_expires; | ||
96 | |||
97 | int idle, timer_active; | ||
98 | struct hrtimer period_timer, slack_timer; | ||
99 | struct list_head throttled_cfs_rq; | ||
100 | |||
101 | /* statistics */ | ||
102 | int nr_periods, nr_throttled; | ||
103 | u64 throttled_time; | ||
104 | #endif | ||
105 | }; | ||
106 | |||
107 | /* task group related information */ | ||
108 | struct task_group { | ||
109 | struct cgroup_subsys_state css; | ||
110 | |||
111 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
112 | /* schedulable entities of this group on each cpu */ | ||
113 | struct sched_entity **se; | ||
114 | /* runqueue "owned" by this group on each cpu */ | ||
115 | struct cfs_rq **cfs_rq; | ||
116 | unsigned long shares; | ||
117 | |||
118 | atomic_t load_weight; | ||
119 | #endif | ||
120 | |||
121 | #ifdef CONFIG_RT_GROUP_SCHED | ||
122 | struct sched_rt_entity **rt_se; | ||
123 | struct rt_rq **rt_rq; | ||
124 | |||
125 | struct rt_bandwidth rt_bandwidth; | ||
126 | #endif | ||
127 | |||
128 | struct rcu_head rcu; | ||
129 | struct list_head list; | ||
130 | |||
131 | struct task_group *parent; | ||
132 | struct list_head siblings; | ||
133 | struct list_head children; | ||
134 | |||
135 | #ifdef CONFIG_SCHED_AUTOGROUP | ||
136 | struct autogroup *autogroup; | ||
137 | #endif | ||
138 | |||
139 | struct cfs_bandwidth cfs_bandwidth; | ||
140 | }; | ||
141 | |||
142 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
143 | #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD | ||
144 | |||
145 | /* | ||
146 | * A weight of 0 or 1 can cause arithmetics problems. | ||
147 | * A weight of a cfs_rq is the sum of weights of which entities | ||
148 | * are queued on this cfs_rq, so a weight of a entity should not be | ||
149 | * too large, so as the shares value of a task group. | ||
150 | * (The default weight is 1024 - so there's no practical | ||
151 | * limitation from this.) | ||
152 | */ | ||
153 | #define MIN_SHARES (1UL << 1) | ||
154 | #define MAX_SHARES (1UL << 18) | ||
155 | #endif | ||
156 | |||
157 | /* Default task group. | ||
158 | * Every task in system belong to this group at bootup. | ||
159 | */ | ||
160 | extern struct task_group root_task_group; | ||
161 | |||
162 | typedef int (*tg_visitor)(struct task_group *, void *); | ||
163 | |||
164 | extern int walk_tg_tree_from(struct task_group *from, | ||
165 | tg_visitor down, tg_visitor up, void *data); | ||
166 | |||
167 | /* | ||
168 | * Iterate the full tree, calling @down when first entering a node and @up when | ||
169 | * leaving it for the final time. | ||
170 | * | ||
171 | * Caller must hold rcu_lock or sufficient equivalent. | ||
172 | */ | ||
173 | static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) | ||
174 | { | ||
175 | return walk_tg_tree_from(&root_task_group, down, up, data); | ||
176 | } | ||
177 | |||
178 | extern int tg_nop(struct task_group *tg, void *data); | ||
179 | |||
180 | extern void free_fair_sched_group(struct task_group *tg); | ||
181 | extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); | ||
182 | extern void unregister_fair_sched_group(struct task_group *tg, int cpu); | ||
183 | extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, | ||
184 | struct sched_entity *se, int cpu, | ||
185 | struct sched_entity *parent); | ||
186 | extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); | ||
187 | extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); | ||
188 | |||
189 | extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); | ||
190 | extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); | ||
191 | extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); | ||
192 | |||
193 | extern void free_rt_sched_group(struct task_group *tg); | ||
194 | extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); | ||
195 | extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, | ||
196 | struct sched_rt_entity *rt_se, int cpu, | ||
197 | struct sched_rt_entity *parent); | ||
198 | |||
199 | #else /* CONFIG_CGROUP_SCHED */ | ||
200 | |||
201 | struct cfs_bandwidth { }; | ||
202 | |||
203 | #endif /* CONFIG_CGROUP_SCHED */ | ||
204 | |||
205 | /* CFS-related fields in a runqueue */ | ||
206 | struct cfs_rq { | ||
207 | struct load_weight load; | ||
208 | unsigned long nr_running, h_nr_running; | ||
209 | |||
210 | u64 exec_clock; | ||
211 | u64 min_vruntime; | ||
212 | #ifndef CONFIG_64BIT | ||
213 | u64 min_vruntime_copy; | ||
214 | #endif | ||
215 | |||
216 | struct rb_root tasks_timeline; | ||
217 | struct rb_node *rb_leftmost; | ||
218 | |||
219 | struct list_head tasks; | ||
220 | struct list_head *balance_iterator; | ||
221 | |||
222 | /* | ||
223 | * 'curr' points to currently running entity on this cfs_rq. | ||
224 | * It is set to NULL otherwise (i.e when none are currently running). | ||
225 | */ | ||
226 | struct sched_entity *curr, *next, *last, *skip; | ||
227 | |||
228 | #ifdef CONFIG_SCHED_DEBUG | ||
229 | unsigned int nr_spread_over; | ||
230 | #endif | ||
231 | |||
232 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
233 | struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ | ||
234 | |||
235 | /* | ||
236 | * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in | ||
237 | * a hierarchy). Non-leaf lrqs hold other higher schedulable entities | ||
238 | * (like users, containers etc.) | ||
239 | * | ||
240 | * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This | ||
241 | * list is used during load balance. | ||
242 | */ | ||
243 | int on_list; | ||
244 | struct list_head leaf_cfs_rq_list; | ||
245 | struct task_group *tg; /* group that "owns" this runqueue */ | ||
246 | |||
247 | #ifdef CONFIG_SMP | ||
248 | /* | ||
249 | * the part of load.weight contributed by tasks | ||
250 | */ | ||
251 | unsigned long task_weight; | ||
252 | |||
253 | /* | ||
254 | * h_load = weight * f(tg) | ||
255 | * | ||
256 | * Where f(tg) is the recursive weight fraction assigned to | ||
257 | * this group. | ||
258 | */ | ||
259 | unsigned long h_load; | ||
260 | |||
261 | /* | ||
262 | * Maintaining per-cpu shares distribution for group scheduling | ||
263 | * | ||
264 | * load_stamp is the last time we updated the load average | ||
265 | * load_last is the last time we updated the load average and saw load | ||
266 | * load_unacc_exec_time is currently unaccounted execution time | ||
267 | */ | ||
268 | u64 load_avg; | ||
269 | u64 load_period; | ||
270 | u64 load_stamp, load_last, load_unacc_exec_time; | ||
271 | |||
272 | unsigned long load_contribution; | ||
273 | #endif /* CONFIG_SMP */ | ||
274 | #ifdef CONFIG_CFS_BANDWIDTH | ||
275 | int runtime_enabled; | ||
276 | u64 runtime_expires; | ||
277 | s64 runtime_remaining; | ||
278 | |||
279 | u64 throttled_timestamp; | ||
280 | int throttled, throttle_count; | ||
281 | struct list_head throttled_list; | ||
282 | #endif /* CONFIG_CFS_BANDWIDTH */ | ||
283 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | ||
284 | }; | ||
285 | |||
286 | static inline int rt_bandwidth_enabled(void) | ||
287 | { | ||
288 | return sysctl_sched_rt_runtime >= 0; | ||
289 | } | ||
290 | |||
291 | /* Real-Time classes' related field in a runqueue: */ | ||
292 | struct rt_rq { | ||
293 | struct rt_prio_array active; | ||
294 | unsigned long rt_nr_running; | ||
295 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | ||
296 | struct { | ||
297 | int curr; /* highest queued rt task prio */ | ||
298 | #ifdef CONFIG_SMP | ||
299 | int next; /* next highest */ | ||
300 | #endif | ||
301 | } highest_prio; | ||
302 | #endif | ||
303 | #ifdef CONFIG_SMP | ||
304 | unsigned long rt_nr_migratory; | ||
305 | unsigned long rt_nr_total; | ||
306 | int overloaded; | ||
307 | struct plist_head pushable_tasks; | ||
308 | #endif | ||
309 | int rt_throttled; | ||
310 | u64 rt_time; | ||
311 | u64 rt_runtime; | ||
312 | /* Nests inside the rq lock: */ | ||
313 | raw_spinlock_t rt_runtime_lock; | ||
314 | |||
315 | #ifdef CONFIG_RT_GROUP_SCHED | ||
316 | unsigned long rt_nr_boosted; | ||
317 | |||
318 | struct rq *rq; | ||
319 | struct list_head leaf_rt_rq_list; | ||
320 | struct task_group *tg; | ||
321 | #endif | ||
322 | }; | ||
323 | |||
324 | #ifdef CONFIG_SMP | ||
325 | |||
326 | /* | ||
327 | * We add the notion of a root-domain which will be used to define per-domain | ||
328 | * variables. Each exclusive cpuset essentially defines an island domain by | ||
329 | * fully partitioning the member cpus from any other cpuset. Whenever a new | ||
330 | * exclusive cpuset is created, we also create and attach a new root-domain | ||
331 | * object. | ||
332 | * | ||
333 | */ | ||
334 | struct root_domain { | ||
335 | atomic_t refcount; | ||
336 | atomic_t rto_count; | ||
337 | struct rcu_head rcu; | ||
338 | cpumask_var_t span; | ||
339 | cpumask_var_t online; | ||
340 | |||
341 | /* | ||
342 | * The "RT overload" flag: it gets set if a CPU has more than | ||
343 | * one runnable RT task. | ||
344 | */ | ||
345 | cpumask_var_t rto_mask; | ||
346 | struct cpupri cpupri; | ||
347 | }; | ||
348 | |||
349 | extern struct root_domain def_root_domain; | ||
350 | |||
351 | #endif /* CONFIG_SMP */ | ||
352 | |||
353 | /* | ||
354 | * This is the main, per-CPU runqueue data structure. | ||
355 | * | ||
356 | * Locking rule: those places that want to lock multiple runqueues | ||
357 | * (such as the load balancing or the thread migration code), lock | ||
358 | * acquire operations must be ordered by ascending &runqueue. | ||
359 | */ | ||
360 | struct rq { | ||
361 | /* runqueue lock: */ | ||
362 | raw_spinlock_t lock; | ||
363 | |||
364 | /* | ||
365 | * nr_running and cpu_load should be in the same cacheline because | ||
366 | * remote CPUs use both these fields when doing load calculation. | ||
367 | */ | ||
368 | unsigned long nr_running; | ||
369 | #define CPU_LOAD_IDX_MAX 5 | ||
370 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | ||
371 | unsigned long last_load_update_tick; | ||
372 | #ifdef CONFIG_NO_HZ | ||
373 | u64 nohz_stamp; | ||
374 | unsigned long nohz_flags; | ||
375 | #endif | ||
376 | int skip_clock_update; | ||
377 | |||
378 | /* capture load from *all* tasks on this cpu: */ | ||
379 | struct load_weight load; | ||
380 | unsigned long nr_load_updates; | ||
381 | u64 nr_switches; | ||
382 | |||
383 | struct cfs_rq cfs; | ||
384 | struct rt_rq rt; | ||
385 | |||
386 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
387 | /* list of leaf cfs_rq on this cpu: */ | ||
388 | struct list_head leaf_cfs_rq_list; | ||
389 | #endif | ||
390 | #ifdef CONFIG_RT_GROUP_SCHED | ||
391 | struct list_head leaf_rt_rq_list; | ||
392 | #endif | ||
393 | |||
394 | /* | ||
395 | * This is part of a global counter where only the total sum | ||
396 | * over all CPUs matters. A task can increase this counter on | ||
397 | * one CPU and if it got migrated afterwards it may decrease | ||
398 | * it on another CPU. Always updated under the runqueue lock: | ||
399 | */ | ||
400 | unsigned long nr_uninterruptible; | ||
401 | |||
402 | struct task_struct *curr, *idle, *stop; | ||
403 | unsigned long next_balance; | ||
404 | struct mm_struct *prev_mm; | ||
405 | |||
406 | u64 clock; | ||
407 | u64 clock_task; | ||
408 | |||
409 | atomic_t nr_iowait; | ||
410 | |||
411 | #ifdef CONFIG_SMP | ||
412 | struct root_domain *rd; | ||
413 | struct sched_domain *sd; | ||
414 | |||
415 | unsigned long cpu_power; | ||
416 | |||
417 | unsigned char idle_balance; | ||
418 | /* For active balancing */ | ||
419 | int post_schedule; | ||
420 | int active_balance; | ||
421 | int push_cpu; | ||
422 | struct cpu_stop_work active_balance_work; | ||
423 | /* cpu of this runqueue: */ | ||
424 | int cpu; | ||
425 | int online; | ||
426 | |||
427 | u64 rt_avg; | ||
428 | u64 age_stamp; | ||
429 | u64 idle_stamp; | ||
430 | u64 avg_idle; | ||
431 | #endif | ||
432 | |||
433 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | ||
434 | u64 prev_irq_time; | ||
435 | #endif | ||
436 | #ifdef CONFIG_PARAVIRT | ||
437 | u64 prev_steal_time; | ||
438 | #endif | ||
439 | #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING | ||
440 | u64 prev_steal_time_rq; | ||
441 | #endif | ||
442 | |||
443 | /* calc_load related fields */ | ||
444 | unsigned long calc_load_update; | ||
445 | long calc_load_active; | ||
446 | |||
447 | #ifdef CONFIG_SCHED_HRTICK | ||
448 | #ifdef CONFIG_SMP | ||
449 | int hrtick_csd_pending; | ||
450 | struct call_single_data hrtick_csd; | ||
451 | #endif | ||
452 | struct hrtimer hrtick_timer; | ||
453 | #endif | ||
454 | |||
455 | #ifdef CONFIG_SCHEDSTATS | ||
456 | /* latency stats */ | ||
457 | struct sched_info rq_sched_info; | ||
458 | unsigned long long rq_cpu_time; | ||
459 | /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ | ||
460 | |||
461 | /* sys_sched_yield() stats */ | ||
462 | unsigned int yld_count; | ||
463 | |||
464 | /* schedule() stats */ | ||
465 | unsigned int sched_switch; | ||
466 | unsigned int sched_count; | ||
467 | unsigned int sched_goidle; | ||
468 | |||
469 | /* try_to_wake_up() stats */ | ||
470 | unsigned int ttwu_count; | ||
471 | unsigned int ttwu_local; | ||
472 | #endif | ||
473 | |||
474 | #ifdef CONFIG_SMP | ||
475 | struct llist_head wake_list; | ||
476 | #endif | ||
477 | }; | ||
478 | |||
479 | static inline int cpu_of(struct rq *rq) | ||
480 | { | ||
481 | #ifdef CONFIG_SMP | ||
482 | return rq->cpu; | ||
483 | #else | ||
484 | return 0; | ||
485 | #endif | ||
486 | } | ||
487 | |||
488 | DECLARE_PER_CPU(struct rq, runqueues); | ||
489 | |||
490 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) | ||
491 | #define this_rq() (&__get_cpu_var(runqueues)) | ||
492 | #define task_rq(p) cpu_rq(task_cpu(p)) | ||
493 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) | ||
494 | #define raw_rq() (&__raw_get_cpu_var(runqueues)) | ||
495 | |||
496 | #ifdef CONFIG_SMP | ||
497 | |||
498 | #define rcu_dereference_check_sched_domain(p) \ | ||
499 | rcu_dereference_check((p), \ | ||
500 | lockdep_is_held(&sched_domains_mutex)) | ||
501 | |||
502 | /* | ||
503 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | ||
504 | * See detach_destroy_domains: synchronize_sched for details. | ||
505 | * | ||
506 | * The domain tree of any CPU may only be accessed from within | ||
507 | * preempt-disabled sections. | ||
508 | */ | ||
509 | #define for_each_domain(cpu, __sd) \ | ||
510 | for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ | ||
511 | __sd; __sd = __sd->parent) | ||
512 | |||
513 | #define for_each_lower_domain(sd) for (; sd; sd = sd->child) | ||
514 | |||
515 | /** | ||
516 | * highest_flag_domain - Return highest sched_domain containing flag. | ||
517 | * @cpu: The cpu whose highest level of sched domain is to | ||
518 | * be returned. | ||
519 | * @flag: The flag to check for the highest sched_domain | ||
520 | * for the given cpu. | ||
521 | * | ||
522 | * Returns the highest sched_domain of a cpu which contains the given flag. | ||
523 | */ | ||
524 | static inline struct sched_domain *highest_flag_domain(int cpu, int flag) | ||
525 | { | ||
526 | struct sched_domain *sd, *hsd = NULL; | ||
527 | |||
528 | for_each_domain(cpu, sd) { | ||
529 | if (!(sd->flags & flag)) | ||
530 | break; | ||
531 | hsd = sd; | ||
532 | } | ||
533 | |||
534 | return hsd; | ||
535 | } | ||
536 | |||
537 | DECLARE_PER_CPU(struct sched_domain *, sd_llc); | ||
538 | DECLARE_PER_CPU(int, sd_llc_id); | ||
539 | |||
540 | #endif /* CONFIG_SMP */ | ||
541 | |||
542 | #include "stats.h" | ||
543 | #include "auto_group.h" | ||
544 | |||
545 | #ifdef CONFIG_CGROUP_SCHED | ||
546 | |||
547 | /* | ||
548 | * Return the group to which this tasks belongs. | ||
549 | * | ||
550 | * We use task_subsys_state_check() and extend the RCU verification with | ||
551 | * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each | ||
552 | * task it moves into the cgroup. Therefore by holding either of those locks, | ||
553 | * we pin the task to the current cgroup. | ||
554 | */ | ||
555 | static inline struct task_group *task_group(struct task_struct *p) | ||
556 | { | ||
557 | struct task_group *tg; | ||
558 | struct cgroup_subsys_state *css; | ||
559 | |||
560 | css = task_subsys_state_check(p, cpu_cgroup_subsys_id, | ||
561 | lockdep_is_held(&p->pi_lock) || | ||
562 | lockdep_is_held(&task_rq(p)->lock)); | ||
563 | tg = container_of(css, struct task_group, css); | ||
564 | |||
565 | return autogroup_task_group(p, tg); | ||
566 | } | ||
567 | |||
568 | /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ | ||
569 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) | ||
570 | { | ||
571 | #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) | ||
572 | struct task_group *tg = task_group(p); | ||
573 | #endif | ||
574 | |||
575 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
576 | p->se.cfs_rq = tg->cfs_rq[cpu]; | ||
577 | p->se.parent = tg->se[cpu]; | ||
578 | #endif | ||
579 | |||
580 | #ifdef CONFIG_RT_GROUP_SCHED | ||
581 | p->rt.rt_rq = tg->rt_rq[cpu]; | ||
582 | p->rt.parent = tg->rt_se[cpu]; | ||
583 | #endif | ||
584 | } | ||
585 | |||
586 | #else /* CONFIG_CGROUP_SCHED */ | ||
587 | |||
588 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | ||
589 | static inline struct task_group *task_group(struct task_struct *p) | ||
590 | { | ||
591 | return NULL; | ||
592 | } | ||
593 | |||
594 | #endif /* CONFIG_CGROUP_SCHED */ | ||
595 | |||
596 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) | ||
597 | { | ||
598 | set_task_rq(p, cpu); | ||
599 | #ifdef CONFIG_SMP | ||
600 | /* | ||
601 | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be | ||
602 | * successfuly executed on another CPU. We must ensure that updates of | ||
603 | * per-task data have been completed by this moment. | ||
604 | */ | ||
605 | smp_wmb(); | ||
606 | task_thread_info(p)->cpu = cpu; | ||
607 | #endif | ||
608 | } | ||
609 | |||
610 | /* | ||
611 | * Tunables that become constants when CONFIG_SCHED_DEBUG is off: | ||
612 | */ | ||
613 | #ifdef CONFIG_SCHED_DEBUG | ||
614 | # include <linux/jump_label.h> | ||
615 | # define const_debug __read_mostly | ||
616 | #else | ||
617 | # define const_debug const | ||
618 | #endif | ||
619 | |||
620 | extern const_debug unsigned int sysctl_sched_features; | ||
621 | |||
622 | #define SCHED_FEAT(name, enabled) \ | ||
623 | __SCHED_FEAT_##name , | ||
624 | |||
625 | enum { | ||
626 | #include "features.h" | ||
627 | __SCHED_FEAT_NR, | ||
628 | }; | ||
629 | |||
630 | #undef SCHED_FEAT | ||
631 | |||
632 | #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) | ||
633 | static __always_inline bool static_branch__true(struct jump_label_key *key) | ||
634 | { | ||
635 | return likely(static_branch(key)); /* Not out of line branch. */ | ||
636 | } | ||
637 | |||
638 | static __always_inline bool static_branch__false(struct jump_label_key *key) | ||
639 | { | ||
640 | return unlikely(static_branch(key)); /* Out of line branch. */ | ||
641 | } | ||
642 | |||
643 | #define SCHED_FEAT(name, enabled) \ | ||
644 | static __always_inline bool static_branch_##name(struct jump_label_key *key) \ | ||
645 | { \ | ||
646 | return static_branch__##enabled(key); \ | ||
647 | } | ||
648 | |||
649 | #include "features.h" | ||
650 | |||
651 | #undef SCHED_FEAT | ||
652 | |||
653 | extern struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR]; | ||
654 | #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) | ||
655 | #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */ | ||
656 | #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) | ||
657 | #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */ | ||
658 | |||
659 | static inline u64 global_rt_period(void) | ||
660 | { | ||
661 | return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; | ||
662 | } | ||
663 | |||
664 | static inline u64 global_rt_runtime(void) | ||
665 | { | ||
666 | if (sysctl_sched_rt_runtime < 0) | ||
667 | return RUNTIME_INF; | ||
668 | |||
669 | return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; | ||
670 | } | ||
671 | |||
672 | |||
673 | |||
674 | static inline int task_current(struct rq *rq, struct task_struct *p) | ||
675 | { | ||
676 | return rq->curr == p; | ||
677 | } | ||
678 | |||
679 | static inline int task_running(struct rq *rq, struct task_struct *p) | ||
680 | { | ||
681 | #ifdef CONFIG_SMP | ||
682 | return p->on_cpu; | ||
683 | #else | ||
684 | return task_current(rq, p); | ||
685 | #endif | ||
686 | } | ||
687 | |||
688 | |||
689 | #ifndef prepare_arch_switch | ||
690 | # define prepare_arch_switch(next) do { } while (0) | ||
691 | #endif | ||
692 | #ifndef finish_arch_switch | ||
693 | # define finish_arch_switch(prev) do { } while (0) | ||
694 | #endif | ||
695 | |||
696 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | ||
697 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | ||
698 | { | ||
699 | #ifdef CONFIG_SMP | ||
700 | /* | ||
701 | * We can optimise this out completely for !SMP, because the | ||
702 | * SMP rebalancing from interrupt is the only thing that cares | ||
703 | * here. | ||
704 | */ | ||
705 | next->on_cpu = 1; | ||
706 | #endif | ||
707 | } | ||
708 | |||
709 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | ||
710 | { | ||
711 | #ifdef CONFIG_SMP | ||
712 | /* | ||
713 | * After ->on_cpu is cleared, the task can be moved to a different CPU. | ||
714 | * We must ensure this doesn't happen until the switch is completely | ||
715 | * finished. | ||
716 | */ | ||
717 | smp_wmb(); | ||
718 | prev->on_cpu = 0; | ||
719 | #endif | ||
720 | #ifdef CONFIG_DEBUG_SPINLOCK | ||
721 | /* this is a valid case when another task releases the spinlock */ | ||
722 | rq->lock.owner = current; | ||
723 | #endif | ||
724 | /* | ||
725 | * If we are tracking spinlock dependencies then we have to | ||
726 | * fix up the runqueue lock - which gets 'carried over' from | ||
727 | * prev into current: | ||
728 | */ | ||
729 | spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); | ||
730 | |||
731 | raw_spin_unlock_irq(&rq->lock); | ||
732 | } | ||
733 | |||
734 | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ | ||
735 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | ||
736 | { | ||
737 | #ifdef CONFIG_SMP | ||
738 | /* | ||
739 | * We can optimise this out completely for !SMP, because the | ||
740 | * SMP rebalancing from interrupt is the only thing that cares | ||
741 | * here. | ||
742 | */ | ||
743 | next->on_cpu = 1; | ||
744 | #endif | ||
745 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | ||
746 | raw_spin_unlock_irq(&rq->lock); | ||
747 | #else | ||
748 | raw_spin_unlock(&rq->lock); | ||
749 | #endif | ||
750 | } | ||
751 | |||
752 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | ||
753 | { | ||
754 | #ifdef CONFIG_SMP | ||
755 | /* | ||
756 | * After ->on_cpu is cleared, the task can be moved to a different CPU. | ||
757 | * We must ensure this doesn't happen until the switch is completely | ||
758 | * finished. | ||
759 | */ | ||
760 | smp_wmb(); | ||
761 | prev->on_cpu = 0; | ||
762 | #endif | ||
763 | #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW | ||
764 | local_irq_enable(); | ||
765 | #endif | ||
766 | } | ||
767 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | ||
768 | |||
769 | |||
770 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) | ||
771 | { | ||
772 | lw->weight += inc; | ||
773 | lw->inv_weight = 0; | ||
774 | } | ||
775 | |||
776 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) | ||
777 | { | ||
778 | lw->weight -= dec; | ||
779 | lw->inv_weight = 0; | ||
780 | } | ||
781 | |||
782 | static inline void update_load_set(struct load_weight *lw, unsigned long w) | ||
783 | { | ||
784 | lw->weight = w; | ||
785 | lw->inv_weight = 0; | ||
786 | } | ||
787 | |||
788 | /* | ||
789 | * To aid in avoiding the subversion of "niceness" due to uneven distribution | ||
790 | * of tasks with abnormal "nice" values across CPUs the contribution that | ||
791 | * each task makes to its run queue's load is weighted according to its | ||
792 | * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a | ||
793 | * scaled version of the new time slice allocation that they receive on time | ||
794 | * slice expiry etc. | ||
795 | */ | ||
796 | |||
797 | #define WEIGHT_IDLEPRIO 3 | ||
798 | #define WMULT_IDLEPRIO 1431655765 | ||
799 | |||
800 | /* | ||
801 | * Nice levels are multiplicative, with a gentle 10% change for every | ||
802 | * nice level changed. I.e. when a CPU-bound task goes from nice 0 to | ||
803 | * nice 1, it will get ~10% less CPU time than another CPU-bound task | ||
804 | * that remained on nice 0. | ||
805 | * | ||
806 | * The "10% effect" is relative and cumulative: from _any_ nice level, | ||
807 | * if you go up 1 level, it's -10% CPU usage, if you go down 1 level | ||
808 | * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. | ||
809 | * If a task goes up by ~10% and another task goes down by ~10% then | ||
810 | * the relative distance between them is ~25%.) | ||
811 | */ | ||
812 | static const int prio_to_weight[40] = { | ||
813 | /* -20 */ 88761, 71755, 56483, 46273, 36291, | ||
814 | /* -15 */ 29154, 23254, 18705, 14949, 11916, | ||
815 | /* -10 */ 9548, 7620, 6100, 4904, 3906, | ||
816 | /* -5 */ 3121, 2501, 1991, 1586, 1277, | ||
817 | /* 0 */ 1024, 820, 655, 526, 423, | ||
818 | /* 5 */ 335, 272, 215, 172, 137, | ||
819 | /* 10 */ 110, 87, 70, 56, 45, | ||
820 | /* 15 */ 36, 29, 23, 18, 15, | ||
821 | }; | ||
822 | |||
823 | /* | ||
824 | * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. | ||
825 | * | ||
826 | * In cases where the weight does not change often, we can use the | ||
827 | * precalculated inverse to speed up arithmetics by turning divisions | ||
828 | * into multiplications: | ||
829 | */ | ||
830 | static const u32 prio_to_wmult[40] = { | ||
831 | /* -20 */ 48388, 59856, 76040, 92818, 118348, | ||
832 | /* -15 */ 147320, 184698, 229616, 287308, 360437, | ||
833 | /* -10 */ 449829, 563644, 704093, 875809, 1099582, | ||
834 | /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, | ||
835 | /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, | ||
836 | /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, | ||
837 | /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, | ||
838 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, | ||
839 | }; | ||
840 | |||
841 | /* Time spent by the tasks of the cpu accounting group executing in ... */ | ||
842 | enum cpuacct_stat_index { | ||
843 | CPUACCT_STAT_USER, /* ... user mode */ | ||
844 | CPUACCT_STAT_SYSTEM, /* ... kernel mode */ | ||
845 | |||
846 | CPUACCT_STAT_NSTATS, | ||
847 | }; | ||
848 | |||
849 | |||
850 | #define sched_class_highest (&stop_sched_class) | ||
851 | #define for_each_class(class) \ | ||
852 | for (class = sched_class_highest; class; class = class->next) | ||
853 | |||
854 | extern const struct sched_class stop_sched_class; | ||
855 | extern const struct sched_class rt_sched_class; | ||
856 | extern const struct sched_class fair_sched_class; | ||
857 | extern const struct sched_class idle_sched_class; | ||
858 | |||
859 | |||
860 | #ifdef CONFIG_SMP | ||
861 | |||
862 | extern void trigger_load_balance(struct rq *rq, int cpu); | ||
863 | extern void idle_balance(int this_cpu, struct rq *this_rq); | ||
864 | |||
865 | #else /* CONFIG_SMP */ | ||
866 | |||
867 | static inline void idle_balance(int cpu, struct rq *rq) | ||
868 | { | ||
869 | } | ||
870 | |||
871 | #endif | ||
872 | |||
873 | extern void sysrq_sched_debug_show(void); | ||
874 | extern void sched_init_granularity(void); | ||
875 | extern void update_max_interval(void); | ||
876 | extern void update_group_power(struct sched_domain *sd, int cpu); | ||
877 | extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu); | ||
878 | extern void init_sched_rt_class(void); | ||
879 | extern void init_sched_fair_class(void); | ||
880 | |||
881 | extern void resched_task(struct task_struct *p); | ||
882 | extern void resched_cpu(int cpu); | ||
883 | |||
884 | extern struct rt_bandwidth def_rt_bandwidth; | ||
885 | extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); | ||
886 | |||
887 | extern void update_cpu_load(struct rq *this_rq); | ||
888 | |||
889 | #ifdef CONFIG_CGROUP_CPUACCT | ||
890 | #include <linux/cgroup.h> | ||
891 | /* track cpu usage of a group of tasks and its child groups */ | ||
892 | struct cpuacct { | ||
893 | struct cgroup_subsys_state css; | ||
894 | /* cpuusage holds pointer to a u64-type object on every cpu */ | ||
895 | u64 __percpu *cpuusage; | ||
896 | struct kernel_cpustat __percpu *cpustat; | ||
897 | }; | ||
898 | |||
899 | /* return cpu accounting group corresponding to this container */ | ||
900 | static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) | ||
901 | { | ||
902 | return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), | ||
903 | struct cpuacct, css); | ||
904 | } | ||
905 | |||
906 | /* return cpu accounting group to which this task belongs */ | ||
907 | static inline struct cpuacct *task_ca(struct task_struct *tsk) | ||
908 | { | ||
909 | return container_of(task_subsys_state(tsk, cpuacct_subsys_id), | ||
910 | struct cpuacct, css); | ||
911 | } | ||
912 | |||
913 | static inline struct cpuacct *parent_ca(struct cpuacct *ca) | ||
914 | { | ||
915 | if (!ca || !ca->css.cgroup->parent) | ||
916 | return NULL; | ||
917 | return cgroup_ca(ca->css.cgroup->parent); | ||
918 | } | ||
919 | |||
920 | extern void cpuacct_charge(struct task_struct *tsk, u64 cputime); | ||
921 | #else | ||
922 | static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} | ||
923 | #endif | ||
924 | |||
925 | static inline void inc_nr_running(struct rq *rq) | ||
926 | { | ||
927 | rq->nr_running++; | ||
928 | } | ||
929 | |||
930 | static inline void dec_nr_running(struct rq *rq) | ||
931 | { | ||
932 | rq->nr_running--; | ||
933 | } | ||
934 | |||
935 | extern void update_rq_clock(struct rq *rq); | ||
936 | |||
937 | extern void activate_task(struct rq *rq, struct task_struct *p, int flags); | ||
938 | extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); | ||
939 | |||
940 | extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); | ||
941 | |||
942 | extern const_debug unsigned int sysctl_sched_time_avg; | ||
943 | extern const_debug unsigned int sysctl_sched_nr_migrate; | ||
944 | extern const_debug unsigned int sysctl_sched_migration_cost; | ||
945 | |||
946 | static inline u64 sched_avg_period(void) | ||
947 | { | ||
948 | return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; | ||
949 | } | ||
950 | |||
951 | void calc_load_account_idle(struct rq *this_rq); | ||
952 | |||
953 | #ifdef CONFIG_SCHED_HRTICK | ||
954 | |||
955 | /* | ||
956 | * Use hrtick when: | ||
957 | * - enabled by features | ||
958 | * - hrtimer is actually high res | ||
959 | */ | ||
960 | static inline int hrtick_enabled(struct rq *rq) | ||
961 | { | ||
962 | if (!sched_feat(HRTICK)) | ||
963 | return 0; | ||
964 | if (!cpu_active(cpu_of(rq))) | ||
965 | return 0; | ||
966 | return hrtimer_is_hres_active(&rq->hrtick_timer); | ||
967 | } | ||
968 | |||
969 | void hrtick_start(struct rq *rq, u64 delay); | ||
970 | |||
971 | #else | ||
972 | |||
973 | static inline int hrtick_enabled(struct rq *rq) | ||
974 | { | ||
975 | return 0; | ||
976 | } | ||
977 | |||
978 | #endif /* CONFIG_SCHED_HRTICK */ | ||
979 | |||
980 | #ifdef CONFIG_SMP | ||
981 | extern void sched_avg_update(struct rq *rq); | ||
982 | static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) | ||
983 | { | ||
984 | rq->rt_avg += rt_delta; | ||
985 | sched_avg_update(rq); | ||
986 | } | ||
987 | #else | ||
988 | static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } | ||
989 | static inline void sched_avg_update(struct rq *rq) { } | ||
990 | #endif | ||
991 | |||
992 | extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period); | ||
993 | |||
994 | #ifdef CONFIG_SMP | ||
995 | #ifdef CONFIG_PREEMPT | ||
996 | |||
997 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); | ||
998 | |||
999 | /* | ||
1000 | * fair double_lock_balance: Safely acquires both rq->locks in a fair | ||
1001 | * way at the expense of forcing extra atomic operations in all | ||
1002 | * invocations. This assures that the double_lock is acquired using the | ||
1003 | * same underlying policy as the spinlock_t on this architecture, which | ||
1004 | * reduces latency compared to the unfair variant below. However, it | ||
1005 | * also adds more overhead and therefore may reduce throughput. | ||
1006 | */ | ||
1007 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | ||
1008 | __releases(this_rq->lock) | ||
1009 | __acquires(busiest->lock) | ||
1010 | __acquires(this_rq->lock) | ||
1011 | { | ||
1012 | raw_spin_unlock(&this_rq->lock); | ||
1013 | double_rq_lock(this_rq, busiest); | ||
1014 | |||
1015 | return 1; | ||
1016 | } | ||
1017 | |||
1018 | #else | ||
1019 | /* | ||
1020 | * Unfair double_lock_balance: Optimizes throughput at the expense of | ||
1021 | * latency by eliminating extra atomic operations when the locks are | ||
1022 | * already in proper order on entry. This favors lower cpu-ids and will | ||
1023 | * grant the double lock to lower cpus over higher ids under contention, | ||
1024 | * regardless of entry order into the function. | ||
1025 | */ | ||
1026 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | ||
1027 | __releases(this_rq->lock) | ||
1028 | __acquires(busiest->lock) | ||
1029 | __acquires(this_rq->lock) | ||
1030 | { | ||
1031 | int ret = 0; | ||
1032 | |||
1033 | if (unlikely(!raw_spin_trylock(&busiest->lock))) { | ||
1034 | if (busiest < this_rq) { | ||
1035 | raw_spin_unlock(&this_rq->lock); | ||
1036 | raw_spin_lock(&busiest->lock); | ||
1037 | raw_spin_lock_nested(&this_rq->lock, | ||
1038 | SINGLE_DEPTH_NESTING); | ||
1039 | ret = 1; | ||
1040 | } else | ||
1041 | raw_spin_lock_nested(&busiest->lock, | ||
1042 | SINGLE_DEPTH_NESTING); | ||
1043 | } | ||
1044 | return ret; | ||
1045 | } | ||
1046 | |||
1047 | #endif /* CONFIG_PREEMPT */ | ||
1048 | |||
1049 | /* | ||
1050 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | ||
1051 | */ | ||
1052 | static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) | ||
1053 | { | ||
1054 | if (unlikely(!irqs_disabled())) { | ||
1055 | /* printk() doesn't work good under rq->lock */ | ||
1056 | raw_spin_unlock(&this_rq->lock); | ||
1057 | BUG_ON(1); | ||
1058 | } | ||
1059 | |||
1060 | return _double_lock_balance(this_rq, busiest); | ||
1061 | } | ||
1062 | |||
1063 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | ||
1064 | __releases(busiest->lock) | ||
1065 | { | ||
1066 | raw_spin_unlock(&busiest->lock); | ||
1067 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); | ||
1068 | } | ||
1069 | |||
1070 | /* | ||
1071 | * double_rq_lock - safely lock two runqueues | ||
1072 | * | ||
1073 | * Note this does not disable interrupts like task_rq_lock, | ||
1074 | * you need to do so manually before calling. | ||
1075 | */ | ||
1076 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) | ||
1077 | __acquires(rq1->lock) | ||
1078 | __acquires(rq2->lock) | ||
1079 | { | ||
1080 | BUG_ON(!irqs_disabled()); | ||
1081 | if (rq1 == rq2) { | ||
1082 | raw_spin_lock(&rq1->lock); | ||
1083 | __acquire(rq2->lock); /* Fake it out ;) */ | ||
1084 | } else { | ||
1085 | if (rq1 < rq2) { | ||
1086 | raw_spin_lock(&rq1->lock); | ||
1087 | raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); | ||
1088 | } else { | ||
1089 | raw_spin_lock(&rq2->lock); | ||
1090 | raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | ||
1091 | } | ||
1092 | } | ||
1093 | } | ||
1094 | |||
1095 | /* | ||
1096 | * double_rq_unlock - safely unlock two runqueues | ||
1097 | * | ||
1098 | * Note this does not restore interrupts like task_rq_unlock, | ||
1099 | * you need to do so manually after calling. | ||
1100 | */ | ||
1101 | static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) | ||
1102 | __releases(rq1->lock) | ||
1103 | __releases(rq2->lock) | ||
1104 | { | ||
1105 | raw_spin_unlock(&rq1->lock); | ||
1106 | if (rq1 != rq2) | ||
1107 | raw_spin_unlock(&rq2->lock); | ||
1108 | else | ||
1109 | __release(rq2->lock); | ||
1110 | } | ||
1111 | |||
1112 | #else /* CONFIG_SMP */ | ||
1113 | |||
1114 | /* | ||
1115 | * double_rq_lock - safely lock two runqueues | ||
1116 | * | ||
1117 | * Note this does not disable interrupts like task_rq_lock, | ||
1118 | * you need to do so manually before calling. | ||
1119 | */ | ||
1120 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) | ||
1121 | __acquires(rq1->lock) | ||
1122 | __acquires(rq2->lock) | ||
1123 | { | ||
1124 | BUG_ON(!irqs_disabled()); | ||
1125 | BUG_ON(rq1 != rq2); | ||
1126 | raw_spin_lock(&rq1->lock); | ||
1127 | __acquire(rq2->lock); /* Fake it out ;) */ | ||
1128 | } | ||
1129 | |||
1130 | /* | ||
1131 | * double_rq_unlock - safely unlock two runqueues | ||
1132 | * | ||
1133 | * Note this does not restore interrupts like task_rq_unlock, | ||
1134 | * you need to do so manually after calling. | ||
1135 | */ | ||
1136 | static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) | ||
1137 | __releases(rq1->lock) | ||
1138 | __releases(rq2->lock) | ||
1139 | { | ||
1140 | BUG_ON(rq1 != rq2); | ||
1141 | raw_spin_unlock(&rq1->lock); | ||
1142 | __release(rq2->lock); | ||
1143 | } | ||
1144 | |||
1145 | #endif | ||
1146 | |||
1147 | extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); | ||
1148 | extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); | ||
1149 | extern void print_cfs_stats(struct seq_file *m, int cpu); | ||
1150 | extern void print_rt_stats(struct seq_file *m, int cpu); | ||
1151 | |||
1152 | extern void init_cfs_rq(struct cfs_rq *cfs_rq); | ||
1153 | extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq); | ||
1154 | extern void unthrottle_offline_cfs_rqs(struct rq *rq); | ||
1155 | |||
1156 | extern void account_cfs_bandwidth_used(int enabled, int was_enabled); | ||
1157 | |||
1158 | #ifdef CONFIG_NO_HZ | ||
1159 | enum rq_nohz_flag_bits { | ||
1160 | NOHZ_TICK_STOPPED, | ||
1161 | NOHZ_BALANCE_KICK, | ||
1162 | NOHZ_IDLE, | ||
1163 | }; | ||
1164 | |||
1165 | #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) | ||
1166 | #endif | ||
diff --git a/kernel/sched/stats.c b/kernel/sched/stats.c new file mode 100644 index 000000000000..2a581ba8e190 --- /dev/null +++ b/kernel/sched/stats.c | |||
@@ -0,0 +1,111 @@ | |||
1 | |||
2 | #include <linux/slab.h> | ||
3 | #include <linux/fs.h> | ||
4 | #include <linux/seq_file.h> | ||
5 | #include <linux/proc_fs.h> | ||
6 | |||
7 | #include "sched.h" | ||
8 | |||
9 | /* | ||
10 | * bump this up when changing the output format or the meaning of an existing | ||
11 | * format, so that tools can adapt (or abort) | ||
12 | */ | ||
13 | #define SCHEDSTAT_VERSION 15 | ||
14 | |||
15 | static int show_schedstat(struct seq_file *seq, void *v) | ||
16 | { | ||
17 | int cpu; | ||
18 | int mask_len = DIV_ROUND_UP(NR_CPUS, 32) * 9; | ||
19 | char *mask_str = kmalloc(mask_len, GFP_KERNEL); | ||
20 | |||
21 | if (mask_str == NULL) | ||
22 | return -ENOMEM; | ||
23 | |||
24 | seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION); | ||
25 | seq_printf(seq, "timestamp %lu\n", jiffies); | ||
26 | for_each_online_cpu(cpu) { | ||
27 | struct rq *rq = cpu_rq(cpu); | ||
28 | #ifdef CONFIG_SMP | ||
29 | struct sched_domain *sd; | ||
30 | int dcount = 0; | ||
31 | #endif | ||
32 | |||
33 | /* runqueue-specific stats */ | ||
34 | seq_printf(seq, | ||
35 | "cpu%d %u %u %u %u %u %u %llu %llu %lu", | ||
36 | cpu, rq->yld_count, | ||
37 | rq->sched_switch, rq->sched_count, rq->sched_goidle, | ||
38 | rq->ttwu_count, rq->ttwu_local, | ||
39 | rq->rq_cpu_time, | ||
40 | rq->rq_sched_info.run_delay, rq->rq_sched_info.pcount); | ||
41 | |||
42 | seq_printf(seq, "\n"); | ||
43 | |||
44 | #ifdef CONFIG_SMP | ||
45 | /* domain-specific stats */ | ||
46 | rcu_read_lock(); | ||
47 | for_each_domain(cpu, sd) { | ||
48 | enum cpu_idle_type itype; | ||
49 | |||
50 | cpumask_scnprintf(mask_str, mask_len, | ||
51 | sched_domain_span(sd)); | ||
52 | seq_printf(seq, "domain%d %s", dcount++, mask_str); | ||
53 | for (itype = CPU_IDLE; itype < CPU_MAX_IDLE_TYPES; | ||
54 | itype++) { | ||
55 | seq_printf(seq, " %u %u %u %u %u %u %u %u", | ||
56 | sd->lb_count[itype], | ||
57 | sd->lb_balanced[itype], | ||
58 | sd->lb_failed[itype], | ||
59 | sd->lb_imbalance[itype], | ||
60 | sd->lb_gained[itype], | ||
61 | sd->lb_hot_gained[itype], | ||
62 | sd->lb_nobusyq[itype], | ||
63 | sd->lb_nobusyg[itype]); | ||
64 | } | ||
65 | seq_printf(seq, | ||
66 | " %u %u %u %u %u %u %u %u %u %u %u %u\n", | ||
67 | sd->alb_count, sd->alb_failed, sd->alb_pushed, | ||
68 | sd->sbe_count, sd->sbe_balanced, sd->sbe_pushed, | ||
69 | sd->sbf_count, sd->sbf_balanced, sd->sbf_pushed, | ||
70 | sd->ttwu_wake_remote, sd->ttwu_move_affine, | ||
71 | sd->ttwu_move_balance); | ||
72 | } | ||
73 | rcu_read_unlock(); | ||
74 | #endif | ||
75 | } | ||
76 | kfree(mask_str); | ||
77 | return 0; | ||
78 | } | ||
79 | |||
80 | static int schedstat_open(struct inode *inode, struct file *file) | ||
81 | { | ||
82 | unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32); | ||
83 | char *buf = kmalloc(size, GFP_KERNEL); | ||
84 | struct seq_file *m; | ||
85 | int res; | ||
86 | |||
87 | if (!buf) | ||
88 | return -ENOMEM; | ||
89 | res = single_open(file, show_schedstat, NULL); | ||
90 | if (!res) { | ||
91 | m = file->private_data; | ||
92 | m->buf = buf; | ||
93 | m->size = size; | ||
94 | } else | ||
95 | kfree(buf); | ||
96 | return res; | ||
97 | } | ||
98 | |||
99 | static const struct file_operations proc_schedstat_operations = { | ||
100 | .open = schedstat_open, | ||
101 | .read = seq_read, | ||
102 | .llseek = seq_lseek, | ||
103 | .release = single_release, | ||
104 | }; | ||
105 | |||
106 | static int __init proc_schedstat_init(void) | ||
107 | { | ||
108 | proc_create("schedstat", 0, NULL, &proc_schedstat_operations); | ||
109 | return 0; | ||
110 | } | ||
111 | module_init(proc_schedstat_init); | ||
diff --git a/kernel/sched_stats.h b/kernel/sched/stats.h index 87f9e36ea56e..2ef90a51ec5e 100644 --- a/kernel/sched_stats.h +++ b/kernel/sched/stats.h | |||
@@ -1,108 +1,5 @@ | |||
1 | 1 | ||
2 | #ifdef CONFIG_SCHEDSTATS | 2 | #ifdef CONFIG_SCHEDSTATS |
3 | /* | ||
4 | * bump this up when changing the output format or the meaning of an existing | ||
5 | * format, so that tools can adapt (or abort) | ||
6 | */ | ||
7 | #define SCHEDSTAT_VERSION 15 | ||
8 | |||
9 | static int show_schedstat(struct seq_file *seq, void *v) | ||
10 | { | ||
11 | int cpu; | ||
12 | int mask_len = DIV_ROUND_UP(NR_CPUS, 32) * 9; | ||
13 | char *mask_str = kmalloc(mask_len, GFP_KERNEL); | ||
14 | |||
15 | if (mask_str == NULL) | ||
16 | return -ENOMEM; | ||
17 | |||
18 | seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION); | ||
19 | seq_printf(seq, "timestamp %lu\n", jiffies); | ||
20 | for_each_online_cpu(cpu) { | ||
21 | struct rq *rq = cpu_rq(cpu); | ||
22 | #ifdef CONFIG_SMP | ||
23 | struct sched_domain *sd; | ||
24 | int dcount = 0; | ||
25 | #endif | ||
26 | |||
27 | /* runqueue-specific stats */ | ||
28 | seq_printf(seq, | ||
29 | "cpu%d %u %u %u %u %u %u %llu %llu %lu", | ||
30 | cpu, rq->yld_count, | ||
31 | rq->sched_switch, rq->sched_count, rq->sched_goidle, | ||
32 | rq->ttwu_count, rq->ttwu_local, | ||
33 | rq->rq_cpu_time, | ||
34 | rq->rq_sched_info.run_delay, rq->rq_sched_info.pcount); | ||
35 | |||
36 | seq_printf(seq, "\n"); | ||
37 | |||
38 | #ifdef CONFIG_SMP | ||
39 | /* domain-specific stats */ | ||
40 | rcu_read_lock(); | ||
41 | for_each_domain(cpu, sd) { | ||
42 | enum cpu_idle_type itype; | ||
43 | |||
44 | cpumask_scnprintf(mask_str, mask_len, | ||
45 | sched_domain_span(sd)); | ||
46 | seq_printf(seq, "domain%d %s", dcount++, mask_str); | ||
47 | for (itype = CPU_IDLE; itype < CPU_MAX_IDLE_TYPES; | ||
48 | itype++) { | ||
49 | seq_printf(seq, " %u %u %u %u %u %u %u %u", | ||
50 | sd->lb_count[itype], | ||
51 | sd->lb_balanced[itype], | ||
52 | sd->lb_failed[itype], | ||
53 | sd->lb_imbalance[itype], | ||
54 | sd->lb_gained[itype], | ||
55 | sd->lb_hot_gained[itype], | ||
56 | sd->lb_nobusyq[itype], | ||
57 | sd->lb_nobusyg[itype]); | ||
58 | } | ||
59 | seq_printf(seq, | ||
60 | " %u %u %u %u %u %u %u %u %u %u %u %u\n", | ||
61 | sd->alb_count, sd->alb_failed, sd->alb_pushed, | ||
62 | sd->sbe_count, sd->sbe_balanced, sd->sbe_pushed, | ||
63 | sd->sbf_count, sd->sbf_balanced, sd->sbf_pushed, | ||
64 | sd->ttwu_wake_remote, sd->ttwu_move_affine, | ||
65 | sd->ttwu_move_balance); | ||
66 | } | ||
67 | rcu_read_unlock(); | ||
68 | #endif | ||
69 | } | ||
70 | kfree(mask_str); | ||
71 | return 0; | ||
72 | } | ||
73 | |||
74 | static int schedstat_open(struct inode *inode, struct file *file) | ||
75 | { | ||
76 | unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32); | ||
77 | char *buf = kmalloc(size, GFP_KERNEL); | ||
78 | struct seq_file *m; | ||
79 | int res; | ||
80 | |||
81 | if (!buf) | ||
82 | return -ENOMEM; | ||
83 | res = single_open(file, show_schedstat, NULL); | ||
84 | if (!res) { | ||
85 | m = file->private_data; | ||
86 | m->buf = buf; | ||
87 | m->size = size; | ||
88 | } else | ||
89 | kfree(buf); | ||
90 | return res; | ||
91 | } | ||
92 | |||
93 | static const struct file_operations proc_schedstat_operations = { | ||
94 | .open = schedstat_open, | ||
95 | .read = seq_read, | ||
96 | .llseek = seq_lseek, | ||
97 | .release = single_release, | ||
98 | }; | ||
99 | |||
100 | static int __init proc_schedstat_init(void) | ||
101 | { | ||
102 | proc_create("schedstat", 0, NULL, &proc_schedstat_operations); | ||
103 | return 0; | ||
104 | } | ||
105 | module_init(proc_schedstat_init); | ||
106 | 3 | ||
107 | /* | 4 | /* |
108 | * Expects runqueue lock to be held for atomicity of update | 5 | * Expects runqueue lock to be held for atomicity of update |
@@ -283,8 +180,7 @@ static inline void account_group_user_time(struct task_struct *tsk, | |||
283 | return; | 180 | return; |
284 | 181 | ||
285 | raw_spin_lock(&cputimer->lock); | 182 | raw_spin_lock(&cputimer->lock); |
286 | cputimer->cputime.utime = | 183 | cputimer->cputime.utime += cputime; |
287 | cputime_add(cputimer->cputime.utime, cputime); | ||
288 | raw_spin_unlock(&cputimer->lock); | 184 | raw_spin_unlock(&cputimer->lock); |
289 | } | 185 | } |
290 | 186 | ||
@@ -307,8 +203,7 @@ static inline void account_group_system_time(struct task_struct *tsk, | |||
307 | return; | 203 | return; |
308 | 204 | ||
309 | raw_spin_lock(&cputimer->lock); | 205 | raw_spin_lock(&cputimer->lock); |
310 | cputimer->cputime.stime = | 206 | cputimer->cputime.stime += cputime; |
311 | cputime_add(cputimer->cputime.stime, cputime); | ||
312 | raw_spin_unlock(&cputimer->lock); | 207 | raw_spin_unlock(&cputimer->lock); |
313 | } | 208 | } |
314 | 209 | ||
diff --git a/kernel/sched_stoptask.c b/kernel/sched/stop_task.c index 8b44e7fa7fb3..7b386e86fd23 100644 --- a/kernel/sched_stoptask.c +++ b/kernel/sched/stop_task.c | |||
@@ -1,3 +1,5 @@ | |||
1 | #include "sched.h" | ||
2 | |||
1 | /* | 3 | /* |
2 | * stop-task scheduling class. | 4 | * stop-task scheduling class. |
3 | * | 5 | * |
@@ -80,7 +82,7 @@ get_rr_interval_stop(struct rq *rq, struct task_struct *task) | |||
80 | /* | 82 | /* |
81 | * Simple, special scheduling class for the per-CPU stop tasks: | 83 | * Simple, special scheduling class for the per-CPU stop tasks: |
82 | */ | 84 | */ |
83 | static const struct sched_class stop_sched_class = { | 85 | const struct sched_class stop_sched_class = { |
84 | .next = &rt_sched_class, | 86 | .next = &rt_sched_class, |
85 | 87 | ||
86 | .enqueue_task = enqueue_task_stop, | 88 | .enqueue_task = enqueue_task_stop, |
diff --git a/kernel/signal.c b/kernel/signal.c index 206551563cce..56ce3a618b28 100644 --- a/kernel/signal.c +++ b/kernel/signal.c | |||
@@ -1629,10 +1629,8 @@ bool do_notify_parent(struct task_struct *tsk, int sig) | |||
1629 | info.si_uid = __task_cred(tsk)->uid; | 1629 | info.si_uid = __task_cred(tsk)->uid; |
1630 | rcu_read_unlock(); | 1630 | rcu_read_unlock(); |
1631 | 1631 | ||
1632 | info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime, | 1632 | info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime); |
1633 | tsk->signal->utime)); | 1633 | info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime); |
1634 | info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime, | ||
1635 | tsk->signal->stime)); | ||
1636 | 1634 | ||
1637 | info.si_status = tsk->exit_code & 0x7f; | 1635 | info.si_status = tsk->exit_code & 0x7f; |
1638 | if (tsk->exit_code & 0x80) | 1636 | if (tsk->exit_code & 0x80) |
diff --git a/kernel/sys.c b/kernel/sys.c index 481611fbd079..ddf8155bf3f8 100644 --- a/kernel/sys.c +++ b/kernel/sys.c | |||
@@ -1605,7 +1605,7 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
1605 | unsigned long maxrss = 0; | 1605 | unsigned long maxrss = 0; |
1606 | 1606 | ||
1607 | memset((char *) r, 0, sizeof *r); | 1607 | memset((char *) r, 0, sizeof *r); |
1608 | utime = stime = cputime_zero; | 1608 | utime = stime = 0; |
1609 | 1609 | ||
1610 | if (who == RUSAGE_THREAD) { | 1610 | if (who == RUSAGE_THREAD) { |
1611 | task_times(current, &utime, &stime); | 1611 | task_times(current, &utime, &stime); |
@@ -1635,8 +1635,8 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
1635 | 1635 | ||
1636 | case RUSAGE_SELF: | 1636 | case RUSAGE_SELF: |
1637 | thread_group_times(p, &tgutime, &tgstime); | 1637 | thread_group_times(p, &tgutime, &tgstime); |
1638 | utime = cputime_add(utime, tgutime); | 1638 | utime += tgutime; |
1639 | stime = cputime_add(stime, tgstime); | 1639 | stime += tgstime; |
1640 | r->ru_nvcsw += p->signal->nvcsw; | 1640 | r->ru_nvcsw += p->signal->nvcsw; |
1641 | r->ru_nivcsw += p->signal->nivcsw; | 1641 | r->ru_nivcsw += p->signal->nivcsw; |
1642 | r->ru_minflt += p->signal->min_flt; | 1642 | r->ru_minflt += p->signal->min_flt; |
diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c index 0ec8b832ab6b..7656642e4b8e 100644 --- a/kernel/time/tick-sched.c +++ b/kernel/time/tick-sched.c | |||
@@ -466,6 +466,14 @@ void tick_nohz_idle_enter(void) | |||
466 | 466 | ||
467 | WARN_ON_ONCE(irqs_disabled()); | 467 | WARN_ON_ONCE(irqs_disabled()); |
468 | 468 | ||
469 | /* | ||
470 | * Update the idle state in the scheduler domain hierarchy | ||
471 | * when tick_nohz_stop_sched_tick() is called from the idle loop. | ||
472 | * State will be updated to busy during the first busy tick after | ||
473 | * exiting idle. | ||
474 | */ | ||
475 | set_cpu_sd_state_idle(); | ||
476 | |||
469 | local_irq_disable(); | 477 | local_irq_disable(); |
470 | 478 | ||
471 | ts = &__get_cpu_var(tick_cpu_sched); | 479 | ts = &__get_cpu_var(tick_cpu_sched); |
diff --git a/kernel/tsacct.c b/kernel/tsacct.c index 5bbfac85866e..23b4d784ebdd 100644 --- a/kernel/tsacct.c +++ b/kernel/tsacct.c | |||
@@ -127,7 +127,7 @@ void acct_update_integrals(struct task_struct *tsk) | |||
127 | 127 | ||
128 | local_irq_save(flags); | 128 | local_irq_save(flags); |
129 | time = tsk->stime + tsk->utime; | 129 | time = tsk->stime + tsk->utime; |
130 | dtime = cputime_sub(time, tsk->acct_timexpd); | 130 | dtime = time - tsk->acct_timexpd; |
131 | jiffies_to_timeval(cputime_to_jiffies(dtime), &value); | 131 | jiffies_to_timeval(cputime_to_jiffies(dtime), &value); |
132 | delta = value.tv_sec; | 132 | delta = value.tv_sec; |
133 | delta = delta * USEC_PER_SEC + value.tv_usec; | 133 | delta = delta * USEC_PER_SEC + value.tv_usec; |