aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorKevin Hilman <khilman@mvista.com>2007-03-08 14:32:19 -0500
committerRussell King <rmk+kernel@arm.linux.org.uk>2007-04-21 16:02:55 -0400
commit075192ae807579448afcc0833bd349ccce057825 (patch)
tree5627ae9d65bc8791793fde1bc2ad8f62bc015e44
parent89df127246f23add865f4a8f719c990e41151843 (diff)
[ARM] 4262/1: OMAP: clocksource and clockevent support
Update OMAP1 to enable support for hrtimers and dynticks by using new clocksource and clockevent infrastructure. Signed-off-by: Kevin Hilman <khilman@mvista.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
-rw-r--r--arch/arm/Kconfig1
-rw-r--r--arch/arm/mach-omap1/time.c206
-rw-r--r--arch/arm/plat-omap/Kconfig1
-rw-r--r--arch/arm/plat-omap/common.c50
-rw-r--r--arch/arm/plat-omap/timer32k.c139
5 files changed, 224 insertions, 173 deletions
diff --git a/arch/arm/Kconfig b/arch/arm/Kconfig
index d1f24aa89deb..3116bafc7533 100644
--- a/arch/arm/Kconfig
+++ b/arch/arm/Kconfig
@@ -370,6 +370,7 @@ config ARCH_LH7A40X
370config ARCH_OMAP 370config ARCH_OMAP
371 bool "TI OMAP" 371 bool "TI OMAP"
372 select GENERIC_GPIO 372 select GENERIC_GPIO
373 select GENERIC_TIME
373 help 374 help
374 Support for TI's OMAP platform (OMAP1 and OMAP2). 375 Support for TI's OMAP platform (OMAP1 and OMAP2).
375 376
diff --git a/arch/arm/mach-omap1/time.c b/arch/arm/mach-omap1/time.c
index 1b7e4a506c26..85e048b259f5 100644
--- a/arch/arm/mach-omap1/time.c
+++ b/arch/arm/mach-omap1/time.c
@@ -39,6 +39,10 @@
39#include <linux/interrupt.h> 39#include <linux/interrupt.h>
40#include <linux/sched.h> 40#include <linux/sched.h>
41#include <linux/spinlock.h> 41#include <linux/spinlock.h>
42#include <linux/clk.h>
43#include <linux/err.h>
44#include <linux/clocksource.h>
45#include <linux/clockchips.h>
42 46
43#include <asm/system.h> 47#include <asm/system.h>
44#include <asm/hardware.h> 48#include <asm/hardware.h>
@@ -48,13 +52,7 @@
48#include <asm/mach/irq.h> 52#include <asm/mach/irq.h>
49#include <asm/mach/time.h> 53#include <asm/mach/time.h>
50 54
51struct sys_timer omap_timer;
52 55
53/*
54 * ---------------------------------------------------------------------------
55 * MPU timer
56 * ---------------------------------------------------------------------------
57 */
58#define OMAP_MPU_TIMER_BASE OMAP_MPU_TIMER1_BASE 56#define OMAP_MPU_TIMER_BASE OMAP_MPU_TIMER1_BASE
59#define OMAP_MPU_TIMER_OFFSET 0x100 57#define OMAP_MPU_TIMER_OFFSET 0x100
60 58
@@ -88,21 +86,6 @@ static inline unsigned long long cycles_2_ns(unsigned long long cyc)
88 return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR; 86 return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
89} 87}
90 88
91/*
92 * MPU_TICKS_PER_SEC must be an even number, otherwise machinecycles_to_usecs
93 * will break. On P2, the timer count rate is 6.5 MHz after programming PTV
94 * with 0. This divides the 13MHz input by 2, and is undocumented.
95 */
96#if defined(CONFIG_MACH_OMAP_PERSEUS2) || defined(CONFIG_MACH_OMAP_FSAMPLE)
97/* REVISIT: This ifdef construct should be replaced by a query to clock
98 * framework to see if timer base frequency is 12.0, 13.0 or 19.2 MHz.
99 */
100#define MPU_TICKS_PER_SEC (13000000 / 2)
101#else
102#define MPU_TICKS_PER_SEC (12000000 / 2)
103#endif
104
105#define MPU_TIMER_TICK_PERIOD ((MPU_TICKS_PER_SEC / HZ) - 1)
106 89
107typedef struct { 90typedef struct {
108 u32 cntl; /* CNTL_TIMER, R/W */ 91 u32 cntl; /* CNTL_TIMER, R/W */
@@ -120,98 +103,164 @@ static inline unsigned long omap_mpu_timer_read(int nr)
120 return timer->read_tim; 103 return timer->read_tim;
121} 104}
122 105
123static inline void omap_mpu_timer_start(int nr, unsigned long load_val) 106static inline void omap_mpu_set_autoreset(int nr)
124{ 107{
125 volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr); 108 volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr);
126 109
127 timer->cntl = MPU_TIMER_CLOCK_ENABLE; 110 timer->cntl = timer->cntl | MPU_TIMER_AR;
128 udelay(1);
129 timer->load_tim = load_val;
130 udelay(1);
131 timer->cntl = (MPU_TIMER_CLOCK_ENABLE | MPU_TIMER_AR | MPU_TIMER_ST);
132} 111}
133 112
134unsigned long omap_mpu_timer_ticks_to_usecs(unsigned long nr_ticks) 113static inline void omap_mpu_remove_autoreset(int nr)
135{ 114{
136 unsigned long long nsec; 115 volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr);
137 116
138 nsec = cycles_2_ns((unsigned long long)nr_ticks); 117 timer->cntl = timer->cntl & ~MPU_TIMER_AR;
139 return (unsigned long)nsec / 1000;
140} 118}
141 119
142/* 120static inline void omap_mpu_timer_start(int nr, unsigned long load_val,
143 * Last processed system timer interrupt 121 int autoreset)
144 */ 122{
145static unsigned long omap_mpu_timer_last = 0; 123 volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr);
124 unsigned int timerflags = (MPU_TIMER_CLOCK_ENABLE | MPU_TIMER_ST);
125
126 if (autoreset) timerflags |= MPU_TIMER_AR;
127
128 timer->cntl = MPU_TIMER_CLOCK_ENABLE;
129 udelay(1);
130 timer->load_tim = load_val;
131 udelay(1);
132 timer->cntl = timerflags;
133}
146 134
147/* 135/*
148 * Returns elapsed usecs since last system timer interrupt 136 * ---------------------------------------------------------------------------
137 * MPU timer 1 ... count down to zero, interrupt, reload
138 * ---------------------------------------------------------------------------
149 */ 139 */
150static unsigned long omap_mpu_timer_gettimeoffset(void) 140static int omap_mpu_set_next_event(unsigned long cycles,
141 struct clock_event_device *evt)
151{ 142{
152 unsigned long now = 0 - omap_mpu_timer_read(0); 143 omap_mpu_timer_start(0, cycles, 0);
153 unsigned long elapsed = now - omap_mpu_timer_last; 144 return 0;
145}
154 146
155 return omap_mpu_timer_ticks_to_usecs(elapsed); 147static void omap_mpu_set_mode(enum clock_event_mode mode,
148 struct clock_event_device *evt)
149{
150 switch (mode) {
151 case CLOCK_EVT_MODE_PERIODIC:
152 omap_mpu_set_autoreset(0);
153 break;
154 case CLOCK_EVT_MODE_ONESHOT:
155 omap_mpu_remove_autoreset(0);
156 break;
157 case CLOCK_EVT_MODE_UNUSED:
158 case CLOCK_EVT_MODE_SHUTDOWN:
159 break;
160 }
156} 161}
157 162
158/* 163static struct clock_event_device clockevent_mpu_timer1 = {
159 * Elapsed time between interrupts is calculated using timer0. 164 .name = "mpu_timer1",
160 * Latency during the interrupt is calculated using timer1. 165 .features = CLOCK_EVT_FEAT_PERIODIC, CLOCK_EVT_FEAT_ONESHOT,
161 * Both timer0 and timer1 are counting at 6MHz (P2 6.5MHz). 166 .shift = 32,
162 */ 167 .set_next_event = omap_mpu_set_next_event,
163static irqreturn_t omap_mpu_timer_interrupt(int irq, void *dev_id) 168 .set_mode = omap_mpu_set_mode,
169};
170
171static irqreturn_t omap_mpu_timer1_interrupt(int irq, void *dev_id)
164{ 172{
165 unsigned long now, latency; 173 struct clock_event_device *evt = &clockevent_mpu_timer1;
166 174
167 write_seqlock(&xtime_lock); 175 evt->event_handler(evt);
168 now = 0 - omap_mpu_timer_read(0);
169 latency = MPU_TICKS_PER_SEC / HZ - omap_mpu_timer_read(1);
170 omap_mpu_timer_last = now - latency;
171 timer_tick();
172 write_sequnlock(&xtime_lock);
173 176
174 return IRQ_HANDLED; 177 return IRQ_HANDLED;
175} 178}
176 179
177static struct irqaction omap_mpu_timer_irq = { 180static struct irqaction omap_mpu_timer1_irq = {
178 .name = "mpu timer", 181 .name = "mpu_timer1",
179 .flags = IRQF_DISABLED | IRQF_TIMER, 182 .flags = IRQF_DISABLED | IRQF_TIMER,
180 .handler = omap_mpu_timer_interrupt, 183 .handler = omap_mpu_timer1_interrupt,
181}; 184};
182 185
183static unsigned long omap_mpu_timer1_overflows; 186static __init void omap_init_mpu_timer(unsigned long rate)
184static irqreturn_t omap_mpu_timer1_interrupt(int irq, void *dev_id) 187{
188 set_cyc2ns_scale(rate / 1000);
189
190 setup_irq(INT_TIMER1, &omap_mpu_timer1_irq);
191 omap_mpu_timer_start(0, (rate / HZ) - 1, 1);
192
193 clockevent_mpu_timer1.mult = div_sc(rate, NSEC_PER_SEC,
194 clockevent_mpu_timer1.shift);
195 clockevent_mpu_timer1.max_delta_ns =
196 clockevent_delta2ns(-1, &clockevent_mpu_timer1);
197 clockevent_mpu_timer1.min_delta_ns =
198 clockevent_delta2ns(1, &clockevent_mpu_timer1);
199
200 clockevent_mpu_timer1.cpumask = cpumask_of_cpu(0);
201 clockevents_register_device(&clockevent_mpu_timer1);
202}
203
204
205/*
206 * ---------------------------------------------------------------------------
207 * MPU timer 2 ... free running 32-bit clock source and scheduler clock
208 * ---------------------------------------------------------------------------
209 */
210
211static unsigned long omap_mpu_timer2_overflows;
212
213static irqreturn_t omap_mpu_timer2_interrupt(int irq, void *dev_id)
185{ 214{
186 omap_mpu_timer1_overflows++; 215 omap_mpu_timer2_overflows++;
187 return IRQ_HANDLED; 216 return IRQ_HANDLED;
188} 217}
189 218
190static struct irqaction omap_mpu_timer1_irq = { 219static struct irqaction omap_mpu_timer2_irq = {
191 .name = "mpu timer1 overflow", 220 .name = "mpu_timer2",
192 .flags = IRQF_DISABLED, 221 .flags = IRQF_DISABLED,
193 .handler = omap_mpu_timer1_interrupt, 222 .handler = omap_mpu_timer2_interrupt,
194}; 223};
195 224
196static __init void omap_init_mpu_timer(void) 225static cycle_t mpu_read(void)
197{ 226{
198 set_cyc2ns_scale(MPU_TICKS_PER_SEC / 1000); 227 return ~omap_mpu_timer_read(1);
199 omap_timer.offset = omap_mpu_timer_gettimeoffset; 228}
200 setup_irq(INT_TIMER1, &omap_mpu_timer1_irq); 229
201 setup_irq(INT_TIMER2, &omap_mpu_timer_irq); 230static struct clocksource clocksource_mpu = {
202 omap_mpu_timer_start(0, 0xffffffff); 231 .name = "mpu_timer2",
203 omap_mpu_timer_start(1, MPU_TIMER_TICK_PERIOD); 232 .rating = 300,
233 .read = mpu_read,
234 .mask = CLOCKSOURCE_MASK(32),
235 .shift = 24,
236 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
237};
238
239static void __init omap_init_clocksource(unsigned long rate)
240{
241 static char err[] __initdata = KERN_ERR
242 "%s: can't register clocksource!\n";
243
244 clocksource_mpu.mult
245 = clocksource_khz2mult(rate/1000, clocksource_mpu.shift);
246
247 setup_irq(INT_TIMER2, &omap_mpu_timer2_irq);
248 omap_mpu_timer_start(1, ~0, 1);
249
250 if (clocksource_register(&clocksource_mpu))
251 printk(err, clocksource_mpu.name);
204} 252}
205 253
254
206/* 255/*
207 * Scheduler clock - returns current time in nanosec units. 256 * Scheduler clock - returns current time in nanosec units.
208 */ 257 */
209unsigned long long sched_clock(void) 258unsigned long long sched_clock(void)
210{ 259{
211 unsigned long ticks = 0 - omap_mpu_timer_read(0); 260 unsigned long ticks = 0 - omap_mpu_timer_read(1);
212 unsigned long long ticks64; 261 unsigned long long ticks64;
213 262
214 ticks64 = omap_mpu_timer1_overflows; 263 ticks64 = omap_mpu_timer2_overflows;
215 ticks64 <<= 32; 264 ticks64 <<= 32;
216 ticks64 |= ticks; 265 ticks64 |= ticks;
217 266
@@ -225,10 +274,21 @@ unsigned long long sched_clock(void)
225 */ 274 */
226static void __init omap_timer_init(void) 275static void __init omap_timer_init(void)
227{ 276{
228 omap_init_mpu_timer(); 277 struct clk *ck_ref = clk_get(NULL, "ck_ref");
278 unsigned long rate;
279
280 BUG_ON(IS_ERR(ck_ref));
281
282 rate = clk_get_rate(ck_ref);
283 clk_put(ck_ref);
284
285 /* PTV = 0 */
286 rate /= 2;
287
288 omap_init_mpu_timer(rate);
289 omap_init_clocksource(rate);
229} 290}
230 291
231struct sys_timer omap_timer = { 292struct sys_timer omap_timer = {
232 .init = omap_timer_init, 293 .init = omap_timer_init,
233 .offset = NULL, /* Initialized later */
234}; 294};
diff --git a/arch/arm/plat-omap/Kconfig b/arch/arm/plat-omap/Kconfig
index f2dc363de66b..9e8d21eca4ec 100644
--- a/arch/arm/plat-omap/Kconfig
+++ b/arch/arm/plat-omap/Kconfig
@@ -11,6 +11,7 @@ choice
11 11
12config ARCH_OMAP1 12config ARCH_OMAP1
13 bool "TI OMAP1" 13 bool "TI OMAP1"
14 select GENERIC_CLOCKEVENTS
14 15
15config ARCH_OMAP2 16config ARCH_OMAP2
16 bool "TI OMAP2" 17 bool "TI OMAP2"
diff --git a/arch/arm/plat-omap/common.c b/arch/arm/plat-omap/common.c
index 57b7b93674a4..fecd3d625995 100644
--- a/arch/arm/plat-omap/common.c
+++ b/arch/arm/plat-omap/common.c
@@ -156,3 +156,53 @@ static int __init omap_add_serial_console(void)
156 return add_preferred_console("ttyS", line, opt); 156 return add_preferred_console("ttyS", line, opt);
157} 157}
158console_initcall(omap_add_serial_console); 158console_initcall(omap_add_serial_console);
159
160
161/*
162 * 32KHz clocksource ... always available, on pretty most chips except
163 * OMAP 730 and 1510. Other timers could be used as clocksources, with
164 * higher resolution in free-running counter modes (e.g. 12 MHz xtal),
165 * but systems won't necessarily want to spend resources that way.
166 */
167
168#if defined(CONFIG_ARCH_OMAP16XX)
169#define TIMER_32K_SYNCHRONIZED 0xfffbc410
170#elif defined(CONFIG_ARCH_OMAP24XX)
171#define TIMER_32K_SYNCHRONIZED 0x48004010
172#endif
173
174#ifdef TIMER_32K_SYNCHRONIZED
175
176#include <linux/clocksource.h>
177
178static cycle_t omap_32k_read(void)
179{
180 return omap_readl(TIMER_32K_SYNCHRONIZED);
181}
182
183static struct clocksource clocksource_32k = {
184 .name = "32k_counter",
185 .rating = 250,
186 .read = omap_32k_read,
187 .mask = CLOCKSOURCE_MASK(32),
188 .shift = 10,
189 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
190};
191
192static int __init omap_init_clocksource_32k(void)
193{
194 static char err[] __initdata = KERN_ERR
195 "%s: can't register clocksource!\n";
196
197 if (cpu_is_omap16xx() || cpu_is_omap24xx()) {
198 clocksource_32k.mult = clocksource_hz2mult(32768,
199 clocksource_32k.shift);
200
201 if (clocksource_register(&clocksource_32k))
202 printk(err, clocksource_32k.name);
203 }
204 return 0;
205}
206arch_initcall(omap_init_clocksource_32k);
207
208#endif /* TIMER_32K_SYNCHRONIZED */
diff --git a/arch/arm/plat-omap/timer32k.c b/arch/arm/plat-omap/timer32k.c
index 265310601161..114f87151d60 100644
--- a/arch/arm/plat-omap/timer32k.c
+++ b/arch/arm/plat-omap/timer32k.c
@@ -42,6 +42,8 @@
42#include <linux/spinlock.h> 42#include <linux/spinlock.h>
43#include <linux/err.h> 43#include <linux/err.h>
44#include <linux/clk.h> 44#include <linux/clk.h>
45#include <linux/clocksource.h>
46#include <linux/clockchips.h>
45 47
46#include <asm/system.h> 48#include <asm/system.h>
47#include <asm/hardware.h> 49#include <asm/hardware.h>
@@ -80,13 +82,13 @@ struct sys_timer omap_timer;
80#define OMAP1_32K_TIMER_TVR 0x00 82#define OMAP1_32K_TIMER_TVR 0x00
81#define OMAP1_32K_TIMER_TCR 0x04 83#define OMAP1_32K_TIMER_TCR 0x04
82 84
83#define OMAP_32K_TICKS_PER_HZ (32768 / HZ) 85#define OMAP_32K_TICKS_PER_SEC (32768)
84 86
85/* 87/*
86 * TRM says 1 / HZ = ( TVR + 1) / 32768, so TRV = (32768 / HZ) - 1 88 * TRM says 1 / HZ = ( TVR + 1) / 32768, so TRV = (32768 / HZ) - 1
87 * so with HZ = 128, TVR = 255. 89 * so with HZ = 128, TVR = 255.
88 */ 90 */
89#define OMAP_32K_TIMER_TICK_PERIOD ((32768 / HZ) - 1) 91#define OMAP_32K_TIMER_TICK_PERIOD ((OMAP_32K_TICKS_PER_SEC / HZ) - 1)
90 92
91#define JIFFIES_TO_HW_TICKS(nr_jiffies, clock_rate) \ 93#define JIFFIES_TO_HW_TICKS(nr_jiffies, clock_rate) \
92 (((nr_jiffies) * (clock_rate)) / HZ) 94 (((nr_jiffies) * (clock_rate)) / HZ)
@@ -142,6 +144,28 @@ static inline void omap_32k_timer_ack_irq(void)
142 144
143#endif 145#endif
144 146
147static void omap_32k_timer_set_mode(enum clock_event_mode mode,
148 struct clock_event_device *evt)
149{
150 switch (mode) {
151 case CLOCK_EVT_MODE_ONESHOT:
152 case CLOCK_EVT_MODE_PERIODIC:
153 omap_32k_timer_start(OMAP_32K_TIMER_TICK_PERIOD);
154 break;
155 case CLOCK_EVT_MODE_UNUSED:
156 case CLOCK_EVT_MODE_SHUTDOWN:
157 omap_32k_timer_stop();
158 break;
159 }
160}
161
162static struct clock_event_device clockevent_32k_timer = {
163 .name = "32k-timer",
164 .features = CLOCK_EVT_FEAT_PERIODIC,
165 .shift = 32,
166 .set_mode = omap_32k_timer_set_mode,
167};
168
145/* 169/*
146 * The 32KHz synchronized timer is an additional timer on 16xx. 170 * The 32KHz synchronized timer is an additional timer on 16xx.
147 * It is always running. 171 * It is always running.
@@ -171,15 +195,6 @@ omap_32k_ticks_to_nsecs(unsigned long ticks_32k)
171static unsigned long omap_32k_last_tick = 0; 195static unsigned long omap_32k_last_tick = 0;
172 196
173/* 197/*
174 * Returns elapsed usecs since last 32k timer interrupt
175 */
176static unsigned long omap_32k_timer_gettimeoffset(void)
177{
178 unsigned long now = omap_32k_sync_timer_read();
179 return omap_32k_ticks_to_usecs(now - omap_32k_last_tick);
180}
181
182/*
183 * Returns current time from boot in nsecs. It's OK for this to wrap 198 * Returns current time from boot in nsecs. It's OK for this to wrap
184 * around for now, as it's just a relative time stamp. 199 * around for now, as it's just a relative time stamp.
185 */ 200 */
@@ -188,95 +203,16 @@ unsigned long long sched_clock(void)
188 return omap_32k_ticks_to_nsecs(omap_32k_sync_timer_read()); 203 return omap_32k_ticks_to_nsecs(omap_32k_sync_timer_read());
189} 204}
190 205
191/*
192 * Timer interrupt for 32KHz timer. When dynamic tick is enabled, this
193 * function is also called from other interrupts to remove latency
194 * issues with dynamic tick. In the dynamic tick case, we need to lock
195 * with irqsave.
196 */
197static inline irqreturn_t _omap_32k_timer_interrupt(int irq, void *dev_id)
198{
199 unsigned long now;
200
201 omap_32k_timer_ack_irq();
202 now = omap_32k_sync_timer_read();
203
204 while ((signed long)(now - omap_32k_last_tick)
205 >= OMAP_32K_TICKS_PER_HZ) {
206 omap_32k_last_tick += OMAP_32K_TICKS_PER_HZ;
207 timer_tick();
208 }
209
210 /* Restart timer so we don't drift off due to modulo or dynamic tick.
211 * By default we program the next timer to be continuous to avoid
212 * latencies during high system load. During dynamic tick operation the
213 * continuous timer can be overridden from pm_idle to be longer.
214 */
215 omap_32k_timer_start(omap_32k_last_tick + OMAP_32K_TICKS_PER_HZ - now);
216
217 return IRQ_HANDLED;
218}
219
220static irqreturn_t omap_32k_timer_handler(int irq, void *dev_id)
221{
222 return _omap_32k_timer_interrupt(irq, dev_id);
223}
224
225static irqreturn_t omap_32k_timer_interrupt(int irq, void *dev_id) 206static irqreturn_t omap_32k_timer_interrupt(int irq, void *dev_id)
226{ 207{
227 unsigned long flags; 208 struct clock_event_device *evt = &clockevent_32k_timer;
209 omap_32k_timer_ack_irq();
228 210
229 write_seqlock_irqsave(&xtime_lock, flags); 211 evt->event_handler(evt);
230 _omap_32k_timer_interrupt(irq, dev_id);
231 write_sequnlock_irqrestore(&xtime_lock, flags);
232 212
233 return IRQ_HANDLED; 213 return IRQ_HANDLED;
234} 214}
235 215
236#ifdef CONFIG_NO_IDLE_HZ
237/*
238 * Programs the next timer interrupt needed. Called when dynamic tick is
239 * enabled, and to reprogram the ticks to skip from pm_idle. Note that
240 * we can keep the timer continuous, and don't need to set it to run in
241 * one-shot mode. This is because the timer will get reprogrammed again
242 * after next interrupt.
243 */
244void omap_32k_timer_reprogram(unsigned long next_tick)
245{
246 unsigned long ticks = JIFFIES_TO_HW_TICKS(next_tick, 32768) + 1;
247 unsigned long now = omap_32k_sync_timer_read();
248 unsigned long idled = now - omap_32k_last_tick;
249
250 if (idled + 1 < ticks)
251 ticks -= idled;
252 else
253 ticks = 1;
254 omap_32k_timer_start(ticks);
255}
256
257static struct irqaction omap_32k_timer_irq;
258extern struct timer_update_handler timer_update;
259
260static int omap_32k_timer_enable_dyn_tick(void)
261{
262 /* No need to reprogram timer, just use the next interrupt */
263 return 0;
264}
265
266static int omap_32k_timer_disable_dyn_tick(void)
267{
268 omap_32k_timer_start(OMAP_32K_TIMER_TICK_PERIOD);
269 return 0;
270}
271
272static struct dyn_tick_timer omap_dyn_tick_timer = {
273 .enable = omap_32k_timer_enable_dyn_tick,
274 .disable = omap_32k_timer_disable_dyn_tick,
275 .reprogram = omap_32k_timer_reprogram,
276 .handler = omap_32k_timer_handler,
277};
278#endif /* CONFIG_NO_IDLE_HZ */
279
280static struct irqaction omap_32k_timer_irq = { 216static struct irqaction omap_32k_timer_irq = {
281 .name = "32KHz timer", 217 .name = "32KHz timer",
282 .flags = IRQF_DISABLED | IRQF_TIMER, 218 .flags = IRQF_DISABLED | IRQF_TIMER,
@@ -285,13 +221,8 @@ static struct irqaction omap_32k_timer_irq = {
285 221
286static __init void omap_init_32k_timer(void) 222static __init void omap_init_32k_timer(void)
287{ 223{
288#ifdef CONFIG_NO_IDLE_HZ
289 omap_timer.dyn_tick = &omap_dyn_tick_timer;
290#endif
291
292 if (cpu_class_is_omap1()) 224 if (cpu_class_is_omap1())
293 setup_irq(INT_OS_TIMER, &omap_32k_timer_irq); 225 setup_irq(INT_OS_TIMER, &omap_32k_timer_irq);
294 omap_timer.offset = omap_32k_timer_gettimeoffset;
295 omap_32k_last_tick = omap_32k_sync_timer_read(); 226 omap_32k_last_tick = omap_32k_sync_timer_read();
296 227
297#ifdef CONFIG_ARCH_OMAP2 228#ifdef CONFIG_ARCH_OMAP2
@@ -308,7 +239,16 @@ static __init void omap_init_32k_timer(void)
308 } 239 }
309#endif 240#endif
310 241
311 omap_32k_timer_start(OMAP_32K_TIMER_TICK_PERIOD); 242 clockevent_32k_timer.mult = div_sc(OMAP_32K_TICKS_PER_SEC,
243 NSEC_PER_SEC,
244 clockevent_32k_timer.shift);
245 clockevent_32k_timer.max_delta_ns =
246 clockevent_delta2ns(0xfffffffe, &clockevent_32k_timer);
247 clockevent_32k_timer.min_delta_ns =
248 clockevent_delta2ns(1, &clockevent_32k_timer);
249
250 clockevent_32k_timer.cpumask = cpumask_of_cpu(0);
251 clockevents_register_device(&clockevent_32k_timer);
312} 252}
313 253
314/* 254/*
@@ -326,5 +266,4 @@ static void __init omap_timer_init(void)
326 266
327struct sys_timer omap_timer = { 267struct sys_timer omap_timer = {
328 .init = omap_timer_init, 268 .init = omap_timer_init,
329 .offset = NULL, /* Initialized later */
330}; 269};