diff options
author | Paul Mackerras <paulus@samba.org> | 2009-01-09 04:21:55 -0500 |
---|---|---|
committer | Paul Mackerras <paulus@samba.org> | 2009-01-10 00:32:05 -0500 |
commit | 4574910e5087085a1f330ff8373cee4503f5c77c (patch) | |
tree | a3bb6c974c2314ca91ee2e3a33a7283187ad19ea | |
parent | 93a6d3ce6962044fe9badf528fed46b455d58292 (diff) |
powerpc/perf_counter: Add generic support for POWER-family PMU hardware
This provides the architecture-specific functions needed to access
PMU hardware on the 64-bit PowerPC processors. It has been designed
for the IBM POWER family (POWER 4/4+/5/5+/6 and PPC970) but will
hopefully also suit other 64-bit PowerPC machines (although probably
not Cell given how different it is in this area). This doesn't
include back-ends for any specific processors.
This implements a system which allows back-ends to express the
constraints that their hardware has on what events can be counted
simultaneously. The constraints are expressed as a 64-bit mask +
64-bit value for each event, and the encoding is capable of
expressing the constraints arising from having a set of multiplexers
feeding an event bus, with some events being available through
multiple multiplexer settings, such as we get on POWER4 and PPC970.
Furthermore, the back-end can supply alternative event codes for
each event, and the constraint checking code will try all possible
combinations of alternative event codes to try to find a combination
that will fit.
Signed-off-by: Paul Mackerras <paulus@samba.org>
-rw-r--r-- | arch/powerpc/include/asm/perf_counter.h | 62 | ||||
-rw-r--r-- | arch/powerpc/kernel/Makefile | 1 | ||||
-rw-r--r-- | arch/powerpc/kernel/perf_counter.c | 754 |
3 files changed, 817 insertions, 0 deletions
diff --git a/arch/powerpc/include/asm/perf_counter.h b/arch/powerpc/include/asm/perf_counter.h index 59530ae1d53c..9d7ff6d7fb56 100644 --- a/arch/powerpc/include/asm/perf_counter.h +++ b/arch/powerpc/include/asm/perf_counter.h | |||
@@ -8,3 +8,65 @@ | |||
8 | * as published by the Free Software Foundation; either version | 8 | * as published by the Free Software Foundation; either version |
9 | * 2 of the License, or (at your option) any later version. | 9 | * 2 of the License, or (at your option) any later version. |
10 | */ | 10 | */ |
11 | #include <linux/types.h> | ||
12 | |||
13 | #define MAX_HWCOUNTERS 8 | ||
14 | #define MAX_EVENT_ALTERNATIVES 8 | ||
15 | |||
16 | /* | ||
17 | * This struct provides the constants and functions needed to | ||
18 | * describe the PMU on a particular POWER-family CPU. | ||
19 | */ | ||
20 | struct power_pmu { | ||
21 | int n_counter; | ||
22 | int max_alternatives; | ||
23 | u64 add_fields; | ||
24 | u64 test_adder; | ||
25 | int (*compute_mmcr)(unsigned int events[], int n_ev, | ||
26 | unsigned int hwc[], u64 mmcr[]); | ||
27 | int (*get_constraint)(unsigned int event, u64 *mskp, u64 *valp); | ||
28 | int (*get_alternatives)(unsigned int event, unsigned int alt[]); | ||
29 | void (*disable_pmc)(unsigned int pmc, u64 mmcr[]); | ||
30 | int n_generic; | ||
31 | int *generic_events; | ||
32 | }; | ||
33 | |||
34 | extern struct power_pmu *ppmu; | ||
35 | |||
36 | /* | ||
37 | * The power_pmu.get_constraint function returns a 64-bit value and | ||
38 | * a 64-bit mask that express the constraints between this event and | ||
39 | * other events. | ||
40 | * | ||
41 | * The value and mask are divided up into (non-overlapping) bitfields | ||
42 | * of three different types: | ||
43 | * | ||
44 | * Select field: this expresses the constraint that some set of bits | ||
45 | * in MMCR* needs to be set to a specific value for this event. For a | ||
46 | * select field, the mask contains 1s in every bit of the field, and | ||
47 | * the value contains a unique value for each possible setting of the | ||
48 | * MMCR* bits. The constraint checking code will ensure that two events | ||
49 | * that set the same field in their masks have the same value in their | ||
50 | * value dwords. | ||
51 | * | ||
52 | * Add field: this expresses the constraint that there can be at most | ||
53 | * N events in a particular class. A field of k bits can be used for | ||
54 | * N <= 2^(k-1) - 1. The mask has the most significant bit of the field | ||
55 | * set (and the other bits 0), and the value has only the least significant | ||
56 | * bit of the field set. In addition, the 'add_fields' and 'test_adder' | ||
57 | * in the struct power_pmu for this processor come into play. The | ||
58 | * add_fields value contains 1 in the LSB of the field, and the | ||
59 | * test_adder contains 2^(k-1) - 1 - N in the field. | ||
60 | * | ||
61 | * NAND field: this expresses the constraint that you may not have events | ||
62 | * in all of a set of classes. (For example, on PPC970, you can't select | ||
63 | * events from the FPU, ISU and IDU simultaneously, although any two are | ||
64 | * possible.) For N classes, the field is N+1 bits wide, and each class | ||
65 | * is assigned one bit from the least-significant N bits. The mask has | ||
66 | * only the most-significant bit set, and the value has only the bit | ||
67 | * for the event's class set. The test_adder has the least significant | ||
68 | * bit set in the field. | ||
69 | * | ||
70 | * If an event is not subject to the constraint expressed by a particular | ||
71 | * field, then it will have 0 in both the mask and value for that field. | ||
72 | */ | ||
diff --git a/arch/powerpc/kernel/Makefile b/arch/powerpc/kernel/Makefile index 1308a86e9070..fde190bbb2bd 100644 --- a/arch/powerpc/kernel/Makefile +++ b/arch/powerpc/kernel/Makefile | |||
@@ -94,6 +94,7 @@ obj-$(CONFIG_AUDIT) += audit.o | |||
94 | obj64-$(CONFIG_AUDIT) += compat_audit.o | 94 | obj64-$(CONFIG_AUDIT) += compat_audit.o |
95 | 95 | ||
96 | obj-$(CONFIG_DYNAMIC_FTRACE) += ftrace.o | 96 | obj-$(CONFIG_DYNAMIC_FTRACE) += ftrace.o |
97 | obj-$(CONFIG_PERF_COUNTERS) += perf_counter.o | ||
97 | 98 | ||
98 | obj-$(CONFIG_8XX_MINIMAL_FPEMU) += softemu8xx.o | 99 | obj-$(CONFIG_8XX_MINIMAL_FPEMU) += softemu8xx.o |
99 | 100 | ||
diff --git a/arch/powerpc/kernel/perf_counter.c b/arch/powerpc/kernel/perf_counter.c new file mode 100644 index 000000000000..c7d4c2966a5c --- /dev/null +++ b/arch/powerpc/kernel/perf_counter.c | |||
@@ -0,0 +1,754 @@ | |||
1 | /* | ||
2 | * Performance counter support - powerpc architecture code | ||
3 | * | ||
4 | * Copyright 2008-2009 Paul Mackerras, IBM Corporation. | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or | ||
7 | * modify it under the terms of the GNU General Public License | ||
8 | * as published by the Free Software Foundation; either version | ||
9 | * 2 of the License, or (at your option) any later version. | ||
10 | */ | ||
11 | #include <linux/kernel.h> | ||
12 | #include <linux/sched.h> | ||
13 | #include <linux/perf_counter.h> | ||
14 | #include <linux/percpu.h> | ||
15 | #include <linux/hardirq.h> | ||
16 | #include <asm/reg.h> | ||
17 | #include <asm/pmc.h> | ||
18 | |||
19 | struct cpu_hw_counters { | ||
20 | int n_counters; | ||
21 | int n_percpu; | ||
22 | int disabled; | ||
23 | int n_added; | ||
24 | struct perf_counter *counter[MAX_HWCOUNTERS]; | ||
25 | unsigned int events[MAX_HWCOUNTERS]; | ||
26 | u64 mmcr[3]; | ||
27 | }; | ||
28 | DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters); | ||
29 | |||
30 | struct power_pmu *ppmu; | ||
31 | |||
32 | void perf_counter_print_debug(void) | ||
33 | { | ||
34 | } | ||
35 | |||
36 | /* | ||
37 | * Return 1 for a software counter, 0 for a hardware counter | ||
38 | */ | ||
39 | static inline int is_software_counter(struct perf_counter *counter) | ||
40 | { | ||
41 | return !counter->hw_event.raw && counter->hw_event.type < 0; | ||
42 | } | ||
43 | |||
44 | /* | ||
45 | * Read one performance monitor counter (PMC). | ||
46 | */ | ||
47 | static unsigned long read_pmc(int idx) | ||
48 | { | ||
49 | unsigned long val; | ||
50 | |||
51 | switch (idx) { | ||
52 | case 1: | ||
53 | val = mfspr(SPRN_PMC1); | ||
54 | break; | ||
55 | case 2: | ||
56 | val = mfspr(SPRN_PMC2); | ||
57 | break; | ||
58 | case 3: | ||
59 | val = mfspr(SPRN_PMC3); | ||
60 | break; | ||
61 | case 4: | ||
62 | val = mfspr(SPRN_PMC4); | ||
63 | break; | ||
64 | case 5: | ||
65 | val = mfspr(SPRN_PMC5); | ||
66 | break; | ||
67 | case 6: | ||
68 | val = mfspr(SPRN_PMC6); | ||
69 | break; | ||
70 | case 7: | ||
71 | val = mfspr(SPRN_PMC7); | ||
72 | break; | ||
73 | case 8: | ||
74 | val = mfspr(SPRN_PMC8); | ||
75 | break; | ||
76 | default: | ||
77 | printk(KERN_ERR "oops trying to read PMC%d\n", idx); | ||
78 | val = 0; | ||
79 | } | ||
80 | return val; | ||
81 | } | ||
82 | |||
83 | /* | ||
84 | * Write one PMC. | ||
85 | */ | ||
86 | static void write_pmc(int idx, unsigned long val) | ||
87 | { | ||
88 | switch (idx) { | ||
89 | case 1: | ||
90 | mtspr(SPRN_PMC1, val); | ||
91 | break; | ||
92 | case 2: | ||
93 | mtspr(SPRN_PMC2, val); | ||
94 | break; | ||
95 | case 3: | ||
96 | mtspr(SPRN_PMC3, val); | ||
97 | break; | ||
98 | case 4: | ||
99 | mtspr(SPRN_PMC4, val); | ||
100 | break; | ||
101 | case 5: | ||
102 | mtspr(SPRN_PMC5, val); | ||
103 | break; | ||
104 | case 6: | ||
105 | mtspr(SPRN_PMC6, val); | ||
106 | break; | ||
107 | case 7: | ||
108 | mtspr(SPRN_PMC7, val); | ||
109 | break; | ||
110 | case 8: | ||
111 | mtspr(SPRN_PMC8, val); | ||
112 | break; | ||
113 | default: | ||
114 | printk(KERN_ERR "oops trying to write PMC%d\n", idx); | ||
115 | } | ||
116 | } | ||
117 | |||
118 | /* | ||
119 | * Check if a set of events can all go on the PMU at once. | ||
120 | * If they can't, this will look at alternative codes for the events | ||
121 | * and see if any combination of alternative codes is feasible. | ||
122 | * The feasible set is returned in event[]. | ||
123 | */ | ||
124 | static int power_check_constraints(unsigned int event[], int n_ev) | ||
125 | { | ||
126 | u64 mask, value, nv; | ||
127 | unsigned int alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES]; | ||
128 | u64 amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES]; | ||
129 | u64 avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES]; | ||
130 | u64 smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS]; | ||
131 | int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS]; | ||
132 | int i, j; | ||
133 | u64 addf = ppmu->add_fields; | ||
134 | u64 tadd = ppmu->test_adder; | ||
135 | |||
136 | if (n_ev > ppmu->n_counter) | ||
137 | return -1; | ||
138 | |||
139 | /* First see if the events will go on as-is */ | ||
140 | for (i = 0; i < n_ev; ++i) { | ||
141 | alternatives[i][0] = event[i]; | ||
142 | if (ppmu->get_constraint(event[i], &amasks[i][0], | ||
143 | &avalues[i][0])) | ||
144 | return -1; | ||
145 | choice[i] = 0; | ||
146 | } | ||
147 | value = mask = 0; | ||
148 | for (i = 0; i < n_ev; ++i) { | ||
149 | nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf); | ||
150 | if ((((nv + tadd) ^ value) & mask) != 0 || | ||
151 | (((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0) | ||
152 | break; | ||
153 | value = nv; | ||
154 | mask |= amasks[i][0]; | ||
155 | } | ||
156 | if (i == n_ev) | ||
157 | return 0; /* all OK */ | ||
158 | |||
159 | /* doesn't work, gather alternatives... */ | ||
160 | if (!ppmu->get_alternatives) | ||
161 | return -1; | ||
162 | for (i = 0; i < n_ev; ++i) { | ||
163 | n_alt[i] = ppmu->get_alternatives(event[i], alternatives[i]); | ||
164 | for (j = 1; j < n_alt[i]; ++j) | ||
165 | ppmu->get_constraint(alternatives[i][j], | ||
166 | &amasks[i][j], &avalues[i][j]); | ||
167 | } | ||
168 | |||
169 | /* enumerate all possibilities and see if any will work */ | ||
170 | i = 0; | ||
171 | j = -1; | ||
172 | value = mask = nv = 0; | ||
173 | while (i < n_ev) { | ||
174 | if (j >= 0) { | ||
175 | /* we're backtracking, restore context */ | ||
176 | value = svalues[i]; | ||
177 | mask = smasks[i]; | ||
178 | j = choice[i]; | ||
179 | } | ||
180 | /* | ||
181 | * See if any alternative k for event i, | ||
182 | * where k > j, will satisfy the constraints. | ||
183 | */ | ||
184 | while (++j < n_alt[i]) { | ||
185 | nv = (value | avalues[i][j]) + | ||
186 | (value & avalues[i][j] & addf); | ||
187 | if ((((nv + tadd) ^ value) & mask) == 0 && | ||
188 | (((nv + tadd) ^ avalues[i][j]) | ||
189 | & amasks[i][j]) == 0) | ||
190 | break; | ||
191 | } | ||
192 | if (j >= n_alt[i]) { | ||
193 | /* | ||
194 | * No feasible alternative, backtrack | ||
195 | * to event i-1 and continue enumerating its | ||
196 | * alternatives from where we got up to. | ||
197 | */ | ||
198 | if (--i < 0) | ||
199 | return -1; | ||
200 | } else { | ||
201 | /* | ||
202 | * Found a feasible alternative for event i, | ||
203 | * remember where we got up to with this event, | ||
204 | * go on to the next event, and start with | ||
205 | * the first alternative for it. | ||
206 | */ | ||
207 | choice[i] = j; | ||
208 | svalues[i] = value; | ||
209 | smasks[i] = mask; | ||
210 | value = nv; | ||
211 | mask |= amasks[i][j]; | ||
212 | ++i; | ||
213 | j = -1; | ||
214 | } | ||
215 | } | ||
216 | |||
217 | /* OK, we have a feasible combination, tell the caller the solution */ | ||
218 | for (i = 0; i < n_ev; ++i) | ||
219 | event[i] = alternatives[i][choice[i]]; | ||
220 | return 0; | ||
221 | } | ||
222 | |||
223 | static void power_perf_read(struct perf_counter *counter) | ||
224 | { | ||
225 | long val, delta, prev; | ||
226 | |||
227 | if (!counter->hw.idx) | ||
228 | return; | ||
229 | /* | ||
230 | * Performance monitor interrupts come even when interrupts | ||
231 | * are soft-disabled, as long as interrupts are hard-enabled. | ||
232 | * Therefore we treat them like NMIs. | ||
233 | */ | ||
234 | do { | ||
235 | prev = atomic64_read(&counter->hw.prev_count); | ||
236 | barrier(); | ||
237 | val = read_pmc(counter->hw.idx); | ||
238 | } while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev); | ||
239 | |||
240 | /* The counters are only 32 bits wide */ | ||
241 | delta = (val - prev) & 0xfffffffful; | ||
242 | atomic64_add(delta, &counter->count); | ||
243 | atomic64_sub(delta, &counter->hw.period_left); | ||
244 | } | ||
245 | |||
246 | /* | ||
247 | * Disable all counters to prevent PMU interrupts and to allow | ||
248 | * counters to be added or removed. | ||
249 | */ | ||
250 | u64 hw_perf_save_disable(void) | ||
251 | { | ||
252 | struct cpu_hw_counters *cpuhw; | ||
253 | unsigned long ret; | ||
254 | unsigned long flags; | ||
255 | |||
256 | local_irq_save(flags); | ||
257 | cpuhw = &__get_cpu_var(cpu_hw_counters); | ||
258 | |||
259 | ret = cpuhw->disabled; | ||
260 | if (!ret) { | ||
261 | cpuhw->disabled = 1; | ||
262 | cpuhw->n_added = 0; | ||
263 | |||
264 | /* | ||
265 | * Set the 'freeze counters' bit. | ||
266 | * The barrier is to make sure the mtspr has been | ||
267 | * executed and the PMU has frozen the counters | ||
268 | * before we return. | ||
269 | */ | ||
270 | mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) | MMCR0_FC); | ||
271 | mb(); | ||
272 | } | ||
273 | local_irq_restore(flags); | ||
274 | return ret; | ||
275 | } | ||
276 | |||
277 | /* | ||
278 | * Re-enable all counters if disable == 0. | ||
279 | * If we were previously disabled and counters were added, then | ||
280 | * put the new config on the PMU. | ||
281 | */ | ||
282 | void hw_perf_restore(u64 disable) | ||
283 | { | ||
284 | struct perf_counter *counter; | ||
285 | struct cpu_hw_counters *cpuhw; | ||
286 | unsigned long flags; | ||
287 | long i; | ||
288 | unsigned long val; | ||
289 | s64 left; | ||
290 | unsigned int hwc_index[MAX_HWCOUNTERS]; | ||
291 | |||
292 | if (disable) | ||
293 | return; | ||
294 | local_irq_save(flags); | ||
295 | cpuhw = &__get_cpu_var(cpu_hw_counters); | ||
296 | cpuhw->disabled = 0; | ||
297 | |||
298 | /* | ||
299 | * If we didn't change anything, or only removed counters, | ||
300 | * no need to recalculate MMCR* settings and reset the PMCs. | ||
301 | * Just reenable the PMU with the current MMCR* settings | ||
302 | * (possibly updated for removal of counters). | ||
303 | */ | ||
304 | if (!cpuhw->n_added) { | ||
305 | mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); | ||
306 | mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); | ||
307 | mtspr(SPRN_MMCR0, cpuhw->mmcr[0]); | ||
308 | goto out; | ||
309 | } | ||
310 | |||
311 | /* | ||
312 | * Compute MMCR* values for the new set of counters | ||
313 | */ | ||
314 | if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index, | ||
315 | cpuhw->mmcr)) { | ||
316 | /* shouldn't ever get here */ | ||
317 | printk(KERN_ERR "oops compute_mmcr failed\n"); | ||
318 | goto out; | ||
319 | } | ||
320 | |||
321 | /* | ||
322 | * Write the new configuration to MMCR* with the freeze | ||
323 | * bit set and set the hardware counters to their initial values. | ||
324 | * Then unfreeze the counters. | ||
325 | */ | ||
326 | mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); | ||
327 | mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); | ||
328 | mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) | ||
329 | | MMCR0_FC); | ||
330 | |||
331 | /* | ||
332 | * Read off any pre-existing counters that need to move | ||
333 | * to another PMC. | ||
334 | */ | ||
335 | for (i = 0; i < cpuhw->n_counters; ++i) { | ||
336 | counter = cpuhw->counter[i]; | ||
337 | if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) { | ||
338 | power_perf_read(counter); | ||
339 | write_pmc(counter->hw.idx, 0); | ||
340 | counter->hw.idx = 0; | ||
341 | } | ||
342 | } | ||
343 | |||
344 | /* | ||
345 | * Initialize the PMCs for all the new and moved counters. | ||
346 | */ | ||
347 | for (i = 0; i < cpuhw->n_counters; ++i) { | ||
348 | counter = cpuhw->counter[i]; | ||
349 | if (counter->hw.idx) | ||
350 | continue; | ||
351 | val = 0; | ||
352 | if (counter->hw_event.irq_period) { | ||
353 | left = atomic64_read(&counter->hw.period_left); | ||
354 | if (left < 0x80000000L) | ||
355 | val = 0x80000000L - left; | ||
356 | } | ||
357 | atomic64_set(&counter->hw.prev_count, val); | ||
358 | counter->hw.idx = hwc_index[i] + 1; | ||
359 | write_pmc(counter->hw.idx, val); | ||
360 | } | ||
361 | mb(); | ||
362 | cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE; | ||
363 | mtspr(SPRN_MMCR0, cpuhw->mmcr[0]); | ||
364 | |||
365 | out: | ||
366 | local_irq_restore(flags); | ||
367 | } | ||
368 | |||
369 | static int collect_events(struct perf_counter *group, int max_count, | ||
370 | struct perf_counter *ctrs[], unsigned int *events) | ||
371 | { | ||
372 | int n = 0; | ||
373 | struct perf_counter *counter; | ||
374 | |||
375 | if (!is_software_counter(group)) { | ||
376 | if (n >= max_count) | ||
377 | return -1; | ||
378 | ctrs[n] = group; | ||
379 | events[n++] = group->hw.config; | ||
380 | } | ||
381 | list_for_each_entry(counter, &group->sibling_list, list_entry) { | ||
382 | if (!is_software_counter(counter) && | ||
383 | counter->state != PERF_COUNTER_STATE_OFF) { | ||
384 | if (n >= max_count) | ||
385 | return -1; | ||
386 | ctrs[n] = counter; | ||
387 | events[n++] = counter->hw.config; | ||
388 | } | ||
389 | } | ||
390 | return n; | ||
391 | } | ||
392 | |||
393 | static void counter_sched_in(struct perf_counter *counter, int cpu) | ||
394 | { | ||
395 | counter->state = PERF_COUNTER_STATE_ACTIVE; | ||
396 | counter->oncpu = cpu; | ||
397 | if (is_software_counter(counter)) | ||
398 | counter->hw_ops->enable(counter); | ||
399 | } | ||
400 | |||
401 | /* | ||
402 | * Called to enable a whole group of counters. | ||
403 | * Returns 1 if the group was enabled, or -EAGAIN if it could not be. | ||
404 | * Assumes the caller has disabled interrupts and has | ||
405 | * frozen the PMU with hw_perf_save_disable. | ||
406 | */ | ||
407 | int hw_perf_group_sched_in(struct perf_counter *group_leader, | ||
408 | struct perf_cpu_context *cpuctx, | ||
409 | struct perf_counter_context *ctx, int cpu) | ||
410 | { | ||
411 | struct cpu_hw_counters *cpuhw; | ||
412 | long i, n, n0; | ||
413 | struct perf_counter *sub; | ||
414 | |||
415 | cpuhw = &__get_cpu_var(cpu_hw_counters); | ||
416 | n0 = cpuhw->n_counters; | ||
417 | n = collect_events(group_leader, ppmu->n_counter - n0, | ||
418 | &cpuhw->counter[n0], &cpuhw->events[n0]); | ||
419 | if (n < 0) | ||
420 | return -EAGAIN; | ||
421 | if (power_check_constraints(cpuhw->events, n + n0)) | ||
422 | return -EAGAIN; | ||
423 | cpuhw->n_counters = n0 + n; | ||
424 | cpuhw->n_added += n; | ||
425 | |||
426 | /* | ||
427 | * OK, this group can go on; update counter states etc., | ||
428 | * and enable any software counters | ||
429 | */ | ||
430 | for (i = n0; i < n0 + n; ++i) | ||
431 | cpuhw->counter[i]->hw.config = cpuhw->events[i]; | ||
432 | n = 1; | ||
433 | counter_sched_in(group_leader, cpu); | ||
434 | list_for_each_entry(sub, &group_leader->sibling_list, list_entry) { | ||
435 | if (sub->state != PERF_COUNTER_STATE_OFF) { | ||
436 | counter_sched_in(sub, cpu); | ||
437 | ++n; | ||
438 | } | ||
439 | } | ||
440 | cpuctx->active_oncpu += n; | ||
441 | ctx->nr_active += n; | ||
442 | |||
443 | return 1; | ||
444 | } | ||
445 | |||
446 | /* | ||
447 | * Add a counter to the PMU. | ||
448 | * If all counters are not already frozen, then we disable and | ||
449 | * re-enable the PMU in order to get hw_perf_restore to do the | ||
450 | * actual work of reconfiguring the PMU. | ||
451 | */ | ||
452 | static int power_perf_enable(struct perf_counter *counter) | ||
453 | { | ||
454 | struct cpu_hw_counters *cpuhw; | ||
455 | unsigned long flags; | ||
456 | u64 pmudis; | ||
457 | int n0; | ||
458 | int ret = -EAGAIN; | ||
459 | |||
460 | local_irq_save(flags); | ||
461 | pmudis = hw_perf_save_disable(); | ||
462 | |||
463 | /* | ||
464 | * Add the counter to the list (if there is room) | ||
465 | * and check whether the total set is still feasible. | ||
466 | */ | ||
467 | cpuhw = &__get_cpu_var(cpu_hw_counters); | ||
468 | n0 = cpuhw->n_counters; | ||
469 | if (n0 >= ppmu->n_counter) | ||
470 | goto out; | ||
471 | cpuhw->counter[n0] = counter; | ||
472 | cpuhw->events[n0] = counter->hw.config; | ||
473 | if (power_check_constraints(cpuhw->events, n0 + 1)) | ||
474 | goto out; | ||
475 | |||
476 | counter->hw.config = cpuhw->events[n0]; | ||
477 | ++cpuhw->n_counters; | ||
478 | ++cpuhw->n_added; | ||
479 | |||
480 | ret = 0; | ||
481 | out: | ||
482 | hw_perf_restore(pmudis); | ||
483 | local_irq_restore(flags); | ||
484 | return ret; | ||
485 | } | ||
486 | |||
487 | /* | ||
488 | * Remove a counter from the PMU. | ||
489 | */ | ||
490 | static void power_perf_disable(struct perf_counter *counter) | ||
491 | { | ||
492 | struct cpu_hw_counters *cpuhw; | ||
493 | long i; | ||
494 | u64 pmudis; | ||
495 | unsigned long flags; | ||
496 | |||
497 | local_irq_save(flags); | ||
498 | pmudis = hw_perf_save_disable(); | ||
499 | |||
500 | power_perf_read(counter); | ||
501 | |||
502 | cpuhw = &__get_cpu_var(cpu_hw_counters); | ||
503 | for (i = 0; i < cpuhw->n_counters; ++i) { | ||
504 | if (counter == cpuhw->counter[i]) { | ||
505 | while (++i < cpuhw->n_counters) | ||
506 | cpuhw->counter[i-1] = cpuhw->counter[i]; | ||
507 | --cpuhw->n_counters; | ||
508 | ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr); | ||
509 | write_pmc(counter->hw.idx, 0); | ||
510 | counter->hw.idx = 0; | ||
511 | break; | ||
512 | } | ||
513 | } | ||
514 | if (cpuhw->n_counters == 0) { | ||
515 | /* disable exceptions if no counters are running */ | ||
516 | cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE); | ||
517 | } | ||
518 | |||
519 | hw_perf_restore(pmudis); | ||
520 | local_irq_restore(flags); | ||
521 | } | ||
522 | |||
523 | struct hw_perf_counter_ops power_perf_ops = { | ||
524 | .enable = power_perf_enable, | ||
525 | .disable = power_perf_disable, | ||
526 | .read = power_perf_read | ||
527 | }; | ||
528 | |||
529 | const struct hw_perf_counter_ops * | ||
530 | hw_perf_counter_init(struct perf_counter *counter) | ||
531 | { | ||
532 | unsigned long ev; | ||
533 | struct perf_counter *ctrs[MAX_HWCOUNTERS]; | ||
534 | unsigned int events[MAX_HWCOUNTERS]; | ||
535 | int n; | ||
536 | |||
537 | if (!ppmu) | ||
538 | return NULL; | ||
539 | if ((s64)counter->hw_event.irq_period < 0) | ||
540 | return NULL; | ||
541 | ev = counter->hw_event.type; | ||
542 | if (!counter->hw_event.raw) { | ||
543 | if (ev >= ppmu->n_generic || | ||
544 | ppmu->generic_events[ev] == 0) | ||
545 | return NULL; | ||
546 | ev = ppmu->generic_events[ev]; | ||
547 | } | ||
548 | counter->hw.config_base = ev; | ||
549 | counter->hw.idx = 0; | ||
550 | |||
551 | /* | ||
552 | * If this is in a group, check if it can go on with all the | ||
553 | * other hardware counters in the group. We assume the counter | ||
554 | * hasn't been linked into its leader's sibling list at this point. | ||
555 | */ | ||
556 | n = 0; | ||
557 | if (counter->group_leader != counter) { | ||
558 | n = collect_events(counter->group_leader, ppmu->n_counter - 1, | ||
559 | ctrs, events); | ||
560 | if (n < 0) | ||
561 | return NULL; | ||
562 | } | ||
563 | events[n++] = ev; | ||
564 | if (power_check_constraints(events, n)) | ||
565 | return NULL; | ||
566 | |||
567 | counter->hw.config = events[n - 1]; | ||
568 | atomic64_set(&counter->hw.period_left, counter->hw_event.irq_period); | ||
569 | return &power_perf_ops; | ||
570 | } | ||
571 | |||
572 | /* | ||
573 | * Handle wakeups. | ||
574 | */ | ||
575 | void perf_counter_do_pending(void) | ||
576 | { | ||
577 | int i; | ||
578 | struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters); | ||
579 | struct perf_counter *counter; | ||
580 | |||
581 | set_perf_counter_pending(0); | ||
582 | for (i = 0; i < cpuhw->n_counters; ++i) { | ||
583 | counter = cpuhw->counter[i]; | ||
584 | if (counter && counter->wakeup_pending) { | ||
585 | counter->wakeup_pending = 0; | ||
586 | wake_up(&counter->waitq); | ||
587 | } | ||
588 | } | ||
589 | } | ||
590 | |||
591 | /* | ||
592 | * Record data for an irq counter. | ||
593 | * This function was lifted from the x86 code; maybe it should | ||
594 | * go in the core? | ||
595 | */ | ||
596 | static void perf_store_irq_data(struct perf_counter *counter, u64 data) | ||
597 | { | ||
598 | struct perf_data *irqdata = counter->irqdata; | ||
599 | |||
600 | if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) { | ||
601 | irqdata->overrun++; | ||
602 | } else { | ||
603 | u64 *p = (u64 *) &irqdata->data[irqdata->len]; | ||
604 | |||
605 | *p = data; | ||
606 | irqdata->len += sizeof(u64); | ||
607 | } | ||
608 | } | ||
609 | |||
610 | /* | ||
611 | * Record all the values of the counters in a group | ||
612 | */ | ||
613 | static void perf_handle_group(struct perf_counter *counter) | ||
614 | { | ||
615 | struct perf_counter *leader, *sub; | ||
616 | |||
617 | leader = counter->group_leader; | ||
618 | list_for_each_entry(sub, &leader->sibling_list, list_entry) { | ||
619 | if (sub != counter) | ||
620 | sub->hw_ops->read(sub); | ||
621 | perf_store_irq_data(counter, sub->hw_event.type); | ||
622 | perf_store_irq_data(counter, atomic64_read(&sub->count)); | ||
623 | } | ||
624 | } | ||
625 | |||
626 | /* | ||
627 | * A counter has overflowed; update its count and record | ||
628 | * things if requested. Note that interrupts are hard-disabled | ||
629 | * here so there is no possibility of being interrupted. | ||
630 | */ | ||
631 | static void record_and_restart(struct perf_counter *counter, long val, | ||
632 | struct pt_regs *regs) | ||
633 | { | ||
634 | s64 prev, delta, left; | ||
635 | int record = 0; | ||
636 | |||
637 | /* we don't have to worry about interrupts here */ | ||
638 | prev = atomic64_read(&counter->hw.prev_count); | ||
639 | delta = (val - prev) & 0xfffffffful; | ||
640 | atomic64_add(delta, &counter->count); | ||
641 | |||
642 | /* | ||
643 | * See if the total period for this counter has expired, | ||
644 | * and update for the next period. | ||
645 | */ | ||
646 | val = 0; | ||
647 | left = atomic64_read(&counter->hw.period_left) - delta; | ||
648 | if (counter->hw_event.irq_period) { | ||
649 | if (left <= 0) { | ||
650 | left += counter->hw_event.irq_period; | ||
651 | if (left <= 0) | ||
652 | left = counter->hw_event.irq_period; | ||
653 | record = 1; | ||
654 | } | ||
655 | if (left < 0x80000000L) | ||
656 | val = 0x80000000L - left; | ||
657 | } | ||
658 | write_pmc(counter->hw.idx, val); | ||
659 | atomic64_set(&counter->hw.prev_count, val); | ||
660 | atomic64_set(&counter->hw.period_left, left); | ||
661 | |||
662 | /* | ||
663 | * Finally record data if requested. | ||
664 | */ | ||
665 | if (record) { | ||
666 | switch (counter->hw_event.record_type) { | ||
667 | case PERF_RECORD_SIMPLE: | ||
668 | break; | ||
669 | case PERF_RECORD_IRQ: | ||
670 | perf_store_irq_data(counter, instruction_pointer(regs)); | ||
671 | counter->wakeup_pending = 1; | ||
672 | break; | ||
673 | case PERF_RECORD_GROUP: | ||
674 | perf_handle_group(counter); | ||
675 | counter->wakeup_pending = 1; | ||
676 | break; | ||
677 | } | ||
678 | } | ||
679 | } | ||
680 | |||
681 | /* | ||
682 | * Performance monitor interrupt stuff | ||
683 | */ | ||
684 | static void perf_counter_interrupt(struct pt_regs *regs) | ||
685 | { | ||
686 | int i; | ||
687 | struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters); | ||
688 | struct perf_counter *counter; | ||
689 | long val; | ||
690 | int need_wakeup = 0, found = 0; | ||
691 | |||
692 | for (i = 0; i < cpuhw->n_counters; ++i) { | ||
693 | counter = cpuhw->counter[i]; | ||
694 | val = read_pmc(counter->hw.idx); | ||
695 | if ((int)val < 0) { | ||
696 | /* counter has overflowed */ | ||
697 | found = 1; | ||
698 | record_and_restart(counter, val, regs); | ||
699 | if (counter->wakeup_pending) | ||
700 | need_wakeup = 1; | ||
701 | } | ||
702 | } | ||
703 | |||
704 | /* | ||
705 | * In case we didn't find and reset the counter that caused | ||
706 | * the interrupt, scan all counters and reset any that are | ||
707 | * negative, to avoid getting continual interrupts. | ||
708 | * Any that we processed in the previous loop will not be negative. | ||
709 | */ | ||
710 | if (!found) { | ||
711 | for (i = 0; i < ppmu->n_counter; ++i) { | ||
712 | val = read_pmc(i + 1); | ||
713 | if ((int)val < 0) | ||
714 | write_pmc(i + 1, 0); | ||
715 | } | ||
716 | } | ||
717 | |||
718 | /* | ||
719 | * Reset MMCR0 to its normal value. This will set PMXE and | ||
720 | * clear FC (freeze counters) and PMAO (perf mon alert occurred) | ||
721 | * and thus allow interrupts to occur again. | ||
722 | * XXX might want to use MSR.PM to keep the counters frozen until | ||
723 | * we get back out of this interrupt. | ||
724 | */ | ||
725 | mtspr(SPRN_MMCR0, cpuhw->mmcr[0]); | ||
726 | |||
727 | /* | ||
728 | * If we need a wakeup, check whether interrupts were soft-enabled | ||
729 | * when we took the interrupt. If they were, we can wake stuff up | ||
730 | * immediately; otherwise we'll have to set a flag and do the | ||
731 | * wakeup when interrupts get soft-enabled. | ||
732 | */ | ||
733 | if (need_wakeup) { | ||
734 | if (regs->softe) { | ||
735 | irq_enter(); | ||
736 | perf_counter_do_pending(); | ||
737 | irq_exit(); | ||
738 | } else { | ||
739 | set_perf_counter_pending(1); | ||
740 | } | ||
741 | } | ||
742 | } | ||
743 | |||
744 | static int init_perf_counters(void) | ||
745 | { | ||
746 | if (reserve_pmc_hardware(perf_counter_interrupt)) { | ||
747 | printk(KERN_ERR "Couldn't init performance monitor subsystem\n"); | ||
748 | return -EBUSY; | ||
749 | } | ||
750 | |||
751 | return 0; | ||
752 | } | ||
753 | |||
754 | arch_initcall(init_perf_counters); | ||