aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorRichard Purdie <rpurdie@rpsys.net>2006-03-31 05:31:03 -0500
committerLinus Torvalds <torvalds@g5.osdl.org>2006-03-31 15:18:56 -0500
commit75c1d31d9ea71025b73430c696b727e8aa15872d (patch)
tree7f63ad1a6e79467ceb04fd7113538156bc80cfd0
parent7529c301165079d0f149d0e54724829e602f8fc0 (diff)
[PATCH] LED: class documentation
The LED class/subsystem takes John Lenz's work and extends and alters it to give what I think should be a fairly universal LED implementation. The series consists of several logical units: * LED Core + Class implementation * LED Trigger Core implementation * LED timer trigger (example of a complex trigger) * LED device drivers for corgi, spitz and tosa Zaurus models * LED device driver for locomo LEDs * LED device driver for ARM ixp4xx LEDs * Zaurus charging LED trigger * IDE disk activity LED trigger * NAND MTD activity LED trigger Why? ==== LEDs are really simple devices usually amounting to a GPIO that can be turned on and off so why do we need all this code? On handheld or embedded devices they're an important part of an often limited user interface. Both users and developers want to be able to control and configure what the LED does and the number of different things they'd potentially want the LED to show is large. A subsystem is needed to try and provide all this different functionality in an architecture independent, simple but complete, generic and scalable manner. The alternative is for everyone to implement just what they need hidden away in different corners of the kernel source tree and to provide an inconsistent interface to userspace. Other Implementations ===================== I'm aware of the existing arm led implementation. Currently the new subsystem and the arm code can coexist quite happily. Its up to the arm community to decide whether this new interface is acceptable to them. As far as I can see, the new interface can do everything the existing arm implementation can with the advantage that the new code is architecture independent and much more generic, configurable and scalable. I'm prepared to make the conversion to the LED subsystem (or assist with it) if appropriate. Implementation Details ====================== I've stripped a lot of code out of John's original LED class. Colours were removed as LED colour is now part of the device name. Multiple colours are to be handled as multiple led devices. This means you get full control over each colour. I also removed the LED hardware timer code as the generic timer isn't going to add much overhead and is just as useful. I also decided to have the LED core track the current LED status (to ease suspend/resume handling) removing the need for brightness_get implementations in the LED drivers. An underlying design philosophy is simplicity. The aim is to keep a small amount of code giving as much functionality as possible. The major new idea is the led "trigger". A trigger is a source of led events. Triggers can either be simple or complex. A simple trigger isn't configurable and is designed to slot into existing subsystems with minimal additional code. Examples are the ide-disk, nand-disk and zaurus-charging triggers. With leds disabled, the code optimises away. Examples are nand-disk and ide-disk. Complex triggers whilst available to all LEDs have LED specific parameters and work on a per LED basis. The timer trigger is an example. You can change triggers in a similar manner to the way an IO scheduler is chosen (via /sys/class/leds/somedevice/trigger). So far there are only a handful of examples but it should easy to add further LED triggers without too much interference into other subsystems. Known Issues ============ The LED Trigger core cannot be a module as the simple trigger functions would cause nightmare dependency issues. I see this as a minor issue compared to the benefits the simple trigger functionality brings. The rest of the LED subsystem can be modular. Some leds can be programmed to flash in hardware. As this isn't a generic LED device property, I think this should be exported as a device specific sysfs attribute rather than part of the class if this functionality is required (eg. to keep the led flashing whilst the device is suspended). Future Development ================== At the moment, a trigger can't be created specifically for a single LED. There are a number of cases where a trigger might only be mappable to a particular LED. The addition of triggers provided by the LED driver should cover this option and be possible to add without breaking the current interface. A CPU activity trigger similar to that found in the arm led implementation should be trivial to add. This patch: Add some brief documentation of the design decisions behind the LED class and how it appears to users. Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Cc: Russell King <rmk@arm.linux.org.uk> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-rw-r--r--Documentation/leds-class.txt71
1 files changed, 71 insertions, 0 deletions
diff --git a/Documentation/leds-class.txt b/Documentation/leds-class.txt
new file mode 100644
index 000000000000..8c35c0426110
--- /dev/null
+++ b/Documentation/leds-class.txt
@@ -0,0 +1,71 @@
1LED handling under Linux
2========================
3
4If you're reading this and thinking about keyboard leds, these are
5handled by the input subsystem and the led class is *not* needed.
6
7In its simplest form, the LED class just allows control of LEDs from
8userspace. LEDs appear in /sys/class/leds/. The brightness file will
9set the brightness of the LED (taking a value 0-255). Most LEDs don't
10have hardware brightness support so will just be turned on for non-zero
11brightness settings.
12
13The class also introduces the optional concept of an LED trigger. A trigger
14is a kernel based source of led events. Triggers can either be simple or
15complex. A simple trigger isn't configurable and is designed to slot into
16existing subsystems with minimal additional code. Examples are the ide-disk,
17nand-disk and sharpsl-charge triggers. With led triggers disabled, the code
18optimises away.
19
20Complex triggers whilst available to all LEDs have LED specific
21parameters and work on a per LED basis. The timer trigger is an example.
22
23You can change triggers in a similar manner to the way an IO scheduler
24is chosen (via /sys/class/leds/<device>/trigger). Trigger specific
25parameters can appear in /sys/class/leds/<device> once a given trigger is
26selected.
27
28
29Design Philosophy
30=================
31
32The underlying design philosophy is simplicity. LEDs are simple devices
33and the aim is to keep a small amount of code giving as much functionality
34as possible. Please keep this in mind when suggesting enhancements.
35
36
37LED Device Naming
38=================
39
40Is currently of the form:
41
42"devicename:colour"
43
44There have been calls for LED properties such as colour to be exported as
45individual led class attributes. As a solution which doesn't incur as much
46overhead, I suggest these become part of the device name. The naming scheme
47above leaves scope for further attributes should they be needed.
48
49
50Known Issues
51============
52
53The LED Trigger core cannot be a module as the simple trigger functions
54would cause nightmare dependency issues. I see this as a minor issue
55compared to the benefits the simple trigger functionality brings. The
56rest of the LED subsystem can be modular.
57
58Some leds can be programmed to flash in hardware. As this isn't a generic
59LED device property, this should be exported as a device specific sysfs
60attribute rather than part of the class if this functionality is required.
61
62
63Future Development
64==================
65
66At the moment, a trigger can't be created specifically for a single LED.
67There are a number of cases where a trigger might only be mappable to a
68particular LED (ACPI?). The addition of triggers provided by the LED driver
69should cover this option and be possible to add without breaking the
70current interface.
71