aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorArjan van de Ven <arjan@linux.intel.com>2006-12-10 05:21:24 -0500
committerLinus Torvalds <torvalds@woody.osdl.org>2006-12-10 12:57:22 -0500
commit4c36a5dec25fb344ad76b11860da3a8b50bd1248 (patch)
treefacfe4ad3bb3638d8ee6f6b3e7fc75a0a02e304a
parent5466b456ed6748e0bfe02831e570004d4c04c1d7 (diff)
[PATCH] round_jiffies infrastructure
Introduce a round_jiffies() function as well as a round_jiffies_relative() function. These functions round a jiffies value to the next whole second. The primary purpose of this rounding is to cause all "we don't care exactly when" timers to happen at the same jiffy. This avoids multiple timers firing within the second for no real reason; with dynamic ticks these extra timers cause wakeups from deep sleep CPU sleep states and thus waste power. The exact wakeup moment is skewed by the cpu number, to avoid all cpus from waking up at the exact same time (and hitting the same lock/cachelines there) [akpm@osdl.org: fix variable type] Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-rw-r--r--include/linux/timer.h6
-rw-r--r--kernel/timer.c132
2 files changed, 138 insertions, 0 deletions
diff --git a/include/linux/timer.h b/include/linux/timer.h
index c982304dbafd..eeef6643d4c6 100644
--- a/include/linux/timer.h
+++ b/include/linux/timer.h
@@ -98,4 +98,10 @@ extern void run_local_timers(void);
98struct hrtimer; 98struct hrtimer;
99extern int it_real_fn(struct hrtimer *); 99extern int it_real_fn(struct hrtimer *);
100 100
101unsigned long __round_jiffies(unsigned long j, int cpu);
102unsigned long __round_jiffies_relative(unsigned long j, int cpu);
103unsigned long round_jiffies(unsigned long j);
104unsigned long round_jiffies_relative(unsigned long j);
105
106
101#endif 107#endif
diff --git a/kernel/timer.c b/kernel/timer.c
index c1c7fbcffec1..b1f40f256eb0 100644
--- a/kernel/timer.c
+++ b/kernel/timer.c
@@ -80,6 +80,138 @@ tvec_base_t boot_tvec_bases;
80EXPORT_SYMBOL(boot_tvec_bases); 80EXPORT_SYMBOL(boot_tvec_bases);
81static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = &boot_tvec_bases; 81static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = &boot_tvec_bases;
82 82
83/**
84 * __round_jiffies - function to round jiffies to a full second
85 * @j: the time in (absolute) jiffies that should be rounded
86 * @cpu: the processor number on which the timeout will happen
87 *
88 * __round_jiffies rounds an absolute time in the future (in jiffies)
89 * up or down to (approximately) full seconds. This is useful for timers
90 * for which the exact time they fire does not matter too much, as long as
91 * they fire approximately every X seconds.
92 *
93 * By rounding these timers to whole seconds, all such timers will fire
94 * at the same time, rather than at various times spread out. The goal
95 * of this is to have the CPU wake up less, which saves power.
96 *
97 * The exact rounding is skewed for each processor to avoid all
98 * processors firing at the exact same time, which could lead
99 * to lock contention or spurious cache line bouncing.
100 *
101 * The return value is the rounded version of the "j" parameter.
102 */
103unsigned long __round_jiffies(unsigned long j, int cpu)
104{
105 int rem;
106 unsigned long original = j;
107
108 /*
109 * We don't want all cpus firing their timers at once hitting the
110 * same lock or cachelines, so we skew each extra cpu with an extra
111 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
112 * already did this.
113 * The skew is done by adding 3*cpunr, then round, then subtract this
114 * extra offset again.
115 */
116 j += cpu * 3;
117
118 rem = j % HZ;
119
120 /*
121 * If the target jiffie is just after a whole second (which can happen
122 * due to delays of the timer irq, long irq off times etc etc) then
123 * we should round down to the whole second, not up. Use 1/4th second
124 * as cutoff for this rounding as an extreme upper bound for this.
125 */
126 if (rem < HZ/4) /* round down */
127 j = j - rem;
128 else /* round up */
129 j = j - rem + HZ;
130
131 /* now that we have rounded, subtract the extra skew again */
132 j -= cpu * 3;
133
134 if (j <= jiffies) /* rounding ate our timeout entirely; */
135 return original;
136 return j;
137}
138EXPORT_SYMBOL_GPL(__round_jiffies);
139
140/**
141 * __round_jiffies_relative - function to round jiffies to a full second
142 * @j: the time in (relative) jiffies that should be rounded
143 * @cpu: the processor number on which the timeout will happen
144 *
145 * __round_jiffies_relative rounds a time delta in the future (in jiffies)
146 * up or down to (approximately) full seconds. This is useful for timers
147 * for which the exact time they fire does not matter too much, as long as
148 * they fire approximately every X seconds.
149 *
150 * By rounding these timers to whole seconds, all such timers will fire
151 * at the same time, rather than at various times spread out. The goal
152 * of this is to have the CPU wake up less, which saves power.
153 *
154 * The exact rounding is skewed for each processor to avoid all
155 * processors firing at the exact same time, which could lead
156 * to lock contention or spurious cache line bouncing.
157 *
158 * The return value is the rounded version of the "j" parameter.
159 */
160unsigned long __round_jiffies_relative(unsigned long j, int cpu)
161{
162 /*
163 * In theory the following code can skip a jiffy in case jiffies
164 * increments right between the addition and the later subtraction.
165 * However since the entire point of this function is to use approximate
166 * timeouts, it's entirely ok to not handle that.
167 */
168 return __round_jiffies(j + jiffies, cpu) - jiffies;
169}
170EXPORT_SYMBOL_GPL(__round_jiffies_relative);
171
172/**
173 * round_jiffies - function to round jiffies to a full second
174 * @j: the time in (absolute) jiffies that should be rounded
175 *
176 * round_jiffies rounds an absolute time in the future (in jiffies)
177 * up or down to (approximately) full seconds. This is useful for timers
178 * for which the exact time they fire does not matter too much, as long as
179 * they fire approximately every X seconds.
180 *
181 * By rounding these timers to whole seconds, all such timers will fire
182 * at the same time, rather than at various times spread out. The goal
183 * of this is to have the CPU wake up less, which saves power.
184 *
185 * The return value is the rounded version of the "j" parameter.
186 */
187unsigned long round_jiffies(unsigned long j)
188{
189 return __round_jiffies(j, raw_smp_processor_id());
190}
191EXPORT_SYMBOL_GPL(round_jiffies);
192
193/**
194 * round_jiffies_relative - function to round jiffies to a full second
195 * @j: the time in (relative) jiffies that should be rounded
196 *
197 * round_jiffies_relative rounds a time delta in the future (in jiffies)
198 * up or down to (approximately) full seconds. This is useful for timers
199 * for which the exact time they fire does not matter too much, as long as
200 * they fire approximately every X seconds.
201 *
202 * By rounding these timers to whole seconds, all such timers will fire
203 * at the same time, rather than at various times spread out. The goal
204 * of this is to have the CPU wake up less, which saves power.
205 *
206 * The return value is the rounded version of the "j" parameter.
207 */
208unsigned long round_jiffies_relative(unsigned long j)
209{
210 return __round_jiffies_relative(j, raw_smp_processor_id());
211}
212EXPORT_SYMBOL_GPL(round_jiffies_relative);
213
214
83static inline void set_running_timer(tvec_base_t *base, 215static inline void set_running_timer(tvec_base_t *base,
84 struct timer_list *timer) 216 struct timer_list *timer)
85{ 217{