#define _FILE_OFFSET_BITS 64
#include <linux/kernel.h>
#include <byteswap.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/mman.h>
#include "session.h"
#include "sort.h"
#include "util.h"
static int perf_session__open(struct perf_session *self, bool force)
{
struct stat input_stat;
if (!strcmp(self->filename, "-")) {
self->fd_pipe = true;
self->fd = STDIN_FILENO;
if (perf_header__read(self, self->fd) < 0)
pr_err("incompatible file format");
return 0;
}
self->fd = open(self->filename, O_RDONLY);
if (self->fd < 0) {
int err = errno;
pr_err("failed to open %s: %s", self->filename, strerror(err));
if (err == ENOENT && !strcmp(self->filename, "perf.data"))
pr_err(" (try 'perf record' first)");
pr_err("\n");
return -errno;
}
if (fstat(self->fd, &input_stat) < 0)
goto out_close;
if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
pr_err("file %s not owned by current user or root\n",
self->filename);
goto out_close;
}
if (!input_stat.st_size) {
pr_info("zero-sized file (%s), nothing to do!\n",
self->filename);
goto out_close;
}
if (perf_header__read(self, self->fd) < 0) {
pr_err("incompatible file format");
goto out_close;
}
self->size = input_stat.st_size;
return 0;
out_close:
close(self->fd);
self->fd = -1;
return -1;
}
void perf_session__update_sample_type(struct perf_session *self)
{
self->sample_type = perf_header__sample_type(&self->header);
}
int perf_session__create_kernel_maps(struct perf_session *self)
{
int ret = machine__create_kernel_maps(&self->host_machine);
if (ret >= 0)
ret = machines__create_guest_kernel_maps(&self->machines);
return ret;
}
static void perf_session__destroy_kernel_maps(struct perf_session *self)
{
machine__destroy_kernel_maps(&self->host_machine);
machines__destroy_guest_kernel_maps(&self->machines);
}
struct perf_session *perf_session__new(const char *filename, int mode, bool force, bool repipe)
{
size_t len = filename ? strlen(filename) + 1 : 0;
struct perf_session *self = zalloc(sizeof(*self) + len);
if (self == NULL)
goto out;
if (perf_header__init(&self->header) < 0)
goto out_free;
memcpy(self->filename, filename, len);
self->threads = RB_ROOT;
INIT_LIST_HEAD(&self->dead_threads);
self->hists_tree = RB_ROOT;
self->last_match = NULL;
/*
* On 64bit we can mmap the data file in one go. No need for tiny mmap
* slices. On 32bit we use 32MB.
*/
#if BITS_PER_LONG == 64
self->mmap_window = ULLONG_MAX;
#else
self->mmap_window = 32 * 1024 * 1024ULL;
#endif
self->machines = RB_ROOT;
self->repipe = repipe;
INIT_LIST_HEAD(&self->ordered_samples.samples);
machine__init(&self->host_machine, "", HOST_KERNEL_ID);
if (mode == O_RDONLY) {
if (perf_session__open(self, force) < 0)
goto out_delete;
} else if (mode == O_WRONLY) {
/*
* In O_RDONLY mode this will be performed when reading the
* kernel MMAP event, in event__process_mmap().
*/
if (perf_session__create_kernel_maps(self) < 0)
goto out_delete;
}
perf_session__update_sample_type(self);
out:
return self;
out_free:
free(self);
return NULL;
out_delete:
perf_session__delete(self);
return NULL;
}
static void perf_session__delete_dead_threads(struct perf_session *self)
{
struct thread *n, *t;
list_for_each_entry_safe(t, n, &self->dead_threads, node) {
list_del(&t->node);
thread__delete(t);
}
}
static void perf_session__delete_threads(struct perf_session *self)
{
struct rb_node *nd = rb_first(&self->threads);
while (nd) {
struct thread *t = rb_entry(nd, struct thread, rb_node);
rb_erase(&t->rb_node, &self->threads);
nd = rb_next(nd);
thread__delete(t);
}
}
void perf_session__delete(struct perf_session *self)
{
perf_header__exit(&self->header);
perf_session__destroy_kernel_maps(self);
perf_session__delete_dead_threads(self);
perf_session__delete_threads(self);
machine__exit(&self->host_machine);
close(self->fd);
free(self);
}
void perf_session__remove_thread(struct perf_session *self, struct thread *th)
{
self->last_match = NULL;
rb_erase(&th->rb_node, &self->threads);
/*
* We may have references to this thread, for instance in some hist_entry
* instances, so just move them to a separate list.
*/
list_add_tail(&th->node, &self->dead_threads);
}
static bool symbol__match_parent_regex(struct symbol *sym)
{
if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
return 1;
return 0;
}
struct map_symbol *perf_session__resolve_callchain(struct perf_session *self,
struct thread *thread,
struct ip_callchain *chain,
struct symbol **parent)
{
u8 cpumode = PERF_RECORD_MISC_USER;
unsigned int i;
struct map_symbol *syms = calloc(chain->nr, sizeof(*syms));
if (!syms)
return NULL;
for (i = 0; i < chain->nr; i++) {
u64 ip = chain->ips[i];
struct addr_location al;
if (ip >= PERF_CONTEXT_MAX) {
switch (ip) {
case PERF_CONTEXT_HV:
cpumode = PERF_RECORD_MISC_HYPERVISOR; break;
case PERF_CONTEXT_KERNEL:
cpumode = PERF_RECORD_MISC_KERNEL; break;
case PERF_CONTEXT_USER:
cpumode = PERF_RECORD_MISC_USER; break;
default:
break;
}
continue;
}
al.filtered = false;
thread__find_addr_location(thread, self, cpumode,
MAP__FUNCTION, thread->pid, ip, &al, NULL);
if (al.sym != NULL) {
if (sort__has_parent && !*parent &&
symbol__match_parent_regex(al.sym))
*parent = al.sym;
if (!symbol_conf.use_callchain)
break;
syms[i].map = al.map;
syms[i].sym = al.sym;
}
}
return syms;
}
static int process_event_stub(event_t *event __used,
struct perf_session *session __used)
{
dump_printf(": unhandled!\n");
return 0;
}
static int process_finished_round_stub(event_t *event __used,
struct perf_session *session __used,
struct perf_event_ops *ops __used)
{
dump_printf(": unhandled!\n");
return 0;
}
static int process_finished_round(event_t *event,
struct perf_session *session,
struct perf_event_ops *ops);
static void perf_event_ops__fill_defaults(struct perf_event_ops *handler)
{
if (handler->sample == NULL)
handler->sample = process_event_stub;
if (handler->mmap == NULL)
handler->mmap = process_event_stub;
if (handler->comm == NULL)
handler->comm = process_event_stub;
if (handler->fork == NULL)
handler->fork = process_event_stub;
if (handler->exit == NULL)
handler->exit = process_event_stub;
if (handler->lost == NULL)
handler->lost = event__process_lost;
if (handler->read == NULL)
handler->read = process_event_stub;
if (handler->throttle == NULL)
handler->throttle = process_event_stub;
if (handler->unthrottle == NULL)
handler->unthrottle = process_event_stub;
if (handler->attr == NULL)
handler->attr = process_event_stub;
if (handler->event_type == NULL)
handler->event_type = process_event_stub;
if (handler->tracing_data == NULL)
handler->tracing_data = process_event_stub;
if (handler->build_id == NULL)
handler->build_id = process_event_stub;
if (handler->finished_round == NULL) {
if (handler->ordered_samples)
handler->finished_round = process_finished_round;
else
handler->finished_round = process_finished_round_stub;
}
}
void mem_bswap_64(void *src, int byte_size)
{
u64 *m = src;
while (byte_size > 0) {
*m = bswap_64(*m);
byte_size -= sizeof(u64);
++m;
}
}
static void event__all64_swap(event_t *self)
{
struct perf_event_header *hdr = &self->header;
mem_bswap_64(hdr + 1, self->header.size - sizeof(*hdr));
}
static void event__comm_swap(event_t *self)
{
self->comm.pid = bswap_32(self->comm.pid);
self->comm.tid = bswap_32(self->comm.tid);
}
static void event__mmap_swap(event_t *self)
{
self->mmap.pid = bswap_32(self->mmap.pid);
self->mmap.tid = bswap_32(self->mmap.tid);
self->mmap.start = bswap_64(self->mmap.start);
self->mmap.len = bswap_64(self->mmap.len);
self->mmap.pgoff = bswap_64(self->mmap.pgoff);
}
static void event__task_swap(event_t *self)
{
self->fork.pid = bswap_32(self->fork.pid);
self->fork.tid = bswap_32(self->fork.tid);
self->fork.ppid = bswap_32(self->fork.ppid);
self->fork.ptid = bswap_32(self->fork.ptid);
self->fork.time = bswap_64(self->fork.time);
}
static void event__read_swap(event_t *self)
{
self->read.pid = bswap_32(self->read.pid);
self->read.tid = bswap_32(self->read.tid);
self->read.value = bswap_64(self->read.value);
self->read.time_enabled = bswap_64(self->read.time_enabled);
self->read.time_running = bswap_64(self->read.time_running);
self->read.id = bswap_64(self->read.id);
}
static void event__attr_swap(event_t *self)
{
size_t size;
self->attr.attr.type = bswap_32(self->attr.attr.type);
self->attr.attr.size = bswap_32(self->attr.attr.size);
self->attr.attr.config = bswap_64(self->attr.attr.config);
self->attr.attr.sample_period = bswap_64(self->attr.attr.sample_period);
self->attr.attr.sample_type = bswap_64(self->attr.attr.sample_type);
self->attr.attr.read_format = bswap_64(self->attr.attr.read_format);
self->attr.attr.wakeup_events = bswap_32(self->attr.attr.wakeup_events);
self->attr.attr.bp_type = bswap_32(self->attr.attr.bp_type);
self->attr.attr.bp_addr = bswap_64(self->attr.attr.bp_addr);
self->attr.attr.bp_len = bswap_64(self->attr.attr.bp_len);
size = self->header.size;
size -= (void *)&self->attr.id - (void *)self;
mem_bswap_64(self->attr.id, size);
}
static void event__event_type_swap(event_t *self)
{
self->event_type.event_type.event_id =
bswap_64(self->event_type.event_type.event_id);
}
static void event__tracing_data_swap(event_t *self)
{
self->tracing_data.size = bswap_32(self->tracing_data.size);
}
typedef void (*event__swap_op)(event_t *self);
static event__swap_op event__swap_ops[] = {
[PERF_RECORD_MMAP] = event__mmap_swap,
[PERF_RECORD_COMM] = event__comm_swap,
[PERF_RECORD_FORK] = event__task_swap,
[PERF_RECORD_EXIT] = event__task_swap,
[PERF_RECORD_LOST] = event__all64_swap,
[PERF_RECORD_READ] = event__read_swap,
[PERF_RECORD_SAMPLE] = event__all64_swap,
[PERF_RECORD_HEADER_ATTR] = event__attr_swap,
[PERF_RECORD_HEADER_EVENT_TYPE] = event__event_type_swap,
[PERF_RECORD_HEADER_TRACING_DATA] = event__tracing_data_swap,
[PERF_RECORD_HEADER_BUILD_ID] = NULL,
[PERF_RECORD_HEADER_MAX] = NULL,
};
struct sample_queue {
u64 timestamp;
event_t *event;
struct list_head list;
};
static void flush_sample_queue(struct perf_session *s,
struct perf_event_ops *ops)
{
struct ordered_samples *os = &s->ordered_samples;
struct list_head *head = &os->samples;
struct sample_queue *tmp, *iter;
u64 limit = os->next_flush;
u64 last_ts = os->last_sample ? os->last_sample->timestamp : 0ULL;
if (!ops->ordered_samples || !limit)
return;
list_for_each_entry_safe(iter, tmp, head, list) {
if (iter->timestamp > limit)
break;
ops->sample(iter->event, s);
os->last_flush = iter->timestamp;
list_del(&iter->list);
free(iter);
}
if (list_empty(head)) {
os->last_sample = NULL;
} else if (last_ts <= limit) {
os->last_sample =
list_entry(head->prev, struct sample_queue, list);
}
}
/*
* When perf record finishes a pass on every buffers, it records this pseudo
* event.
* We record the max timestamp t found in the pass n.
* Assuming these timestamps are monotonic across cpus, we know that if
* a buffer still has events with timestamps below t, they will be all
* available and then read in the pass n + 1.
* Hence when we start to read the pass n + 2, we can safely flush every
* events with timestamps below t.
*
* ============ PASS n =================
* CPU 0 | CPU 1
* |
* cnt1 timestamps | cnt2 timestamps
* 1 | 2
* 2 | 3
* - | 4 <--- max recorded
*
* ============ PASS n + 1 ==============
* CPU 0 | CPU 1
* |
* cnt1 timestamps | cnt2 timestamps
* 3 | 5
* 4 | 6
* 5 | 7 <---- max recorded
*
* Flush every events below timestamp 4
*
* ============ PASS n + 2 ==============
* CPU 0 | CPU 1
* |
* cnt1 timestamps | cnt2 timestamps
* 6 | 8
* 7 | 9
* - | 10
*
* Flush every events below timestamp 7
* etc...
*/
static int process_finished_round(event_t *event __used,
struct perf_session *session,
struct perf_event_ops *ops)
{
flush_sample_queue(session, ops);
session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
return 0;
}
/* The queue is ordered by time */
static void __queue_sample_event(struct sample_queue *new,
struct perf_session *s)
{
struct ordered_samples *os = &s->ordered_samples;
struct sample_queue *sample = os->last_sample;
u64 timestamp = new->timestamp;
struct list_head *p;
os->last_sample = new;
if (!sample) {
list_add(&new->list, &os->samples);
os->max_timestamp = timestamp;
return;
}
/*
* last_sample might point to some random place in the list as it's
* the last queued event. We expect that the new event is close to
* this.
*/
if (sample->timestamp <= timestamp) {
while (sample->timestamp <= timestamp) {
p = sample->list.next;
if (p == &os->samples) {
list_add_tail(&new->list, &os->samples);
os->max_timestamp = timestamp;
return;
}
sample = list_entry(p, struct sample_queue, list);
}
list_add_tail(&new->list, &sample->list);
} else {
while (sample->timestamp > timestamp) {
p = sample->list.prev;
if (p == &os->samples) {
list_add(&new->list, &os->samples);
return;
}
sample = list_entry(p, struct sample_queue, list);
}
list_add(&new->list, &sample->list);
}
}
static int queue_sample_event(event_t *event, struct sample_data *data,
struct perf_session *s)
{
u64 timestamp = data->time;
struct sample_queue *new;
if (timestamp < s->ordered_samples.last_flush) {
printf("Warning: Timestamp below last timeslice flush\n");
return -EINVAL;
}
new = malloc(sizeof(*new));
if (!new)
return -ENOMEM;
new->timestamp = timestamp;
new->event = event;
__queue_sample_event(new, s);
return 0;
}
static int perf_session__process_sample(event_t *event, struct perf_session *s,
struct perf_event_ops *ops)
{
struct sample_data data;
if (!ops->ordered_samples)
return ops->sample(event, s);
bzero(&data, sizeof(struct sample_data));
event__parse_sample(event, s->sample_type, &data);
queue_sample_event(event, &data, s);
return 0;
}
static int perf_session__process_event(struct perf_session *self,
event_t *event,
struct perf_event_ops *ops,
u64 file_offset)
{
trace_event(event);
if (event->header.type < PERF_RECORD_HEADER_MAX) {
dump_printf("%#Lx [%#x]: PERF_RECORD_%s",
file_offset, event->header.size,
event__name[event->header.type]);
hists__inc_nr_events(&self->hists, event->header.type);
}
if (self->header.needs_swap && event__swap_ops[event->header.type])
event__swap_ops[event->header.type](event);
switch (event->header.type) {
case PERF_RECORD_SAMPLE:
return perf_session__process_sample(event, self, ops);
case PERF_RECORD_MMAP:
return ops->mmap(event, self);
case PERF_RECORD_COMM:
return ops->comm(event, self);
case PERF_RECORD_FORK:
return ops->fork(event, self);
case PERF_RECORD_EXIT:
return ops->exit(event, self);
case PERF_RECORD_LOST:
return ops->lost(event, self);
case PERF_RECORD_READ:
return ops->read(event, self);
case PERF_RECORD_THROTTLE:
return ops->throttle(event, self);
case PERF_RECORD_UNTHROTTLE:
return ops->unthrottle(event, self);
case PERF_RECORD_HEADER_ATTR:
return ops->attr(event, self);
case PERF_RECORD_HEADER_EVENT_TYPE:
return ops->event_type(event, self);
case PERF_RECORD_HEADER_TRACING_DATA:
/* setup for reading amidst mmap */
lseek(self->fd, file_offset, SEEK_SET);
return ops->tracing_data(event, self);
case PERF_RECORD_HEADER_BUILD_ID:
return ops->build_id(event, self);
case PERF_RECORD_FINISHED_ROUND:
return ops->finished_round(event, self, ops);
default:
++self->hists.stats.nr_unknown_events;
return -1;
}
}
void perf_event_header__bswap(struct perf_event_header *self)
{
self->type = bswap_32(self->type);
self->misc = bswap_16(self->misc);
self->size = bswap_16(self->size);
}
static struct thread *perf_session__register_idle_thread(struct perf_session *self)
{
struct thread *thread = perf_session__findnew(self, 0);
if (thread == NULL || thread__set_comm(thread, "swapper")) {
pr_err("problem inserting idle task.\n");
thread = NULL;
}
return thread;
}
int do_read(int fd, void *buf, size_t size)
{
void *buf_start = buf;
while (size) {
int ret = read(fd, buf, size);
if (ret <= 0)
return ret;
size -= ret;
buf += ret;
}
return buf - buf_start;
}
#define session_done() (*(volatile int *)(&session_done))
volatile int session_done;
static int __perf_session__process_pipe_events(struct perf_session *self,
struct perf_event_ops *ops)
{
event_t event;
uint32_t size;
int skip = 0;
u64 head;
int err;
void *p;
perf_event_ops__fill_defaults(ops);
head = 0;
more:
err = do_read(self->fd, &event, sizeof(struct perf_event_header));
if (err <= 0) {
if (err == 0)
goto done;
pr_err("failed to read event header\n");
goto out_err;
}
if (self->header.needs_swap)
perf_event_header__bswap(&event.header);
size = event.header.size;
if (size == 0)
size = 8;
p = &event;
p += sizeof(struct perf_event_header);
if (size - sizeof(struct perf_event_header)) {
err = do_read(self->fd, p,
size - sizeof(struct perf_event_header));
if (err <= 0) {
if (err == 0) {
pr_err("unexpected end of event stream\n");
goto done;
}
pr_err("failed to read event data\n");
goto out_err;
}
}
if (size == 0 ||
(skip = perf_session__process_event(self, &event, ops, head)) < 0) {
dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
head, event.header.size, event.header.type);
/*
* assume we lost track of the stream, check alignment, and
* increment a single u64 in the hope to catch on again 'soon'.
*/
if (unlikely(head & 7))
head &= ~7ULL;
size = 8;
}
head += size;
dump_printf("\n%#Lx [%#x]: event: %d\n",
head, event.header.size, event.header.type);
if (skip > 0)
head += skip;
if (!session_done())
goto more;
done:
err = 0;
out_err:
return err;
}
int __perf_session__process_events(struct perf_session *session,
u64 data_offset, u64 data_size,
u64 file_size, struct perf_event_ops *ops)
{
u64 head, page_offset, file_offset, file_pos, progress_next;
int err, mmap_prot, mmap_flags, map_idx = 0;
struct ui_progress *progress;
size_t page_size, mmap_size;
char *buf, *mmaps[8];
event_t *event;
uint32_t size;
perf_event_ops__fill_defaults(ops);
page_size = sysconf(_SC_PAGESIZE);
page_offset = page_size * (data_offset / page_size);
file_offset = page_offset;
head = data_offset - page_offset;
if (data_offset + data_size < file_size)
file_size = data_offset + data_size;
progress_next = file_size / 16;
progress = ui_progress__new("Processing events...", file_size);
if (progress == NULL)
return -1;
mmap_size = session->mmap_window;
if (mmap_size > file_size)
mmap_size = file_size;
memset(mmaps, 0, sizeof(mmaps));
mmap_prot = PROT_READ;
mmap_flags = MAP_SHARED;
if (session->header.needs_swap) {
mmap_prot |= PROT_WRITE;
mmap_flags = MAP_PRIVATE;
}
remap:
buf = mmap(NULL, mmap_size, mmap_prot, mmap_flags, session->fd,
file_offset);
if (buf == MAP_FAILED) {
pr_err("failed to mmap file\n");
err = -errno;
goto out_err;
}
mmaps[map_idx] = buf;
map_idx = (map_idx + 1) & (ARRAY_SIZE(mmaps) - 1);
file_pos = file_offset + head;
more:
event = (event_t *)(buf + head);
if (session->header.needs_swap)
perf_event_header__bswap(&event->header);
size = event->header.size;
if (size == 0)
size = 8;
if (head + event->header.size >= mmap_size) {
if (mmaps[map_idx]) {
munmap(mmaps[map_idx], mmap_size);
mmaps[map_idx] = NULL;
}
page_offset = page_size * (head / page_size);
file_offset += page_offset;
head -= page_offset;
goto remap;
}
size = event->header.size;
dump_printf("\n%#Lx [%#x]: event: %d\n",
file_pos, event->header.size, event->header.type);
if (size == 0 ||
perf_session__process_event(session, event, ops, file_pos) < 0) {
dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
file_offset + head, event->header.size,
event->header.type);
/*
* assume we lost track of the stream, check alignment, and
* increment a single u64 in the hope to catch on again 'soon'.
*/
if (unlikely(head & 7))
head &= ~7ULL;
size = 8;
}
head += size;
file_pos += size;
if (file_pos >= progress_next) {
progress_next += file_size / 16;
ui_progress__update(progress, file_pos);
}
if (file_pos < file_size)
goto more;
err = 0;
/* do the final flush for ordered samples */
session->ordered_samples.next_flush = ULLONG_MAX;
flush_sample_queue(session, ops);
out_err:
ui_progress__delete(progress);
if (ops->lost == event__process_lost &&
session->hists.stats.total_lost != 0) {
ui__warning("Processed %Lu events and LOST %Lu!\n\n"
"Check IO/CPU overload!\n\n",
session->hists.stats.total_period,
session->hists.stats.total_lost);
}
if (session->hists.stats.nr_unknown_events != 0) {
ui__warning("Found %u unknown events!\n\n"
"Is this an older tool processing a perf.data "
"file generated by a more recent tool?\n\n"
"If that is not the case, consider "
"reporting to linux-kernel@vger.kernel.org.\n\n",
session->hists.stats.nr_unknown_events);
}
return err;
}
int perf_session__process_events(struct perf_session *self,
struct perf_event_ops *ops)
{
int err;
if (perf_session__register_idle_thread(self) == NULL)
return -ENOMEM;
if (!self->fd_pipe)
err = __perf_session__process_events(self,
self->header.data_offset,
self->header.data_size,
self->size, ops);
else
err = __perf_session__process_pipe_events(self, ops);
return err;
}
bool perf_session__has_traces(struct perf_session *self, const char *msg)
{
if (!(self->sample_type & PERF_SAMPLE_RAW)) {
pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
return false;
}
return true;
}
int perf_session__set_kallsyms_ref_reloc_sym(struct map **maps,
const char *symbol_name,
u64 addr)
{
char *bracket;
enum map_type i;
struct ref_reloc_sym *ref;
ref = zalloc(sizeof(struct ref_reloc_sym));
if (ref == NULL)
return -ENOMEM;
ref->name = strdup(symbol_name);
if (ref->name == NULL) {
free(ref);
return -ENOMEM;
}
bracket = strchr(ref->name, ']');
if (bracket)
*bracket = '\0';
ref->addr = addr;
for (i = 0; i < MAP__NR_TYPES; ++i) {
struct kmap *kmap = map__kmap(maps[i]);
kmap->ref_reloc_sym = ref;
}
return 0;
}
size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
{
return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
__dsos__fprintf(&self->host_machine.user_dsos, fp) +
machines__fprintf_dsos(&self->machines, fp);
}
size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
bool with_hits)
{
size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
}