/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/gfp.h>
#include <linux/init.h>
#include <linux/ratelimit.h>
#include <linux/usb.h>
#include <linux/usb/audio.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include "usbaudio.h"
#include "helper.h"
#include "card.h"
#include "endpoint.h"
#include "pcm.h"
#define EP_FLAG_ACTIVATED 0
#define EP_FLAG_RUNNING 1
/*
* snd_usb_endpoint is a model that abstracts everything related to an
* USB endpoint and its streaming.
*
* There are functions to activate and deactivate the streaming URBs and
* optional callbacks to let the pcm logic handle the actual content of the
* packets for playback and record. Thus, the bus streaming and the audio
* handlers are fully decoupled.
*
* There are two different types of endpoints in audio applications.
*
* SND_USB_ENDPOINT_TYPE_DATA handles full audio data payload for both
* inbound and outbound traffic.
*
* SND_USB_ENDPOINT_TYPE_SYNC endpoints are for inbound traffic only and
* expect the payload to carry Q10.14 / Q16.16 formatted sync information
* (3 or 4 bytes).
*
* Each endpoint has to be configured prior to being used by calling
* snd_usb_endpoint_set_params().
*
* The model incorporates a reference counting, so that multiple users
* can call snd_usb_endpoint_start() and snd_usb_endpoint_stop(), and
* only the first user will effectively start the URBs, and only the last
* one to stop it will tear the URBs down again.
*/
/*
* convert a sampling rate into our full speed format (fs/1000 in Q16.16)
* this will overflow at approx 524 kHz
*/
static inline unsigned get_usb_full_speed_rate(unsigned int rate)
{
return ((rate << 13) + 62) / 125;
}
/*
* convert a sampling rate into USB high speed format (fs/8000 in Q16.16)
* this will overflow at approx 4 MHz
*/
static inline unsigned get_usb_high_speed_rate(unsigned int rate)
{
return ((rate << 10) + 62) / 125;
}
/*
* release a urb data
*/
static void release_urb_ctx(struct snd_urb_ctx *u)
{
if (u->buffer_size)
usb_free_coherent(u->ep->chip->dev, u->buffer_size,
u->urb->transfer_buffer,
u->urb->transfer_dma);
usb_free_urb(u->urb);
u->urb = NULL;
}
static const char *usb_error_string(int err)
{
switch (err) {
case -ENODEV:
return "no device";
case -ENOENT:
return "endpoint not enabled";
case -EPIPE:
return "endpoint stalled";
case -ENOSPC:
return "not enough bandwidth";
case -ESHUTDOWN:
return "device disabled";
case -EHOSTUNREACH:
return "device suspended";
case -EINVAL:
case -EAGAIN:
case -EFBIG:
case -EMSGSIZE:
return "internal error";
default:
return "unknown error";
}
}
/**
* snd_usb_endpoint_implicit_feedback_sink: Report endpoint usage type
*
* @ep: The snd_usb_endpoint
*
* Determine whether an endpoint is driven by an implicit feedback
* data endpoint source.
*/
int snd_usb_endpoint_implict_feedback_sink(struct snd_usb_endpoint *ep)
{
return ep->sync_master &&
ep->sync_master->type == SND_USB_ENDPOINT_TYPE_DATA &&
ep->type == SND_USB_ENDPOINT_TYPE_DATA &&
usb_pipeout(ep->pipe);
}
/*
* For streaming based on information derived from sync endpoints,
* prepare_outbound_urb_sizes() will call next_packet_size() to
* determine the number of samples to be sent in the next packet.
*
* For implicit feedback, next_packet_size() is unused.
*/
static int next_packet_size(struct snd_usb_endpoint *ep)
{
unsigned long flags;
int ret;
if (ep->fill_max)
return ep->maxframesize;
spin_lock_irqsave(&ep->lock, flags);
ep->phase = (ep->phase & 0xffff)
+ (ep->freqm << ep->datainterval);
ret = min(ep->phase >> 16, ep->maxframesize);
spin_unlock_irqrestore(&ep->lock, flags);
return ret;
}
static void retire_outbound_urb(struct snd_usb_endpoint *ep,
struct snd_urb_ctx *urb_ctx)
{
if (ep->retire_data_urb)
ep->retire_data_urb(ep->data_subs, urb_ctx->urb);
}
static void retire_inbound_urb(struct snd_usb_endpoint *ep,
struct snd_urb_ctx *urb_ctx)
{
struct urb *urb = urb_ctx->urb;
if (ep->sync_slave)
snd_usb_handle_sync_urb(ep->sync_slave, ep, urb);
if (ep->retire_data_urb)
ep->retire_data_urb(ep->data_subs, urb);
}
static void prepare_outbound_urb_sizes(struct snd_usb_endpoint *ep,
struct snd_urb_ctx *ctx)
{
int i;
for (i = 0; i < ctx->packets; ++i)
ctx->packet_size[i] = next_packet_size(ep);
}
/*
* Prepare a PLAYBACK urb for submission to the bus.
*/
static void prepare_outbound_urb(struct snd_usb_endpoint *ep,
struct snd_urb_ctx *ctx)
{
int i;
struct urb *urb = ctx->urb;
unsigned char *cp = urb->transfer_buffer;
urb->dev = ep->chip->dev; /* we need to set this at each time */
switch (ep->type) {
case SND_USB_ENDPOINT_TYPE_DATA:
if (ep->prepare_data_urb) {
ep->prepare_data_urb(ep->data_subs, urb);
} else {
/* no data provider, so send silence */
unsigned int offs = 0;
for (i = 0; i < ctx->packets; ++i) {
int counts = ctx->packet_size[i];
urb->iso_frame_desc[i].offset = offs * ep->stride;
urb->iso_frame_desc[i].length = counts * ep->stride;
offs += counts;
}
urb->number_of_packets = ctx->packets;
urb->transfer_buffer_length = offs * ep->stride;
memset(urb->transfer_buffer, ep->silence_value,
offs * ep->stride);
}
break;
case SND_USB_ENDPOINT_TYPE_SYNC:
if (snd_usb_get_speed(ep->chip->dev) >= USB_SPEED_HIGH) {
/*
* fill the length and offset of each urb descriptor.
* the fixed 12.13 frequency is passed as 16.16 through the pipe.
*/
urb->iso_frame_desc[0].length = 4;
urb->iso_frame_desc[0].offset = 0;
cp[0] = ep->freqn;
cp[1] = ep->freqn >> 8;
cp[2] = ep->freqn >> 16;
cp[3] = ep->freqn >> 24;
} else {
/*
* fill the length and offset of each urb descriptor.
* the fixed 10.14 frequency is passed through the pipe.
*/
urb->iso_frame_desc[0].length = 3;
urb->iso_frame_desc[0].offset = 0;
cp[0] = ep->freqn >> 2;
cp[1] = ep->freqn >> 10;
cp[2] = ep->freqn >> 18;
}
break;
}
}
/*
* Prepare a CAPTURE or SYNC urb for submission to the bus.
*/
static inline void prepare_inbound_urb(struct snd_usb_endpoint *ep,
struct snd_urb_ctx *urb_ctx)
{
int i, offs;
struct urb *urb = urb_ctx->urb;
urb->dev = ep->chip->dev; /* we need to set this at each time */
switch (ep->type) {
case SND_USB_ENDPOINT_TYPE_DATA:
offs = 0;
for (i = 0; i < urb_ctx->packets; i++) {
urb->iso_frame_desc[i].offset = offs;
urb->iso_frame_desc[i].length = ep->curpacksize;
offs += ep->curpacksize;
}
urb->transfer_buffer_length = offs;
urb->number_of_packets = urb_ctx->packets;
break;
case SND_USB_ENDPOINT_TYPE_SYNC:
urb->iso_frame_desc[0].length = min(4u, ep->syncmaxsize);
urb->iso_frame_desc[0].offset = 0;
break;
}
}
/*
* Send output urbs that have been prepared previously. URBs are dequeued
* from ep->ready_playback_urbs and in case there there aren't any available
* or there are no packets that have been prepared, this function does
* nothing.
*
* The reason why the functionality of sending and preparing URBs is separated
* is that host controllers don't guarantee the order in which they return
* inbound and outbound packets to their submitters.
*
* This function is only used for implicit feedback endpoints. For endpoints
* driven by dedicated sync endpoints, URBs are immediately re-submitted
* from their completion handler.
*/
static void queue_pending_output_urbs(struct snd_usb_endpoint *ep)
{
while (test_bit(EP_FLAG_RUNNING, &ep->flags)) {
unsigned long flags;
struct snd_usb_packet_info *uninitialized_var(packet);
struct snd_urb_ctx *ctx = NULL;
struct urb *urb;
int err, i;
spin_lock_irqsave(&ep->lock, flags);
if (ep->next_packet_read_pos != ep->next_packet_write_pos) {
packet = ep->next_packet + ep->next_packet_read_pos;
ep->next_packet_read_pos++;
ep->next_packet_read_pos %= MAX_URBS;
/* take URB out of FIFO */
if (!list_empty(&ep->ready_playback_urbs))
ctx = list_first_entry(&ep->ready_playback_urbs,
struct snd_urb_ctx, ready_list);
}
spin_unlock_irqrestore(&ep->lock, flags);
if (ctx == NULL)
return;
list_del_init(&ctx->ready_list);
urb = ctx->urb;
/* copy over the length information */
for (i = 0; i < packet->packets; i++)
ctx->packet_size[i] = packet->packet_size[i];
/* call the data handler to fill in playback data */
prepare_outbound_urb(ep, ctx);
err = usb_submit_urb(ctx->urb, GFP_ATOMIC);
if (err < 0)
snd_printk(KERN_ERR "Unable to submit urb #%d: %d (urb %p)\n",
ctx->index, err, ctx->urb);
else
set_bit(ctx->index, &ep->active_mask);
}
}
/*
* complete callback for urbs
*/
static void snd_complete_urb(struct urb *urb)
{
struct snd_urb_ctx *ctx = urb->context;
struct snd_usb_endpoint *ep = ctx->ep;
int err;
if (unlikely(urb->status == -ENOENT || /* unlinked */
urb->status == -ENODEV || /* device removed */
urb->status == -ECONNRESET || /* unlinked */
urb->status == -ESHUTDOWN || /* device disabled */
ep->chip->shutdown)) /* device disconnected */
goto exit_clear;
if (usb_pipeout(ep->pipe)) {
retire_outbound_urb(ep, ctx);
/* can be stopped during retire callback */
if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
goto exit_clear;
if (snd_usb_endpoint_implict_feedback_sink(ep)) {
unsigned long flags;
spin_lock_irqsave(&ep->lock, flags);
list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs);
spin_unlock_irqrestore(&ep->lock, flags);
queue_pending_output_urbs(ep);
goto exit_clear;
}
prepare_outbound_urb_sizes(ep, ctx);
prepare_outbound_urb(ep, ctx);
} else {
retire_inbound_urb(ep, ctx);
/* can be stopped during retire callback */
if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
goto exit_clear;
prepare_inbound_urb(ep, ctx);
}
err = usb_submit_urb(urb, GFP_ATOMIC);
if (err == 0)
return;
snd_printk(KERN_ERR "cannot submit urb (err = %d)\n", err);
//snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
exit_clear:
clear_bit(ctx->index, &ep->active_mask);
}
/**
* snd_usb_add_endpoint: Add an endpoint to an USB audio chip
*
* @chip: The chip
* @alts: The USB host interface
* @ep_num: The number of the endpoint to use
* @direction: SNDRV_PCM_STREAM_PLAYBACK or SNDRV_PCM_STREAM_CAPTURE
* @type: SND_USB_ENDPOINT_TYPE_DATA or SND_USB_ENDPOINT_TYPE_SYNC
*
* If the requested endpoint has not been added to the given chip before,
* a new instance is created. Otherwise, a pointer to the previoulsy
* created instance is returned. In case of any error, NULL is returned.
*
* New endpoints will be added to chip->ep_list and must be freed by
* calling snd_usb_endpoint_free().
*/
struct snd_usb_endpoint *snd_usb_add_endpoint(struct snd_usb_audio *chip,
struct usb_host_interface *alts,
int ep_num, int direction, int type)
{
struct list_head *p;
struct snd_usb_endpoint *ep;
int ret, is_playback = direction == SNDRV_PCM_STREAM_PLAYBACK;
mutex_lock(&chip->mutex);
list_for_each(p, &chip->ep_list) {
ep = list_entry(p, struct snd_usb_endpoint, list);
if (ep->ep_num == ep_num &&
ep->iface == alts->desc.bInterfaceNumber &&
ep->alt_idx == alts->desc.bAlternateSetting) {
snd_printdd(KERN_DEBUG "Re-using EP %x in iface %d,%d @%p\n",
ep_num, ep->iface, ep->alt_idx, ep);
goto __exit_unlock;
}
}
snd_printdd(KERN_DEBUG "Creating new %s %s endpoint #%x\n",
is_playback ? "playback" : "capture",
type == SND_USB_ENDPOINT_TYPE_DATA ? "data" : "sync",
ep_num);
/* select the alt setting once so the endpoints become valid */
ret = usb_set_interface(chip->dev, alts->desc.bInterfaceNumber,
alts->desc.bAlternateSetting);
if (ret < 0) {
snd_printk(KERN_ERR "%s(): usb_set_interface() failed, ret = %d\n",
__func__, ret);
ep = NULL;
goto __exit_unlock;
}
ep = kzalloc(sizeof(*ep), GFP_KERNEL);
if (!ep)
goto __exit_unlock;
ep->chip = chip;
spin_lock_init(&ep->lock);
ep->type = type;
ep->ep_num = ep_num;
ep->iface = alts->desc.bInterfaceNumber;
ep->alt_idx = alts->desc.bAlternateSetting;
INIT_LIST_HEAD(&ep->ready_playback_urbs);
ep_num &= USB_ENDPOINT_NUMBER_MASK;
if (is_playback)
ep->pipe = usb_sndisocpipe(chip->dev, ep_num);
else
ep->pipe = usb_rcvisocpipe(chip->dev, ep_num);
if (type == SND_USB_ENDPOINT_TYPE_SYNC) {
if (get_endpoint(alts, 1)->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE &&
get_endpoint(alts, 1)->bRefresh >= 1 &&
get_endpoint(alts, 1)->bRefresh <= 9)
ep->syncinterval = get_endpoint(alts, 1)->bRefresh;
else if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL)
ep->syncinterval = 1;
else if (get_endpoint(alts, 1)->bInterval >= 1 &&
get_endpoint(alts, 1)->bInterval <= 16)
ep->syncinterval = get_endpoint(alts, 1)->bInterval - 1;
else
ep->syncinterval = 3;
ep->syncmaxsize = le16_to_cpu(get_endpoint(alts, 1)->wMaxPacketSize);
}
list_add_tail(&ep->list, &chip->ep_list);
__exit_unlock:
mutex_unlock(&chip->mutex);
return ep;
}
/*
* wait until all urbs are processed.
*/
static int wait_clear_urbs(struct snd_usb_endpoint *ep)
{
unsigned long end_time = jiffies + msecs_to_jiffies(1000);
unsigned int i;
int alive;
do {
alive = 0;
for (i = 0; i < ep->nurbs; i++)
if (test_bit(i, &ep->active_mask))
alive++;
if (!alive)
break;
schedule_timeout_uninterruptible(1);
} while (time_before(jiffies, end_time));
if (alive)
snd_printk(KERN_ERR "timeout: still %d active urbs on EP #%x\n",
alive, ep->ep_num);
return 0;
}
/*
* unlink active urbs.
*/
static int deactivate_urbs(struct snd_usb_endpoint *ep, int force, int can_sleep)
{
unsigned int i;
int async;
if (!force && ep->chip->shutdown) /* to be sure... */
return -EBADFD;
async = !can_sleep && ep->chip->async_unlink;
clear_bit(EP_FLAG_RUNNING, &ep->flags);
INIT_LIST_HEAD(&ep->ready_playback_urbs);
ep->next_packet_read_pos = 0;
ep->next_packet_write_pos = 0;
if (!async && in_interrupt())
return 0;
for (i = 0; i < ep->nurbs; i++) {
if (test_bit(i, &ep->active_mask)) {
if (!test_and_set_bit(i, &ep->unlink_mask)) {
struct urb *u = ep->urb[i].urb;
if (async)
usb_unlink_urb(u);
else
usb_kill_urb(u);
}
}
}
return 0;
}
/*
* release an endpoint's urbs
*/
static void release_urbs(struct snd_usb_endpoint *ep, int force)
{
int i;
/* route incoming urbs to nirvana */
ep->retire_data_urb = NULL;
ep->prepare_data_urb = NULL;
/* stop urbs */
deactivate_urbs(ep, force, 1);
wait_clear_urbs(ep);
for (i = 0; i < ep->nurbs; i++)
release_urb_ctx(&ep->urb[i]);
if (ep->syncbuf)
usb_free_coherent(ep->chip->dev, SYNC_URBS * 4,
ep->syncbuf, ep->sync_dma);
ep->syncbuf = NULL;
ep->nurbs = 0;
}
/*
* configure a data endpoint
*/
static int data_ep_set_params(struct snd_usb_endpoint *ep,
struct snd_pcm_hw_params *hw_params,
struct audioformat *fmt,
struct snd_usb_endpoint *sync_ep)
{
unsigned int maxsize, i, urb_packs, total_packs, packs_per_ms;
int period_bytes = params_period_bytes(hw_params);
int format = params_format(hw_params);
int is_playback = usb_pipeout(ep->pipe);
int frame_bits = snd_pcm_format_physical_width(params_format(hw_params)) *
params_channels(hw_params);
ep->datainterval = fmt->datainterval;
ep->stride = frame_bits >> 3;
ep->silence_value = format == SNDRV_PCM_FORMAT_U8 ? 0x80 : 0;
/* calculate max. frequency */
if (ep->maxpacksize) {
/* whatever fits into a max. size packet */
maxsize = ep->maxpacksize;
ep->freqmax = (maxsize / (frame_bits >> 3))
<< (16 - ep->datainterval);
} else {
/* no max. packet size: just take 25% higher than nominal */
ep->freqmax = ep->freqn + (ep->freqn >> 2);
maxsize = ((ep->freqmax + 0xffff) * (frame_bits >> 3))
>> (16 - ep->datainterval);
}
if (ep->fill_max)
ep->curpacksize = ep->maxpacksize;
else
ep->curpacksize = maxsize;
if (snd_usb_get_speed(ep->chip->dev) != USB_SPEED_FULL)
packs_per_ms = 8 >> ep->datainterval;
else
packs_per_ms = 1;
if (is_playback && !snd_usb_endpoint_implict_feedback_sink(ep)) {
urb_packs = max(ep->chip->nrpacks, 1);
urb_packs = min(urb_packs, (unsigned int) MAX_PACKS);
} else {
urb_packs = 1;
}
urb_packs *= packs_per_ms;
if (sync_ep && !snd_usb_endpoint_implict_feedback_sink(ep))
urb_packs = min(urb_packs, 1U << sync_ep->syncinterval);
/* decide how many packets to be used */
if (is_playback && !snd_usb_endpoint_implict_feedback_sink(ep)) {
unsigned int minsize, maxpacks;
/* determine how small a packet can be */
minsize = (ep->freqn >> (16 - ep->datainterval))
* (frame_bits >> 3);
/* with sync from device, assume it can be 12% lower */
if (sync_ep)
minsize -= minsize >> 3;
minsize = max(minsize, 1u);
total_packs = (period_bytes + minsize - 1) / minsize;
/* we need at least two URBs for queueing */
if (total_packs < 2) {
total_packs = 2;
} else {
/* and we don't want too long a queue either */
maxpacks = max(MAX_QUEUE * packs_per_ms, urb_packs * 2);
total_packs = min(total_packs, maxpacks);
}
} else {
while (urb_packs > 1 && urb_packs * maxsize >= period_bytes)
urb_packs >>= 1;
total_packs = MAX_URBS * urb_packs;
}
ep->nurbs = (total_packs + urb_packs - 1) / urb_packs;
if (ep->nurbs > MAX_URBS) {
/* too much... */
ep->nurbs = MAX_URBS;
total_packs = MAX_URBS * urb_packs;
} else if (ep->nurbs < 2) {
/* too little - we need at least two packets
* to ensure contiguous playback/capture
*/
ep->nurbs = 2;
}
/* allocate and initialize data urbs */
for (i = 0; i < ep->nurbs; i++) {
struct snd_urb_ctx *u = &ep->urb[i];
u->index = i;
u->ep = ep;
u->packets = (i + 1) * total_packs / ep->nurbs
- i * total_packs / ep->nurbs;
u->buffer_size = maxsize * u->packets;
if (fmt->fmt_type == UAC_FORMAT_TYPE_II)
u->packets++; /* for transfer delimiter */
u->urb = usb_alloc_urb(u->packets, GFP_KERNEL);
if (!u->urb)
goto out_of_memory;
u->urb->transfer_buffer =
usb_alloc_coherent(ep->chip->dev, u->buffer_size,
GFP_KERNEL, &u->urb->transfer_dma);
if (!u->urb->transfer_buffer)
goto out_of_memory;
u->urb->pipe = ep->pipe;
u->urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP;
u->urb->interval = 1 << ep->datainterval;
u->urb->context = u;
u->urb->complete = snd_complete_urb;
INIT_LIST_HEAD(&u->ready_list);
}
return 0;
out_of_memory:
release_urbs(ep, 0);
return -ENOMEM;
}
/*
* configure a sync endpoint
*/
static int sync_ep_set_params(struct snd_usb_endpoint *ep,
struct snd_pcm_hw_params *hw_params,
struct audioformat *fmt)
{
int i;
ep->syncbuf = usb_alloc_coherent(ep->chip->dev, SYNC_URBS * 4,
GFP_KERNEL, &ep->sync_dma);
if (!ep->syncbuf)
return -ENOMEM;
for (i = 0; i < SYNC_URBS; i++) {
struct snd_urb_ctx *u = &ep->urb[i];
u->index = i;
u->ep = ep;
u->packets = 1;
u->urb = usb_alloc_urb(1, GFP_KERNEL);
if (!u->urb)
goto out_of_memory;
u->urb->transfer_buffer = ep->syncbuf + i * 4;
u->urb->transfer_dma = ep->sync_dma + i * 4;
u->urb->transfer_buffer_length = 4;
u->urb->pipe = ep->pipe;
u->urb->transfer_flags = URB_ISO_ASAP |
URB_NO_TRANSFER_DMA_MAP;
u->urb->number_of_packets = 1;
u->urb->interval = 1 << ep->syncinterval;
u->urb->context = u;
u->urb->complete = snd_complete_urb;
}
ep->nurbs = SYNC_URBS;
return 0;
out_of_memory:
release_urbs(ep, 0);
return -ENOMEM;
}
/**
* snd_usb_endpoint_set_params: configure an snd_usb_endpoint
*
* @ep: the snd_usb_endpoint to configure
* @hw_params: the hardware parameters
* @fmt: the USB audio format information
* @sync_ep: the sync endpoint to use, if any
*
* Determine the number of URBs to be used on this endpoint.
* An endpoint must be configured before it can be started.
* An endpoint that is already running can not be reconfigured.
*/
int snd_usb_endpoint_set_params(struct snd_usb_endpoint *ep,
struct snd_pcm_hw_params *hw_params,
struct audioformat *fmt,
struct snd_usb_endpoint *sync_ep)
{
int err;
if (ep->use_count != 0) {
snd_printk(KERN_WARNING "Unable to change format on ep #%x: already in use\n",
ep->ep_num);
return -EBUSY;
}
/* release old buffers, if any */
release_urbs(ep, 0);
ep->datainterval = fmt->datainterval;
ep->maxpacksize = fmt->maxpacksize;
ep->fill_max = !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX);
if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_FULL)
ep->freqn = get_usb_full_speed_rate(params_rate(hw_params));
else
ep->freqn = get_usb_high_speed_rate(params_rate(hw_params));
/* calculate the frequency in 16.16 format */
ep->freqm = ep->freqn;
ep->freqshift = INT_MIN;
ep->phase = 0;
switch (ep->type) {
case SND_USB_ENDPOINT_TYPE_DATA:
err = data_ep_set_params(ep, hw_params, fmt, sync_ep);
break;
case SND_USB_ENDPOINT_TYPE_SYNC:
err = sync_ep_set_params(ep, hw_params, fmt);
break;
default:
err = -EINVAL;
}
snd_printdd(KERN_DEBUG "Setting params for ep #%x (type %d, %d urbs), ret=%d\n",
ep->ep_num, ep->type, ep->nurbs, err);
return err;
}
/**
* snd_usb_endpoint_start: start an snd_usb_endpoint
*
* @ep: the endpoint to start
*
* A call to this function will increment the use count of the endpoint.
* In case it is not already running, the URBs for this endpoint will be
* submitted. Otherwise, this function does nothing.
*
* Must be balanced to calls of snd_usb_endpoint_stop().
*
* Returns an error if the URB submission failed, 0 in all other cases.
*/
int snd_usb_endpoint_start(struct snd_usb_endpoint *ep)
{
int err;
unsigned int i;
if (ep->chip->shutdown)
return -EBADFD;
/* already running? */
if (++ep->use_count != 1)
return 0;
if (snd_BUG_ON(!test_bit(EP_FLAG_ACTIVATED, &ep->flags)))
return -EINVAL;
/* just to be sure */
deactivate_urbs(ep, 0, 1);
wait_clear_urbs(ep);
ep->active_mask = 0;
ep->unlink_mask = 0;
ep->phase = 0;
/*
* If this endpoint has a data endpoint as implicit feedback source,
* don't start the urbs here. Instead, mark them all as available,
* wait for the record urbs to return and queue the playback urbs
* from that context.
*/
set_bit(EP_FLAG_RUNNING, &ep->flags);
if (snd_usb_endpoint_implict_feedback_sink(ep)) {
for (i = 0; i < ep->nurbs; i++) {
struct snd_urb_ctx *ctx = ep->urb + i;
list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs);
}
return 0;
}
for (i = 0; i < ep->nurbs; i++) {
struct urb *urb = ep->urb[i].urb;
if (snd_BUG_ON(!urb))
goto __error;
if (usb_pipeout(ep->pipe)) {
prepare_outbound_urb_sizes(ep, urb->context);
prepare_outbound_urb(ep, urb->context);
} else {
prepare_inbound_urb(ep, urb->context);
}
err = usb_submit_urb(urb, GFP_ATOMIC);
if (err < 0) {
snd_printk(KERN_ERR "cannot submit urb %d, error %d: %s\n",
i, err, usb_error_string(err));
goto __error;
}
set_bit(i, &ep->active_mask);
}
return 0;
__error:
clear_bit(EP_FLAG_RUNNING, &ep->flags);
ep->use_count--;
deactivate_urbs(ep, 0, 0);
return -EPIPE;
}
/**
* snd_usb_endpoint_stop: stop an snd_usb_endpoint
*
* @ep: the endpoint to stop (may be NULL)
*
* A call to this function will decrement the use count of the endpoint.
* In case the last user has requested the endpoint stop, the URBs will
* actually be deactivated.
*
* Must be balanced to calls of snd_usb_endpoint_start().
*/
void snd_usb_endpoint_stop(struct snd_usb_endpoint *ep,
int force, int can_sleep, int wait)
{
if (!ep)
return;
if (snd_BUG_ON(ep->use_count == 0))
return;
if (snd_BUG_ON(!test_bit(EP_FLAG_ACTIVATED, &ep->flags)))
return;
if (--ep->use_count == 0) {
deactivate_urbs(ep, force, can_sleep);
ep->data_subs = NULL;
ep->sync_slave = NULL;
ep->retire_data_urb = NULL;
ep->prepare_data_urb = NULL;
if (wait)
wait_clear_urbs(ep);
}
}
/**
* snd_usb_endpoint_activate: activate an snd_usb_endpoint
*
* @ep: the endpoint to activate
*
* If the endpoint is not currently in use, this functions will select the
* correct alternate interface setting for the interface of this endpoint.
*
* In case of any active users, this functions does nothing.
*
* Returns an error if usb_set_interface() failed, 0 in all other
* cases.
*/
int snd_usb_endpoint_activate(struct snd_usb_endpoint *ep)
{
if (ep->use_count != 0)
return 0;
if (!ep->chip->shutdown &&
!test_and_set_bit(EP_FLAG_ACTIVATED, &ep->flags)) {
int ret;
ret = usb_set_interface(ep->chip->dev, ep->iface, ep->alt_idx);
if (ret < 0) {
snd_printk(KERN_ERR "%s() usb_set_interface() failed, ret = %d\n",
__func__, ret);
clear_bit(EP_FLAG_ACTIVATED, &ep->flags);
return ret;
}
return 0;
}
return -EBUSY;
}
/**
* snd_usb_endpoint_deactivate: deactivate an snd_usb_endpoint
*
* @ep: the endpoint to deactivate
*
* If the endpoint is not currently in use, this functions will select the
* alternate interface setting 0 for the interface of this endpoint.
*
* In case of any active users, this functions does nothing.
*
* Returns an error if usb_set_interface() failed, 0 in all other
* cases.
*/
int snd_usb_endpoint_deactivate(struct snd_usb_endpoint *ep)
{
if (!ep)
return -EINVAL;
if (ep->use_count != 0)
return 0;
if (!ep->chip->shutdown &&
test_and_clear_bit(EP_FLAG_ACTIVATED, &ep->flags)) {
int ret;
ret = usb_set_interface(ep->chip->dev, ep->iface, 0);
if (ret < 0) {
snd_printk(KERN_ERR "%s(): usb_set_interface() failed, ret = %d\n",
__func__, ret);
return ret;
}
return 0;
}
return -EBUSY;
}
/**
* snd_usb_endpoint_free: Free the resources of an snd_usb_endpoint
*
* @ep: the list header of the endpoint to free
*
* This function does not care for the endpoint's use count but will tear
* down all the streaming URBs immediately and free all resources.
*/
void snd_usb_endpoint_free(struct list_head *head)
{
struct snd_usb_endpoint *ep;
ep = list_entry(head, struct snd_usb_endpoint, list);
release_urbs(ep, 1);
kfree(ep);
}
/**
* snd_usb_handle_sync_urb: parse an USB sync packet
*
* @ep: the endpoint to handle the packet
* @sender: the sending endpoint
* @urb: the received packet
*
* This function is called from the context of an endpoint that received
* the packet and is used to let another endpoint object handle the payload.
*/
void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep,
struct snd_usb_endpoint *sender,
const struct urb *urb)
{
int shift;
unsigned int f;
unsigned long flags;
snd_BUG_ON(ep == sender);
/*
* In case the endpoint is operating in implicit feedback mode, prepare
* a new outbound URB that has the same layout as the received packet
* and add it to the list of pending urbs. queue_pending_output_urbs()
* will take care of them later.
*/
if (snd_usb_endpoint_implict_feedback_sink(ep) &&
ep->use_count != 0) {
/* implicit feedback case */
int i, bytes = 0;
struct snd_urb_ctx *in_ctx;
struct snd_usb_packet_info *out_packet;
in_ctx = urb->context;
/* Count overall packet size */
for (i = 0; i < in_ctx->packets; i++)
if (urb->iso_frame_desc[i].status == 0)
bytes += urb->iso_frame_desc[i].actual_length;
/*
* skip empty packets. At least M-Audio's Fast Track Ultra stops
* streaming once it received a 0-byte OUT URB
*/
if (bytes == 0)
return;
spin_lock_irqsave(&ep->lock, flags);
out_packet = ep->next_packet + ep->next_packet_write_pos;
/*
* Iterate through the inbound packet and prepare the lengths
* for the output packet. The OUT packet we are about to send
* will have the same amount of payload bytes than the IN
* packet we just received.
*/
out_packet->packets = in_ctx->packets;
for (i = 0; i < in_ctx->packets; i++) {
if (urb->iso_frame_desc[i].status == 0)
out_packet->packet_size[i] =
urb->iso_frame_desc[i].actual_length / ep->stride;
else
out_packet->packet_size[i] = 0;
}
ep->next_packet_write_pos++;
ep->next_packet_write_pos %= MAX_URBS;
spin_unlock_irqrestore(&ep->lock, flags);
queue_pending_output_urbs(ep);
return;
}
/*
* process after playback sync complete
*
* Full speed devices report feedback values in 10.14 format as samples
* per frame, high speed devices in 16.16 format as samples per
* microframe.
*
* Because the Audio Class 1 spec was written before USB 2.0, many high
* speed devices use a wrong interpretation, some others use an
* entirely different format.
*
* Therefore, we cannot predict what format any particular device uses
* and must detect it automatically.
*/
if (urb->iso_frame_desc[0].status != 0 ||
urb->iso_frame_desc[0].actual_length < 3)
return;
f = le32_to_cpup(urb->transfer_buffer);
if (urb->iso_frame_desc[0].actual_length == 3)
f &= 0x00ffffff;
else
f &= 0x0fffffff;
if (f == 0)
return;
if (unlikely(ep->freqshift == INT_MIN)) {
/*
* The first time we see a feedback value, determine its format
* by shifting it left or right until it matches the nominal
* frequency value. This assumes that the feedback does not
* differ from the nominal value more than +50% or -25%.
*/
shift = 0;
while (f < ep->freqn - ep->freqn / 4) {
f <<= 1;
shift++;
}
while (f > ep->freqn + ep->freqn / 2) {
f >>= 1;
shift--;
}
ep->freqshift = shift;
} else if (ep->freqshift >= 0)
f <<= ep->freqshift;
else
f >>= -ep->freqshift;
if (likely(f >= ep->freqn - ep->freqn / 8 && f <= ep->freqmax)) {
/*
* If the frequency looks valid, set it.
* This value is referred to in prepare_playback_urb().
*/
spin_lock_irqsave(&ep->lock, flags);
ep->freqm = f;
spin_unlock_irqrestore(&ep->lock, flags);
} else {
/*
* Out of range; maybe the shift value is wrong.
* Reset it so that we autodetect again the next time.
*/
ep->freqshift = INT_MIN;
}
}