/*
* uda1380.c - Philips UDA1380 ALSA SoC audio driver
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Copyright (c) 2007-2009 Philipp Zabel <philipp.zabel@gmail.com>
*
* Modified by Richard Purdie <richard@openedhand.com> to fit into SoC
* codec model.
*
* Copyright (c) 2005 Giorgio Padrin <giorgio@mandarinlogiq.org>
* Copyright 2005 Openedhand Ltd.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/workqueue.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/initval.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/tlv.h>
#include <sound/uda1380.h>
#include "uda1380.h"
static struct snd_soc_codec *uda1380_codec;
/* codec private data */
struct uda1380_priv {
struct snd_soc_codec codec;
u16 reg_cache[UDA1380_CACHEREGNUM];
unsigned int dac_clk;
struct work_struct work;
};
/*
* uda1380 register cache
*/
static const u16 uda1380_reg[UDA1380_CACHEREGNUM] = {
0x0502, 0x0000, 0x0000, 0x3f3f,
0x0202, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0xff00, 0x0000, 0x4800,
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x8000, 0x0002, 0x0000,
};
static unsigned long uda1380_cache_dirty;
/*
* read uda1380 register cache
*/
static inline unsigned int uda1380_read_reg_cache(struct snd_soc_codec *codec,
unsigned int reg)
{
u16 *cache = codec->reg_cache;
if (reg == UDA1380_RESET)
return 0;
if (reg >= UDA1380_CACHEREGNUM)
return -1;
return cache[reg];
}
/*
* write uda1380 register cache
*/
static inline void uda1380_write_reg_cache(struct snd_soc_codec *codec,
u16 reg, unsigned int value)
{
u16 *cache = codec->reg_cache;
if (reg >= UDA1380_CACHEREGNUM)
return;
if ((reg >= 0x10) && (cache[reg] != value))
set_bit(reg - 0x10, &uda1380_cache_dirty);
cache[reg] = value;
}
/*
* write to the UDA1380 register space
*/
static int uda1380_write(struct snd_soc_codec *codec, unsigned int reg,
unsigned int value)
{
u8 data[3];
/* data is
* data[0] is register offset
* data[1] is MS byte
* data[2] is LS byte
*/
data[0] = reg;
data[1] = (value & 0xff00) >> 8;
data[2] = value & 0x00ff;
uda1380_write_reg_cache(codec, reg, value);
/* the interpolator & decimator regs must only be written when the
* codec DAI is active.
*/
if (!codec->active && (reg >= UDA1380_MVOL))
return 0;
pr_debug("uda1380: hw write %x val %x\n", reg, value);
if (codec->hw_write(codec->control_data, data, 3) == 3) {
unsigned int val;
i2c_master_send(codec->control_data, data, 1);
i2c_master_recv(codec->control_data, data, 2);
val = (data[0]<<8) | data[1];
if (val != value) {
pr_debug("uda1380: READ BACK VAL %x\n",
(data[0]<<8) | data[1]);
return -EIO;
}
if (reg >= 0x10)
clear_bit(reg - 0x10, &uda1380_cache_dirty);
return 0;
} else
return -EIO;
}
#define uda1380_reset(c) uda1380_write(c, UDA1380_RESET, 0)
static void uda1380_flush_work(struct work_struct *work)
{
int bit, reg;
for_each_bit(bit, &uda1380_cache_dirty, UDA1380_CACHEREGNUM - 0x10) {
reg = 0x10 + bit;
pr_debug("uda1380: flush reg %x val %x:\n", reg,
uda1380_read_reg_cache(uda1380_codec, reg));
uda1380_write(uda1380_codec, reg,
uda1380_read_reg_cache(uda1380_codec, reg));
clear_bit(bit, &uda1380_cache_dirty);
}
}
/* declarations of ALSA reg_elem_REAL controls */
static const char *uda1380_deemp[] = {
"None",
"32kHz",
"44.1kHz",
"48kHz",
"96kHz",
};
static const char *uda1380_input_sel[] = {
"Line",
"Mic + Line R",
"Line L",
"Mic",
};
static const char *uda1380_output_sel[] = {
"DAC",
"Analog Mixer",
};
static const char *uda1380_spf_mode[] = {
"Flat",
"Minimum1",
"Minimum2",
"Maximum"
};
static const char *uda1380_capture_sel[] = {
"ADC",
"Digital Mixer"
};
static const char *uda1380_sel_ns[] = {
"3rd-order",
"5th-order"
};
static const char *uda1380_mix_control[] = {
"off",
"PCM only",
"before sound processing",
"after sound processing"
};
static const char *uda1380_sdet_setting[] = {
"3200",
"4800",
"9600",
"19200"
};
static const char *uda1380_os_setting[] = {
"single-speed",
"double-speed (no mixing)",
"quad-speed (no mixing)"
};
static const struct soc_enum uda1380_deemp_enum[] = {
SOC_ENUM_SINGLE(UDA1380_DEEMP, 8, 5, uda1380_deemp),
SOC_ENUM_SINGLE(UDA1380_DEEMP, 0, 5, uda1380_deemp),
};
static const struct soc_enum uda1380_input_sel_enum =
SOC_ENUM_SINGLE(UDA1380_ADC, 2, 4, uda1380_input_sel); /* SEL_MIC, SEL_LNA */
static const struct soc_enum uda1380_output_sel_enum =
SOC_ENUM_SINGLE(UDA1380_PM, 7, 2, uda1380_output_sel); /* R02_EN_AVC */
static const struct soc_enum uda1380_spf_enum =
SOC_ENUM_SINGLE(UDA1380_MODE, 14, 4, uda1380_spf_mode); /* M */
static const struct soc_enum uda1380_capture_sel_enum =
SOC_ENUM_SINGLE(UDA1380_IFACE, 6, 2, uda1380_capture_sel); /* SEL_SOURCE */
static const struct soc_enum uda1380_sel_ns_enum =
SOC_ENUM_SINGLE(UDA1380_MIXER, 14, 2, uda1380_sel_ns); /* SEL_NS */
static const struct soc_enum uda1380_mix_enum =
SOC_ENUM_SINGLE(UDA1380_MIXER, 12, 4, uda1380_mix_control); /* MIX, MIX_POS */
static const struct soc_enum uda1380_sdet_enum =
SOC_ENUM_SINGLE(UDA1380_MIXER, 4, 4, uda1380_sdet_setting); /* SD_VALUE */
static const struct soc_enum uda1380_os_enum =
SOC_ENUM_SINGLE(UDA1380_MIXER, 0, 3, uda1380_os_setting); /* OS */
/*
* from -48 dB in 1.5 dB steps (mute instead of -49.5 dB)
*/
static DECLARE_TLV_DB_SCALE(amix_tlv, -4950, 150, 1);
/*
* from -78 dB in 1 dB steps (3 dB steps, really. LSB are ignored),
* from -66 dB in 0.5 dB steps (2 dB steps, really) and
* from -52 dB in 0.25 dB steps
*/
static const unsigned int mvol_tlv[] = {
TLV_DB_RANGE_HEAD(3),
0, 15, TLV_DB_SCALE_ITEM(-8200, 100, 1),
16, 43, TLV_DB_SCALE_ITEM(-6600, 50, 0),
44, 252, TLV_DB_SCALE_ITEM(-5200, 25, 0),
};
/*
* from -72 dB in 1.5 dB steps (6 dB steps really),
* from -66 dB in 0.75 dB steps (3 dB steps really),
* from -60 dB in 0.5 dB steps (2 dB steps really) and
* from -46 dB in 0.25 dB steps
*/
static const unsigned int vc_tlv[] = {
TLV_DB_RANGE_HEAD(4),
0, 7, TLV_DB_SCALE_ITEM(-7800, 150, 1),
8, 15, TLV_DB_SCALE_ITEM(-6600, 75, 0),
16, 43, TLV_DB_SCALE_ITEM(-6000, 50, 0),
44, 228, TLV_DB_SCALE_ITEM(-4600, 25, 0),
};
/* from 0 to 6 dB in 2 dB steps if SPF mode != flat */
static DECLARE_TLV_DB_SCALE(tr_tlv, 0, 200, 0);
/* from 0 to 24 dB in 2 dB steps, if SPF mode == maximum, otherwise cuts
* off at 18 dB max) */
static DECLARE_TLV_DB_SCALE(bb_tlv, 0, 200, 0);
/* from -63 to 24 dB in 0.5 dB steps (-128...48) */
static DECLARE_TLV_DB_SCALE(dec_tlv, -6400, 50, 1);
/* from 0 to 24 dB in 3 dB steps */
static DECLARE_TLV_DB_SCALE(pga_tlv, 0, 300, 0);
/* from 0 to 30 dB in 2 dB steps */
static DECLARE_TLV_DB_SCALE(vga_tlv, 0, 200, 0);
static const struct snd_kcontrol_new uda1380_snd_controls[] = {
SOC_DOUBLE_TLV("Analog Mixer Volume", UDA1380_AMIX, 0, 8, 44, 1, amix_tlv), /* AVCR, AVCL */
SOC_DOUBLE_TLV("Master Playback Volume", UDA1380_MVOL, 0, 8, 252, 1, mvol_tlv), /* MVCL, MVCR */
SOC_SINGLE_TLV("ADC Playback Volume", UDA1380_MIXVOL, 8, 228, 1, vc_tlv), /* VC2 */
SOC_SINGLE_TLV("PCM Playback Volume", UDA1380_MIXVOL, 0, 228, 1, vc_tlv), /* VC1 */
SOC_ENUM("Sound Processing Filter", uda1380_spf_enum), /* M */
SOC_DOUBLE_TLV("Tone Control - Treble", UDA1380_MODE, 4, 12, 3, 0, tr_tlv), /* TRL, TRR */
SOC_DOUBLE_TLV("Tone Control - Bass", UDA1380_MODE, 0, 8, 15, 0, bb_tlv), /* BBL, BBR */
/**/ SOC_SINGLE("Master Playback Switch", UDA1380_DEEMP, 14, 1, 1), /* MTM */
SOC_SINGLE("ADC Playback Switch", UDA1380_DEEMP, 11, 1, 1), /* MT2 from decimation filter */
SOC_ENUM("ADC Playback De-emphasis", uda1380_deemp_enum[0]), /* DE2 */
SOC_SINGLE("PCM Playback Switch", UDA1380_DEEMP, 3, 1, 1), /* MT1, from digital data input */
SOC_ENUM("PCM Playback De-emphasis", uda1380_deemp_enum[1]), /* DE1 */
SOC_SINGLE("DAC Polarity inverting Switch", UDA1380_MIXER, 15, 1, 0), /* DA_POL_INV */
SOC_ENUM("Noise Shaper", uda1380_sel_ns_enum), /* SEL_NS */
SOC_ENUM("Digital Mixer Signal Control", uda1380_mix_enum), /* MIX_POS, MIX */
SOC_SINGLE("Silence Detector Switch", UDA1380_MIXER, 6, 1, 0), /* SDET_ON */
SOC_ENUM("Silence Detector Setting", uda1380_sdet_enum), /* SD_VALUE */
SOC_ENUM("Oversampling Input", uda1380_os_enum), /* OS */
SOC_DOUBLE_S8_TLV("ADC Capture Volume", UDA1380_DEC, -128, 48, dec_tlv), /* ML_DEC, MR_DEC */
/**/ SOC_SINGLE("ADC Capture Switch", UDA1380_PGA, 15, 1, 1), /* MT_ADC */
SOC_DOUBLE_TLV("Line Capture Volume", UDA1380_PGA, 0, 8, 8, 0, pga_tlv), /* PGA_GAINCTRLL, PGA_GAINCTRLR */
SOC_SINGLE("ADC Polarity inverting Switch", UDA1380_ADC, 12, 1, 0), /* ADCPOL_INV */
SOC_SINGLE_TLV("Mic Capture Volume", UDA1380_ADC, 8, 15, 0, vga_tlv), /* VGA_CTRL */
SOC_SINGLE("DC Filter Bypass Switch", UDA1380_ADC, 1, 1, 0), /* SKIP_DCFIL (before decimator) */
SOC_SINGLE("DC Filter Enable Switch", UDA1380_ADC, 0, 1, 0), /* EN_DCFIL (at output of decimator) */
SOC_SINGLE("AGC Timing", UDA1380_AGC, 8, 7, 0), /* TODO: enum, see table 62 */
SOC_SINGLE("AGC Target level", UDA1380_AGC, 2, 3, 1), /* AGC_LEVEL */
/* -5.5, -8, -11.5, -14 dBFS */
SOC_SINGLE("AGC Switch", UDA1380_AGC, 0, 1, 0),
};
/* Input mux */
static const struct snd_kcontrol_new uda1380_input_mux_control =
SOC_DAPM_ENUM("Route", uda1380_input_sel_enum);
/* Output mux */
static const struct snd_kcontrol_new uda1380_output_mux_control =
SOC_DAPM_ENUM("Route", uda1380_output_sel_enum);
/* Capture mux */
static const struct snd_kcontrol_new uda1380_capture_mux_control =
SOC_DAPM_ENUM("Route", uda1380_capture_sel_enum);
static const struct snd_soc_dapm_widget uda1380_dapm_widgets[] = {
SND_SOC_DAPM_MUX("Input Mux", SND_SOC_NOPM, 0, 0,
&uda1380_input_mux_control),
SND_SOC_DAPM_MUX("Output Mux", SND_SOC_NOPM, 0, 0,
&uda1380_output_mux_control),
SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0,
&uda1380_capture_mux_control),
SND_SOC_DAPM_PGA("Left PGA", UDA1380_PM, 3, 0, NULL, 0),
SND_SOC_DAPM_PGA("Right PGA", UDA1380_PM, 1, 0, NULL, 0),
SND_SOC_DAPM_PGA("Mic LNA", UDA1380_PM, 4, 0, NULL, 0),
SND_SOC_DAPM_ADC("Left ADC", "Left Capture", UDA1380_PM, 2, 0),
SND_SOC_DAPM_ADC("Right ADC", "Right Capture", UDA1380_PM, 0, 0),
SND_SOC_DAPM_INPUT("VINM"),
SND_SOC_DAPM_INPUT("VINL"),
SND_SOC_DAPM_INPUT("VINR"),
SND_SOC_DAPM_MIXER("Analog Mixer", UDA1380_PM, 6, 0, NULL, 0),
SND_SOC_DAPM_OUTPUT("VOUTLHP"),
SND_SOC_DAPM_OUTPUT("VOUTRHP"),
SND_SOC_DAPM_OUTPUT("VOUTL"),
SND_SOC_DAPM_OUTPUT("VOUTR"),
SND_SOC_DAPM_DAC("DAC", "Playback", UDA1380_PM, 10, 0),
SND_SOC_DAPM_PGA("HeadPhone Driver", UDA1380_PM, 13, 0, NULL, 0),
};
static const struct snd_soc_dapm_route audio_map[] = {
/* output mux */
{"HeadPhone Driver", NULL, "Output Mux"},
{"VOUTR", NULL, "Output Mux"},
{"VOUTL", NULL, "Output Mux"},
{"Analog Mixer", NULL, "VINR"},
{"Analog Mixer", NULL, "VINL"},
{"Analog Mixer", NULL, "DAC"},
{"Output Mux", "DAC", "DAC"},
{"Output Mux", "Analog Mixer", "Analog Mixer"},
/* {"DAC", "Digital Mixer", "I2S" } */
/* headphone driver */
{"VOUTLHP", NULL, "HeadPhone Driver"},
{"VOUTRHP", NULL, "HeadPhone Driver"},
/* input mux */
{"Left ADC", NULL, "Input Mux"},
{"Input Mux", "Mic", "Mic LNA"},
{"Input Mux", "Mic + Line R", "Mic LNA"},
{"Input Mux", "Line L", "Left PGA"},
{"Input Mux", "Line", "Left PGA"},
/* right input */
{"Right ADC", "Mic + Line R", "Right PGA"},
{"Right ADC", "Line", "Right PGA"},
/* inputs */
{"Mic LNA", NULL, "VINM"},
{"Left PGA", NULL, "VINL"},
{"Right PGA", NULL, "VINR"},
};
static int uda1380_add_widgets(struct snd_soc_codec *codec)
{
snd_soc_dapm_new_controls(codec, uda1380_dapm_widgets,
ARRAY_SIZE(uda1380_dapm_widgets));
snd_soc_dapm_add_routes(codec, audio_map, ARRAY_SIZE(audio_map));
return 0;
}
static int uda1380_set_dai_fmt_both(struct snd_soc_dai *codec_dai,
unsigned int fmt)
{
struct snd_soc_codec *codec = codec_dai->codec;
int iface;
/* set up DAI based upon fmt */
iface = uda1380_read_reg_cache(codec, UDA1380_IFACE);
iface &= ~(R01_SFORI_MASK | R01_SIM | R01_SFORO_MASK);
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
iface |= R01_SFORI_I2S | R01_SFORO_I2S;
break;
case SND_SOC_DAIFMT_LSB:
iface |= R01_SFORI_LSB16 | R01_SFORO_LSB16;
break;
case SND_SOC_DAIFMT_MSB:
iface |= R01_SFORI_MSB | R01_SFORO_MSB;
}
/* DATAI is slave only, so in single-link mode, this has to be slave */
if ((fmt & SND_SOC_DAIFMT_MASTER_MASK) != SND_SOC_DAIFMT_CBS_CFS)
return -EINVAL;
uda1380_write(codec, UDA1380_IFACE, iface);
return 0;
}
static int uda1380_set_dai_fmt_playback(struct snd_soc_dai *codec_dai,
unsigned int fmt)
{
struct snd_soc_codec *codec = codec_dai->codec;
int iface;
/* set up DAI based upon fmt */
iface = uda1380_read_reg_cache(codec, UDA1380_IFACE);
iface &= ~R01_SFORI_MASK;
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
iface |= R01_SFORI_I2S;
break;
case SND_SOC_DAIFMT_LSB:
iface |= R01_SFORI_LSB16;
break;
case SND_SOC_DAIFMT_MSB:
iface |= R01_SFORI_MSB;
}
/* DATAI is slave only, so this has to be slave */
if ((fmt & SND_SOC_DAIFMT_MASTER_MASK) != SND_SOC_DAIFMT_CBS_CFS)
return -EINVAL;
uda1380_write(codec, UDA1380_IFACE, iface);
return 0;
}
static int uda1380_set_dai_fmt_capture(struct snd_soc_dai *codec_dai,
unsigned int fmt)
{
struct snd_soc_codec *codec = codec_dai->codec;
int iface;
/* set up DAI based upon fmt */
iface = uda1380_read_reg_cache(codec, UDA1380_IFACE);
iface &= ~(R01_SIM | R01_SFORO_MASK);
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
iface |= R01_SFORO_I2S;
break;
case SND_SOC_DAIFMT_LSB:
iface |= R01_SFORO_LSB16;
break;
case SND_SOC_DAIFMT_MSB:
iface |= R01_SFORO_MSB;
}
if ((fmt & SND_SOC_DAIFMT_MASTER_MASK) == SND_SOC_DAIFMT_CBM_CFM)
iface |= R01_SIM;
uda1380_write(codec, UDA1380_IFACE, iface);
return 0;
}
static int uda1380_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_device *socdev = rtd->socdev;
struct snd_soc_codec *codec = socdev->card->codec;
struct uda1380_priv *uda1380 = codec->private_data;
int mixer = uda1380_read_reg_cache(codec, UDA1380_MIXER);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
uda1380_write_reg_cache(codec, UDA1380_MIXER,
mixer & ~R14_SILENCE);
schedule_work(&uda1380->work);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
uda1380_write_reg_cache(codec, UDA1380_MIXER,
mixer | R14_SILENCE);
schedule_work(&uda1380->work);
break;
}
return 0;
}
static int uda1380_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_device *socdev = rtd->socdev;
struct snd_soc_codec *codec = socdev->card->codec;
u16 clk = uda1380_read_reg_cache(codec, UDA1380_CLK);
/* set WSPLL power and divider if running from this clock */
if (clk & R00_DAC_CLK) {
int rate = params_rate(params);
u16 pm = uda1380_read_reg_cache(codec, UDA1380_PM);
clk &= ~0x3; /* clear SEL_LOOP_DIV */
switch (rate) {
case 6250 ... 12500:
clk |= 0x0;
break;
case 12501 ... 25000:
clk |= 0x1;
break;
case 25001 ... 50000:
clk |= 0x2;
break;
case 50001 ... 100000:
clk |= 0x3;
break;
}
uda1380_write(codec, UDA1380_PM, R02_PON_PLL | pm);
}
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
clk |= R00_EN_DAC | R00_EN_INT;
else
clk |= R00_EN_ADC | R00_EN_DEC;
uda1380_write(codec, UDA1380_CLK, clk);
return 0;
}
static void uda1380_pcm_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_device *socdev = rtd->socdev;
struct snd_soc_codec *codec = socdev->card->codec;
u16 clk = uda1380_read_reg_cache(codec, UDA1380_CLK);
/* shut down WSPLL power if running from this clock */
if (clk & R00_DAC_CLK) {
u16 pm = uda1380_read_reg_cache(codec, UDA1380_PM);
uda1380_write(codec, UDA1380_PM, ~R02_PON_PLL & pm);
}
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
clk &= ~(R00_EN_DAC | R00_EN_INT);
else
clk &= ~(R00_EN_ADC | R00_EN_DEC);
uda1380_write(codec, UDA1380_CLK, clk);
}
static int uda1380_set_bias_level(struct snd_soc_codec *codec,
enum snd_soc_bias_level level)
{
int pm = uda1380_read_reg_cache(codec, UDA1380_PM);
switch (level) {
case SND_SOC_BIAS_ON:
case SND_SOC_BIAS_PREPARE:
uda1380_write(codec, UDA1380_PM, R02_PON_BIAS | pm);
break;
case SND_SOC_BIAS_STANDBY:
uda1380_write(codec, UDA1380_PM, R02_PON_BIAS);
break;
case SND_SOC_BIAS_OFF:
uda1380_write(codec, UDA1380_PM, 0x0);
break;
}
codec->bias_level = level;
return 0;
}
#define UDA1380_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_11025 |\
SNDRV_PCM_RATE_16000 | SNDRV_PCM_RATE_22050 |\
SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000)
static struct snd_soc_dai_ops uda1380_dai_ops = {
.hw_params = uda1380_pcm_hw_params,
.shutdown = uda1380_pcm_shutdown,
.trigger = uda1380_trigger,
.set_fmt = uda1380_set_dai_fmt_both,
};
static struct snd_soc_dai_ops uda1380_dai_ops_playback = {
.hw_params = uda1380_pcm_hw_params,
.shutdown = uda1380_pcm_shutdown,
.trigger = uda1380_trigger,
.set_fmt = uda1380_set_dai_fmt_playback,
};
static struct snd_soc_dai_ops uda1380_dai_ops_capture = {
.hw_params = uda1380_pcm_hw_params,
.shutdown = uda1380_pcm_shutdown,
.trigger = uda1380_trigger,
.set_fmt = uda1380_set_dai_fmt_capture,
};
struct snd_soc_dai uda1380_dai[] = {
{
.name = "UDA1380",
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 2,
.rates = UDA1380_RATES,
.formats = SNDRV_PCM_FMTBIT_S16_LE,},
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = 2,
.rates = UDA1380_RATES,
.formats = SNDRV_PCM_FMTBIT_S16_LE,},
.ops = &uda1380_dai_ops,
},
{ /* playback only - dual interface */
.name = "UDA1380",
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 2,
.rates = UDA1380_RATES,
.formats = SNDRV_PCM_FMTBIT_S16_LE,
},
.ops = &uda1380_dai_ops_playback,
},
{ /* capture only - dual interface*/
.name = "UDA1380",
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = 2,
.rates = UDA1380_RATES,
.formats = SNDRV_PCM_FMTBIT_S16_LE,
},
.ops = &uda1380_dai_ops_capture,
},
};
EXPORT_SYMBOL_GPL(uda1380_dai);
static int uda1380_suspend(struct platform_device *pdev, pm_message_t state)
{
struct snd_soc_device *socdev = platform_get_drvdata(pdev);
struct snd_soc_codec *codec = socdev->card->codec;
uda1380_set_bias_level(codec, SND_SOC_BIAS_OFF);
return 0;
}
static int uda1380_resume(struct platform_device *pdev)
{
struct snd_soc_device *socdev = platform_get_drvdata(pdev);
struct snd_soc_codec *codec = socdev->card->codec;
int i;
u8 data[2];
u16 *cache = codec->reg_cache;
/* Sync reg_cache with the hardware */
for (i = 0; i < ARRAY_SIZE(uda1380_reg); i++) {
data[0] = (i << 1) | ((cache[i] >> 8) & 0x0001);
data[1] = cache[i] & 0x00ff;
codec->hw_write(codec->control_data, data, 2);
}
uda1380_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
uda1380_set_bias_level(codec, codec->suspend_bias_level);
return 0;
}
static int uda1380_probe(struct platform_device *pdev)
{
struct snd_soc_device *socdev = platform_get_drvdata(pdev);
struct snd_soc_codec *codec;
struct uda1380_platform_data *pdata;
int ret = 0;
if (uda1380_codec == NULL) {
dev_err(&pdev->dev, "Codec device not registered\n");
return -ENODEV;
}
socdev->card->codec = uda1380_codec;
codec = uda1380_codec;
pdata = codec->dev->platform_data;
/* register pcms */
ret = snd_soc_new_pcms(socdev, SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1);
if (ret < 0) {
dev_err(codec->dev, "failed to create pcms: %d\n", ret);
goto pcm_err;
}
/* power on device */
uda1380_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
/* set clock input */
switch (pdata->dac_clk) {
case UDA1380_DAC_CLK_SYSCLK:
uda1380_write(codec, UDA1380_CLK, 0);
break;
case UDA1380_DAC_CLK_WSPLL:
uda1380_write(codec, UDA1380_CLK, R00_DAC_CLK);
break;
}
snd_soc_add_controls(codec, uda1380_snd_controls,
ARRAY_SIZE(uda1380_snd_controls));
uda1380_add_widgets(codec);
return ret;
pcm_err:
return ret;
}
/* power down chip */
static int uda1380_remove(struct platform_device *pdev)
{
struct snd_soc_device *socdev = platform_get_drvdata(pdev);
struct snd_soc_codec *codec = socdev->card->codec;
if (codec->control_data)
uda1380_set_bias_level(codec, SND_SOC_BIAS_OFF);
snd_soc_free_pcms(socdev);
snd_soc_dapm_free(socdev);
return 0;
}
struct snd_soc_codec_device soc_codec_dev_uda1380 = {
.probe = uda1380_probe,
.remove = uda1380_remove,
.suspend = uda1380_suspend,
.resume = uda1380_resume,
};
EXPORT_SYMBOL_GPL(soc_codec_dev_uda1380);
static int uda1380_register(struct uda1380_priv *uda1380)
{
int ret, i;
struct snd_soc_codec *codec = &uda1380->codec;
struct uda1380_platform_data *pdata = codec->dev->platform_data;
if (uda1380_codec) {
dev_err(codec->dev, "Another UDA1380 is registered\n");
return -EINVAL;
}
if (!pdata || !pdata->gpio_power || !pdata->gpio_reset)
return -EINVAL;
ret = gpio_request(pdata->gpio_power, "uda1380 power");
if (ret)
goto err_out;
ret = gpio_request(pdata->gpio_reset, "uda1380 reset");
if (ret)
goto err_gpio;
gpio_direction_output(pdata->gpio_power, 1);
/* we may need to have the clock running here - pH5 */
gpio_direction_output(pdata->gpio_reset, 1);
udelay(5);
gpio_set_value(pdata->gpio_reset, 0);
mutex_init(&codec->mutex);
INIT_LIST_HEAD(&codec->dapm_widgets);
INIT_LIST_HEAD(&codec->dapm_paths);
codec->private_data = uda1380;
codec->name = "UDA1380";
codec->owner = THIS_MODULE;
codec->read = uda1380_read_reg_cache;
codec->write = uda1380_write;
codec->bias_level = SND_SOC_BIAS_OFF;
codec->set_bias_level = uda1380_set_bias_level;
codec->dai = uda1380_dai;
codec->num_dai = ARRAY_SIZE(uda1380_dai);
codec->reg_cache_size = ARRAY_SIZE(uda1380_reg);
codec->reg_cache = &uda1380->reg_cache;
codec->reg_cache_step = 1;
memcpy(codec->reg_cache, uda1380_reg, sizeof(uda1380_reg));
ret = uda1380_reset(codec);
if (ret < 0) {
dev_err(codec->dev, "Failed to issue reset\n");
goto err_reset;
}
INIT_WORK(&uda1380->work, uda1380_flush_work);
for (i = 0; i < ARRAY_SIZE(uda1380_dai); i++)
uda1380_dai[i].dev = codec->dev;
uda1380_codec = codec;
ret = snd_soc_register_codec(codec);
if (ret != 0) {
dev_err(codec->dev, "Failed to register codec: %d\n", ret);
goto err_reset;
}
ret = snd_soc_register_dais(uda1380_dai, ARRAY_SIZE(uda1380_dai));
if (ret != 0) {
dev_err(codec->dev, "Failed to register DAIs: %d\n", ret);
goto err_dai;
}
return 0;
err_dai:
snd_soc_unregister_codec(codec);
err_reset:
gpio_set_value(pdata->gpio_power, 0);
gpio_free(pdata->gpio_reset);
err_gpio:
gpio_free(pdata->gpio_power);
err_out:
return ret;
}
static void uda1380_unregister(struct uda1380_priv *uda1380)
{
struct snd_soc_codec *codec = &uda1380->codec;
struct uda1380_platform_data *pdata = codec->dev->platform_data;
snd_soc_unregister_dais(uda1380_dai, ARRAY_SIZE(uda1380_dai));
snd_soc_unregister_codec(&uda1380->codec);
gpio_set_value(pdata->gpio_power, 0);
gpio_free(pdata->gpio_reset);
gpio_free(pdata->gpio_power);
kfree(uda1380);
uda1380_codec = NULL;
}
#if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
static __devinit int uda1380_i2c_probe(struct i2c_client *i2c,
const struct i2c_device_id *id)
{
struct uda1380_priv *uda1380;
struct snd_soc_codec *codec;
int ret;
uda1380 = kzalloc(sizeof(struct uda1380_priv), GFP_KERNEL);
if (uda1380 == NULL)
return -ENOMEM;
codec = &uda1380->codec;
codec->hw_write = (hw_write_t)i2c_master_send;
i2c_set_clientdata(i2c, uda1380);
codec->control_data = i2c;
codec->dev = &i2c->dev;
ret = uda1380_register(uda1380);
if (ret != 0)
kfree(uda1380);
return ret;
}
static int __devexit uda1380_i2c_remove(struct i2c_client *i2c)
{
struct uda1380_priv *uda1380 = i2c_get_clientdata(i2c);
uda1380_unregister(uda1380);
return 0;
}
static const struct i2c_device_id uda1380_i2c_id[] = {
{ "uda1380", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, uda1380_i2c_id);
static struct i2c_driver uda1380_i2c_driver = {
.driver = {
.name = "UDA1380 I2C Codec",
.owner = THIS_MODULE,
},
.probe = uda1380_i2c_probe,
.remove = __devexit_p(uda1380_i2c_remove),
.id_table = uda1380_i2c_id,
};
#endif
static int __init uda1380_modinit(void)
{
int ret;
#if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
ret = i2c_add_driver(&uda1380_i2c_driver);
if (ret != 0)
pr_err("Failed to register UDA1380 I2C driver: %d\n", ret);
#endif
return 0;
}
module_init(uda1380_modinit);
static void __exit uda1380_exit(void)
{
#if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
i2c_del_driver(&uda1380_i2c_driver);
#endif
}
module_exit(uda1380_exit);
MODULE_AUTHOR("Giorgio Padrin");
MODULE_DESCRIPTION("Audio support for codec Philips UDA1380");
MODULE_LICENSE("GPL");