aboutsummaryrefslogblamecommitdiffstats
path: root/net/rds/threads.c
blob: 786c20eaaf5e44a1cb1a2d7bdd284c7ad2cedf53 (plain) (tree)





































































                                                                           
                          




















                                                                           
                                        














































































                                                                                               

                                                                                         






















































































                                                                                               
                                           




                               
/*
 * Copyright (c) 2006 Oracle.  All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */
#include <linux/kernel.h>
#include <linux/random.h>

#include "rds.h"

/*
 * All of connection management is simplified by serializing it through
 * work queues that execute in a connection managing thread.
 *
 * TCP wants to send acks through sendpage() in response to data_ready(),
 * but it needs a process context to do so.
 *
 * The receive paths need to allocate but can't drop packets (!) so we have
 * a thread around to block allocating if the receive fast path sees an
 * allocation failure.
 */

/* Grand Unified Theory of connection life cycle:
 * At any point in time, the connection can be in one of these states:
 * DOWN, CONNECTING, UP, DISCONNECTING, ERROR
 *
 * The following transitions are possible:
 *  ANY		  -> ERROR
 *  UP		  -> DISCONNECTING
 *  ERROR	  -> DISCONNECTING
 *  DISCONNECTING -> DOWN
 *  DOWN	  -> CONNECTING
 *  CONNECTING	  -> UP
 *
 * Transition to state DISCONNECTING/DOWN:
 *  -	Inside the shutdown worker; synchronizes with xmit path
 *	through c_send_lock, and with connection management callbacks
 *	via c_cm_lock.
 *
 *	For receive callbacks, we rely on the underlying transport
 *	(TCP, IB/RDMA) to provide the necessary synchronisation.
 */
struct workqueue_struct *rds_wq;
EXPORT_SYMBOL_GPL(rds_wq);

void rds_connect_complete(struct rds_connection *conn)
{
	if (!rds_conn_transition(conn, RDS_CONN_CONNECTING, RDS_CONN_UP)) {
		printk(KERN_WARNING "%s: Cannot transition to state UP, "
				"current state is %d\n",
				__func__,
				atomic_read(&conn->c_state));
		atomic_set(&conn->c_state, RDS_CONN_ERROR);
		queue_work(rds_wq, &conn->c_down_w);
		return;
	}

	rdsdebug("conn %p for %pI4 to %pI4 complete\n",
	  conn, &conn->c_laddr, &conn->c_faddr);

	conn->c_reconnect_jiffies = 0;
	set_bit(0, &conn->c_map_queued);
	queue_delayed_work(rds_wq, &conn->c_send_w, 0);
	queue_delayed_work(rds_wq, &conn->c_recv_w, 0);
}
EXPORT_SYMBOL_GPL(rds_connect_complete);

/*
 * This random exponential backoff is relied on to eventually resolve racing
 * connects.
 *
 * If connect attempts race then both parties drop both connections and come
 * here to wait for a random amount of time before trying again.  Eventually
 * the backoff range will be so much greater than the time it takes to
 * establish a connection that one of the pair will establish the connection
 * before the other's random delay fires.
 *
 * Connection attempts that arrive while a connection is already established
 * are also considered to be racing connects.  This lets a connection from
 * a rebooted machine replace an existing stale connection before the transport
 * notices that the connection has failed.
 *
 * We should *always* start with a random backoff; otherwise a broken connection
 * will always take several iterations to be re-established.
 */
static void rds_queue_reconnect(struct rds_connection *conn)
{
	unsigned long rand;

	rdsdebug("conn %p for %pI4 to %pI4 reconnect jiffies %lu\n",
	  conn, &conn->c_laddr, &conn->c_faddr,
	  conn->c_reconnect_jiffies);

	set_bit(RDS_RECONNECT_PENDING, &conn->c_flags);
	if (conn->c_reconnect_jiffies == 0) {
		conn->c_reconnect_jiffies = rds_sysctl_reconnect_min_jiffies;
		queue_delayed_work(rds_wq, &conn->c_conn_w, 0);
		return;
	}

	get_random_bytes(&rand, sizeof(rand));
	rdsdebug("%lu delay %lu ceil conn %p for %pI4 -> %pI4\n",
		 rand % conn->c_reconnect_jiffies, conn->c_reconnect_jiffies,
		 conn, &conn->c_laddr, &conn->c_faddr);
	queue_delayed_work(rds_wq, &conn->c_conn_w,
			   rand % conn->c_reconnect_jiffies);

	conn->c_reconnect_jiffies = min(conn->c_reconnect_jiffies * 2,
					rds_sysctl_reconnect_max_jiffies);
}

void rds_connect_worker(struct work_struct *work)
{
	struct rds_connection *conn = container_of(work, struct rds_connection, c_conn_w.work);
	int ret;

	clear_bit(RDS_RECONNECT_PENDING, &conn->c_flags);
	if (rds_conn_transition(conn, RDS_CONN_DOWN, RDS_CONN_CONNECTING)) {
		ret = conn->c_trans->conn_connect(conn);
		rdsdebug("conn %p for %pI4 to %pI4 dispatched, ret %d\n",
			conn, &conn->c_laddr, &conn->c_faddr, ret);

		if (ret) {
			if (rds_conn_transition(conn, RDS_CONN_CONNECTING, RDS_CONN_DOWN))
				rds_queue_reconnect(conn);
			else
				rds_conn_error(conn, "RDS: connect failed\n");
		}
	}
}

void rds_shutdown_worker(struct work_struct *work)
{
	struct rds_connection *conn = container_of(work, struct rds_connection, c_down_w);

	/* shut it down unless it's down already */
	if (!rds_conn_transition(conn, RDS_CONN_DOWN, RDS_CONN_DOWN)) {
		/*
		 * Quiesce the connection mgmt handlers before we start tearing
		 * things down. We don't hold the mutex for the entire
		 * duration of the shutdown operation, else we may be
		 * deadlocking with the CM handler. Instead, the CM event
		 * handler is supposed to check for state DISCONNECTING
		 */
		mutex_lock(&conn->c_cm_lock);
		if (!rds_conn_transition(conn, RDS_CONN_UP, RDS_CONN_DISCONNECTING) &&
		    !rds_conn_transition(conn, RDS_CONN_ERROR, RDS_CONN_DISCONNECTING)) {
			rds_conn_error(conn, "shutdown called in state %d\n",
					atomic_read(&conn->c_state));
			mutex_unlock(&conn->c_cm_lock);
			return;
		}
		mutex_unlock(&conn->c_cm_lock);

		mutex_lock(&conn->c_send_lock);
		conn->c_trans->conn_shutdown(conn);
		rds_conn_reset(conn);
		mutex_unlock(&conn->c_send_lock);

		if (!rds_conn_transition(conn, RDS_CONN_DISCONNECTING, RDS_CONN_DOWN)) {
			/* This can happen - eg when we're in the middle of tearing
			 * down the connection, and someone unloads the rds module.
			 * Quite reproduceable with loopback connections.
			 * Mostly harmless.
			 */
			rds_conn_error(conn,
				"%s: failed to transition to state DOWN, "
				"current state is %d\n",
				__func__,
				atomic_read(&conn->c_state));
			return;
		}
	}

	/* Then reconnect if it's still live.
	 * The passive side of an IB loopback connection is never added
	 * to the conn hash, so we never trigger a reconnect on this
	 * conn - the reconnect is always triggered by the active peer. */
	cancel_delayed_work(&conn->c_conn_w);
	if (!hlist_unhashed(&conn->c_hash_node))
		rds_queue_reconnect(conn);
}

void rds_send_worker(struct work_struct *work)
{
	struct rds_connection *conn = container_of(work, struct rds_connection, c_send_w.work);
	int ret;

	if (rds_conn_state(conn) == RDS_CONN_UP) {
		ret = rds_send_xmit(conn);
		rdsdebug("conn %p ret %d\n", conn, ret);
		switch (ret) {
		case -EAGAIN:
			rds_stats_inc(s_send_immediate_retry);
			queue_delayed_work(rds_wq, &conn->c_send_w, 0);
			break;
		case -ENOMEM:
			rds_stats_inc(s_send_delayed_retry);
			queue_delayed_work(rds_wq, &conn->c_send_w, 2);
		default:
			break;
		}
	}
}

void rds_recv_worker(struct work_struct *work)
{
	struct rds_connection *conn = container_of(work, struct rds_connection, c_recv_w.work);
	int ret;

	if (rds_conn_state(conn) == RDS_CONN_UP) {
		ret = conn->c_trans->recv(conn);
		rdsdebug("conn %p ret %d\n", conn, ret);
		switch (ret) {
		case -EAGAIN:
			rds_stats_inc(s_recv_immediate_retry);
			queue_delayed_work(rds_wq, &conn->c_recv_w, 0);
			break;
		case -ENOMEM:
			rds_stats_inc(s_recv_delayed_retry);
			queue_delayed_work(rds_wq, &conn->c_recv_w, 2);
		default:
			break;
		}
	}
}

void rds_threads_exit(void)
{
	destroy_workqueue(rds_wq);
}

int __init rds_threads_init(void)
{
	rds_wq = create_workqueue("krdsd");
	if (rds_wq == NULL)
		return -ENOMEM;

	return 0;
}