/*
* IUCV protocol stack for Linux on zSeries
*
* Copyright IBM Corp. 2006, 2009
*
* Author(s): Jennifer Hunt <jenhunt@us.ibm.com>
* Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
* PM functions:
* Ursula Braun <ursula.braun@de.ibm.com>
*/
#define KMSG_COMPONENT "af_iucv"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/module.h>
#include <linux/types.h>
#include <linux/list.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <net/sock.h>
#include <asm/ebcdic.h>
#include <asm/cpcmd.h>
#include <linux/kmod.h>
#include <net/iucv/af_iucv.h>
#define VERSION "1.2"
static char iucv_userid[80];
static const struct proto_ops iucv_sock_ops;
static struct proto iucv_proto = {
.name = "AF_IUCV",
.owner = THIS_MODULE,
.obj_size = sizeof(struct iucv_sock),
};
static struct iucv_interface *pr_iucv;
/* special AF_IUCV IPRM messages */
static const u8 iprm_shutdown[8] =
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
#define TRGCLS_SIZE (sizeof(((struct iucv_message *)0)->class))
/* macros to set/get socket control buffer at correct offset */
#define CB_TAG(skb) ((skb)->cb) /* iucv message tag */
#define CB_TAG_LEN (sizeof(((struct iucv_message *) 0)->tag))
#define CB_TRGCLS(skb) ((skb)->cb + CB_TAG_LEN) /* iucv msg target class */
#define CB_TRGCLS_LEN (TRGCLS_SIZE)
#define __iucv_sock_wait(sk, condition, timeo, ret) \
do { \
DEFINE_WAIT(__wait); \
long __timeo = timeo; \
ret = 0; \
prepare_to_wait(sk_sleep(sk), &__wait, TASK_INTERRUPTIBLE); \
while (!(condition)) { \
if (!__timeo) { \
ret = -EAGAIN; \
break; \
} \
if (signal_pending(current)) { \
ret = sock_intr_errno(__timeo); \
break; \
} \
release_sock(sk); \
__timeo = schedule_timeout(__timeo); \
lock_sock(sk); \
ret = sock_error(sk); \
if (ret) \
break; \
} \
finish_wait(sk_sleep(sk), &__wait); \
} while (0)
#define iucv_sock_wait(sk, condition, timeo) \
({ \
int __ret = 0; \
if (!(condition)) \
__iucv_sock_wait(sk, condition, timeo, __ret); \
__ret; \
})
static void iucv_sock_kill(struct sock *sk);
static void iucv_sock_close(struct sock *sk);
static void iucv_sever_path(struct sock *, int);
static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
struct packet_type *pt, struct net_device *orig_dev);
static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
struct sk_buff *skb, u8 flags);
static void afiucv_hs_callback_txnotify(struct sk_buff *, enum iucv_tx_notify);
/* Call Back functions */
static void iucv_callback_rx(struct iucv_path *, struct iucv_message *);
static void iucv_callback_txdone(struct iucv_path *, struct iucv_message *);
static void iucv_callback_connack(struct iucv_path *, u8 ipuser[16]);
static int iucv_callback_connreq(struct iucv_path *, u8 ipvmid[8],
u8 ipuser[16]);
static void iucv_callback_connrej(struct iucv_path *, u8 ipuser[16]);
static void iucv_callback_shutdown(struct iucv_path *, u8 ipuser[16]);
static struct iucv_sock_list iucv_sk_list = {
.lock = __RW_LOCK_UNLOCKED(iucv_sk_list.lock),
.autobind_name = ATOMIC_INIT(0)
};
static struct iucv_handler af_iucv_handler = {
.path_pending = iucv_callback_connreq,
.path_complete = iucv_callback_connack,
.path_severed = iucv_callback_connrej,
.message_pending = iucv_callback_rx,
.message_complete = iucv_callback_txdone,
.path_quiesced = iucv_callback_shutdown,
};
static inline void high_nmcpy(unsigned char *dst, char *src)
{
memcpy(dst, src, 8);
}
static inline void low_nmcpy(unsigned char *dst, char *src)
{
memcpy(&dst[8], src, 8);
}
static int afiucv_pm_prepare(struct device *dev)
{
#ifdef CONFIG_PM_DEBUG
printk(KERN_WARNING "afiucv_pm_prepare\n");
#endif
return 0;
}
static void afiucv_pm_complete(struct device *dev)
{
#ifdef CONFIG_PM_DEBUG
printk(KERN_WARNING "afiucv_pm_complete\n");
#endif
}
/**
* afiucv_pm_freeze() - Freeze PM callback
* @dev: AFIUCV dummy device
*
* Sever all established IUCV communication pathes
*/
static int afiucv_pm_freeze(struct device *dev)
{
struct iucv_sock *iucv;
struct sock *sk;
struct hlist_node *node;
int err = 0;
#ifdef CONFIG_PM_DEBUG
printk(KERN_WARNING "afiucv_pm_freeze\n");
#endif
read_lock(&iucv_sk_list.lock);
sk_for_each(sk, node, &iucv_sk_list.head) {
iucv = iucv_sk(sk);
switch (sk->sk_state) {
case IUCV_DISCONN:
case IUCV_CLOSING:
case IUCV_CONNECTED:
iucv_sever_path(sk, 0);
break;
case IUCV_OPEN:
case IUCV_BOUND:
case IUCV_LISTEN:
case IUCV_CLOSED:
default:
break;
}
skb_queue_purge(&iucv->send_skb_q);
skb_queue_purge(&iucv->backlog_skb_q);
}
read_unlock(&iucv_sk_list.lock);
return err;
}
/**
* afiucv_pm_restore_thaw() - Thaw and restore PM callback
* @dev: AFIUCV dummy device
*
* socket clean up after freeze
*/
static int afiucv_pm_restore_thaw(struct device *dev)
{
struct sock *sk;
struct hlist_node *node;
#ifdef CONFIG_PM_DEBUG
printk(KERN_WARNING "afiucv_pm_restore_thaw\n");
#endif
read_lock(&iucv_sk_list.lock);
sk_for_each(sk, node, &iucv_sk_list.head) {
switch (sk->sk_state) {
case IUCV_CONNECTED:
sk->sk_err = EPIPE;
sk->sk_state = IUCV_DISCONN;
sk->sk_state_change(sk);
break;
case IUCV_DISCONN:
case IUCV_CLOSING:
case IUCV_LISTEN:
case IUCV_BOUND:
case IUCV_OPEN:
default:
break;
}
}
read_unlock(&iucv_sk_list.lock);
return 0;
}
static const struct dev_pm_ops afiucv_pm_ops = {
.prepare = afiucv_pm_prepare,
.complete = afiucv_pm_complete,
.freeze = afiucv_pm_freeze,
.thaw = afiucv_pm_restore_thaw,
.restore = afiucv_pm_restore_thaw,
};
static struct device_driver af_iucv_driver = {
.owner = THIS_MODULE,
.name = "afiucv",
.bus = NULL,
.pm = &afiucv_pm_ops,
};
/* dummy device used as trigger for PM functions */
static struct device *af_iucv_dev;
/**
* iucv_msg_length() - Returns the length of an iucv message.
* @msg: Pointer to struct iucv_message, MUST NOT be NULL
*
* The function returns the length of the specified iucv message @msg of data
* stored in a buffer and of data stored in the parameter list (PRMDATA).
*
* For IUCV_IPRMDATA, AF_IUCV uses the following convention to transport socket
* data:
* PRMDATA[0..6] socket data (max 7 bytes);
* PRMDATA[7] socket data length value (len is 0xff - PRMDATA[7])
*
* The socket data length is computed by subtracting the socket data length
* value from 0xFF.
* If the socket data len is greater 7, then PRMDATA can be used for special
* notifications (see iucv_sock_shutdown); and further,
* if the socket data len is > 7, the function returns 8.
*
* Use this function to allocate socket buffers to store iucv message data.
*/
static inline size_t iucv_msg_length(struct iucv_message *msg)
{
size_t datalen;
if (msg->flags & IUCV_IPRMDATA) {
datalen = 0xff - msg->rmmsg[7];
return (datalen < 8) ? datalen : 8;
}
return msg->length;
}
/**
* iucv_sock_in_state() - check for specific states
* @sk: sock structure
* @state: first iucv sk state
* @state: second iucv sk state
*
* Returns true if the socket in either in the first or second state.
*/
static int iucv_sock_in_state(struct sock *sk, int state, int state2)
{
return (sk->sk_state == state || sk->sk_state == state2);
}
/**
* iucv_below_msglim() - function to check if messages can be sent
* @sk: sock structure
*
* Returns true if the send queue length is lower than the message limit.
* Always returns true if the socket is not connected (no iucv path for
* checking the message limit).
*/
static inline int iucv_below_msglim(struct sock *sk)
{
struct iucv_sock *iucv = iucv_sk(sk);
if (sk->sk_state != IUCV_CONNECTED)
return 1;
if (iucv->transport == AF_IUCV_TRANS_IUCV)
return (skb_queue_len(&iucv->send_skb_q) < iucv->path->msglim);
else
return ((atomic_read(&iucv->msg_sent) < iucv->msglimit_peer) &&
(atomic_read(&iucv->pendings) <= 0));
}
/**
* iucv_sock_wake_msglim() - Wake up thread waiting on msg limit
*/
static void iucv_sock_wake_msglim(struct sock *sk)
{
struct socket_wq *wq;
rcu_read_lock();
wq = rcu_dereference(sk->sk_wq);
if (wq_has_sleeper(wq))
wake_up_interruptible_all(&wq->wait);
sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
rcu_read_unlock();
}
/**
* afiucv_hs_send() - send a message through HiperSockets transport
*/
static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
struct sk_buff *skb, u8 flags)
{
struct iucv_sock *iucv = iucv_sk(sock);
struct af_iucv_trans_hdr *phs_hdr;
struct sk_buff *nskb;
int err, confirm_recv = 0;
memset(skb->head, 0, ETH_HLEN);
phs_hdr = (struct af_iucv_trans_hdr *)skb_push(skb,
sizeof(struct af_iucv_trans_hdr));
skb_reset_mac_header(skb);
skb_reset_network_header(skb);
skb_push(skb, ETH_HLEN);
skb_reset_mac_header(skb);
memset(phs_hdr, 0, sizeof(struct af_iucv_trans_hdr));
phs_hdr->magic = ETH_P_AF_IUCV;
phs_hdr->version = 1;
phs_hdr->flags = flags;
if (flags == AF_IUCV_FLAG_SYN)
phs_hdr->window = iucv->msglimit;
else if ((flags == AF_IUCV_FLAG_WIN) || !flags) {
confirm_recv = atomic_read(&iucv->msg_recv);
phs_hdr->window = confirm_recv;
if (confirm_recv)
phs_hdr->flags = phs_hdr->flags | AF_IUCV_FLAG_WIN;
}
memcpy(phs_hdr->destUserID, iucv->dst_user_id, 8);
memcpy(phs_hdr->destAppName, iucv->dst_name, 8);
memcpy(phs_hdr->srcUserID, iucv->src_user_id, 8);
memcpy(phs_hdr->srcAppName, iucv->src_name, 8);
ASCEBC(phs_hdr->destUserID, sizeof(phs_hdr->destUserID));
ASCEBC(phs_hdr->destAppName, sizeof(phs_hdr->destAppName));
ASCEBC(phs_hdr->srcUserID, sizeof(phs_hdr->srcUserID));
ASCEBC(phs_hdr->srcAppName, sizeof(phs_hdr->srcAppName));
if (imsg)
memcpy(&phs_hdr->iucv_hdr, imsg, sizeof(struct iucv_message));
skb->dev = iucv->hs_dev;
if (!skb->dev)
return -ENODEV;
if (!(skb->dev->flags & IFF_UP) || !netif_carrier_ok(skb->dev))
return -ENETDOWN;
if (skb->len > skb->dev->mtu) {
if (sock->sk_type == SOCK_SEQPACKET)
return -EMSGSIZE;
else
skb_trim(skb, skb->dev->mtu);
}
skb->protocol = ETH_P_AF_IUCV;
nskb = skb_clone(skb, GFP_ATOMIC);
if (!nskb)
return -ENOMEM;
skb_queue_tail(&iucv->send_skb_q, nskb);
err = dev_queue_xmit(skb);
if (net_xmit_eval(err)) {
skb_unlink(nskb, &iucv->send_skb_q);
kfree_skb(nskb);
} else {
atomic_sub(confirm_recv, &iucv->msg_recv);
WARN_ON(atomic_read(&iucv->msg_recv) < 0);
}
return net_xmit_eval(err);
}
static struct sock *__iucv_get_sock_by_name(char *nm)
{
struct sock *sk;
struct hlist_node *node;
sk_for_each(sk, node, &iucv_sk_list.head)
if (!memcmp(&iucv_sk(sk)->src_name, nm, 8))
return sk;
return NULL;
}
static void iucv_sock_destruct(struct sock *sk)
{
skb_queue_purge(&sk->sk_receive_queue);
skb_queue_purge(&sk->sk_error_queue);
sk_mem_reclaim(sk);
if (!sock_flag(sk, SOCK_DEAD)) {
pr_err("Attempt to release alive iucv socket %p\n", sk);
return;
}
WARN_ON(atomic_read(&sk->sk_rmem_alloc));
WARN_ON(atomic_read(&sk->sk_wmem_alloc));
WARN_ON(sk->sk_wmem_queued);
WARN_ON(sk->sk_forward_alloc);
}
/* Cleanup Listen */
static void iucv_sock_cleanup_listen(struct sock *parent)
{
struct sock *sk;
/* Close non-accepted connections */
while ((sk = iucv_accept_dequeue(parent, NULL))) {
iucv_sock_close(sk);
iucv_sock_kill(sk);
}
parent->sk_state = IUCV_CLOSED;
}
/* Kill socket (only if zapped and orphaned) */
static void iucv_sock_kill(struct sock *sk)
{
if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
return;
iucv_sock_unlink(&iucv_sk_list, sk);
sock_set_flag(sk, SOCK_DEAD);
sock_put(sk);
}
/* Terminate an IUCV path */
static void iucv_sever_path(struct sock *sk, int with_user_data)
{
unsigned char user_data[16];
struct iucv_sock *iucv = iucv_sk(sk);
struct iucv_path *path = iucv->path;
if (iucv->path) {
iucv->path = NULL;
if (with_user_data) {
low_nmcpy(user_data, iucv->src_name);
high_nmcpy(user_data, iucv->dst_name);
ASCEBC(user_data, sizeof(user_data));
pr_iucv->path_sever(path, user_data);
} else
pr_iucv->path_sever(path, NULL);
iucv_path_free(path);
}
}
/* Send FIN through an IUCV socket for HIPER transport */
static int iucv_send_ctrl(struct sock *sk, u8 flags)
{
int err = 0;
int blen;
struct sk_buff *skb;
blen = sizeof(struct af_iucv_trans_hdr) + ETH_HLEN;
skb = sock_alloc_send_skb(sk, blen, 1, &err);
if (skb) {
skb_reserve(skb, blen);
err = afiucv_hs_send(NULL, sk, skb, flags);
}
return err;
}
/* Close an IUCV socket */
static void iucv_sock_close(struct sock *sk)
{
struct iucv_sock *iucv = iucv_sk(sk);
unsigned long timeo;
int err = 0;
lock_sock(sk);
switch (sk->sk_state) {
case IUCV_LISTEN:
iucv_sock_cleanup_listen(sk);
break;
case IUCV_CONNECTED:
if (iucv->transport == AF_IUCV_TRANS_HIPER) {
err = iucv_send_ctrl(sk, AF_IUCV_FLAG_FIN);
sk->sk_state = IUCV_DISCONN;
sk->sk_state_change(sk);
}
case IUCV_DISCONN: /* fall through */
sk->sk_state = IUCV_CLOSING;
sk->sk_state_change(sk);
if (!err && !skb_queue_empty(&iucv->send_skb_q)) {
if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
timeo = sk->sk_lingertime;
else
timeo = IUCV_DISCONN_TIMEOUT;
iucv_sock_wait(sk,
iucv_sock_in_state(sk, IUCV_CLOSED, 0),
timeo);
}
case IUCV_CLOSING: /* fall through */
sk->sk_state = IUCV_CLOSED;
sk->sk_state_change(sk);
sk->sk_err = ECONNRESET;
sk->sk_state_change(sk);
skb_queue_purge(&iucv->send_skb_q);
skb_queue_purge(&iucv->backlog_skb_q);
default: /* fall through */
iucv_sever_path(sk, 1);
}
if (iucv->hs_dev) {
dev_put(iucv->hs_dev);
iucv->hs_dev = NULL;
sk->sk_bound_dev_if = 0;
}
/* mark socket for deletion by iucv_sock_kill() */
sock_set_flag(sk, SOCK_ZAPPED);
release_sock(sk);
}
static void iucv_sock_init(struct sock *sk, struct sock *parent)
{
if (parent)
sk->sk_type = parent->sk_type;
}
static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio)
{
struct sock *sk;
struct iucv_sock *iucv;
sk = sk_alloc(&init_net, PF_IUCV, prio, &iucv_proto);
if (!sk)
return NULL;
iucv = iucv_sk(sk);
sock_init_data(sock, sk);
INIT_LIST_HEAD(&iucv->accept_q);
spin_lock_init(&iucv->accept_q_lock);
skb_queue_head_init(&iucv->send_skb_q);
INIT_LIST_HEAD(&iucv->message_q.list);
spin_lock_init(&iucv->message_q.lock);
skb_queue_head_init(&iucv->backlog_skb_q);
iucv->send_tag = 0;
atomic_set(&iucv->pendings, 0);
iucv->flags = 0;
iucv->msglimit = 0;
atomic_set(&iucv->msg_sent, 0);
atomic_set(&iucv->msg_recv, 0);
iucv->path = NULL;
iucv->sk_txnotify = afiucv_hs_callback_txnotify;
memset(&iucv->src_user_id , 0, 32);
if (pr_iucv)
iucv->transport = AF_IUCV_TRANS_IUCV;
else
iucv->transport = AF_IUCV_TRANS_HIPER;
sk->sk_destruct = iucv_sock_destruct;
sk->sk_sndtimeo = IUCV_CONN_TIMEOUT;
sk->sk_allocation = GFP_DMA;
sock_reset_flag(sk, SOCK_ZAPPED);
sk->sk_protocol = proto;
sk->sk_state = IUCV_OPEN;
iucv_sock_link(&iucv_sk_list, sk);
return sk;
}
/* Create an IUCV socket */
static int iucv_sock_create(struct net *net, struct socket *sock, int protocol,
int kern)
{
struct sock *sk;
if (protocol && protocol != PF_IUCV)
return -EPROTONOSUPPORT;
sock->state = SS_UNCONNECTED;
switch (sock->type) {
case SOCK_STREAM:
sock->ops = &iucv_sock_ops;
break;
case SOCK_SEQPACKET:
/* currently, proto ops can handle both sk types */
sock->ops = &iucv_sock_ops;
break;
default:
return -ESOCKTNOSUPPORT;
}
sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL);
if (!sk)
return -ENOMEM;
iucv_sock_init(sk, NULL);
return 0;
}
void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk)
{
write_lock_bh(&l->lock);
sk_add_node(sk, &l->head);
write_unlock_bh(&l->lock);
}
void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk)
{
write_lock_bh(&l->lock);
sk_del_node_init(sk);
write_unlock_bh(&l->lock);
}
void iucv_accept_enqueue(struct sock *parent, struct sock *sk)
{
unsigned long flags;
struct iucv_sock *par = iucv_sk(parent);
sock_hold(sk);
spin_lock_irqsave(&par->accept_q_lock, flags);
list_add_tail(&iucv_sk(sk)->accept_q, &par->accept_q);
spin_unlock_irqrestore(&par->accept_q_lock, flags);
iucv_sk(sk)->parent = parent;
sk_acceptq_added(parent);
}
void iucv_accept_unlink(struct sock *sk)
{
unsigned long flags;
struct iucv_sock *par = iucv_sk(iucv_sk(sk)->parent);
spin_lock_irqsave(&par->accept_q_lock, flags);
list_del_init(&iucv_sk(sk)->accept_q);
spin_unlock_irqrestore(&par->accept_q_lock, flags);
sk_acceptq_removed(iucv_sk(sk)->parent);
iucv_sk(sk)->parent = NULL;
sock_put(sk);
}
struct sock *iucv_accept_dequeue(struct sock *parent, struct socket *newsock)
{
struct iucv_sock *isk, *n;
struct sock *sk;
list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
sk = (struct sock *) isk;
lock_sock(sk);
if (sk->sk_state == IUCV_CLOSED) {
iucv_accept_unlink(sk);
release_sock(sk);
continue;
}
if (sk->sk_state == IUCV_CONNECTED ||
sk->sk_state == IUCV_DISCONN ||
!newsock) {
iucv_accept_unlink(sk);
if (newsock)
sock_graft(sk, newsock);
release_sock(sk);
return sk;
}
release_sock(sk);
}
return NULL;
}
/* Bind an unbound socket */
static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr,
int addr_len)
{
struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
struct sock *sk = sock->sk;
struct iucv_sock *iucv;
int err = 0;
struct net_device *dev;
char uid[9];
/* Verify the input sockaddr */
if (!addr || addr->sa_family != AF_IUCV)
return -EINVAL;
lock_sock(sk);
if (sk->sk_state != IUCV_OPEN) {
err = -EBADFD;
goto done;
}
write_lock_bh(&iucv_sk_list.lock);
iucv = iucv_sk(sk);
if (__iucv_get_sock_by_name(sa->siucv_name)) {
err = -EADDRINUSE;
goto done_unlock;
}
if (iucv->path)
goto done_unlock;
/* Bind the socket */
if (pr_iucv)
if (!memcmp(sa->siucv_user_id, iucv_userid, 8))
goto vm_bind; /* VM IUCV transport */
/* try hiper transport */
memcpy(uid, sa->siucv_user_id, sizeof(uid));
ASCEBC(uid, 8);
rcu_read_lock();
for_each_netdev_rcu(&init_net, dev) {
if (!memcmp(dev->perm_addr, uid, 8)) {
memcpy(iucv->src_name, sa->siucv_name, 8);
memcpy(iucv->src_user_id, sa->siucv_user_id, 8);
sk->sk_bound_dev_if = dev->ifindex;
iucv->hs_dev = dev;
dev_hold(dev);
sk->sk_state = IUCV_BOUND;
iucv->transport = AF_IUCV_TRANS_HIPER;
if (!iucv->msglimit)
iucv->msglimit = IUCV_HIPER_MSGLIM_DEFAULT;
rcu_read_unlock();
goto done_unlock;
}
}
rcu_read_unlock();
vm_bind:
if (pr_iucv) {
/* use local userid for backward compat */
memcpy(iucv->src_name, sa->siucv_name, 8);
memcpy(iucv->src_user_id, iucv_userid, 8);
sk->sk_state = IUCV_BOUND;
iucv->transport = AF_IUCV_TRANS_IUCV;
if (!iucv->msglimit)
iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
goto done_unlock;
}
/* found no dev to bind */
err = -ENODEV;
done_unlock:
/* Release the socket list lock */
write_unlock_bh(&iucv_sk_list.lock);
done:
release_sock(sk);
return err;
}
/* Automatically bind an unbound socket */
static int iucv_sock_autobind(struct sock *sk)
{
struct iucv_sock *iucv = iucv_sk(sk);
char name[12];
int err = 0;
if (unlikely(!pr_iucv))
return -EPROTO;
memcpy(iucv->src_user_id, iucv_userid, 8);
write_lock_bh(&iucv_sk_list.lock);
sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name));
while (__iucv_get_sock_by_name(name)) {
sprintf(name, "%08x",
atomic_inc_return(&iucv_sk_list.autobind_name));
}
write_unlock_bh(&iucv_sk_list.lock);
memcpy(&iucv->src_name, name, 8);
if (!iucv->msglimit)
iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
return err;
}
static int afiucv_path_connect(struct socket *sock, struct sockaddr *addr)
{
struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
struct sock *sk = sock->sk;
struct iucv_sock *iucv = iucv_sk(sk);
unsigned char user_data[16];
int err;
high_nmcpy(user_data, sa->siucv_name);
low_nmcpy(user_data, iucv->src_name);
ASCEBC(user_data, sizeof(user_data));
/* Create path. */
iucv->path = iucv_path_alloc(iucv->msglimit,
IUCV_IPRMDATA, GFP_KERNEL);
if (!iucv->path) {
err = -ENOMEM;
goto done;
}
err = pr_iucv->path_connect(iucv->path, &af_iucv_handler,
sa->siucv_user_id, NULL, user_data,
sk);
if (err) {
iucv_path_free(iucv->path);
iucv->path = NULL;
switch (err) {
case 0x0b: /* Target communicator is not logged on */
err = -ENETUNREACH;
break;
case 0x0d: /* Max connections for this guest exceeded */
case 0x0e: /* Max connections for target guest exceeded */
err = -EAGAIN;
break;
case 0x0f: /* Missing IUCV authorization */
err = -EACCES;
break;
default:
err = -ECONNREFUSED;
break;
}
}
done:
return err;
}
/* Connect an unconnected socket */
static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr,
int alen, int flags)
{
struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
struct sock *sk = sock->sk;
struct iucv_sock *iucv = iucv_sk(sk);
int err;
if (addr->sa_family != AF_IUCV || alen < sizeof(struct sockaddr_iucv))
return -EINVAL;
if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND)
return -EBADFD;
if (sk->sk_state == IUCV_OPEN &&
iucv->transport == AF_IUCV_TRANS_HIPER)
return -EBADFD; /* explicit bind required */
if (sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_SEQPACKET)
return -EINVAL;
if (sk->sk_state == IUCV_OPEN) {
err = iucv_sock_autobind(sk);
if (unlikely(err))
return err;
}
lock_sock(sk);
/* Set the destination information */
memcpy(iucv->dst_user_id, sa->siucv_user_id, 8);
memcpy(iucv->dst_name, sa->siucv_name, 8);
if (iucv->transport == AF_IUCV_TRANS_HIPER)
err = iucv_send_ctrl(sock->sk, AF_IUCV_FLAG_SYN);
else
err = afiucv_path_connect(sock, addr);
if (err)
goto done;
if (sk->sk_state != IUCV_CONNECTED)
err = iucv_sock_wait(sk, iucv_sock_in_state(sk, IUCV_CONNECTED,
IUCV_DISCONN),
sock_sndtimeo(sk, flags & O_NONBLOCK));
if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_CLOSED)
err = -ECONNREFUSED;
if (err && iucv->transport == AF_IUCV_TRANS_IUCV)
iucv_sever_path(sk, 0);
done:
release_sock(sk);
return err;
}
/* Move a socket into listening state. */
static int iucv_sock_listen(struct socket *sock, int backlog)
{
struct sock *sk = sock->sk;
int err;
lock_sock(sk);
err = -EINVAL;
if (sk->sk_state != IUCV_BOUND)
goto done;
if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
goto done;
sk->sk_max_ack_backlog = backlog;
sk->sk_ack_backlog = 0;
sk->sk_state = IUCV_LISTEN;
err = 0;
done:
release_sock(sk);
return err;
}
/* Accept a pending connection */
static int iucv_sock_accept(struct socket *sock, struct socket *newsock,
int flags)
{
DECLARE_WAITQUEUE(wait, current);
struct sock *sk = sock->sk, *nsk;
long timeo;
int err = 0;
lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
if (sk->sk_state != IUCV_LISTEN) {
err = -EBADFD;
goto done;
}
timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
/* Wait for an incoming connection */
add_wait_queue_exclusive(sk_sleep(sk), &wait);
while (!(nsk = iucv_accept_dequeue(sk, newsock))) {
set_current_state(TASK_INTERRUPTIBLE);
if (!timeo) {
err = -EAGAIN;
break;
}
release_sock(sk);
timeo = schedule_timeout(timeo);
lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
if (sk->sk_state != IUCV_LISTEN) {
err = -EBADFD;
break;
}
if (signal_pending(current)) {
err = sock_intr_errno(timeo);
break;
}
}
set_current_state(TASK_RUNNING);
remove_wait_queue(sk_sleep(sk), &wait);
if (err)
goto done;
newsock->state = SS_CONNECTED;
done:
release_sock(sk);
return err;
}
static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr,
int *len, int peer)
{
struct sockaddr_iucv *siucv = (struct sockaddr_iucv *) addr;
struct sock *sk = sock->sk;
struct iucv_sock *iucv = iucv_sk(sk);
addr->sa_family = AF_IUCV;
*len = sizeof(struct sockaddr_iucv);
if (peer) {
memcpy(siucv->siucv_user_id, iucv->dst_user_id, 8);
memcpy(siucv->siucv_name, iucv->dst_name, 8);
} else {
memcpy(siucv->siucv_user_id, iucv->src_user_id, 8);
memcpy(siucv->siucv_name, iucv->src_name, 8);
}
memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port));
memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr));
memset(&siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid));
return 0;
}
/**
* iucv_send_iprm() - Send socket data in parameter list of an iucv message.
* @path: IUCV path
* @msg: Pointer to a struct iucv_message
* @skb: The socket data to send, skb->len MUST BE <= 7
*
* Send the socket data in the parameter list in the iucv message
* (IUCV_IPRMDATA). The socket data is stored at index 0 to 6 in the parameter
* list and the socket data len at index 7 (last byte).
* See also iucv_msg_length().
*
* Returns the error code from the iucv_message_send() call.
*/
static int iucv_send_iprm(struct iucv_path *path, struct iucv_message *msg,
struct sk_buff *skb)
{
u8 prmdata[8];
memcpy(prmdata, (void *) skb->data, skb->len);
prmdata[7] = 0xff - (u8) skb->len;
return pr_iucv->message_send(path, msg, IUCV_IPRMDATA, 0,
(void *) prmdata, 8);
}
static int iucv_sock_sendmsg(struct kiocb *iocb, struct socket *sock,
struct msghdr *msg, size_t len)
{
struct sock *sk = sock->sk;
struct iucv_sock *iucv = iucv_sk(sk);
struct sk_buff *skb;
struct iucv_message txmsg;
struct cmsghdr *cmsg;
int cmsg_done;
long timeo;
char user_id[9];
char appl_id[9];
int err;
int noblock = msg->msg_flags & MSG_DONTWAIT;
err = sock_error(sk);
if (err)
return err;
if (msg->msg_flags & MSG_OOB)
return -EOPNOTSUPP;
/* SOCK_SEQPACKET: we do not support segmented records */
if (sk->sk_type == SOCK_SEQPACKET && !(msg->msg_flags & MSG_EOR))
return -EOPNOTSUPP;
lock_sock(sk);
if (sk->sk_shutdown & SEND_SHUTDOWN) {
err = -EPIPE;
goto out;
}
/* Return if the socket is not in connected state */
if (sk->sk_state != IUCV_CONNECTED) {
err = -ENOTCONN;
goto out;
}
/* initialize defaults */
cmsg_done = 0; /* check for duplicate headers */
txmsg.class = 0;
/* iterate over control messages */
for (cmsg = CMSG_FIRSTHDR(msg); cmsg;
cmsg = CMSG_NXTHDR(msg, cmsg)) {
if (!CMSG_OK(msg, cmsg)) {
err = -EINVAL;
goto out;
}
if (cmsg->cmsg_level != SOL_IUCV)
continue;
if (cmsg->cmsg_type & cmsg_done) {
err = -EINVAL;
goto out;
}
cmsg_done |= cmsg->cmsg_type;
switch (cmsg->cmsg_type) {
case SCM_IUCV_TRGCLS:
if (cmsg->cmsg_len != CMSG_LEN(TRGCLS_SIZE)) {
err = -EINVAL;
goto out;
}
/* set iucv message target class */
memcpy(&txmsg.class,
(void *) CMSG_DATA(cmsg), TRGCLS_SIZE);
break;
default:
err = -EINVAL;
goto out;
break;
}
}
/* allocate one skb for each iucv message:
* this is fine for SOCK_SEQPACKET (unless we want to support
* segmented records using the MSG_EOR flag), but
* for SOCK_STREAM we might want to improve it in future */
if (iucv->transport == AF_IUCV_TRANS_HIPER)
skb = sock_alloc_send_skb(sk,
len + sizeof(struct af_iucv_trans_hdr) + ETH_HLEN,
noblock, &err);
else
skb = sock_alloc_send_skb(sk, len, noblock, &err);
if (!skb) {
err = -ENOMEM;
goto out;
}
if (iucv->transport == AF_IUCV_TRANS_HIPER)
skb_reserve(skb, sizeof(struct af_iucv_trans_hdr) + ETH_HLEN);
if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
err = -EFAULT;
goto fail;
}
/* wait if outstanding messages for iucv path has reached */
timeo = sock_sndtimeo(sk, noblock);
err = iucv_sock_wait(sk, iucv_below_msglim(sk), timeo);
if (err)
goto fail;
/* return -ECONNRESET if the socket is no longer connected */
if (sk->sk_state != IUCV_CONNECTED) {
err = -ECONNRESET;
goto fail;
}
/* increment and save iucv message tag for msg_completion cbk */
txmsg.tag = iucv->send_tag++;
memcpy(CB_TAG(skb), &txmsg.tag, CB_TAG_LEN);
if (iucv->transport == AF_IUCV_TRANS_HIPER) {
atomic_inc(&iucv->msg_sent);
err = afiucv_hs_send(&txmsg, sk, skb, 0);
if (err) {
atomic_dec(&iucv->msg_sent);
goto fail;
}
goto release;
}
skb_queue_tail(&iucv->send_skb_q, skb);
if (((iucv->path->flags & IUCV_IPRMDATA) & iucv->flags)
&& skb->len <= 7) {
err = iucv_send_iprm(iucv->path, &txmsg, skb);
/* on success: there is no message_complete callback
* for an IPRMDATA msg; remove skb from send queue */
if (err == 0) {
skb_unlink(skb, &iucv->send_skb_q);
kfree_skb(skb);
}
/* this error should never happen since the
* IUCV_IPRMDATA path flag is set... sever path */
if (err == 0x15) {
pr_iucv->path_sever(iucv->path, NULL);
skb_unlink(skb, &iucv->send_skb_q);
err = -EPIPE;
goto fail;
}
} else
err = pr_iucv->message_send(iucv->path, &txmsg, 0, 0,
(void *) skb->data, skb->len);
if (err) {
if (err == 3) {
user_id[8] = 0;
memcpy(user_id, iucv->dst_user_id, 8);
appl_id[8] = 0;
memcpy(appl_id, iucv->dst_name, 8);
pr_err("Application %s on z/VM guest %s"
" exceeds message limit\n",
appl_id, user_id);
err = -EAGAIN;
} else
err = -EPIPE;
skb_unlink(skb, &iucv->send_skb_q);
goto fail;
}
release:
release_sock(sk);
return len;
fail:
kfree_skb(skb);
out:
release_sock(sk);
return err;
}
/* iucv_fragment_skb() - Fragment a single IUCV message into multiple skb's
*
* Locking: must be called with message_q.lock held
*/
static int iucv_fragment_skb(struct sock *sk, struct sk_buff *skb, int len)
{
int dataleft, size, copied = 0;
struct sk_buff *nskb;
dataleft = len;
while (dataleft) {
if (dataleft >= sk->sk_rcvbuf / 4)
size = sk->sk_rcvbuf / 4;
else
size = dataleft;
nskb = alloc_skb(size, GFP_ATOMIC | GFP_DMA);
if (!nskb)
return -ENOMEM;
/* copy target class to control buffer of new skb */
memcpy(CB_TRGCLS(nskb), CB_TRGCLS(skb), CB_TRGCLS_LEN);
/* copy data fragment */
memcpy(nskb->data, skb->data + copied, size);
copied += size;
dataleft -= size;
skb_reset_transport_header(nskb);
skb_reset_network_header(nskb);
nskb->len = size;
skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, nskb);
}
return 0;
}
/* iucv_process_message() - Receive a single outstanding IUCV message
*
* Locking: must be called with message_q.lock held
*/
static void iucv_process_message(struct sock *sk, struct sk_buff *skb,
struct iucv_path *path,
struct iucv_message *msg)
{
int rc;
unsigned int len;
len = iucv_msg_length(msg);
/* store msg target class in the second 4 bytes of skb ctrl buffer */
/* Note: the first 4 bytes are reserved for msg tag */
memcpy(CB_TRGCLS(skb), &msg->class, CB_TRGCLS_LEN);
/* check for special IPRM messages (e.g. iucv_sock_shutdown) */
if ((msg->flags & IUCV_IPRMDATA) && len > 7) {
if (memcmp(msg->rmmsg, iprm_shutdown, 8) == 0) {
skb->data = NULL;
skb->len = 0;
}
} else {
rc = pr_iucv->message_receive(path, msg,
msg->flags & IUCV_IPRMDATA,
skb->data, len, NULL);
if (rc) {
kfree_skb(skb);
return;
}
/* we need to fragment iucv messages for SOCK_STREAM only;
* for SOCK_SEQPACKET, it is only relevant if we support
* record segmentation using MSG_EOR (see also recvmsg()) */
if (sk->sk_type == SOCK_STREAM &&
skb->truesize >= sk->sk_rcvbuf / 4) {
rc = iucv_fragment_skb(sk, skb, len);
kfree_skb(skb);
skb = NULL;
if (rc) {
pr_iucv->path_sever(path, NULL);
return;
}
skb = skb_dequeue(&iucv_sk(sk)->backlog_skb_q);
} else {
skb_reset_transport_header(skb);
skb_reset_network_header(skb);
skb->len = len;
}
}
if (sock_queue_rcv_skb(sk, skb))
skb_queue_head(&iucv_sk(sk)->backlog_skb_q, skb);
}
/* iucv_process_message_q() - Process outstanding IUCV messages
*
* Locking: must be called with message_q.lock held
*/
static void iucv_process_message_q(struct sock *sk)
{
struct iucv_sock *iucv = iucv_sk(sk);
struct sk_buff *skb;
struct sock_msg_q *p, *n;
list_for_each_entry_safe(p, n, &iucv->message_q.list, list) {
skb = alloc_skb(iucv_msg_length(&p->msg), GFP_ATOMIC | GFP_DMA);
if (!skb)
break;
iucv_process_message(sk, skb, p->path, &p->msg);
list_del(&p->list);
kfree(p);
if (!skb_queue_empty(&iucv->backlog_skb_q))
break;
}
}
static int iucv_sock_recvmsg(struct kiocb *iocb, struct socket *sock,
struct msghdr *msg, size_t len, int flags)
{
int noblock = flags & MSG_DONTWAIT;
struct sock *sk = sock->sk;
struct iucv_sock *iucv = iucv_sk(sk);
unsigned int copied, rlen;
struct sk_buff *skb, *rskb, *cskb;
int err = 0;
if ((sk->sk_state == IUCV_DISCONN) &&
skb_queue_empty(&iucv->backlog_skb_q) &&
skb_queue_empty(&sk->sk_receive_queue) &&
list_empty(&iucv->message_q.list))
return 0;
if (flags & (MSG_OOB))
return -EOPNOTSUPP;
/* receive/dequeue next skb:
* the function understands MSG_PEEK and, thus, does not dequeue skb */
skb = skb_recv_datagram(sk, flags, noblock, &err);
if (!skb) {
if (sk->sk_shutdown & RCV_SHUTDOWN)
return 0;
return err;
}
rlen = skb->len; /* real length of skb */
copied = min_t(unsigned int, rlen, len);
if (!rlen)
sk->sk_shutdown = sk->sk_shutdown | RCV_SHUTDOWN;
cskb = skb;
if (skb_copy_datagram_iovec(cskb, 0, msg->msg_iov, copied)) {
if (!(flags & MSG_PEEK))
skb_queue_head(&sk->sk_receive_queue, skb);
return -EFAULT;
}
/* SOCK_SEQPACKET: set MSG_TRUNC if recv buf size is too small */
if (sk->sk_type == SOCK_SEQPACKET) {
if (copied < rlen)
msg->msg_flags |= MSG_TRUNC;
/* each iucv message contains a complete record */
msg->msg_flags |= MSG_EOR;
}
/* create control message to store iucv msg target class:
* get the trgcls from the control buffer of the skb due to
* fragmentation of original iucv message. */
err = put_cmsg(msg, SOL_IUCV, SCM_IUCV_TRGCLS,
CB_TRGCLS_LEN, CB_TRGCLS(skb));
if (err) {
if (!(flags & MSG_PEEK))
skb_queue_head(&sk->sk_receive_queue, skb);
return err;
}
/* Mark read part of skb as used */
if (!(flags & MSG_PEEK)) {
/* SOCK_STREAM: re-queue skb if it contains unreceived data */
if (sk->sk_type == SOCK_STREAM) {
skb_pull(skb, copied);
if (skb->len) {
skb_queue_head(&sk->sk_receive_queue, skb);
goto done;
}
}
kfree_skb(skb);
if (iucv->transport == AF_IUCV_TRANS_HIPER) {
atomic_inc(&iucv->msg_recv);
if (atomic_read(&iucv->msg_recv) > iucv->msglimit) {
WARN_ON(1);
iucv_sock_close(sk);
return -EFAULT;
}
}
/* Queue backlog skbs */
spin_lock_bh(&iucv->message_q.lock);
rskb = skb_dequeue(&iucv->backlog_skb_q);
while (rskb) {
if (sock_queue_rcv_skb(sk, rskb)) {
skb_queue_head(&iucv->backlog_skb_q,
rskb);
break;
} else {
rskb = skb_dequeue(&iucv->backlog_skb_q);
}
}
if (skb_queue_empty(&iucv->backlog_skb_q)) {
if (!list_empty(&iucv->message_q.list))
iucv_process_message_q(sk);
if (atomic_read(&iucv->msg_recv) >=
iucv->msglimit / 2) {
err = iucv_send_ctrl(sk, AF_IUCV_FLAG_WIN);
if (err) {
sk->sk_state = IUCV_DISCONN;
sk->sk_state_change(sk);
}
}
}
spin_unlock_bh(&iucv->message_q.lock);
}
done:
/* SOCK_SEQPACKET: return real length if MSG_TRUNC is set */
if (sk->sk_type == SOCK_SEQPACKET && (flags & MSG_TRUNC))
copied = rlen;
return copied;
}
static inline unsigned int iucv_accept_poll(struct sock *parent)
{
struct iucv_sock *isk, *n;
struct sock *sk;
list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
sk = (struct sock *) isk;
if (sk->sk_state == IUCV_CONNECTED)
return POLLIN | POLLRDNORM;
}
return 0;
}
unsigned int iucv_sock_poll(struct file *file, struct socket *sock,
poll_table *wait)
{
struct sock *sk = sock->sk;
unsigned int mask = 0;
sock_poll_wait(file, sk_sleep(sk), wait);
if (sk->sk_state == IUCV_LISTEN)
return iucv_accept_poll(sk);
if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
mask |= POLLERR;
if (sk->sk_shutdown & RCV_SHUTDOWN)
mask |= POLLRDHUP;
if (sk->sk_shutdown == SHUTDOWN_MASK)
mask |= POLLHUP;
if (!skb_queue_empty(&sk->sk_receive_queue) ||
(sk->sk_shutdown & RCV_SHUTDOWN))
mask |= POLLIN | POLLRDNORM;
if (sk->sk_state == IUCV_CLOSED)
mask |= POLLHUP;
if (sk->sk_state == IUCV_DISCONN)
mask |= POLLIN;
if (sock_writeable(sk) && iucv_below_msglim(sk))
mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
else
set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
return mask;
}
static int iucv_sock_shutdown(struct socket *sock, int how)
{
struct sock *sk = sock->sk;
struct iucv_sock *iucv = iucv_sk(sk);
struct iucv_message txmsg;
int err = 0;
how++;
if ((how & ~SHUTDOWN_MASK) || !how)
return -EINVAL;
lock_sock(sk);
switch (sk->sk_state) {
case IUCV_LISTEN:
case IUCV_DISCONN:
case IUCV_CLOSING:
case IUCV_CLOSED:
err = -ENOTCONN;
goto fail;
default:
break;
}
if (how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) {
if (iucv->transport == AF_IUCV_TRANS_IUCV) {
txmsg.class = 0;
txmsg.tag = 0;
err = pr_iucv->message_send(iucv->path, &txmsg,
IUCV_IPRMDATA, 0, (void *) iprm_shutdown, 8);
if (err) {
switch (err) {
case 1:
err = -ENOTCONN;
break;
case 2:
err = -ECONNRESET;
break;
default:
err = -ENOTCONN;
break;
}
}
} else
iucv_send_ctrl(sk, AF_IUCV_FLAG_SHT);
}
sk->sk_shutdown |= how;
if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) {
if (iucv->transport == AF_IUCV_TRANS_IUCV) {
err = pr_iucv->path_quiesce(iucv->path, NULL);
if (err)
err = -ENOTCONN;
/* skb_queue_purge(&sk->sk_receive_queue); */
}
skb_queue_purge(&sk->sk_receive_queue);
}
/* Wake up anyone sleeping in poll */
sk->sk_state_change(sk);
fail:
release_sock(sk);
return err;
}
static int iucv_sock_release(struct socket *sock)
{
struct sock *sk = sock->sk;
int err = 0;
if (!sk)
return 0;
iucv_sock_close(sk);
sock_orphan(sk);
iucv_sock_kill(sk);
return err;
}
/* getsockopt and setsockopt */
static int iucv_sock_setsockopt(struct socket *sock, int level, int optname,
char __user *optval, unsigned int optlen)
{
struct sock *sk = sock->sk;
struct iucv_sock *iucv = iucv_sk(sk);
int val;
int rc;
if (level != SOL_IUCV)
return -ENOPROTOOPT;
if (optlen < sizeof(int))
return -EINVAL;
if (get_user(val, (int __user *) optval))
return -EFAULT;
rc = 0;
lock_sock(sk);
switch (optname) {
case SO_IPRMDATA_MSG:
if (val)
iucv->flags |= IUCV_IPRMDATA;
else
iucv->flags &= ~IUCV_IPRMDATA;
break;
case SO_MSGLIMIT:
switch (sk->sk_state) {
case IUCV_OPEN:
case IUCV_BOUND:
if (val < 1 || val > (u16)(~0))
rc = -EINVAL;
else
iucv->msglimit = val;
break;
default:
rc = -EINVAL;
break;
}
break;
default:
rc = -ENOPROTOOPT;
break;
}
release_sock(sk);
return rc;
}
static int iucv_sock_getsockopt(struct socket *sock, int level, int optname,
char __user *optval, int __user *optlen)
{
struct sock *sk = sock->sk;
struct iucv_sock *iucv = iucv_sk(sk);
unsigned int val;
int len;
if (level != SOL_IUCV)
return -ENOPROTOOPT;
if (get_user(len, optlen))
return -EFAULT;
if (len < 0)
return -EINVAL;
len = min_t(unsigned int, len, sizeof(int));
switch (optname) {
case SO_IPRMDATA_MSG:
val = (iucv->flags & IUCV_IPRMDATA) ? 1 : 0;
break;
case SO_MSGLIMIT:
lock_sock(sk);
val = (iucv->path != NULL) ? iucv->path->msglim /* connected */
: iucv->msglimit; /* default */
release_sock(sk);
break;
case SO_MSGSIZE:
if (sk->sk_state == IUCV_OPEN)
return -EBADFD;
val = (iucv->hs_dev) ? iucv->hs_dev->mtu -
sizeof(struct af_iucv_trans_hdr) - ETH_HLEN :
0x7fffffff;
break;
default:
return -ENOPROTOOPT;
}
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
/* Callback wrappers - called from iucv base support */
static int iucv_callback_connreq(struct iucv_path *path,
u8 ipvmid[8], u8 ipuser[16])
{
unsigned char user_data[16];
unsigned char nuser_data[16];
unsigned char src_name[8];
struct hlist_node *node;
struct sock *sk, *nsk;
struct iucv_sock *iucv, *niucv;
int err;
memcpy(src_name, ipuser, 8);
EBCASC(src_name, 8);
/* Find out if this path belongs to af_iucv. */
read_lock(&iucv_sk_list.lock);
iucv = NULL;
sk = NULL;
sk_for_each(sk, node, &iucv_sk_list.head)
if (sk->sk_state == IUCV_LISTEN &&
!memcmp(&iucv_sk(sk)->src_name, src_name, 8)) {
/*
* Found a listening socket with
* src_name == ipuser[0-7].
*/
iucv = iucv_sk(sk);
break;
}
read_unlock(&iucv_sk_list.lock);
if (!iucv)
/* No socket found, not one of our paths. */
return -EINVAL;
bh_lock_sock(sk);
/* Check if parent socket is listening */
low_nmcpy(user_data, iucv->src_name);
high_nmcpy(user_data, iucv->dst_name);
ASCEBC(user_data, sizeof(user_data));
if (sk->sk_state != IUCV_LISTEN) {
err = pr_iucv->path_sever(path, user_data);
iucv_path_free(path);
goto fail;
}
/* Check for backlog size */
if (sk_acceptq_is_full(sk)) {
err = pr_iucv->path_sever(path, user_data);
iucv_path_free(path);
goto fail;
}
/* Create the new socket */
nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC);
if (!nsk) {
err = pr_iucv->path_sever(path, user_data);
iucv_path_free(path);
goto fail;
}
niucv = iucv_sk(nsk);
iucv_sock_init(nsk, sk);
/* Set the new iucv_sock */
memcpy(niucv->dst_name, ipuser + 8, 8);
EBCASC(niucv->dst_name, 8);
memcpy(niucv->dst_user_id, ipvmid, 8);
memcpy(niucv->src_name, iucv->src_name, 8);
memcpy(niucv->src_user_id, iucv->src_user_id, 8);
niucv->path = path;
/* Call iucv_accept */
high_nmcpy(nuser_data, ipuser + 8);
memcpy(nuser_data + 8, niucv->src_name, 8);
ASCEBC(nuser_data + 8, 8);
/* set message limit for path based on msglimit of accepting socket */
niucv->msglimit = iucv->msglimit;
path->msglim = iucv->msglimit;
err = pr_iucv->path_accept(path, &af_iucv_handler, nuser_data, nsk);
if (err) {
iucv_sever_path(nsk, 1);
iucv_sock_kill(nsk);
goto fail;
}
iucv_accept_enqueue(sk, nsk);
/* Wake up accept */
nsk->sk_state = IUCV_CONNECTED;
sk->sk_data_ready(sk, 1);
err = 0;
fail:
bh_unlock_sock(sk);
return 0;
}
static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16])
{
struct sock *sk = path->private;
sk->sk_state = IUCV_CONNECTED;
sk->sk_state_change(sk);
}
static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg)
{
struct sock *sk = path->private;
struct iucv_sock *iucv = iucv_sk(sk);
struct sk_buff *skb;
struct sock_msg_q *save_msg;
int len;
if (sk->sk_shutdown & RCV_SHUTDOWN) {
pr_iucv->message_reject(path, msg);
return;
}
spin_lock(&iucv->message_q.lock);
if (!list_empty(&iucv->message_q.list) ||
!skb_queue_empty(&iucv->backlog_skb_q))
goto save_message;
len = atomic_read(&sk->sk_rmem_alloc);
len += SKB_TRUESIZE(iucv_msg_length(msg));
if (len > sk->sk_rcvbuf)
goto save_message;
skb = alloc_skb(iucv_msg_length(msg), GFP_ATOMIC | GFP_DMA);
if (!skb)
goto save_message;
iucv_process_message(sk, skb, path, msg);
goto out_unlock;
save_message:
save_msg = kzalloc(sizeof(struct sock_msg_q), GFP_ATOMIC | GFP_DMA);
if (!save_msg)
goto out_unlock;
save_msg->path = path;
save_msg->msg = *msg;
list_add_tail(&save_msg->list, &iucv->message_q.list);
out_unlock:
spin_unlock(&iucv->message_q.lock);
}
static void iucv_callback_txdone(struct iucv_path *path,
struct iucv_message *msg)
{
struct sock *sk = path->private;
struct sk_buff *this = NULL;
struct sk_buff_head *list = &iucv_sk(sk)->send_skb_q;
struct sk_buff *list_skb = list->next;
unsigned long flags;
bh_lock_sock(sk);
if (!skb_queue_empty(list)) {
spin_lock_irqsave(&list->lock, flags);
while (list_skb != (struct sk_buff *)list) {
if (!memcmp(&msg->tag, CB_TAG(list_skb), CB_TAG_LEN)) {
this = list_skb;
break;
}
list_skb = list_skb->next;
}
if (this)
__skb_unlink(this, list);
spin_unlock_irqrestore(&list->lock, flags);
if (this) {
kfree_skb(this);
/* wake up any process waiting for sending */
iucv_sock_wake_msglim(sk);
}
}
if (sk->sk_state == IUCV_CLOSING) {
if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
sk->sk_state = IUCV_CLOSED;
sk->sk_state_change(sk);
}
}
bh_unlock_sock(sk);
}
static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16])
{
struct sock *sk = path->private;
if (sk->sk_state == IUCV_CLOSED)
return;
bh_lock_sock(sk);
iucv_sever_path(sk, 1);
sk->sk_state = IUCV_DISCONN;
sk->sk_state_change(sk);
bh_unlock_sock(sk);
}
/* called if the other communication side shuts down its RECV direction;
* in turn, the callback sets SEND_SHUTDOWN to disable sending of data.
*/
static void iucv_callback_shutdown(struct iucv_path *path, u8 ipuser[16])
{
struct sock *sk = path->private;
bh_lock_sock(sk);
if (sk->sk_state != IUCV_CLOSED) {
sk->sk_shutdown |= SEND_SHUTDOWN;
sk->sk_state_change(sk);
}
bh_unlock_sock(sk);
}
/***************** HiperSockets transport callbacks ********************/
static void afiucv_swap_src_dest(struct sk_buff *skb)
{
struct af_iucv_trans_hdr *trans_hdr =
(struct af_iucv_trans_hdr *)skb->data;
char tmpID[8];
char tmpName[8];
ASCEBC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
ASCEBC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
ASCEBC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
ASCEBC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
memcpy(tmpID, trans_hdr->srcUserID, 8);
memcpy(tmpName, trans_hdr->srcAppName, 8);
memcpy(trans_hdr->srcUserID, trans_hdr->destUserID, 8);
memcpy(trans_hdr->srcAppName, trans_hdr->destAppName, 8);
memcpy(trans_hdr->destUserID, tmpID, 8);
memcpy(trans_hdr->destAppName, tmpName, 8);
skb_push(skb, ETH_HLEN);
memset(skb->data, 0, ETH_HLEN);
}
/**
* afiucv_hs_callback_syn - react on received SYN
**/
static int afiucv_hs_callback_syn(struct sock *sk, struct sk_buff *skb)
{
struct sock *nsk;
struct iucv_sock *iucv, *niucv;
struct af_iucv_trans_hdr *trans_hdr;
int err;
iucv = iucv_sk(sk);
trans_hdr = (struct af_iucv_trans_hdr *)skb->data;
if (!iucv) {
/* no sock - connection refused */
afiucv_swap_src_dest(skb);
trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
err = dev_queue_xmit(skb);
goto out;
}
nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC);
bh_lock_sock(sk);
if ((sk->sk_state != IUCV_LISTEN) ||
sk_acceptq_is_full(sk) ||
!nsk) {
/* error on server socket - connection refused */
if (nsk)
sk_free(nsk);
afiucv_swap_src_dest(skb);
trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
err = dev_queue_xmit(skb);
bh_unlock_sock(sk);
goto out;
}
niucv = iucv_sk(nsk);
iucv_sock_init(nsk, sk);
niucv->transport = AF_IUCV_TRANS_HIPER;
niucv->msglimit = iucv->msglimit;
if (!trans_hdr->window)
niucv->msglimit_peer = IUCV_HIPER_MSGLIM_DEFAULT;
else
niucv->msglimit_peer = trans_hdr->window;
memcpy(niucv->dst_name, trans_hdr->srcAppName, 8);
memcpy(niucv->dst_user_id, trans_hdr->srcUserID, 8);
memcpy(niucv->src_name, iucv->src_name, 8);
memcpy(niucv->src_user_id, iucv->src_user_id, 8);
nsk->sk_bound_dev_if = sk->sk_bound_dev_if;
niucv->hs_dev = iucv->hs_dev;
dev_hold(niucv->hs_dev);
afiucv_swap_src_dest(skb);
trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK;
trans_hdr->window = niucv->msglimit;
/* if receiver acks the xmit connection is established */
err = dev_queue_xmit(skb);
if (!err) {
iucv_accept_enqueue(sk, nsk);
nsk->sk_state = IUCV_CONNECTED;
sk->sk_data_ready(sk, 1);
} else
iucv_sock_kill(nsk);
bh_unlock_sock(sk);
out:
return NET_RX_SUCCESS;
}
/**
* afiucv_hs_callback_synack() - react on received SYN-ACK
**/
static int afiucv_hs_callback_synack(struct sock *sk, struct sk_buff *skb)
{
struct iucv_sock *iucv = iucv_sk(sk);
struct af_iucv_trans_hdr *trans_hdr =
(struct af_iucv_trans_hdr *)skb->data;
if (!iucv)
goto out;
if (sk->sk_state != IUCV_BOUND)
goto out;
bh_lock_sock(sk);
iucv->msglimit_peer = trans_hdr->window;
sk->sk_state = IUCV_CONNECTED;
sk->sk_state_change(sk);
bh_unlock_sock(sk);
out:
kfree_skb(skb);
return NET_RX_SUCCESS;
}
/**
* afiucv_hs_callback_synfin() - react on received SYN_FIN
**/
static int afiucv_hs_callback_synfin(struct sock *sk, struct sk_buff *skb)
{
struct iucv_sock *iucv = iucv_sk(sk);
if (!iucv)
goto out;
if (sk->sk_state != IUCV_BOUND)
goto out;
bh_lock_sock(sk);
sk->sk_state = IUCV_DISCONN;
sk->sk_state_change(sk);
bh_unlock_sock(sk);
out:
kfree_skb(skb);
return NET_RX_SUCCESS;
}
/**
* afiucv_hs_callback_fin() - react on received FIN
**/
static int afiucv_hs_callback_fin(struct sock *sk, struct sk_buff *skb)
{
struct iucv_sock *iucv = iucv_sk(sk);
/* other end of connection closed */
if (!iucv)
goto out;
bh_lock_sock(sk);
if (sk->sk_state == IUCV_CONNECTED) {
sk->sk_state = IUCV_DISCONN;
sk->sk_state_change(sk);
}
bh_unlock_sock(sk);
out:
kfree_skb(skb);
return NET_RX_SUCCESS;
}
/**
* afiucv_hs_callback_win() - react on received WIN
**/
static int afiucv_hs_callback_win(struct sock *sk, struct sk_buff *skb)
{
struct iucv_sock *iucv = iucv_sk(sk);
struct af_iucv_trans_hdr *trans_hdr =
(struct af_iucv_trans_hdr *)skb->data;
if (!iucv)
return NET_RX_SUCCESS;
if (sk->sk_state != IUCV_CONNECTED)
return NET_RX_SUCCESS;
atomic_sub(trans_hdr->window, &iucv->msg_sent);
iucv_sock_wake_msglim(sk);
return NET_RX_SUCCESS;
}
/**
* afiucv_hs_callback_rx() - react on received data
**/
static int afiucv_hs_callback_rx(struct sock *sk, struct sk_buff *skb)
{
struct iucv_sock *iucv = iucv_sk(sk);
if (!iucv) {
kfree_skb(skb);
return NET_RX_SUCCESS;
}
if (sk->sk_state != IUCV_CONNECTED) {
kfree_skb(skb);
return NET_RX_SUCCESS;
}
if (sk->sk_shutdown & RCV_SHUTDOWN) {
kfree_skb(skb);
return NET_RX_SUCCESS;
}
/* write stuff from iucv_msg to skb cb */
if (skb->len < sizeof(struct af_iucv_trans_hdr)) {
kfree_skb(skb);
return NET_RX_SUCCESS;
}
skb_pull(skb, sizeof(struct af_iucv_trans_hdr));
skb_reset_transport_header(skb);
skb_reset_network_header(skb);
spin_lock(&iucv->message_q.lock);
if (skb_queue_empty(&iucv->backlog_skb_q)) {
if (sock_queue_rcv_skb(sk, skb)) {
/* handle rcv queue full */
skb_queue_tail(&iucv->backlog_skb_q, skb);
}
} else
skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb);
spin_unlock(&iucv->message_q.lock);
return NET_RX_SUCCESS;
}
/**
* afiucv_hs_rcv() - base function for arriving data through HiperSockets
* transport
* called from netif RX softirq
**/
static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
struct packet_type *pt, struct net_device *orig_dev)
{
struct hlist_node *node;
struct sock *sk;
struct iucv_sock *iucv;
struct af_iucv_trans_hdr *trans_hdr;
char nullstring[8];
int err = 0;
skb_pull(skb, ETH_HLEN);
trans_hdr = (struct af_iucv_trans_hdr *)skb->data;
EBCASC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
EBCASC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
EBCASC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
EBCASC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
memset(nullstring, 0, sizeof(nullstring));
iucv = NULL;
sk = NULL;
read_lock(&iucv_sk_list.lock);
sk_for_each(sk, node, &iucv_sk_list.head) {
if (trans_hdr->flags == AF_IUCV_FLAG_SYN) {
if ((!memcmp(&iucv_sk(sk)->src_name,
trans_hdr->destAppName, 8)) &&
(!memcmp(&iucv_sk(sk)->src_user_id,
trans_hdr->destUserID, 8)) &&
(!memcmp(&iucv_sk(sk)->dst_name, nullstring, 8)) &&
(!memcmp(&iucv_sk(sk)->dst_user_id,
nullstring, 8))) {
iucv = iucv_sk(sk);
break;
}
} else {
if ((!memcmp(&iucv_sk(sk)->src_name,
trans_hdr->destAppName, 8)) &&
(!memcmp(&iucv_sk(sk)->src_user_id,
trans_hdr->destUserID, 8)) &&
(!memcmp(&iucv_sk(sk)->dst_name,
trans_hdr->srcAppName, 8)) &&
(!memcmp(&iucv_sk(sk)->dst_user_id,
trans_hdr->srcUserID, 8))) {
iucv = iucv_sk(sk);
break;
}
}
}
read_unlock(&iucv_sk_list.lock);
if (!iucv)
sk = NULL;
/* no sock
how should we send with no sock
1) send without sock no send rc checking?
2) introduce default sock to handle this cases
SYN -> send SYN|ACK in good case, send SYN|FIN in bad case
data -> send FIN
SYN|ACK, SYN|FIN, FIN -> no action? */
switch (trans_hdr->flags) {
case AF_IUCV_FLAG_SYN:
/* connect request */
err = afiucv_hs_callback_syn(sk, skb);
break;
case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK):
/* connect request confirmed */
err = afiucv_hs_callback_synack(sk, skb);
break;
case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN):
/* connect request refused */
err = afiucv_hs_callback_synfin(sk, skb);
break;
case (AF_IUCV_FLAG_FIN):
/* close request */
err = afiucv_hs_callback_fin(sk, skb);
break;
case (AF_IUCV_FLAG_WIN):
err = afiucv_hs_callback_win(sk, skb);
if (skb->len == sizeof(struct af_iucv_trans_hdr)) {
kfree_skb(skb);
break;
}
/* fall through and receive non-zero length data */
case (AF_IUCV_FLAG_SHT):
/* shutdown request */
/* fall through and receive zero length data */
case 0:
/* plain data frame */
memcpy(CB_TRGCLS(skb), &trans_hdr->iucv_hdr.class,
CB_TRGCLS_LEN);
err = afiucv_hs_callback_rx(sk, skb);
break;
default:
;
}
return err;
}
/**
* afiucv_hs_callback_txnotify() - handle send notifcations from HiperSockets
* transport
**/
static void afiucv_hs_callback_txnotify(struct sk_buff *skb,
enum iucv_tx_notify n)
{
struct sock *isk = skb->sk;
struct sock *sk = NULL;
struct iucv_sock *iucv = NULL;
struct sk_buff_head *list;
struct sk_buff *list_skb;
struct sk_buff *nskb;
unsigned long flags;
struct hlist_node *node;
read_lock_irqsave(&iucv_sk_list.lock, flags);
sk_for_each(sk, node, &iucv_sk_list.head)
if (sk == isk) {
iucv = iucv_sk(sk);
break;
}
read_unlock_irqrestore(&iucv_sk_list.lock, flags);
if (!iucv || sock_flag(sk, SOCK_ZAPPED))
return;
list = &iucv->send_skb_q;
spin_lock_irqsave(&list->lock, flags);
if (skb_queue_empty(list))
goto out_unlock;
list_skb = list->next;
nskb = list_skb->next;
while (list_skb != (struct sk_buff *)list) {
if (skb_shinfo(list_skb) == skb_shinfo(skb)) {
switch (n) {
case TX_NOTIFY_OK:
__skb_unlink(list_skb, list);
kfree_skb(list_skb);
iucv_sock_wake_msglim(sk);
break;
case TX_NOTIFY_PENDING:
atomic_inc(&iucv->pendings);
break;
case TX_NOTIFY_DELAYED_OK:
__skb_unlink(list_skb, list);
atomic_dec(&iucv->pendings);
if (atomic_read(&iucv->pendings) <= 0)
iucv_sock_wake_msglim(sk);
kfree_skb(list_skb);
break;
case TX_NOTIFY_UNREACHABLE:
case TX_NOTIFY_DELAYED_UNREACHABLE:
case TX_NOTIFY_TPQFULL: /* not yet used */
case TX_NOTIFY_GENERALERROR:
case TX_NOTIFY_DELAYED_GENERALERROR:
__skb_unlink(list_skb, list);
kfree_skb(list_skb);
if (sk->sk_state == IUCV_CONNECTED) {
sk->sk_state = IUCV_DISCONN;
sk->sk_state_change(sk);
}
break;
}
break;
}
list_skb = nskb;
nskb = nskb->next;
}
out_unlock:
spin_unlock_irqrestore(&list->lock, flags);
if (sk->sk_state == IUCV_CLOSING) {
if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
sk->sk_state = IUCV_CLOSED;
sk->sk_state_change(sk);
}
}
}
/*
* afiucv_netdev_event: handle netdev notifier chain events
*/
static int afiucv_netdev_event(struct notifier_block *this,
unsigned long event, void *ptr)
{
struct net_device *event_dev = (struct net_device *)ptr;
struct hlist_node *node;
struct sock *sk;
struct iucv_sock *iucv;
switch (event) {
case NETDEV_REBOOT:
case NETDEV_GOING_DOWN:
sk_for_each(sk, node, &iucv_sk_list.head) {
iucv = iucv_sk(sk);
if ((iucv->hs_dev == event_dev) &&
(sk->sk_state == IUCV_CONNECTED)) {
if (event == NETDEV_GOING_DOWN)
iucv_send_ctrl(sk, AF_IUCV_FLAG_FIN);
sk->sk_state = IUCV_DISCONN;
sk->sk_state_change(sk);
}
}
break;
case NETDEV_DOWN:
case NETDEV_UNREGISTER:
default:
break;
}
return NOTIFY_DONE;
}
static struct notifier_block afiucv_netdev_notifier = {
.notifier_call = afiucv_netdev_event,
};
static const struct proto_ops iucv_sock_ops = {
.family = PF_IUCV,
.owner = THIS_MODULE,
.release = iucv_sock_release,
.bind = iucv_sock_bind,
.connect = iucv_sock_connect,
.listen = iucv_sock_listen,
.accept = iucv_sock_accept,
.getname = iucv_sock_getname,
.sendmsg = iucv_sock_sendmsg,
.recvmsg = iucv_sock_recvmsg,
.poll = iucv_sock_poll,
.ioctl = sock_no_ioctl,
.mmap = sock_no_mmap,
.socketpair = sock_no_socketpair,
.shutdown = iucv_sock_shutdown,
.setsockopt = iucv_sock_setsockopt,
.getsockopt = iucv_sock_getsockopt,
};
static const struct net_proto_family iucv_sock_family_ops = {
.family = AF_IUCV,
.owner = THIS_MODULE,
.create = iucv_sock_create,
};
static struct packet_type iucv_packet_type = {
.type = cpu_to_be16(ETH_P_AF_IUCV),
.func = afiucv_hs_rcv,
};
static int afiucv_iucv_init(void)
{
int err;
err = pr_iucv->iucv_register(&af_iucv_handler, 0);
if (err)
goto out;
/* establish dummy device */
af_iucv_driver.bus = pr_iucv->bus;
err = driver_register(&af_iucv_driver);
if (err)
goto out_iucv;
af_iucv_dev = kzalloc(sizeof(struct device), GFP_KERNEL);
if (!af_iucv_dev) {
err = -ENOMEM;
goto out_driver;
}
dev_set_name(af_iucv_dev, "af_iucv");
af_iucv_dev->bus = pr_iucv->bus;
af_iucv_dev->parent = pr_iucv->root;
af_iucv_dev->release = (void (*)(struct device *))kfree;
af_iucv_dev->driver = &af_iucv_driver;
err = device_register(af_iucv_dev);
if (err)
goto out_driver;
return 0;
out_driver:
driver_unregister(&af_iucv_driver);
out_iucv:
pr_iucv->iucv_unregister(&af_iucv_handler, 0);
out:
return err;
}
static int __init afiucv_init(void)
{
int err;
if (MACHINE_IS_VM) {
cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err);
if (unlikely(err)) {
WARN_ON(err);
err = -EPROTONOSUPPORT;
goto out;
}
pr_iucv = try_then_request_module(symbol_get(iucv_if), "iucv");
if (!pr_iucv) {
printk(KERN_WARNING "iucv_if lookup failed\n");
memset(&iucv_userid, 0, sizeof(iucv_userid));
}
} else {
memset(&iucv_userid, 0, sizeof(iucv_userid));
pr_iucv = NULL;
}
err = proto_register(&iucv_proto, 0);
if (err)
goto out;
err = sock_register(&iucv_sock_family_ops);
if (err)
goto out_proto;
if (pr_iucv) {
err = afiucv_iucv_init();
if (err)
goto out_sock;
} else
register_netdevice_notifier(&afiucv_netdev_notifier);
dev_add_pack(&iucv_packet_type);
return 0;
out_sock:
sock_unregister(PF_IUCV);
out_proto:
proto_unregister(&iucv_proto);
out:
if (pr_iucv)
symbol_put(iucv_if);
return err;
}
static void __exit afiucv_exit(void)
{
if (pr_iucv) {
device_unregister(af_iucv_dev);
driver_unregister(&af_iucv_driver);
pr_iucv->iucv_unregister(&af_iucv_handler, 0);
symbol_put(iucv_if);
} else
unregister_netdevice_notifier(&afiucv_netdev_notifier);
dev_remove_pack(&iucv_packet_type);
sock_unregister(PF_IUCV);
proto_unregister(&iucv_proto);
}
module_init(afiucv_init);
module_exit(afiucv_exit);
MODULE_AUTHOR("Jennifer Hunt <jenhunt@us.ibm.com>");
MODULE_DESCRIPTION("IUCV Sockets ver " VERSION);
MODULE_VERSION(VERSION);
MODULE_LICENSE("GPL");
MODULE_ALIAS_NETPROTO(PF_IUCV);