aboutsummaryrefslogblamecommitdiffstats
path: root/net/dccp/dccp.h
blob: ee97950d77d1993bdc53ddb1609bbd804342b150 (plain) (tree)
1
2
3
4
5
6
7
8





                                          
                                                                       
                                                                






                                                                               
                        


                     
                   
 



                                                                            
                                                                          





                                                                                

                                        

                                                                              
                                                          


                                                                                
                           
                      

                                                                                







                                          


                                                                  











                                                                               



                                                                            
                                         

                                              





                                                                        


                                                           



                                        





                                             
                                
                                       
 




















                                                                       

                                                                                
 


                                          

 
                      
                                                          
 
                                                      


                      
                                                    

                               
                                                                           








                                                                          


                                                           
                                                 

 




                                                                 
                                                             


















                                                    







                                                                               
 


                             
                                                                        









                                                                    
                                                   








                                                                              

                                                                      
                                           

                                                                              

                                                              
 
                                                        
                                              
 










                                                             

                                                             
 
                                                                           
 







                                                                             














                                                                               
                                                                            
                                              
 






                                                                      
                                              
                                                
                                                                           


                                                                            







                                                                         
                                                                           

                                                                    


                                                                             
                                                           


                                                                      

                                                                           
 

                                                                
                                                                                
                                                                      
                                                            
                                                                

                                                              
                                                             






                                                                       
 










                                                                   
                    

                            

                                  
                            

                            






















                                                                    
                                                  


                                                                       

                                                                        

                                                     


                                                     

                                                                    
 

                                                    





                                                            
                                                        
 

                                      
                                                                               
                                      
                                                                               




                                                            
 

                                            
                                       
                                                                   
 
 




                                                         
                                                       



                                                               
 

                                                                     

                                                                

                                         
                                                        
                                                              
                                                                   


                                                                     













                                         
                    
#ifndef _DCCP_H
#define _DCCP_H
/*
 *  net/dccp/dccp.h
 *
 *  An implementation of the DCCP protocol
 *  Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
 *  Copyright (c) 2005-6 Ian McDonald <ian.mcdonald@jandi.co.nz>
 *
 *	This program is free software; you can redistribute it and/or modify it
 *	under the terms of the GNU General Public License version 2 as
 *	published by the Free Software Foundation.
 */

#include <linux/dccp.h>
#include <linux/ktime.h>
#include <net/snmp.h>
#include <net/sock.h>
#include <net/tcp.h>
#include "ackvec.h"

/*
 * 	DCCP - specific warning and debugging macros.
 */
#define DCCP_WARN(fmt, a...) LIMIT_NETDEBUG(KERN_WARNING "%s: " fmt,       \
							__FUNCTION__, ##a)
#define DCCP_CRIT(fmt, a...) printk(KERN_CRIT fmt " at %s:%d/%s()\n", ##a, \
					 __FILE__, __LINE__, __FUNCTION__)
#define DCCP_BUG(a...)       do { DCCP_CRIT("BUG: " a); dump_stack(); } while(0)
#define DCCP_BUG_ON(cond)    do { if (unlikely((cond) != 0))		   \
				     DCCP_BUG("\"%s\" holds (exception!)", \
					      __stringify(cond));          \
			     } while (0)

#define DCCP_PRINTK(enable, fmt, args...)	do { if (enable)	     \
							printk(fmt, ##args); \
						} while(0)
#define DCCP_PR_DEBUG(enable, fmt, a...)	DCCP_PRINTK(enable, KERN_DEBUG \
						  "%s: " fmt, __FUNCTION__, ##a)

#ifdef CONFIG_IP_DCCP_DEBUG
extern int dccp_debug;
#define dccp_pr_debug(format, a...)	  DCCP_PR_DEBUG(dccp_debug, format, ##a)
#define dccp_pr_debug_cat(format, a...)   DCCP_PRINTK(dccp_debug, format, ##a)
#else
#define dccp_pr_debug(format, a...)
#define dccp_pr_debug_cat(format, a...)
#endif

extern struct inet_hashinfo dccp_hashinfo;

extern atomic_t dccp_orphan_count;

extern void dccp_time_wait(struct sock *sk, int state, int timeo);

/*
 *  Set safe upper bounds for header and option length. Since Data Offset is 8
 *  bits (RFC 4340, sec. 5.1), the total header length can never be more than
 *  4 * 255 = 1020 bytes. The largest possible header length is 28 bytes (X=1):
 *    - DCCP-Response with ACK Subheader and 4 bytes of Service code      OR
 *    - DCCP-Reset    with ACK Subheader and 4 bytes of Reset Code fields
 *  Hence a safe upper bound for the maximum option length is 1020-28 = 992
 */
#define MAX_DCCP_SPECIFIC_HEADER (255 * sizeof(int))
#define DCCP_MAX_PACKET_HDR 28
#define DCCP_MAX_OPT_LEN (MAX_DCCP_SPECIFIC_HEADER - DCCP_MAX_PACKET_HDR)
#define MAX_DCCP_HEADER (MAX_DCCP_SPECIFIC_HEADER + MAX_HEADER)

#define DCCP_TIMEWAIT_LEN (60 * HZ) /* how long to wait to destroy TIME-WAIT
				     * state, about 60 seconds */

/* RFC 1122, 4.2.3.1 initial RTO value */
#define DCCP_TIMEOUT_INIT ((unsigned)(3 * HZ))

#define DCCP_RTO_MAX ((unsigned)(120 * HZ)) /* FIXME: using TCP value */

/* bounds for sampled RTT values from packet exchanges (in usec) */
#define DCCP_SANE_RTT_MIN	100
#define DCCP_SANE_RTT_MAX	(4 * USEC_PER_SEC)

/* Maximal interval between probes for local resources.  */
#define DCCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ / 2U))

/* sysctl variables for DCCP */
extern int  sysctl_dccp_request_retries;
extern int  sysctl_dccp_retries1;
extern int  sysctl_dccp_retries2;
extern int  sysctl_dccp_feat_sequence_window;
extern int  sysctl_dccp_feat_rx_ccid;
extern int  sysctl_dccp_feat_tx_ccid;
extern int  sysctl_dccp_feat_ack_ratio;
extern int  sysctl_dccp_feat_send_ack_vector;
extern int  sysctl_dccp_feat_send_ndp_count;
extern int  sysctl_dccp_tx_qlen;
extern int  sysctl_dccp_sync_ratelimit;

/*
 *	48-bit sequence number arithmetic (signed and unsigned)
 */
#define INT48_MIN	  0x800000000000LL		/* 2^47	    */
#define UINT48_MAX	  0xFFFFFFFFFFFFLL		/* 2^48 - 1 */
#define COMPLEMENT48(x)	 (0x1000000000000LL - (x))	/* 2^48 - x */
#define TO_SIGNED48(x)	 (((x) < INT48_MIN)? (x) : -COMPLEMENT48( (x)))
#define TO_UNSIGNED48(x) (((x) >= 0)?	     (x) :  COMPLEMENT48(-(x)))
#define ADD48(a, b)	 (((a) + (b)) & UINT48_MAX)
#define SUB48(a, b)	 ADD48((a), COMPLEMENT48(b))

static inline void dccp_set_seqno(u64 *seqno, u64 value)
{
	*seqno = value & UINT48_MAX;
}

static inline void dccp_inc_seqno(u64 *seqno)
{
	*seqno = ADD48(*seqno, 1);
}

/* signed mod-2^48 distance: pos. if seqno1 < seqno2, neg. if seqno1 > seqno2 */
static inline s64 dccp_delta_seqno(const u64 seqno1, const u64 seqno2)
{
	u64 delta = SUB48(seqno2, seqno1);

	return TO_SIGNED48(delta);
}

/* is seq1 < seq2 ? */
static inline int before48(const u64 seq1, const u64 seq2)
{
	return (s64)((seq2 << 16) - (seq1 << 16)) > 0;
}

/* is seq1 > seq2 ? */
#define after48(seq1, seq2)	before48(seq2, seq1)

/* is seq2 <= seq1 <= seq3 ? */
static inline int between48(const u64 seq1, const u64 seq2, const u64 seq3)
{
	return (seq3 << 16) - (seq2 << 16) >= (seq1 << 16) - (seq2 << 16);
}

static inline u64 max48(const u64 seq1, const u64 seq2)
{
	return after48(seq1, seq2) ? seq1 : seq2;
}

/* is seq1 next seqno after seq2 */
static inline int follows48(const u64 seq1, const u64 seq2)
{
	return dccp_delta_seqno(seq2, seq1) == 1;
}

enum {
	DCCP_MIB_NUM = 0,
	DCCP_MIB_ACTIVEOPENS,			/* ActiveOpens */
	DCCP_MIB_ESTABRESETS,			/* EstabResets */
	DCCP_MIB_CURRESTAB,			/* CurrEstab */
	DCCP_MIB_OUTSEGS,			/* OutSegs */
	DCCP_MIB_OUTRSTS,
	DCCP_MIB_ABORTONTIMEOUT,
	DCCP_MIB_TIMEOUTS,
	DCCP_MIB_ABORTFAILED,
	DCCP_MIB_PASSIVEOPENS,
	DCCP_MIB_ATTEMPTFAILS,
	DCCP_MIB_OUTDATAGRAMS,
	DCCP_MIB_INERRS,
	DCCP_MIB_OPTMANDATORYERROR,
	DCCP_MIB_INVALIDOPT,
	__DCCP_MIB_MAX
};

#define DCCP_MIB_MAX	__DCCP_MIB_MAX
struct dccp_mib {
	unsigned long	mibs[DCCP_MIB_MAX];
} __SNMP_MIB_ALIGN__;

DECLARE_SNMP_STAT(struct dccp_mib, dccp_statistics);
#define DCCP_INC_STATS(field)	    SNMP_INC_STATS(dccp_statistics, field)
#define DCCP_INC_STATS_BH(field)    SNMP_INC_STATS_BH(dccp_statistics, field)
#define DCCP_INC_STATS_USER(field)  SNMP_INC_STATS_USER(dccp_statistics, field)
#define DCCP_DEC_STATS(field)	    SNMP_DEC_STATS(dccp_statistics, field)
#define DCCP_ADD_STATS_BH(field, val) \
			SNMP_ADD_STATS_BH(dccp_statistics, field, val)
#define DCCP_ADD_STATS_USER(field, val)	\
			SNMP_ADD_STATS_USER(dccp_statistics, field, val)

/*
 * 	Checksumming routines
 */
static inline unsigned int dccp_csum_coverage(const struct sk_buff *skb)
{
	const struct dccp_hdr* dh = dccp_hdr(skb);

	if (dh->dccph_cscov == 0)
		return skb->len;
	return (dh->dccph_doff + dh->dccph_cscov - 1) * sizeof(u32);
}

static inline void dccp_csum_outgoing(struct sk_buff *skb)
{
	unsigned int cov = dccp_csum_coverage(skb);

	if (cov >= skb->len)
		dccp_hdr(skb)->dccph_cscov = 0;

	skb->csum = skb_checksum(skb, 0, (cov > skb->len)? skb->len : cov, 0);
}

extern void dccp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb);

extern int  dccp_retransmit_skb(struct sock *sk, struct sk_buff *skb);

extern void dccp_send_ack(struct sock *sk);
extern void dccp_reqsk_send_ack(struct sk_buff *sk, struct request_sock *rsk);

extern void dccp_send_sync(struct sock *sk, const u64 seq,
			   const enum dccp_pkt_type pkt_type);

extern void dccp_write_xmit(struct sock *sk, int block);
extern void dccp_write_space(struct sock *sk);

extern void dccp_init_xmit_timers(struct sock *sk);
static inline void dccp_clear_xmit_timers(struct sock *sk)
{
	inet_csk_clear_xmit_timers(sk);
}

extern unsigned int dccp_sync_mss(struct sock *sk, u32 pmtu);

extern const char *dccp_packet_name(const int type);
extern const char *dccp_state_name(const int state);

extern void dccp_set_state(struct sock *sk, const int state);
extern void dccp_done(struct sock *sk);

extern void dccp_reqsk_init(struct request_sock *req, struct sk_buff *skb);

extern int dccp_v4_conn_request(struct sock *sk, struct sk_buff *skb);

extern struct sock *dccp_create_openreq_child(struct sock *sk,
					      const struct request_sock *req,
					      const struct sk_buff *skb);

extern int dccp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);

extern struct sock *dccp_v4_request_recv_sock(struct sock *sk,
					      struct sk_buff *skb,
					      struct request_sock *req,
					      struct dst_entry *dst);
extern struct sock *dccp_check_req(struct sock *sk, struct sk_buff *skb,
				   struct request_sock *req,
				   struct request_sock **prev);

extern int dccp_child_process(struct sock *parent, struct sock *child,
			      struct sk_buff *skb);
extern int dccp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
				  struct dccp_hdr *dh, unsigned len);
extern int dccp_rcv_established(struct sock *sk, struct sk_buff *skb,
				const struct dccp_hdr *dh, const unsigned len);

extern int dccp_init_sock(struct sock *sk, const __u8 ctl_sock_initialized);
extern int dccp_destroy_sock(struct sock *sk);

extern void		dccp_close(struct sock *sk, long timeout);
extern struct sk_buff	*dccp_make_response(struct sock *sk,
					    struct dst_entry *dst,
					    struct request_sock *req);

extern int	   dccp_connect(struct sock *sk);
extern int	   dccp_disconnect(struct sock *sk, int flags);
extern void	   dccp_hash(struct sock *sk);
extern void	   dccp_unhash(struct sock *sk);
extern int	   dccp_getsockopt(struct sock *sk, int level, int optname,
				   char __user *optval, int __user *optlen);
extern int	   dccp_setsockopt(struct sock *sk, int level, int optname,
				   char __user *optval, int optlen);
#ifdef CONFIG_COMPAT
extern int	   compat_dccp_getsockopt(struct sock *sk,
				int level, int optname,
				char __user *optval, int __user *optlen);
extern int	   compat_dccp_setsockopt(struct sock *sk,
				int level, int optname,
				char __user *optval, int optlen);
#endif
extern int	   dccp_ioctl(struct sock *sk, int cmd, unsigned long arg);
extern int	   dccp_sendmsg(struct kiocb *iocb, struct sock *sk,
				struct msghdr *msg, size_t size);
extern int	   dccp_recvmsg(struct kiocb *iocb, struct sock *sk,
				struct msghdr *msg, size_t len, int nonblock,
				int flags, int *addr_len);
extern void	   dccp_shutdown(struct sock *sk, int how);
extern int	   inet_dccp_listen(struct socket *sock, int backlog);
extern unsigned int dccp_poll(struct file *file, struct socket *sock,
			     poll_table *wait);
extern int	   dccp_v4_connect(struct sock *sk, struct sockaddr *uaddr,
				   int addr_len);

extern struct sk_buff *dccp_ctl_make_reset(struct socket *ctl,
					   struct sk_buff *skb);
extern int	   dccp_send_reset(struct sock *sk, enum dccp_reset_codes code);
extern void	   dccp_send_close(struct sock *sk, const int active);
extern int	   dccp_invalid_packet(struct sk_buff *skb);
extern u32	   dccp_sample_rtt(struct sock *sk, long delta);

static inline int dccp_bad_service_code(const struct sock *sk,
					const __be32 service)
{
	const struct dccp_sock *dp = dccp_sk(sk);

	if (dp->dccps_service == service)
		return 0;
	return !dccp_list_has_service(dp->dccps_service_list, service);
}

/**
 * dccp_skb_cb  -  DCCP per-packet control information
 * @dccpd_type: one of %dccp_pkt_type (or unknown)
 * @dccpd_ccval: CCVal field (5.1), see e.g. RFC 4342, 8.1
 * @dccpd_reset_code: one of %dccp_reset_codes
 * @dccpd_reset_data: Data1..3 fields (depend on @dccpd_reset_code)
 * @dccpd_opt_len: total length of all options (5.8) in the packet
 * @dccpd_seq: sequence number
 * @dccpd_ack_seq: acknowledgment number subheader field value
 * This is used for transmission as well as for reception.
 */
struct dccp_skb_cb {
	__u8  dccpd_type:4;
	__u8  dccpd_ccval:4;
	__u8  dccpd_reset_code,
	      dccpd_reset_data[3];
	__u16 dccpd_opt_len;
	__u64 dccpd_seq;
	__u64 dccpd_ack_seq;
};

#define DCCP_SKB_CB(__skb) ((struct dccp_skb_cb *)&((__skb)->cb[0]))

static inline int dccp_non_data_packet(const struct sk_buff *skb)
{
	const __u8 type = DCCP_SKB_CB(skb)->dccpd_type;

	return type == DCCP_PKT_ACK	 ||
	       type == DCCP_PKT_CLOSE	 ||
	       type == DCCP_PKT_CLOSEREQ ||
	       type == DCCP_PKT_RESET	 ||
	       type == DCCP_PKT_SYNC	 ||
	       type == DCCP_PKT_SYNCACK;
}

static inline int dccp_packet_without_ack(const struct sk_buff *skb)
{
	const __u8 type = DCCP_SKB_CB(skb)->dccpd_type;

	return type == DCCP_PKT_DATA || type == DCCP_PKT_REQUEST;
}

#define DCCP_PKT_WITHOUT_ACK_SEQ (UINT48_MAX << 2)

static inline void dccp_hdr_set_seq(struct dccp_hdr *dh, const u64 gss)
{
	struct dccp_hdr_ext *dhx = (struct dccp_hdr_ext *)((void *)dh +
							   sizeof(*dh));
	dh->dccph_seq2 = 0;
	dh->dccph_seq = htons((gss >> 32) & 0xfffff);
	dhx->dccph_seq_low = htonl(gss & 0xffffffff);
}

static inline void dccp_hdr_set_ack(struct dccp_hdr_ack_bits *dhack,
				    const u64 gsr)
{
	dhack->dccph_reserved1 = 0;
	dhack->dccph_ack_nr_high = htons(gsr >> 32);
	dhack->dccph_ack_nr_low  = htonl(gsr & 0xffffffff);
}

static inline void dccp_update_gsr(struct sock *sk, u64 seq)
{
	struct dccp_sock *dp = dccp_sk(sk);
	const struct dccp_minisock *dmsk = dccp_msk(sk);

	dp->dccps_gsr = seq;
	dccp_set_seqno(&dp->dccps_swl,
		       dp->dccps_gsr + 1 - (dmsk->dccpms_sequence_window / 4));
	dccp_set_seqno(&dp->dccps_swh,
		       dp->dccps_gsr + (3 * dmsk->dccpms_sequence_window) / 4);
}

static inline void dccp_update_gss(struct sock *sk, u64 seq)
{
	struct dccp_sock *dp = dccp_sk(sk);

	dp->dccps_awh = dp->dccps_gss = seq;
	dccp_set_seqno(&dp->dccps_awl,
		       (dp->dccps_gss -
			dccp_msk(sk)->dccpms_sequence_window + 1));
}

static inline int dccp_ack_pending(const struct sock *sk)
{
	const struct dccp_sock *dp = dccp_sk(sk);
	return dp->dccps_timestamp_echo != 0 ||
#ifdef CONFIG_IP_DCCP_ACKVEC
	       (dccp_msk(sk)->dccpms_send_ack_vector &&
		dccp_ackvec_pending(dp->dccps_hc_rx_ackvec)) ||
#endif
	       inet_csk_ack_scheduled(sk);
}

extern int dccp_insert_options(struct sock *sk, struct sk_buff *skb);
extern int dccp_insert_option_elapsed_time(struct sock *sk,
					    struct sk_buff *skb,
					    u32 elapsed_time);
extern u32 dccp_timestamp(void);
extern void dccp_timestamping_init(void);
extern int dccp_insert_option_timestamp(struct sock *sk,
					 struct sk_buff *skb);
extern int dccp_insert_option(struct sock *sk, struct sk_buff *skb,
			       unsigned char option,
			       const void *value, unsigned char len);

#ifdef CONFIG_SYSCTL
extern int dccp_sysctl_init(void);
extern void dccp_sysctl_exit(void);
#else
static inline int dccp_sysctl_init(void)
{
	return 0;
}

static inline void dccp_sysctl_exit(void)
{
}
#endif

#endif /* _DCCP_H */
t">(p->signal->flags & SIGNAL_GROUP_EXIT) /* * The process is in the middle of dying already. */ return; if (sig_kernel_stop(sig)) { /* * This is a stop signal. Remove SIGCONT from all queues. */ rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending); t = p; do { rm_from_queue(sigmask(SIGCONT), &t->pending); t = next_thread(t); } while (t != p); } else if (sig == SIGCONT) { /* * Remove all stop signals from all queues, * and wake all threads. */ if (unlikely(p->signal->group_stop_count > 0)) { /* * There was a group stop in progress. We'll * pretend it finished before we got here. We are * obliged to report it to the parent: if the * SIGSTOP happened "after" this SIGCONT, then it * would have cleared this pending SIGCONT. If it * happened "before" this SIGCONT, then the parent * got the SIGCHLD about the stop finishing before * the continue happened. We do the notification * now, and it's as if the stop had finished and * the SIGCHLD was pending on entry to this kill. */ p->signal->group_stop_count = 0; p->signal->flags = SIGNAL_STOP_CONTINUED; spin_unlock(&p->sighand->siglock); do_notify_parent_cldstop(p, CLD_STOPPED); spin_lock(&p->sighand->siglock); } rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); t = p; do { unsigned int state; rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); /* * If there is a handler for SIGCONT, we must make * sure that no thread returns to user mode before * we post the signal, in case it was the only * thread eligible to run the signal handler--then * it must not do anything between resuming and * running the handler. With the TIF_SIGPENDING * flag set, the thread will pause and acquire the * siglock that we hold now and until we've queued * the pending signal. * * Wake up the stopped thread _after_ setting * TIF_SIGPENDING */ state = TASK_STOPPED; if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { set_tsk_thread_flag(t, TIF_SIGPENDING); state |= TASK_INTERRUPTIBLE; } wake_up_state(t, state); t = next_thread(t); } while (t != p); if (p->signal->flags & SIGNAL_STOP_STOPPED) { /* * We were in fact stopped, and are now continued. * Notify the parent with CLD_CONTINUED. */ p->signal->flags = SIGNAL_STOP_CONTINUED; p->signal->group_exit_code = 0; spin_unlock(&p->sighand->siglock); do_notify_parent_cldstop(p, CLD_CONTINUED); spin_lock(&p->sighand->siglock); } else { /* * We are not stopped, but there could be a stop * signal in the middle of being processed after * being removed from the queue. Clear that too. */ p->signal->flags = 0; } } else if (sig == SIGKILL) { /* * Make sure that any pending stop signal already dequeued * is undone by the wakeup for SIGKILL. */ p->signal->flags = 0; } } static int send_signal(int sig, struct siginfo *info, struct task_struct *t, struct sigpending *signals) { struct sigqueue * q = NULL; int ret = 0; /* * Deliver the signal to listening signalfds. This must be called * with the sighand lock held. */ signalfd_notify(t, sig); /* * fast-pathed signals for kernel-internal things like SIGSTOP * or SIGKILL. */ if (info == SEND_SIG_FORCED) goto out_set; /* Real-time signals must be queued if sent by sigqueue, or some other real-time mechanism. It is implementation defined whether kill() does so. We attempt to do so, on the principle of least surprise, but since kill is not allowed to fail with EAGAIN when low on memory we just make sure at least one signal gets delivered and don't pass on the info struct. */ q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN && (is_si_special(info) || info->si_code >= 0))); if (q) { list_add_tail(&q->list, &signals->list); switch ((unsigned long) info) { case (unsigned long) SEND_SIG_NOINFO: q->info.si_signo = sig; q->info.si_errno = 0; q->info.si_code = SI_USER; q->info.si_pid = current->pid; q->info.si_uid = current->uid; break; case (unsigned long) SEND_SIG_PRIV: q->info.si_signo = sig; q->info.si_errno = 0; q->info.si_code = SI_KERNEL; q->info.si_pid = 0; q->info.si_uid = 0; break; default: copy_siginfo(&q->info, info); break; } } else if (!is_si_special(info)) { if (sig >= SIGRTMIN && info->si_code != SI_USER) /* * Queue overflow, abort. We may abort if the signal was rt * and sent by user using something other than kill(). */ return -EAGAIN; } out_set: sigaddset(&signals->signal, sig); return ret; } #define LEGACY_QUEUE(sigptr, sig) \ (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig))) static int specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) { int ret = 0; BUG_ON(!irqs_disabled()); assert_spin_locked(&t->sighand->siglock); /* Short-circuit ignored signals. */ if (sig_ignored(t, sig)) goto out; /* Support queueing exactly one non-rt signal, so that we can get more detailed information about the cause of the signal. */ if (LEGACY_QUEUE(&t->pending, sig)) goto out; ret = send_signal(sig, info, t, &t->pending); if (!ret && !sigismember(&t->blocked, sig)) signal_wake_up(t, sig == SIGKILL); out: return ret; } /* * Force a signal that the process can't ignore: if necessary * we unblock the signal and change any SIG_IGN to SIG_DFL. * * Note: If we unblock the signal, we always reset it to SIG_DFL, * since we do not want to have a signal handler that was blocked * be invoked when user space had explicitly blocked it. * * We don't want to have recursive SIGSEGV's etc, for example. */ int force_sig_info(int sig, struct siginfo *info, struct task_struct *t) { unsigned long int flags; int ret, blocked, ignored; struct k_sigaction *action; spin_lock_irqsave(&t->sighand->siglock, flags); action = &t->sighand->action[sig-1]; ignored = action->sa.sa_handler == SIG_IGN; blocked = sigismember(&t->blocked, sig); if (blocked || ignored) { action->sa.sa_handler = SIG_DFL; if (blocked) { sigdelset(&t->blocked, sig); recalc_sigpending_tsk(t); } } ret = specific_send_sig_info(sig, info, t); spin_unlock_irqrestore(&t->sighand->siglock, flags); return ret; } void force_sig_specific(int sig, struct task_struct *t) { force_sig_info(sig, SEND_SIG_FORCED, t); } /* * Test if P wants to take SIG. After we've checked all threads with this, * it's equivalent to finding no threads not blocking SIG. Any threads not * blocking SIG were ruled out because they are not running and already * have pending signals. Such threads will dequeue from the shared queue * as soon as they're available, so putting the signal on the shared queue * will be equivalent to sending it to one such thread. */ static inline int wants_signal(int sig, struct task_struct *p) { if (sigismember(&p->blocked, sig)) return 0; if (p->flags & PF_EXITING) return 0; if (sig == SIGKILL) return 1; if (p->state & (TASK_STOPPED | TASK_TRACED)) return 0; return task_curr(p) || !signal_pending(p); } static void __group_complete_signal(int sig, struct task_struct *p) { struct task_struct *t; /* * Now find a thread we can wake up to take the signal off the queue. * * If the main thread wants the signal, it gets first crack. * Probably the least surprising to the average bear. */ if (wants_signal(sig, p)) t = p; else if (thread_group_empty(p)) /* * There is just one thread and it does not need to be woken. * It will dequeue unblocked signals before it runs again. */ return; else { /* * Otherwise try to find a suitable thread. */ t = p->signal->curr_target; if (t == NULL) /* restart balancing at this thread */ t = p->signal->curr_target = p; while (!wants_signal(sig, t)) { t = next_thread(t); if (t == p->signal->curr_target) /* * No thread needs to be woken. * Any eligible threads will see * the signal in the queue soon. */ return; } p->signal->curr_target = t; } /* * Found a killable thread. If the signal will be fatal, * then start taking the whole group down immediately. */ if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) && !sigismember(&t->real_blocked, sig) && (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) { /* * This signal will be fatal to the whole group. */ if (!sig_kernel_coredump(sig)) { /* * Start a group exit and wake everybody up. * This way we don't have other threads * running and doing things after a slower * thread has the fatal signal pending. */ p->signal->flags = SIGNAL_GROUP_EXIT; p->signal->group_exit_code = sig; p->signal->group_stop_count = 0; t = p; do { sigaddset(&t->pending.signal, SIGKILL); signal_wake_up(t, 1); t = next_thread(t); } while (t != p); return; } /* * There will be a core dump. We make all threads other * than the chosen one go into a group stop so that nothing * happens until it gets scheduled, takes the signal off * the shared queue, and does the core dump. This is a * little more complicated than strictly necessary, but it * keeps the signal state that winds up in the core dump * unchanged from the death state, e.g. which thread had * the core-dump signal unblocked. */ rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); p->signal->group_stop_count = 0; p->signal->group_exit_task = t; t = p; do { p->signal->group_stop_count++; signal_wake_up(t, 0); t = next_thread(t); } while (t != p); wake_up_process(p->signal->group_exit_task); return; } /* * The signal is already in the shared-pending queue. * Tell the chosen thread to wake up and dequeue it. */ signal_wake_up(t, sig == SIGKILL); return; } int __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) { int ret = 0; assert_spin_locked(&p->sighand->siglock); handle_stop_signal(sig, p); /* Short-circuit ignored signals. */ if (sig_ignored(p, sig)) return ret; if (LEGACY_QUEUE(&p->signal->shared_pending, sig)) /* This is a non-RT signal and we already have one queued. */ return ret; /* * Put this signal on the shared-pending queue, or fail with EAGAIN. * We always use the shared queue for process-wide signals, * to avoid several races. */ ret = send_signal(sig, info, p, &p->signal->shared_pending); if (unlikely(ret)) return ret; __group_complete_signal(sig, p); return 0; } /* * Nuke all other threads in the group. */ void zap_other_threads(struct task_struct *p) { struct task_struct *t; p->signal->flags = SIGNAL_GROUP_EXIT; p->signal->group_stop_count = 0; if (thread_group_empty(p)) return; for (t = next_thread(p); t != p; t = next_thread(t)) { /* * Don't bother with already dead threads */ if (t->exit_state) continue; /* SIGKILL will be handled before any pending SIGSTOP */ sigaddset(&t->pending.signal, SIGKILL); signal_wake_up(t, 1); } } /* * Must be called under rcu_read_lock() or with tasklist_lock read-held. */ struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) { struct sighand_struct *sighand; for (;;) { sighand = rcu_dereference(tsk->sighand); if (unlikely(sighand == NULL)) break; spin_lock_irqsave(&sighand->siglock, *flags); if (likely(sighand == tsk->sighand)) break; spin_unlock_irqrestore(&sighand->siglock, *flags); } return sighand; } int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) { unsigned long flags; int ret; ret = check_kill_permission(sig, info, p); if (!ret && sig) { ret = -ESRCH; if (lock_task_sighand(p, &flags)) { ret = __group_send_sig_info(sig, info, p); unlock_task_sighand(p, &flags); } } return ret; } /* * kill_pgrp_info() sends a signal to a process group: this is what the tty * control characters do (^C, ^Z etc) */ int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) { struct task_struct *p = NULL; int retval, success; success = 0; retval = -ESRCH; do_each_pid_task(pgrp, PIDTYPE_PGID, p) { int err = group_send_sig_info(sig, info, p); success |= !err; retval = err; } while_each_pid_task(pgrp, PIDTYPE_PGID, p); return success ? 0 : retval; } int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) { int retval; read_lock(&tasklist_lock); retval = __kill_pgrp_info(sig, info, pgrp); read_unlock(&tasklist_lock); return retval; } int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) { int error; struct task_struct *p; rcu_read_lock(); if (unlikely(sig_needs_tasklist(sig))) read_lock(&tasklist_lock); p = pid_task(pid, PIDTYPE_PID); error = -ESRCH; if (p) error = group_send_sig_info(sig, info, p); if (unlikely(sig_needs_tasklist(sig))) read_unlock(&tasklist_lock); rcu_read_unlock(); return error; } int kill_proc_info(int sig, struct siginfo *info, pid_t pid) { int error; rcu_read_lock(); error = kill_pid_info(sig, info, find_pid(pid)); rcu_read_unlock(); return error; } /* like kill_pid_info(), but doesn't use uid/euid of "current" */ int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid, uid_t uid, uid_t euid, u32 secid) { int ret = -EINVAL; struct task_struct *p; if (!valid_signal(sig)) return ret; read_lock(&tasklist_lock); p = pid_task(pid, PIDTYPE_PID); if (!p) { ret = -ESRCH; goto out_unlock; } if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) && (euid != p->suid) && (euid != p->uid) && (uid != p->suid) && (uid != p->uid)) { ret = -EPERM; goto out_unlock; } ret = security_task_kill(p, info, sig, secid); if (ret) goto out_unlock; if (sig && p->sighand) { unsigned long flags; spin_lock_irqsave(&p->sighand->siglock, flags); ret = __group_send_sig_info(sig, info, p); spin_unlock_irqrestore(&p->sighand->siglock, flags); } out_unlock: read_unlock(&tasklist_lock); return ret; } EXPORT_SYMBOL_GPL(kill_pid_info_as_uid); /* * kill_something_info() interprets pid in interesting ways just like kill(2). * * POSIX specifies that kill(-1,sig) is unspecified, but what we have * is probably wrong. Should make it like BSD or SYSV. */ static int kill_something_info(int sig, struct siginfo *info, int pid) { int ret; rcu_read_lock(); if (!pid) { ret = kill_pgrp_info(sig, info, task_pgrp(current)); } else if (pid == -1) { int retval = 0, count = 0; struct task_struct * p; read_lock(&tasklist_lock); for_each_process(p) { if (p->pid > 1 && p->tgid != current->tgid) { int err = group_send_sig_info(sig, info, p); ++count; if (err != -EPERM) retval = err; } } read_unlock(&tasklist_lock); ret = count ? retval : -ESRCH; } else if (pid < 0) { ret = kill_pgrp_info(sig, info, find_pid(-pid)); } else { ret = kill_pid_info(sig, info, find_pid(pid)); } rcu_read_unlock(); return ret; } /* * These are for backward compatibility with the rest of the kernel source. */ /* * These two are the most common entry points. They send a signal * just to the specific thread. */ int send_sig_info(int sig, struct siginfo *info, struct task_struct *p) { int ret; unsigned long flags; /* * Make sure legacy kernel users don't send in bad values * (normal paths check this in check_kill_permission). */ if (!valid_signal(sig)) return -EINVAL; /* * We need the tasklist lock even for the specific * thread case (when we don't need to follow the group * lists) in order to avoid races with "p->sighand" * going away or changing from under us. */ read_lock(&tasklist_lock); spin_lock_irqsave(&p->sighand->siglock, flags); ret = specific_send_sig_info(sig, info, p); spin_unlock_irqrestore(&p->sighand->siglock, flags); read_unlock(&tasklist_lock); return ret; } #define __si_special(priv) \ ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) int send_sig(int sig, struct task_struct *p, int priv) { return send_sig_info(sig, __si_special(priv), p); } /* * This is the entry point for "process-wide" signals. * They will go to an appropriate thread in the thread group. */ int send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p) { int ret; read_lock(&tasklist_lock); ret = group_send_sig_info(sig, info, p); read_unlock(&tasklist_lock); return ret; } void force_sig(int sig, struct task_struct *p) { force_sig_info(sig, SEND_SIG_PRIV, p); } /* * When things go south during signal handling, we * will force a SIGSEGV. And if the signal that caused * the problem was already a SIGSEGV, we'll want to * make sure we don't even try to deliver the signal.. */ int force_sigsegv(int sig, struct task_struct *p) { if (sig == SIGSEGV) { unsigned long flags; spin_lock_irqsave(&p->sighand->siglock, flags); p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; spin_unlock_irqrestore(&p->sighand->siglock, flags); } force_sig(SIGSEGV, p); return 0; } int kill_pgrp(struct pid *pid, int sig, int priv) { return kill_pgrp_info(sig, __si_special(priv), pid); } EXPORT_SYMBOL(kill_pgrp); int kill_pid(struct pid *pid, int sig, int priv) { return kill_pid_info(sig, __si_special(priv), pid); } EXPORT_SYMBOL(kill_pid); int kill_proc(pid_t pid, int sig, int priv) { return kill_proc_info(sig, __si_special(priv), pid); } /* * These functions support sending signals using preallocated sigqueue * structures. This is needed "because realtime applications cannot * afford to lose notifications of asynchronous events, like timer * expirations or I/O completions". In the case of Posix Timers * we allocate the sigqueue structure from the timer_create. If this * allocation fails we are able to report the failure to the application * with an EAGAIN error. */ struct sigqueue *sigqueue_alloc(void) { struct sigqueue *q; if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) q->flags |= SIGQUEUE_PREALLOC; return(q); } void sigqueue_free(struct sigqueue *q) { unsigned long flags; BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); /* * If the signal is still pending remove it from the * pending queue. */ if (unlikely(!list_empty(&q->list))) { spinlock_t *lock = &current->sighand->siglock; read_lock(&tasklist_lock); spin_lock_irqsave(lock, flags); if (!list_empty(&q->list)) list_del_init(&q->list); spin_unlock_irqrestore(lock, flags); read_unlock(&tasklist_lock); } q->flags &= ~SIGQUEUE_PREALLOC; __sigqueue_free(q); } int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) { unsigned long flags; int ret = 0; BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); /* * The rcu based delayed sighand destroy makes it possible to * run this without tasklist lock held. The task struct itself * cannot go away as create_timer did get_task_struct(). * * We return -1, when the task is marked exiting, so * posix_timer_event can redirect it to the group leader */ rcu_read_lock(); if (!likely(lock_task_sighand(p, &flags))) { ret = -1; goto out_err; } if (unlikely(!list_empty(&q->list))) { /* * If an SI_TIMER entry is already queue just increment * the overrun count. */ BUG_ON(q->info.si_code != SI_TIMER); q->info.si_overrun++; goto out; } /* Short-circuit ignored signals. */ if (sig_ignored(p, sig)) { ret = 1; goto out; } /* * Deliver the signal to listening signalfds. This must be called * with the sighand lock held. */ signalfd_notify(p, sig); list_add_tail(&q->list, &p->pending.list); sigaddset(&p->pending.signal, sig); if (!sigismember(&p->blocked, sig)) signal_wake_up(p, sig == SIGKILL); out: unlock_task_sighand(p, &flags); out_err: rcu_read_unlock(); return ret; } int send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) { unsigned long flags; int ret = 0; BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); read_lock(&tasklist_lock); /* Since it_lock is held, p->sighand cannot be NULL. */ spin_lock_irqsave(&p->sighand->siglock, flags); handle_stop_signal(sig, p); /* Short-circuit ignored signals. */ if (sig_ignored(p, sig)) { ret = 1; goto out; } if (unlikely(!list_empty(&q->list))) { /* * If an SI_TIMER entry is already queue just increment * the overrun count. Other uses should not try to * send the signal multiple times. */ BUG_ON(q->info.si_code != SI_TIMER); q->info.si_overrun++; goto out; } /* * Deliver the signal to listening signalfds. This must be called * with the sighand lock held. */ signalfd_notify(p, sig); /* * Put this signal on the shared-pending queue. * We always use the shared queue for process-wide signals, * to avoid several races. */ list_add_tail(&q->list, &p->signal->shared_pending.list); sigaddset(&p->signal->shared_pending.signal, sig); __group_complete_signal(sig, p); out: spin_unlock_irqrestore(&p->sighand->siglock, flags); read_unlock(&tasklist_lock); return ret; } /* * Wake up any threads in the parent blocked in wait* syscalls. */ static inline void __wake_up_parent(struct task_struct *p, struct task_struct *parent) { wake_up_interruptible_sync(&parent->signal->wait_chldexit); } /* * Let a parent know about the death of a child. * For a stopped/continued status change, use do_notify_parent_cldstop instead. */ void do_notify_parent(struct task_struct *tsk, int sig) { struct siginfo info; unsigned long flags; struct sighand_struct *psig; BUG_ON(sig == -1); /* do_notify_parent_cldstop should have been called instead. */ BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED)); BUG_ON(!tsk->ptrace && (tsk->group_leader != tsk || !thread_group_empty(tsk))); info.si_signo = sig; info.si_errno = 0; info.si_pid = tsk->pid; info.si_uid = tsk->uid; /* FIXME: find out whether or not this is supposed to be c*time. */ info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime, tsk->signal->utime)); info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime, tsk->signal->stime)); info.si_status = tsk->exit_code & 0x7f; if (tsk->exit_code & 0x80) info.si_code = CLD_DUMPED; else if (tsk->exit_code & 0x7f) info.si_code = CLD_KILLED; else { info.si_code = CLD_EXITED; info.si_status = tsk->exit_code >> 8; } psig = tsk->parent->sighand; spin_lock_irqsave(&psig->siglock, flags); if (!tsk->ptrace && sig == SIGCHLD && (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { /* * We are exiting and our parent doesn't care. POSIX.1 * defines special semantics for setting SIGCHLD to SIG_IGN * or setting the SA_NOCLDWAIT flag: we should be reaped * automatically and not left for our parent's wait4 call. * Rather than having the parent do it as a magic kind of * signal handler, we just set this to tell do_exit that we * can be cleaned up without becoming a zombie. Note that * we still call __wake_up_parent in this case, because a * blocked sys_wait4 might now return -ECHILD. * * Whether we send SIGCHLD or not for SA_NOCLDWAIT * is implementation-defined: we do (if you don't want * it, just use SIG_IGN instead). */ tsk->exit_signal = -1; if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) sig = 0; } if (valid_signal(sig) && sig > 0) __group_send_sig_info(sig, &info, tsk->parent); __wake_up_parent(tsk, tsk->parent); spin_unlock_irqrestore(&psig->siglock, flags); } static void do_notify_parent_cldstop(struct task_struct *tsk, int why) { struct siginfo info; unsigned long flags; struct task_struct *parent; struct sighand_struct *sighand; if (tsk->ptrace & PT_PTRACED) parent = tsk->parent; else { tsk = tsk->group_leader; parent = tsk->real_parent; } info.si_signo = SIGCHLD; info.si_errno = 0; info.si_pid = tsk->pid; info.si_uid = tsk->uid; /* FIXME: find out whether or not this is supposed to be c*time. */ info.si_utime = cputime_to_jiffies(tsk->utime); info.si_stime = cputime_to_jiffies(tsk->stime); info.si_code = why; switch (why) { case CLD_CONTINUED: info.si_status = SIGCONT; break; case CLD_STOPPED: info.si_status = tsk->signal->group_exit_code & 0x7f; break; case CLD_TRAPPED: info.si_status = tsk->exit_code & 0x7f; break; default: BUG(); } sighand = parent->sighand; spin_lock_irqsave(&sighand->siglock, flags); if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) __group_send_sig_info(SIGCHLD, &info, parent); /* * Even if SIGCHLD is not generated, we must wake up wait4 calls. */ __wake_up_parent(tsk, parent); spin_unlock_irqrestore(&sighand->siglock, flags); } static inline int may_ptrace_stop(void) { if (!likely(current->ptrace & PT_PTRACED)) return 0; if (unlikely(current->parent == current->real_parent && (current->ptrace & PT_ATTACHED))) return 0; if (unlikely(current->signal == current->parent->signal) && unlikely(current->signal->flags & SIGNAL_GROUP_EXIT)) return 0; /* * Are we in the middle of do_coredump? * If so and our tracer is also part of the coredump stopping * is a deadlock situation, and pointless because our tracer * is dead so don't allow us to stop. * If SIGKILL was already sent before the caller unlocked * ->siglock we must see ->core_waiters != 0. Otherwise it * is safe to enter schedule(). */ if (unlikely(current->mm->core_waiters) && unlikely(current->mm == current->parent->mm)) return 0; return 1; } /* * This must be called with current->sighand->siglock held. * * This should be the path for all ptrace stops. * We always set current->last_siginfo while stopped here. * That makes it a way to test a stopped process for * being ptrace-stopped vs being job-control-stopped. * * If we actually decide not to stop at all because the tracer is gone, * we leave nostop_code in current->exit_code. */ static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info) { /* * If there is a group stop in progress, * we must participate in the bookkeeping. */ if (current->signal->group_stop_count > 0) --current->signal->group_stop_count; current->last_siginfo = info; current->exit_code = exit_code; /* Let the debugger run. */ set_current_state(TASK_TRACED); spin_unlock_irq(&current->sighand->siglock); try_to_freeze(); read_lock(&tasklist_lock); if (may_ptrace_stop()) { do_notify_parent_cldstop(current, CLD_TRAPPED); read_unlock(&tasklist_lock); schedule(); } else { /* * By the time we got the lock, our tracer went away. * Don't stop here. */ read_unlock(&tasklist_lock); set_current_state(TASK_RUNNING); current->exit_code = nostop_code; } /* * We are back. Now reacquire the siglock before touching * last_siginfo, so that we are sure to have synchronized with * any signal-sending on another CPU that wants to examine it. */ spin_lock_irq(&current->sighand->siglock); current->last_siginfo = NULL; /* * Queued signals ignored us while we were stopped for tracing. * So check for any that we should take before resuming user mode. */ recalc_sigpending(); } void ptrace_notify(int exit_code) { siginfo_t info; BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); memset(&info, 0, sizeof info); info.si_signo = SIGTRAP; info.si_code = exit_code; info.si_pid = current->pid; info.si_uid = current->uid; /* Let the debugger run. */ spin_lock_irq(&current->sighand->siglock); ptrace_stop(exit_code, 0, &info); spin_unlock_irq(&current->sighand->siglock); } static void finish_stop(int stop_count) { /* * If there are no other threads in the group, or if there is * a group stop in progress and we are the last to stop, * report to the parent. When ptraced, every thread reports itself. */ if (stop_count == 0 || (current->ptrace & PT_PTRACED)) { read_lock(&tasklist_lock); do_notify_parent_cldstop(current, CLD_STOPPED); read_unlock(&tasklist_lock); } do { schedule(); } while (try_to_freeze()); /* * Now we don't run again until continued. */ current->exit_code = 0; } /* * This performs the stopping for SIGSTOP and other stop signals. * We have to stop all threads in the thread group. * Returns nonzero if we've actually stopped and released the siglock. * Returns zero if we didn't stop and still hold the siglock. */ static int do_signal_stop(int signr) { struct signal_struct *sig = current->signal; int stop_count; if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) return 0; if (sig->group_stop_count > 0) { /* * There is a group stop in progress. We don't need to * start another one. */ stop_count = --sig->group_stop_count; } else { /* * There is no group stop already in progress. * We must initiate one now. */ struct task_struct *t; sig->group_exit_code = signr; stop_count = 0; for (t = next_thread(current); t != current; t = next_thread(t)) /* * Setting state to TASK_STOPPED for a group * stop is always done with the siglock held, * so this check has no races. */ if (!t->exit_state && !(t->state & (TASK_STOPPED|TASK_TRACED))) { stop_count++; signal_wake_up(t, 0); } sig->group_stop_count = stop_count; } if (stop_count == 0) sig->flags = SIGNAL_STOP_STOPPED; current->exit_code = sig->group_exit_code; __set_current_state(TASK_STOPPED); spin_unlock_irq(&current->sighand->siglock); finish_stop(stop_count); return 1; } /* * Do appropriate magic when group_stop_count > 0. * We return nonzero if we stopped, after releasing the siglock. * We return zero if we still hold the siglock and should look * for another signal without checking group_stop_count again. */ static int handle_group_stop(void) { int stop_count; if (current->signal->group_exit_task == current) { /* * Group stop is so we can do a core dump, * We are the initiating thread, so get on with it. */ current->signal->group_exit_task = NULL; return 0; } if (current->signal->flags & SIGNAL_GROUP_EXIT) /* * Group stop is so another thread can do a core dump, * or else we are racing against a death signal. * Just punt the stop so we can get the next signal. */ return 0; /* * There is a group stop in progress. We stop * without any associated signal being in our queue. */ stop_count = --current->signal->group_stop_count; if (stop_count == 0) current->signal->flags = SIGNAL_STOP_STOPPED; current->exit_code = current->signal->group_exit_code; set_current_state(TASK_STOPPED); spin_unlock_irq(&current->sighand->siglock); finish_stop(stop_count); return 1; } int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, struct pt_regs *regs, void *cookie) { sigset_t *mask = &current->blocked; int signr = 0; try_to_freeze(); relock: spin_lock_irq(&current->sighand->siglock); for (;;) { struct k_sigaction *ka; if (unlikely(current->signal->group_stop_count > 0) && handle_group_stop()) goto relock; signr = dequeue_signal(current, mask, info); if (!signr) break; /* will return 0 */ if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) { ptrace_signal_deliver(regs, cookie); /* Let the debugger run. */ ptrace_stop(signr, signr, info); /* We're back. Did the debugger cancel the sig? */ signr = current->exit_code; if (signr == 0) continue; current->exit_code = 0; /* Update the siginfo structure if the signal has changed. If the debugger wanted something specific in the siginfo structure then it should have updated *info via PTRACE_SETSIGINFO. */ if (signr != info->si_signo) { info->si_signo = signr; info->si_errno = 0; info->si_code = SI_USER; info->si_pid = current->parent->pid; info->si_uid = current->parent->uid; } /* If the (new) signal is now blocked, requeue it. */ if (sigismember(&current->blocked, signr)) { specific_send_sig_info(signr, info, current); continue; } } ka = &current->sighand->action[signr-1]; if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ continue; if (ka->sa.sa_handler != SIG_DFL) { /* Run the handler. */ *return_ka = *ka; if (ka->sa.sa_flags & SA_ONESHOT) ka->sa.sa_handler = SIG_DFL; break; /* will return non-zero "signr" value */ } /* * Now we are doing the default action for this signal. */ if (sig_kernel_ignore(signr)) /* Default is nothing. */ continue; /* * Init of a pid space gets no signals it doesn't want from * within that pid space. It can of course get signals from * its parent pid space. */ if (current == child_reaper(current)) continue; if (sig_kernel_stop(signr)) { /* * The default action is to stop all threads in * the thread group. The job control signals * do nothing in an orphaned pgrp, but SIGSTOP * always works. Note that siglock needs to be * dropped during the call to is_orphaned_pgrp() * because of lock ordering with tasklist_lock. * This allows an intervening SIGCONT to be posted. * We need to check for that and bail out if necessary. */ if (signr != SIGSTOP) { spin_unlock_irq(&current->sighand->siglock); /* signals can be posted during this window */ if (is_current_pgrp_orphaned()) goto relock; spin_lock_irq(&current->sighand->siglock); } if (likely(do_signal_stop(signr))) { /* It released the siglock. */ goto relock; } /* * We didn't actually stop, due to a race * with SIGCONT or something like that. */ continue; } spin_unlock_irq(&current->sighand->siglock); /* * Anything else is fatal, maybe with a core dump. */ current->flags |= PF_SIGNALED; if (sig_kernel_coredump(signr)) { /* * If it was able to dump core, this kills all * other threads in the group and synchronizes with * their demise. If we lost the race with another * thread getting here, it set group_exit_code * first and our do_group_exit call below will use * that value and ignore the one we pass it. */ do_coredump((long)signr, signr, regs); } /* * Death signals, no core dump. */ do_group_exit(signr); /* NOTREACHED */ } spin_unlock_irq(&current->sighand->siglock); return signr; } EXPORT_SYMBOL(recalc_sigpending); EXPORT_SYMBOL_GPL(dequeue_signal); EXPORT_SYMBOL(flush_signals); EXPORT_SYMBOL(force_sig); EXPORT_SYMBOL(kill_proc); EXPORT_SYMBOL(ptrace_notify); EXPORT_SYMBOL(send_sig); EXPORT_SYMBOL(send_sig_info); EXPORT_SYMBOL(sigprocmask); EXPORT_SYMBOL(block_all_signals); EXPORT_SYMBOL(unblock_all_signals); /* * System call entry points. */ asmlinkage long sys_restart_syscall(void) { struct restart_block *restart = &current_thread_info()->restart_block; return restart->fn(restart); } long do_no_restart_syscall(struct restart_block *param) { return -EINTR; } /* * We don't need to get the kernel lock - this is all local to this * particular thread.. (and that's good, because this is _heavily_ * used by various programs) */ /* * This is also useful for kernel threads that want to temporarily * (or permanently) block certain signals. * * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel * interface happily blocks "unblockable" signals like SIGKILL * and friends. */ int sigprocmask(int how, sigset_t *set, sigset_t *oldset) { int error; spin_lock_irq(&current->sighand->siglock); if (oldset) *oldset = current->blocked; error = 0; switch (how) { case SIG_BLOCK: sigorsets(&current->blocked, &current->blocked, set); break; case SIG_UNBLOCK: signandsets(&current->blocked, &current->blocked, set); break; case SIG_SETMASK: current->blocked = *set; break; default: error = -EINVAL; } recalc_sigpending(); spin_unlock_irq(&current->sighand->siglock); return error; } asmlinkage long sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize) { int error = -EINVAL; sigset_t old_set, new_set; /* XXX: Don't preclude handling different sized sigset_t's. */ if (sigsetsize != sizeof(sigset_t)) goto out; if (set) { error = -EFAULT; if (copy_from_user(&new_set, set, sizeof(*set))) goto out; sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); error = sigprocmask(how, &new_set, &old_set); if (error) goto out; if (oset) goto set_old; } else if (oset) { spin_lock_irq(&current->sighand->siglock); old_set = current->blocked; spin_unlock_irq(&current->sighand->siglock); set_old: error = -EFAULT; if (copy_to_user(oset, &old_set, sizeof(*oset))) goto out; } error = 0; out: return error; } long do_sigpending(void __user *set, unsigned long sigsetsize) { long error = -EINVAL; sigset_t pending; if (sigsetsize > sizeof(sigset_t)) goto out; spin_lock_irq(&current->sighand->siglock); sigorsets(&pending, &current->pending.signal, &current->signal->shared_pending.signal); spin_unlock_irq(&current->sighand->siglock); /* Outside the lock because only this thread touches it. */ sigandsets(&pending, &current->blocked, &pending); error = -EFAULT; if (!copy_to_user(set, &pending, sigsetsize)) error = 0; out: return error; } asmlinkage long sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize) { return do_sigpending(set, sigsetsize); } #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) { int err; if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) return -EFAULT; if (from->si_code < 0) return __copy_to_user(to, from, sizeof(siginfo_t)) ? -EFAULT : 0; /* * If you change siginfo_t structure, please be sure * this code is fixed accordingly. * Please remember to update the signalfd_copyinfo() function * inside fs/signalfd.c too, in case siginfo_t changes. * It should never copy any pad contained in the structure * to avoid security leaks, but must copy the generic * 3 ints plus the relevant union member. */ err = __put_user(from->si_signo, &to->si_signo); err |= __put_user(from->si_errno, &to->si_errno); err |= __put_user((short)from->si_code, &to->si_code); switch (from->si_code & __SI_MASK) { case __SI_KILL: err |= __put_user(from->si_pid, &to->si_pid); err |= __put_user(from->si_uid, &to->si_uid); break; case __SI_TIMER: err |= __put_user(from->si_tid, &to->si_tid); err |= __put_user(from->si_overrun, &to->si_overrun); err |= __put_user(from->si_ptr, &to->si_ptr); break; case __SI_POLL: err |= __put_user(from->si_band, &to->si_band); err |= __put_user(from->si_fd, &to->si_fd); break; case __SI_FAULT: err |= __put_user(from->si_addr, &to->si_addr); #ifdef __ARCH_SI_TRAPNO err |= __put_user(from->si_trapno, &to->si_trapno); #endif break; case __SI_CHLD: err |= __put_user(from->si_pid, &to->si_pid); err |= __put_user(from->si_uid, &to->si_uid); err |= __put_user(from->si_status, &to->si_status); err |= __put_user(from->si_utime, &to->si_utime); err |= __put_user(from->si_stime, &to->si_stime); break; case __SI_RT: /* This is not generated by the kernel as of now. */ case __SI_MESGQ: /* But this is */ err |= __put_user(from->si_pid, &to->si_pid); err |= __put_user(from->si_uid, &to->si_uid); err |= __put_user(from->si_ptr, &to->si_ptr); break; default: /* this is just in case for now ... */ err |= __put_user(from->si_pid, &to->si_pid); err |= __put_user(from->si_uid, &to->si_uid); break; } return err; } #endif asmlinkage long sys_rt_sigtimedwait(const sigset_t __user *uthese, siginfo_t __user *uinfo, const struct timespec __user *uts, size_t sigsetsize) { int ret, sig; sigset_t these; struct timespec ts; siginfo_t info; long timeout = 0; /* XXX: Don't preclude handling different sized sigset_t's. */ if (sigsetsize != sizeof(sigset_t)) return -EINVAL; if (copy_from_user(&these, uthese, sizeof(these))) return -EFAULT; /* * Invert the set of allowed signals to get those we * want to block. */ sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); signotset(&these); if (uts) { if (copy_from_user(&ts, uts, sizeof(ts))) return -EFAULT; if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 || ts.tv_sec < 0) return -EINVAL; } spin_lock_irq(&current->sighand->siglock); sig = dequeue_signal(current, &these, &info); if (!sig) { timeout = MAX_SCHEDULE_TIMEOUT; if (uts) timeout = (timespec_to_jiffies(&ts) + (ts.tv_sec || ts.tv_nsec)); if (timeout) { /* None ready -- temporarily unblock those we're * interested while we are sleeping in so that we'll * be awakened when they arrive. */ current->real_blocked = current->blocked; sigandsets(&current->blocked, &current->blocked, &these); recalc_sigpending(); spin_unlock_irq(&current->sighand->siglock); timeout = schedule_timeout_interruptible(timeout); spin_lock_irq(&current->sighand->siglock); sig = dequeue_signal(current, &these, &info); current->blocked = current->real_blocked; siginitset(&current->real_blocked, 0); recalc_sigpending(); } } spin_unlock_irq(&current->sighand->siglock); if (sig) { ret = sig; if (uinfo) { if (copy_siginfo_to_user(uinfo, &info)) ret = -EFAULT; } } else { ret = -EAGAIN; if (timeout) ret = -EINTR; } return ret; } asmlinkage long sys_kill(int pid, int sig) { struct siginfo info; info.si_signo = sig; info.si_errno = 0; info.si_code = SI_USER; info.si_pid = current->tgid; info.si_uid = current->uid; return kill_something_info(sig, &info, pid); } static int do_tkill(int tgid, int pid, int sig) { int error; struct siginfo info; struct task_struct *p; error = -ESRCH; info.si_signo = sig; info.si_errno = 0; info.si_code = SI_TKILL; info.si_pid = current->tgid; info.si_uid = current->uid; read_lock(&tasklist_lock); p = find_task_by_pid(pid); if (p && (tgid <= 0 || p->tgid == tgid)) { error = check_kill_permission(sig, &info, p); /* * The null signal is a permissions and process existence * probe. No signal is actually delivered. */ if (!error && sig && p->sighand) { spin_lock_irq(&p->sighand->siglock); handle_stop_signal(sig, p); error = specific_send_sig_info(sig, &info, p); spin_unlock_irq(&p->sighand->siglock); } } read_unlock(&tasklist_lock); return error; } /** * sys_tgkill - send signal to one specific thread * @tgid: the thread group ID of the thread * @pid: the PID of the thread * @sig: signal to be sent * * This syscall also checks the @tgid and returns -ESRCH even if the PID * exists but it's not belonging to the target process anymore. This * method solves the problem of threads exiting and PIDs getting reused. */ asmlinkage long sys_tgkill(int tgid, int pid, int sig) { /* This is only valid for single tasks */ if (pid <= 0 || tgid <= 0) return -EINVAL; return do_tkill(tgid, pid, sig); } /* * Send a signal to only one task, even if it's a CLONE_THREAD task. */ asmlinkage long sys_tkill(int pid, int sig) { /* This is only valid for single tasks */ if (pid <= 0) return -EINVAL; return do_tkill(0, pid, sig); } asmlinkage long sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo) { siginfo_t info; if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) return -EFAULT; /* Not even root can pretend to send signals from the kernel. Nor can they impersonate a kill(), which adds source info. */ if (info.si_code >= 0) return -EPERM; info.si_signo = sig; /* POSIX.1b doesn't mention process groups. */ return kill_proc_info(sig, &info, pid); } int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) { struct k_sigaction *k; sigset_t mask; if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) return -EINVAL; k = &current->sighand->action[sig-1]; spin_lock_irq(&current->sighand->siglock); if (signal_pending(current)) { /* * If there might be a fatal signal pending on multiple * threads, make sure we take it before changing the action. */ spin_unlock_irq(&current->sighand->siglock); return -ERESTARTNOINTR; } if (oact) *oact = *k; if (act) { sigdelsetmask(&act->sa.sa_mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); *k = *act; /* * POSIX 3.3.1.3: * "Setting a signal action to SIG_IGN for a signal that is * pending shall cause the pending signal to be discarded, * whether or not it is blocked." * * "Setting a signal action to SIG_DFL for a signal that is * pending and whose default action is to ignore the signal * (for example, SIGCHLD), shall cause the pending signal to * be discarded, whether or not it is blocked" */ if (act->sa.sa_handler == SIG_IGN || (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) { struct task_struct *t = current; sigemptyset(&mask); sigaddset(&mask, sig); rm_from_queue_full(&mask, &t->signal->shared_pending); do { rm_from_queue_full(&mask, &t->pending); recalc_sigpending_tsk(t); t = next_thread(t); } while (t != current); } } spin_unlock_irq(&current->sighand->siglock); return 0; } int do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) { stack_t oss; int error; if (uoss) { oss.ss_sp = (void __user *) current->sas_ss_sp; oss.ss_size = current->sas_ss_size; oss.ss_flags = sas_ss_flags(sp); } if (uss) { void __user *ss_sp; size_t ss_size; int ss_flags; error = -EFAULT; if (!access_ok(VERIFY_READ, uss, sizeof(*uss)) || __get_user(ss_sp, &uss->ss_sp) || __get_user(ss_flags, &uss->ss_flags) || __get_user(ss_size, &uss->ss_size)) goto out; error = -EPERM; if (on_sig_stack(sp)) goto out; error = -EINVAL; /* * * Note - this code used to test ss_flags incorrectly * old code may have been written using ss_flags==0 * to mean ss_flags==SS_ONSTACK (as this was the only * way that worked) - this fix preserves that older * mechanism */ if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) goto out; if (ss_flags == SS_DISABLE) { ss_size = 0; ss_sp = NULL; } else { error = -ENOMEM; if (ss_size < MINSIGSTKSZ) goto out; } current->sas_ss_sp = (unsigned long) ss_sp; current->sas_ss_size = ss_size; } if (uoss) { error = -EFAULT; if (copy_to_user(uoss, &oss, sizeof(oss))) goto out; } error = 0; out: return error; } #ifdef __ARCH_WANT_SYS_SIGPENDING asmlinkage long sys_sigpending(old_sigset_t __user *set) { return do_sigpending(set, sizeof(*set)); } #endif #ifdef __ARCH_WANT_SYS_SIGPROCMASK /* Some platforms have their own version with special arguments others support only sys_rt_sigprocmask. */ asmlinkage long sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset) { int error; old_sigset_t old_set, new_set; if (set) { error = -EFAULT; if (copy_from_user(&new_set, set, sizeof(*set))) goto out; new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); spin_lock_irq(&current->sighand->siglock); old_set = current->blocked.sig[0]; error = 0; switch (how) { default: error = -EINVAL; break; case SIG_BLOCK: sigaddsetmask(&current->blocked, new_set); break; case SIG_UNBLOCK: sigdelsetmask(&current->blocked, new_set); break; case SIG_SETMASK: current->blocked.sig[0] = new_set; break; } recalc_sigpending(); spin_unlock_irq(&current->sighand->siglock); if (error) goto out; if (oset) goto set_old; } else if (oset) { old_set = current->blocked.sig[0]; set_old: error = -EFAULT; if (copy_to_user(oset, &old_set, sizeof(*oset))) goto out; } error = 0; out: return error; } #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ #ifdef __ARCH_WANT_SYS_RT_SIGACTION asmlinkage long sys_rt_sigaction(int sig, const struct sigaction __user *act, struct sigaction __user *oact, size_t sigsetsize) { struct k_sigaction new_sa, old_sa; int ret = -EINVAL; /* XXX: Don't preclude handling different sized sigset_t's. */ if (sigsetsize != sizeof(sigset_t)) goto out; if (act) { if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) return -EFAULT; } ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); if (!ret && oact) { if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) return -EFAULT; } out: return ret; } #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ #ifdef __ARCH_WANT_SYS_SGETMASK /* * For backwards compatibility. Functionality superseded by sigprocmask. */ asmlinkage long sys_sgetmask(void) { /* SMP safe */ return current->blocked.sig[0]; } asmlinkage long sys_ssetmask(int newmask) { int old; spin_lock_irq(&current->sighand->siglock); old = current->blocked.sig[0]; siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)| sigmask(SIGSTOP))); recalc_sigpending(); spin_unlock_irq(&current->sighand->siglock); return old; } #endif /* __ARCH_WANT_SGETMASK */ #ifdef __ARCH_WANT_SYS_SIGNAL /* * For backwards compatibility. Functionality superseded by sigaction. */ asmlinkage unsigned long sys_signal(int sig, __sighandler_t handler) { struct k_sigaction new_sa, old_sa; int ret; new_sa.sa.sa_handler = handler; new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; sigemptyset(&new_sa.sa.sa_mask); ret = do_sigaction(sig, &new_sa, &old_sa); return ret ? ret : (unsigned long)old_sa.sa.sa_handler; } #endif /* __ARCH_WANT_SYS_SIGNAL */ #ifdef __ARCH_WANT_SYS_PAUSE asmlinkage long sys_pause(void) { current->state = TASK_INTERRUPTIBLE; schedule(); return -ERESTARTNOHAND; } #endif #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize) { sigset_t newset; /* XXX: Don't preclude handling different sized sigset_t's. */ if (sigsetsize != sizeof(sigset_t)) return -EINVAL; if (copy_from_user(&newset, unewset, sizeof(newset))) return -EFAULT; sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); spin_lock_irq(&current->sighand->siglock); current->saved_sigmask = current->blocked; current->blocked = newset; recalc_sigpending(); spin_unlock_irq(&current->sighand->siglock); current->state = TASK_INTERRUPTIBLE; schedule(); set_thread_flag(TIF_RESTORE_SIGMASK); return -ERESTARTNOHAND; } #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) { return NULL; } void __init signals_init(void) { sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); }