aboutsummaryrefslogblamecommitdiffstats
path: root/mm/sparse-vmemmap.c
blob: d9714bdcb4a387199a5875d9745999942a3aa4f8 (plain) (tree)
1
2
3
4


                             
                                   











                                                                     

                                                                        







                           
                        








                                                                       









                                                                        



                                                                        



                                                     
                                                                          


                                                                   



                                                  
                                                                  


                                                       





                                                                       
                                                              



                                                                  
                                                                                
 




                                                               
                                    



                                                                    

 
                                                                                
 



                                                               
                                    
                                                      
         
                   
 
 
                                                                                
 



                                                               
                                    



                                               
 





                                                                    
                                    
                                               
         
                   

 

                                                                             
 
                                                       




                                                               
 













                                                                  
         

                 
 
 
                                                                            







                                                                  
/*
 * Virtual Memory Map support
 *
 * (C) 2007 sgi. Christoph Lameter.
 *
 * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
 * virt_to_page, page_address() to be implemented as a base offset
 * calculation without memory access.
 *
 * However, virtual mappings need a page table and TLBs. Many Linux
 * architectures already map their physical space using 1-1 mappings
 * via TLBs. For those arches the virtual memmory map is essentially
 * for free if we use the same page size as the 1-1 mappings. In that
 * case the overhead consists of a few additional pages that are
 * allocated to create a view of memory for vmemmap.
 *
 * The architecture is expected to provide a vmemmap_populate() function
 * to instantiate the mapping.
 */
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/bootmem.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
#include <linux/sched.h>
#include <asm/dma.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>

/*
 * Allocate a block of memory to be used to back the virtual memory map
 * or to back the page tables that are used to create the mapping.
 * Uses the main allocators if they are available, else bootmem.
 */

static void * __init_refok __earlyonly_bootmem_alloc(int node,
				unsigned long size,
				unsigned long align,
				unsigned long goal)
{
	return __alloc_bootmem_node(NODE_DATA(node), size, align, goal);
}


void * __meminit vmemmap_alloc_block(unsigned long size, int node)
{
	/* If the main allocator is up use that, fallback to bootmem. */
	if (slab_is_available()) {
		struct page *page;

		if (node_state(node, N_HIGH_MEMORY))
			page = alloc_pages_node(node,
				GFP_KERNEL | __GFP_ZERO, get_order(size));
		else
			page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
				get_order(size));
		if (page)
			return page_address(page);
		return NULL;
	} else
		return __earlyonly_bootmem_alloc(node, size, size,
				__pa(MAX_DMA_ADDRESS));
}

void __meminit vmemmap_verify(pte_t *pte, int node,
				unsigned long start, unsigned long end)
{
	unsigned long pfn = pte_pfn(*pte);
	int actual_node = early_pfn_to_nid(pfn);

	if (node_distance(actual_node, node) > LOCAL_DISTANCE)
		printk(KERN_WARNING "[%lx-%lx] potential offnode "
			"page_structs\n", start, end - 1);
}

pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
{
	pte_t *pte = pte_offset_kernel(pmd, addr);
	if (pte_none(*pte)) {
		pte_t entry;
		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
		if (!p)
			return NULL;
		entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
		set_pte_at(&init_mm, addr, pte, entry);
	}
	return pte;
}

pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
{
	pmd_t *pmd = pmd_offset(pud, addr);
	if (pmd_none(*pmd)) {
		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
		if (!p)
			return NULL;
		pmd_populate_kernel(&init_mm, pmd, p);
	}
	return pmd;
}

pud_t * __meminit vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node)
{
	pud_t *pud = pud_offset(pgd, addr);
	if (pud_none(*pud)) {
		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
		if (!p)
			return NULL;
		pud_populate(&init_mm, pud, p);
	}
	return pud;
}

pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
{
	pgd_t *pgd = pgd_offset_k(addr);
	if (pgd_none(*pgd)) {
		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
		if (!p)
			return NULL;
		pgd_populate(&init_mm, pgd, p);
	}
	return pgd;
}

int __meminit vmemmap_populate_basepages(struct page *start_page,
						unsigned long size, int node)
{
	unsigned long addr = (unsigned long)start_page;
	unsigned long end = (unsigned long)(start_page + size);
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	for (; addr < end; addr += PAGE_SIZE) {
		pgd = vmemmap_pgd_populate(addr, node);
		if (!pgd)
			return -ENOMEM;
		pud = vmemmap_pud_populate(pgd, addr, node);
		if (!pud)
			return -ENOMEM;
		pmd = vmemmap_pmd_populate(pud, addr, node);
		if (!pmd)
			return -ENOMEM;
		pte = vmemmap_pte_populate(pmd, addr, node);
		if (!pte)
			return -ENOMEM;
		vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
	}

	return 0;
}

struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid)
{
	struct page *map = pfn_to_page(pnum * PAGES_PER_SECTION);
	int error = vmemmap_populate(map, PAGES_PER_SECTION, nid);
	if (error)
		return NULL;

	return map;
}