/*
* mm/mmap.c
*
* Written by obz.
*
* Address space accounting code <alan@redhat.com>
*/
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/shm.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/syscalls.h>
#include <linux/capability.h>
#include <linux/init.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/personality.h>
#include <linux/security.h>
#include <linux/hugetlb.h>
#include <linux/profile.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/mempolicy.h>
#include <linux/rmap.h>
#include <asm/uaccess.h>
#include <asm/cacheflush.h>
#include <asm/tlb.h>
#ifndef arch_mmap_check
#define arch_mmap_check(addr, len, flags) (0)
#endif
static void unmap_region(struct mm_struct *mm,
struct vm_area_struct *vma, struct vm_area_struct *prev,
unsigned long start, unsigned long end);
/*
* WARNING: the debugging will use recursive algorithms so never enable this
* unless you know what you are doing.
*/
#undef DEBUG_MM_RB
/* description of effects of mapping type and prot in current implementation.
* this is due to the limited x86 page protection hardware. The expected
* behavior is in parens:
*
* map_type prot
* PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
* MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
* w: (no) no w: (no) no w: (yes) yes w: (no) no
* x: (no) no x: (no) yes x: (no) yes x: (yes) yes
*
* MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
* w: (no) no w: (no) no w: (copy) copy w: (no) no
* x: (no) no x: (no) yes x: (no) yes x: (yes) yes
*
*/
pgprot_t protection_map[16] = {
__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
};
pgprot_t vm_get_page_prot(unsigned long vm_flags)
{
return protection_map[vm_flags &
(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
}
EXPORT_SYMBOL(vm_get_page_prot);
int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
int sysctl_overcommit_ratio = 50; /* default is 50% */
int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
atomic_t vm_committed_space = ATOMIC_INIT(0);
/*
* Check that a process has enough memory to allocate a new virtual
* mapping. 0 means there is enough memory for the allocation to
* succeed and -ENOMEM implies there is not.
*
* We currently support three overcommit policies, which are set via the
* vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
*
* Strict overcommit modes added 2002 Feb 26 by Alan Cox.
* Additional code 2002 Jul 20 by Robert Love.
*
* cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
*
* Note this is a helper function intended to be used by LSMs which
* wish to use this logic.
*/
int __vm_enough_memory(long pages, int cap_sys_admin)
{
unsigned long free, allowed;
vm_acct_memory(pages);
/*
* Sometimes we want to use more memory than we have
*/
if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
return 0;
if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
unsigned long n;
free = global_page_state(NR_FILE_PAGES);
free += nr_swap_pages;
/*
* Any slabs which are created with the
* SLAB_RECLAIM_ACCOUNT flag claim to have contents
* which are reclaimable, under pressure. The dentry
* cache and most inode caches should fall into this
*/
free += global_page_state(NR_SLAB_RECLAIMABLE);
/*
* Leave the last 3% for root
*/
if (!cap_sys_admin)
free -= free / 32;
if (free > pages)
return 0;
/*
* nr_free_pages() is very expensive on large systems,
* only call if we're about to fail.
*/
n = nr_free_pages();
/*
* Leave reserved pages. The pages are not for anonymous pages.
*/
if (n <= totalreserve_pages)
goto error;
else
n -= totalreserve_pages;
/*
* Leave the last 3% for root
*/
if (!cap_sys_admin)
n -= n / 32;
free += n;
if (free > pages)
return 0;
goto error;
}
allowed = (totalram_pages - hugetlb_total_pages())
* sysctl_overcommit_ratio / 100;
/*
* Leave the last 3% for root
*/
if (!cap_sys_admin)
allowed -= allowed / 32;
allowed += total_swap_pages;
/* Don't let a single process grow too big:
leave 3% of the size of this process for other processes */
allowed -= current->mm->total_vm / 32;
/*
* cast `allowed' as a signed long because vm_committed_space
* sometimes has a negative value
*/
if (atomic_read(&vm_committed_space) < (long)allowed)
return 0;
error:
vm_unacct_memory(pages);
return -ENOMEM;
}
EXPORT_SYMBOL(__vm_enough_memory);
/*
* Requires inode->i_mapping->i_mmap_lock
*/
static void __remove_shared_vm_struct(struct vm_area_struct *vma,
struct file *file, struct address_space *mapping)
{
if (vma->vm_flags & VM_DENYWRITE)
atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
if (vma->vm_flags & VM_SHARED)
mapping->i_mmap_writable--;
flush_dcache_mmap_lock(mapping);
if (unlikely(vma->vm_flags & VM_NONLINEAR))
list_del_init(&vma->shared.vm_set.list);
else
vma_prio_tree_remove(vma, &mapping->i_mmap);
flush_dcache_mmap_unlock(mapping);
}
/*
* Unlink a file-based vm structure from its prio_tree, to hide
* vma from rmap and vmtruncate before freeing its page tables.
*/
void unlink_file_vma(struct vm_area_struct *vma)
{
struct file *file = vma->vm_file;
if (file) {
struct address_space *mapping = file->f_mapping;
spin_lock(&mapping->i_mmap_lock);
__remove_shared_vm_struct(vma, file, mapping);
spin_unlock(&mapping->i_mmap_lock);
}
}
/*
* Close a vm structure and free it, returning the next.
*/
static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
{
struct vm_area_struct *next = vma->vm_next;
might_sleep();
if (vma->vm_ops && vma->vm_ops->close)
vma->vm_ops->close(vma);
if (vma->vm_file)
fput(vma->vm_file);
mpol_free(vma_policy(vma));
kmem_cache_free(vm_area_cachep, vma);
return next;
}
asmlinkage unsigned long sys_brk(unsigned long brk)
{
unsigned long rlim, retval;
unsigned long newbrk, oldbrk;
struct mm_struct *mm = current->mm;
down_write(&mm->mmap_sem);
if (brk < mm->end_code)
goto out;
/*
* Check against rlimit here. If this check is done later after the test
* of oldbrk with newbrk then it can escape the test and let the data
* segment grow beyond its set limit the in case where the limit is
* not page aligned -Ram Gupta
*/
rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim)
goto out;
newbrk = PAGE_ALIGN(brk);
oldbrk = PAGE_ALIGN(mm->brk);
if (oldbrk == newbrk)
goto set_brk;
/* Always allow shrinking brk. */
if (brk <= mm->brk) {
if (!do_munmap(mm, newbrk, oldbrk-newbrk))
goto set_brk;
goto out;
}
/* Check against existing mmap mappings. */
if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
goto out;
/* Ok, looks good - let it rip. */
if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
goto out;
set_brk:
mm->brk = brk;
out:
retval = mm->brk;
up_write(&mm->mmap_sem);
return retval;
}
#ifdef DEBUG_MM_RB
static int browse_rb(struct rb_root *root)
{
int i = 0, j;
struct rb_node *nd, *pn = NULL;
unsigned long prev = 0, pend = 0;
for (nd = rb_first(root); nd; nd = rb_next(nd)) {
struct vm_area_struct *vma;
vma = rb_entry(nd, struct vm_area_struct, vm_rb);
if (vma->vm_start < prev)
printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
if (vma->vm_start < pend)
printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
if (vma->vm_start > vma->vm_end)
printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
i++;
pn = nd;
}
j = 0;
for (nd = pn; nd; nd = rb_prev(nd)) {
j++;
}
if (i != j)
printk("backwards %d, forwards %d\n", j, i), i = 0;
return i;
}
void validate_mm(struct mm_struct *mm)
{
int bug = 0;
int i = 0;
struct vm_area_struct *tmp = mm->mmap;
while (tmp) {
tmp = tmp->vm_next;
i++;
}
if (i != mm->map_count)
printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
i = browse_rb(&mm->mm_rb);
if (i != mm->map_count)
printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
BUG_ON(bug);
}
#else
#define validate_mm(mm) do { } while (0)
#endif
static struct vm_area_struct *
find_vma_prepare(struct mm_struct *mm, unsigned long addr,
struct vm_area_struct **pprev, struct rb_node ***rb_link,
struct rb_node ** rb_parent)
{
struct vm_area_struct * vma;
struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
__rb_link = &mm->mm_rb.rb_node;
rb_prev = __rb_parent = NULL;
vma = NULL;
while (*__rb_link) {
struct vm_area_struct *vma_tmp;
__rb_parent = *__rb_link;
vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
if (vma_tmp->vm_end > addr) {
vma = vma_tmp;
if (vma_tmp->vm_start <= addr)
return vma;
__rb_link = &__rb_parent->rb_left;
} else {
rb_prev = __rb_parent;
__rb_link = &__rb_parent->rb_right;
}
}
*pprev = NULL;
if (rb_prev)
*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
*rb_link = __rb_link;
*rb_parent = __rb_parent;
return vma;
}
static inline void
__vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
struct vm_area_struct *prev, struct rb_node *rb_parent)
{
if (prev) {
vma->vm_next = prev->vm_next;
prev->vm_next = vma;
} else {
mm->mmap = vma;
if (rb_parent)
vma->vm_next = rb_entry(rb_parent,
struct vm_area_struct, vm_rb);
else
vma->vm_next = NULL;
}
}
void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
struct rb_node **rb_link, struct rb_node *rb_parent)
{
rb_link_node(&vma->vm_rb, rb_parent, rb_link);
rb_insert_color(&vma->vm_rb, &mm->mm_rb);
}
static inline void __vma_link_file(struct vm_area_struct *vma)
{
struct file * file;
file = vma->vm_file;
if (file) {
struct address_space *mapping = file->f_mapping;
if (vma->vm_flags & VM_DENYWRITE)
atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
if (vma->vm_flags & VM_SHARED)
mapping->i_mmap_writable++;
flush_dcache_mmap_lock(mapping);
if (unlikely(vma->vm_flags & VM_NONLINEAR))
vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
else
vma_prio_tree_insert(vma, &mapping->i_mmap);
flush_dcache_mmap_unlock(mapping);
}
}
static void
__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
struct vm_area_struct *prev, struct rb_node **rb_link,
struct rb_node *rb_parent)
{
__vma_link_list(mm, vma, prev, rb_parent);
__vma_link_rb(mm, vma, rb_link, rb_parent);
__anon_vma_link(vma);
}
static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
struct vm_area_struct *prev, struct rb_node **rb_link,
struct rb_node *rb_parent)
{
struct address_space *mapping = NULL;
if (vma->vm_file)
mapping = vma->vm_file->f_mapping;
if (mapping) {
spin_lock(&mapping->i_mmap_lock);
vma->vm_truncate_count = mapping->truncate_count;
}
anon_vma_lock(vma);
__vma_link(mm, vma, prev, rb_link, rb_parent);
__vma_link_file(vma);
anon_vma_unlock(vma);
if (mapping)
spin_unlock(&mapping->i_mmap_lock);
mm->map_count++;
validate_mm(mm);
}
/*
* Helper for vma_adjust in the split_vma insert case:
* insert vm structure into list and rbtree and anon_vma,
* but it has already been inserted into prio_tree earlier.
*/
static void
__insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
{
struct vm_area_struct * __vma, * prev;
struct rb_node ** rb_link, * rb_parent;
__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
BUG_ON(__vma && __vma->vm_start < vma->vm_end);
__vma_link(mm, vma, prev, rb_link, rb_parent);
mm->map_count++;
}
static inline void
__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
struct vm_area_struct *prev)
{
prev->vm_next = vma->vm_next;
rb_erase(&vma->vm_rb, &mm->mm_rb);
if (mm->mmap_cache == vma)
mm->mmap_cache = prev;
}
/*
* We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
* is already present in an i_mmap tree without adjusting the tree.
* The following helper function should be used when such adjustments
* are necessary. The "insert" vma (if any) is to be inserted
* before we drop the necessary locks.
*/
void vma_adjust(struct vm_area_struct *vma, unsigned long start,
unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
{
struct mm_struct *mm = vma->vm_mm;
struct vm_area_struct *next = vma->vm_next;
struct vm_area_struct *importer = NULL;
struct address_space *mapping = NULL;
struct prio_tree_root *root = NULL;
struct file *file = vma->vm_file;
struct anon_vma *anon_vma = NULL;
long adjust_next = 0;
int remove_next = 0;
if (next && !insert) {
if (end >= next->vm_end) {
/*
* vma expands, overlapping all the next, and
* perhaps the one after too (mprotect case 6).
*/
again: remove_next = 1 + (end > next->vm_end);
end = next->vm_end;
anon_vma = next->anon_vma;
importer = vma;
} else if (end > next->vm_start) {
/*
* vma expands, overlapping part of the next:
* mprotect case 5 shifting the boundary up.
*/
adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
anon_vma = next->anon_vma;
importer = vma;
} else if (end < vma->vm_end) {
/*
* vma shrinks, and !insert tells it's not
* split_vma inserting another: so it must be
* mprotect case 4 shifting the boundary down.
*/
adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
anon_vma = next->anon_vma;
importer = next;
}
}
if (file) {
mapping = file->f_mapping;
if (!(vma->vm_flags & VM_NONLINEAR))
root = &mapping->i_mmap;
spin_lock(&mapping->i_mmap_lock);
if (importer &&
vma->vm_truncate_count != next->vm_truncate_count) {
/*
* unmap_mapping_range might be in progress:
* ensure that the expanding vma is rescanned.
*/
importer->vm_truncate_count = 0;
}
if (insert) {
insert->vm_truncate_count = vma->vm_truncate_count;
/*
* Put into prio_tree now, so instantiated pages
* are visible to arm/parisc __flush_dcache_page
* throughout; but we cannot insert into address
* space until vma start or end is updated.
*/
__vma_link_file(insert);
}
}
/*
* When changing only vma->vm_end, we don't really need
* anon_vma lock: but is that case worth optimizing out?
*/
if (vma->anon_vma)
anon_vma = vma->anon_vma;
if (anon_vma) {
spin_lock(&anon_vma->lock);
/*
* Easily overlooked: when mprotect shifts the boundary,
* make sure the expanding vma has anon_vma set if the
* shrinking vma had, to cover any anon pages imported.
*/
if (importer && !importer->anon_vma) {
importer->anon_vma = anon_vma;
__anon_vma_link(importer);
}
}
if (root) {
flush_dcache_mmap_lock(mapping);
vma_prio_tree_remove(vma, root);
if (adjust_next)
vma_prio_tree_remove(next, root);
}
vma->vm_start = start;
vma->vm_end = end;
vma->vm_pgoff = pgoff;
if (adjust_next) {
next->vm_start += adjust_next << PAGE_SHIFT;
next->vm_pgoff += adjust_next;
}
if (root) {
if (adjust_next)
vma_prio_tree_insert(next, root);
vma_prio_tree_insert(vma, root);
flush_dcache_mmap_unlock(mapping);
}
if (remove_next) {
/*
* vma_merge has merged next into vma, and needs
* us to remove next before dropping the locks.
*/
__vma_unlink(mm, next, vma);
if (file)
__remove_shared_vm_struct(next, file, mapping);
if (next->anon_vma)
__anon_vma_merge(vma, next);
} else if (insert) {
/*
* split_vma has split insert from vma, and needs
* us to insert it before dropping the locks
* (it may either follow vma or precede it).
*/
__insert_vm_struct(mm, insert);
}
if (anon_vma)
spin_unlock(&anon_vma->lock);
if (mapping)
spin_unlock(&mapping->i_mmap_lock);
if (remove_next) {
if (file)
fput(file);
mm->map_count--;
mpol_free(vma_policy(next));
kmem_cache_free(vm_area_cachep, next);
/*
* In mprotect's case 6 (see comments on vma_merge),
* we must remove another next too. It would clutter
* up the code too much to do both in one go.
*/
if (remove_next == 2) {
next = vma->vm_next;
goto again;
}
}
validate_mm(mm);
}
/*
* If the vma has a ->close operation then the driver probably needs to release
* per-vma resources, so we don't attempt to merge those.
*/
#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
static inline int is_mergeable_vma(struct vm_area_struct *vma,
struct file *file, unsigned long vm_flags)
{
if (vma->vm_flags != vm_flags)
return 0;
if (vma->vm_file != file)
return 0;
if (vma->vm_ops && vma->vm_ops->close)
return 0;
return 1;
}
static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
struct anon_vma *anon_vma2)
{
return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
}
/*
* Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
* in front of (at a lower virtual address and file offset than) the vma.
*
* We cannot merge two vmas if they have differently assigned (non-NULL)
* anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
*
* We don't check here for the merged mmap wrapping around the end of pagecache
* indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
* wrap, nor mmaps which cover the final page at index -1UL.
*/
static int
can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
{
if (is_mergeable_vma(vma, file, vm_flags) &&
is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
if (vma->vm_pgoff == vm_pgoff)
return 1;
}
return 0;
}
/*
* Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
* beyond (at a higher virtual address and file offset than) the vma.
*
* We cannot merge two vmas if they have differently assigned (non-NULL)
* anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
*/
static int
can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
{
if (is_mergeable_vma(vma, file, vm_flags) &&
is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
pgoff_t vm_pglen;
vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
if (vma->vm_pgoff + vm_pglen == vm_pgoff)
return 1;
}
return 0;
}
/*
* Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
* whether that can be merged with its predecessor or its successor.
* Or both (it neatly fills a hole).
*
* In most cases - when called for mmap, brk or mremap - [addr,end) is
* certain not to be mapped by the time vma_merge is called; but when
* called for mprotect, it is certain to be already mapped (either at
* an offset within prev, or at the start of next), and the flags of
* this area are about to be changed to vm_flags - and the no-change
* case has already been eliminated.
*
* The following mprotect cases have to be considered, where AAAA is
* the area passed down from mprotect_fixup, never extending beyond one
* vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
*
* AAAA AAAA AAAA AAAA
* PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
* cannot merge might become might become might become
* PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
* mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
* mremap move: PPPPNNNNNNNN 8
* AAAA
* PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
* might become case 1 below case 2 below case 3 below
*
* Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
* mprotect_fixup updates vm_flags & vm_page_prot on successful return.
*/
struct vm_area_struct *vma_merge(struct mm_struct *mm,
struct vm_area_struct *prev, unsigned long addr,
unsigned long end, unsigned long vm_flags,
struct anon_vma *anon_vma, struct file *file,
pgoff_t pgoff, struct mempolicy *policy)
{
pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
struct vm_area_struct *area, *next;
/*
* We later require that vma->vm_flags == vm_flags,
* so this tests vma->vm_flags & VM_SPECIAL, too.
*/
if (vm_flags & VM_SPECIAL)
return NULL;
if (prev)
next = prev->vm_next;
else
next = mm->mmap;
area = next;
if (next && next->vm_end == end) /* cases 6, 7, 8 */
next = next->vm_next;
/*
* Can it merge with the predecessor?
*/
if (prev && prev->vm_end == addr &&
mpol_equal(vma_policy(prev), policy) &&
can_vma_merge_after(prev, vm_flags,
anon_vma, file, pgoff)) {
/*
* OK, it can. Can we now merge in the successor as well?
*/
if (next && end == next->vm_start &&
mpol_equal(policy, vma_policy(next)) &&
can_vma_merge_before(next, vm_flags,
anon_vma, file, pgoff+pglen) &&
is_mergeable_anon_vma(prev->anon_vma,
next->anon_vma)) {
/* cases 1, 6 */
vma_adjust(prev, prev->vm_start,
next->vm_end, prev->vm_pgoff, NULL);
} else /* cases 2, 5, 7 */
vma_adjust(prev, prev->vm_start,
end, prev->vm_pgoff, NULL);
return prev;
}
/*
* Can this new request be merged in front of next?
*/
if (next && end == next->vm_start &&
mpol_equal(policy, vma_policy(next)) &&
can_vma_merge_before(next, vm_flags,
anon_vma, file, pgoff+pglen)) {
if (prev && addr < prev->vm_end) /* case 4 */
vma_adjust(prev, prev->vm_start,
addr, prev->vm_pgoff, NULL);
else /* cases 3, 8 */
vma_adjust(area, addr, next->vm_end,
next->vm_pgoff - pglen, NULL);
return area;
}
return NULL;
}
/*
* find_mergeable_anon_vma is used by anon_vma_prepare, to check
* neighbouring vmas for a suitable anon_vma, before it goes off
* to allocate a new anon_vma. It checks because a repetitive
* sequence of mprotects and faults may otherwise lead to distinct
* anon_vmas being allocated, preventing vma merge in subsequent
* mprotect.
*/
struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
{
struct vm_area_struct *near;
unsigned long vm_flags;
near = vma->vm_next;
if (!near)
goto try_prev;
/*
* Since only mprotect tries to remerge vmas, match flags
* which might be mprotected into each other later on.
* Neither mlock nor madvise tries to remerge at present,
* so leave their flags as obstructing a merge.
*/
vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
if (near->anon_vma && vma->vm_end == near->vm_start &&
mpol_equal(vma_policy(vma), vma_policy(near)) &&
can_vma_merge_before(near, vm_flags,
NULL, vma->vm_file, vma->vm_pgoff +
((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
return near->anon_vma;
try_prev:
/*
* It is potentially slow to have to call find_vma_prev here.
* But it's only on the first write fault on the vma, not
* every time, and we could devise a way to avoid it later
* (e.g. stash info in next's anon_vma_node when assigning
* an anon_vma, or when trying vma_merge). Another time.
*/
BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
if (!near)
goto none;
vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
if (near->anon_vma && near->vm_end == vma->vm_start &&
mpol_equal(vma_policy(near), vma_policy(vma)) &&
can_vma_merge_after(near, vm_flags,
NULL, vma->vm_file, vma->vm_pgoff))
return near->anon_vma;
none:
/*
* There's no absolute need to look only at touching neighbours:
* we could search further afield for "compatible" anon_vmas.
* But it would probably just be a waste of time searching,
* or lead to too many vmas hanging off the same anon_vma.
* We're trying to allow mprotect remerging later on,
* not trying to minimize memory used for anon_vmas.
*/
return NULL;
}
#ifdef CONFIG_PROC_FS
void vm_stat_account(struct mm_struct *mm, unsigned long flags,
struct file *file, long pages)
{
const unsigned long stack_flags
= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
if (file) {
mm->shared_vm += pages;
if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
mm->exec_vm += pages;
} else if (flags & stack_flags)
mm->stack_vm += pages;
if (flags & (VM_RESERVED|VM_IO))
mm->reserved_vm += pages;
}
#endif /* CONFIG_PROC_FS */
/*
* The caller must hold down_write(current->mm->mmap_sem).
*/
unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
unsigned long len, unsigned long prot,
unsigned long flags, unsigned long pgoff)
{
struct mm_struct * mm = current->mm;
struct vm_area_struct * vma, * prev;
struct inode *inode;
unsigned int vm_flags;
int correct_wcount = 0;
int error;
struct rb_node ** rb_link, * rb_parent;
int accountable = 1;
unsigned long charged = 0, reqprot = prot;
/*
* Does the application expect PROT_READ to imply PROT_EXEC?
*
* (the exception is when the underlying filesystem is noexec
* mounted, in which case we dont add PROT_EXEC.)
*/
if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
prot |= PROT_EXEC;
if (!len)
return -EINVAL;
error = arch_mmap_check(addr, len, flags);
if (error)
return error;
/* Careful about overflows.. */
len = PAGE_ALIGN(len);
if (!len || len > TASK_SIZE)
return -ENOMEM;
/* offset overflow? */
if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
return -EOVERFLOW;
/* Too many mappings? */
if (mm->map_count > sysctl_max_map_count)
return -ENOMEM;
/* Obtain the address to map to. we verify (or select) it and ensure
* that it represents a valid section of the address space.
*/
addr = get_unmapped_area(file, addr, len, pgoff, flags);
if (addr & ~PAGE_MASK)
return addr;
/* Do simple checking here so the lower-level routines won't have
* to. we assume access permissions have been handled by the open
* of the memory object, so we don't do any here.
*/
vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
if (flags & MAP_LOCKED) {
if (!can_do_mlock())
return -EPERM;
vm_flags |= VM_LOCKED;
}
/* mlock MCL_FUTURE? */
if (vm_flags & VM_LOCKED) {
unsigned long locked, lock_limit;
locked = len >> PAGE_SHIFT;
locked += mm->locked_vm;
lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
lock_limit >>= PAGE_SHIFT;
if (locked > lock_limit && !capable(CAP_IPC_LOCK))
return -EAGAIN;
}
inode = file ? file->f_path.dentry->d_inode : NULL;
if (file) {
switch (flags & MAP_TYPE) {
case MAP_SHARED:
if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
return -EACCES;
/*
* Make sure we don't allow writing to an append-only
* file..
*/
if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
return -EACCES;
/*
* Make sure there are no mandatory locks on the file.
*/
if (locks_verify_locked(inode))
return -EAGAIN;
vm_flags |= VM_SHARED | VM_MAYSHARE;
if (!(file->f_mode & FMODE_WRITE))
vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
/* fall through */
case MAP_PRIVATE:
if (!(file->f_mode & FMODE_READ))
return -EACCES;
if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
if (vm_flags & VM_EXEC)
return -EPERM;
vm_flags &= ~VM_MAYEXEC;
}
if (is_file_hugepages(file))
accountable = 0;
if (!file->f_op || !file->f_op->mmap)
return -ENODEV;
break;
default:
return -EINVAL;
}
} else {
switch (flags & MAP_TYPE) {
case MAP_SHARED:
vm_flags |= VM_SHARED | VM_MAYSHARE;
break;
case MAP_PRIVATE:
/*
* Set pgoff according to addr for anon_vma.
*/
pgoff = addr >> PAGE_SHIFT;
break;
default:
return -EINVAL;
}
}
error = security_file_mmap(file, reqprot, prot, flags);
if (error)
return error;
/* Clear old maps */
error = -ENOMEM;
munmap_back:
vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
if (vma && vma->vm_start < addr + len) {
if (do_munmap(mm, addr, len))
return -ENOMEM;
goto munmap_back;
}
/* Check against address space limit. */
if (!may_expand_vm(mm, len >> PAGE_SHIFT))
return -ENOMEM;
if (accountable && (!(flags & MAP_NORESERVE) ||
sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
if (vm_flags & VM_SHARED) {
/* Check memory availability in shmem_file_setup? */
vm_flags |= VM_ACCOUNT;
} else if (vm_flags & VM_WRITE) {
/*
* Private writable mapping: check memory availability
*/
charged = len >> PAGE_SHIFT;
if (security_vm_enough_memory(charged))
return -ENOMEM;
vm_flags |= VM_ACCOUNT;
}
}
/*
* Can we just expand an old private anonymous mapping?
* The VM_SHARED test is necessary because shmem_zero_setup
* will create the file object for a shared anonymous map below.
*/
if (!file && !(vm_flags & VM_SHARED) &&
vma_merge(mm, prev, addr, addr + len, vm_flags,
NULL, NULL, pgoff, NULL))
goto out;
/*
* Determine the object being mapped and call the appropriate
* specific mapper. the address has already been validated, but
* not unmapped, but the maps are removed from the list.
*/
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
if (!vma) {
error = -ENOMEM;
goto unacct_error;
}
vma->vm_mm = mm;
vma->vm_start = addr;
vma->vm_end = addr + len;
vma->vm_flags = vm_flags;
vma->vm_page_prot = protection_map[vm_flags &
(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
vma->vm_pgoff = pgoff;
if (file) {
error = -EINVAL;
if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
goto free_vma;
if (vm_flags & VM_DENYWRITE) {
error = deny_write_access(file);
if (error)
goto free_vma;
correct_wcount = 1;
}
vma->vm_file = file;
get_file(file);
error = file->f_op->mmap(file, vma);
if (error)
goto unmap_and_free_vma;
} else if (vm_flags & VM_SHARED) {
error = shmem_zero_setup(vma);
if (error)
goto free_vma;
}
/* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
* shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
* that memory reservation must be checked; but that reservation
* belongs to shared memory object, not to vma: so now clear it.
*/
if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
vma->vm_flags &= ~VM_ACCOUNT;
/* Can addr have changed??
*
* Answer: Yes, several device drivers can do it in their
* f_op->mmap method. -DaveM
*/
addr = vma->vm_start;
pgoff = vma->vm_pgoff;
vm_flags = vma->vm_flags;
if (vma_wants_writenotify(vma))
vma->vm_page_prot =
protection_map[vm_flags & (VM_READ|VM_WRITE|VM_EXEC)];
if (!file || !vma_merge(mm, prev, addr, vma->vm_end,
vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) {
file = vma->vm_file;
vma_link(mm, vma, prev, rb_link, rb_parent);
if (correct_wcount)
atomic_inc(&inode->i_writecount);
} else {
if (file) {
if (correct_wcount)
atomic_inc(&inode->i_writecount);
fput(file);
}
mpol_free(vma_policy(vma));
kmem_cache_free(vm_area_cachep, vma);
}
out:
mm->total_vm += len >> PAGE_SHIFT;
vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
if (vm_flags & VM_LOCKED) {
mm->locked_vm += len >> PAGE_SHIFT;
make_pages_present(addr, addr + len);
}
if (flags & MAP_POPULATE) {
up_write(&mm->mmap_sem);
sys_remap_file_pages(addr, len, 0,
pgoff, flags & MAP_NONBLOCK);
down_write(&mm->mmap_sem);
}
return addr;
unmap_and_free_vma:
if (correct_wcount)
atomic_inc(&inode->i_writecount);
vma->vm_file = NULL;
fput(file);
/* Undo any partial mapping done by a device driver. */
unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
charged = 0;
free_vma:
kmem_cache_free(vm_area_cachep, vma);
unacct_error:
if (charged)
vm_unacct_memory(charged);
return error;
}
EXPORT_SYMBOL(do_mmap_pgoff);
/* Get an address range which is currently unmapped.
* For shmat() with addr=0.
*
* Ugly calling convention alert:
* Return value with the low bits set means error value,
* ie
* if (ret & ~PAGE_MASK)
* error = ret;
*
* This function "knows" that -ENOMEM has the bits set.
*/
#ifndef HAVE_ARCH_UNMAPPED_AREA
unsigned long
arch_get_unmapped_area(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff, unsigned long flags)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
unsigned long start_addr;
if (len > TASK_SIZE)
return -ENOMEM;
if (addr) {
addr = PAGE_ALIGN(addr);
vma = find_vma(mm, addr);
if (TASK_SIZE - len >= addr &&
(!vma || addr + len <= vma->vm_start))
return addr;
}
if (len > mm->cached_hole_size) {
start_addr = addr = mm->free_area_cache;
} else {
start_addr = addr = TASK_UNMAPPED_BASE;
mm->cached_hole_size = 0;
}
full_search:
for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
/* At this point: (!vma || addr < vma->vm_end). */
if (TASK_SIZE - len < addr) {
/*
* Start a new search - just in case we missed
* some holes.
*/
if (start_addr != TASK_UNMAPPED_BASE) {
addr = TASK_UNMAPPED_BASE;
start_addr = addr;
mm->cached_hole_size = 0;
goto full_search;
}
return -ENOMEM;
}
if (!vma || addr + len <= vma->vm_start) {
/*
* Remember the place where we stopped the search:
*/
mm->free_area_cache = addr + len;
return addr;
}
if (addr + mm->cached_hole_size < vma->vm_start)
mm->cached_hole_size = vma->vm_start - addr;
addr = vma->vm_end;
}
}
#endif
void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
{
/*
* Is this a new hole at the lowest possible address?
*/
if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
mm->free_area_cache = addr;
mm->cached_hole_size = ~0UL;
}
}
/*
* This mmap-allocator allocates new areas top-down from below the
* stack's low limit (the base):
*/
#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
unsigned long
arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
const unsigned long len, const unsigned long pgoff,
const unsigned long flags)
{
struct vm_area_struct *vma;
struct mm_struct *mm = current->mm;
unsigned long addr = addr0;
/* requested length too big for entire address space */
if (len > TASK_SIZE)
return -ENOMEM;
/* requesting a specific address */
if (addr) {
addr = PAGE_ALIGN(addr);
vma = find_vma(mm, addr);
if (TASK_SIZE - len >= addr &&
(!vma || addr + len <= vma->vm_start))
return addr;
}
/* check if free_area_cache is useful for us */
if (len <= mm->cached_hole_size) {
mm->cached_hole_size = 0;
mm->free_area_cache = mm->mmap_base;
}
/* either no address requested or can't fit in requested address hole */
addr = mm->free_area_cache;
/* make sure it can fit in the remaining address space */
if (addr > len) {
vma = find_vma(mm, addr-len);
if (!vma || addr <= vma->vm_start)
/* remember the address as a hint for next time */
return (mm->free_area_cache = addr-len);
}
if (mm->mmap_base < len)
goto bottomup;
addr = mm->mmap_base-len;
do {
/*
* Lookup failure means no vma is above this address,
* else if new region fits below vma->vm_start,
* return with success:
*/
vma = find_vma(mm, addr);
if (!vma || addr+len <= vma->vm_start)
/* remember the address as a hint for next time */
return (mm->free_area_cache = addr);
/* remember the largest hole we saw so far */
if (addr + mm->cached_hole_size < vma->vm_start)
mm->cached_hole_size = vma->vm_start - addr;
/* try just below the current vma->vm_start */
addr = vma->vm_start-len;
} while (len < vma->vm_start);
bottomup:
/*
* A failed mmap() very likely causes application failure,
* so fall back to the bottom-up function here. This scenario
* can happen with large stack limits and large mmap()
* allocations.
*/
mm->cached_hole_size = ~0UL;
mm->free_area_cache = TASK_UNMAPPED_BASE;
addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
/*
* Restore the topdown base:
*/
mm->free_area_cache = mm->mmap_base;
mm->cached_hole_size = ~0UL;
return addr;
}
#endif
void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
{
/*
* Is this a new hole at the highest possible address?
*/
if (addr > mm->free_area_cache)
mm->free_area_cache = addr;
/* dont allow allocations above current base */
if (mm->free_area_cache > mm->mmap_base)
mm->free_area_cache = mm->mmap_base;
}
unsigned long
get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags)
{
unsigned long ret;
if (!(flags & MAP_FIXED)) {
unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
get_area = current->mm->get_unmapped_area;
if (file && file->f_op && file->f_op->get_unmapped_area)
get_area = file->f_op->get_unmapped_area;
addr = get_area(file, addr, len, pgoff, flags);
if (IS_ERR_VALUE(addr))
return addr;
}
if (addr > TASK_SIZE - len)
return -ENOMEM;
if (addr & ~PAGE_MASK)
return -EINVAL;
if (file && is_file_hugepages(file)) {
/*
* Check if the given range is hugepage aligned, and
* can be made suitable for hugepages.
*/
ret = prepare_hugepage_range(addr, len, pgoff);
} else {
/*
* Ensure that a normal request is not falling in a
* reserved hugepage range. For some archs like IA-64,
* there is a separate region for hugepages.
*/
ret = is_hugepage_only_range(current->mm, addr, len);
}
if (ret)
return -EINVAL;
return addr;
}
EXPORT_SYMBOL(get_unmapped_area);
/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
{
struct vm_area_struct *vma = NULL;
if (mm) {
/* Check the cache first. */
/* (Cache hit rate is typically around 35%.) */
vma = mm->mmap_cache;
if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
struct rb_node * rb_node;
rb_node = mm->mm_rb.rb_node;
vma = NULL;
while (rb_node) {
struct vm_area_struct * vma_tmp;
vma_tmp = rb_entry(rb_node,
struct vm_area_struct, vm_rb);
if (vma_tmp->vm_end > addr) {
vma = vma_tmp;
if (vma_tmp->vm_start <= addr)
break;
rb_node = rb_node->rb_left;
} else
rb_node = rb_node->rb_right;
}
if (vma)
mm->mmap_cache = vma;
}
}
return vma;
}
EXPORT_SYMBOL(find_vma);
/* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
struct vm_area_struct *
find_vma_prev(struct mm_struct *mm, unsigned long addr,
struct vm_area_struct **pprev)
{
struct vm_area_struct *vma = NULL, *prev = NULL;
struct rb_node * rb_node;
if (!mm)
goto out;
/* Guard against addr being lower than the first VMA */
vma = mm->mmap;
/* Go through the RB tree quickly. */
rb_node = mm->mm_rb.rb_node;
while (rb_node) {
struct vm_area_struct *vma_tmp;
vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
if (addr < vma_tmp->vm_end) {
rb_node = rb_node->rb_left;
} else {
prev = vma_tmp;
if (!prev->vm_next || (addr < prev->vm_next->vm_end))
break;
rb_node = rb_node->rb_right;
}
}
out:
*pprev = prev;
return prev ? prev->vm_next : vma;
}
/*
* Verify that the stack growth is acceptable and
* update accounting. This is shared with both the
* grow-up and grow-down cases.
*/
static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
{
struct mm_struct *mm = vma->vm_mm;
struct rlimit *rlim = current->signal->rlim;
unsigned long new_start;
/* address space limit tests */
if (!may_expand_vm(mm, grow))
return -ENOMEM;
/* Stack limit test */
if (size > rlim[RLIMIT_STACK].rlim_cur)
return -ENOMEM;
/* mlock limit tests */
if (vma->vm_flags & VM_LOCKED) {
unsigned long locked;
unsigned long limit;
locked = mm->locked_vm + grow;
limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
if (locked > limit && !capable(CAP_IPC_LOCK))
return -ENOMEM;
}
/* Check to ensure the stack will not grow into a hugetlb-only region */
new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
vma->vm_end - size;
if (is_hugepage_only_range(vma->vm_mm, new_start, size))
return -EFAULT;
/*
* Overcommit.. This must be the final test, as it will
* update security statistics.
*/
if (security_vm_enough_memory(grow))
return -ENOMEM;
/* Ok, everything looks good - let it rip */
mm->total_vm += grow;
if (vma->vm_flags & VM_LOCKED)
mm->locked_vm += grow;
vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
return 0;
}
#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
/*
* PA-RISC uses this for its stack; IA64 for its Register Backing Store.
* vma is the last one with address > vma->vm_end. Have to extend vma.
*/
#ifndef CONFIG_IA64
static inline
#endif
int expand_upwards(struct vm_area_struct *vma, unsigned long address)
{
int error;
if (!(vma->vm_flags & VM_GROWSUP))
return -EFAULT;
/*
* We must make sure the anon_vma is allocated
* so that the anon_vma locking is not a noop.
*/
if (unlikely(anon_vma_prepare(vma)))
return -ENOMEM;
anon_vma_lock(vma);
/*
* vma->vm_start/vm_end cannot change under us because the caller
* is required to hold the mmap_sem in read mode. We need the
* anon_vma lock to serialize against concurrent expand_stacks.
*/
address += 4 + PAGE_SIZE - 1;
address &= PAGE_MASK;
error = 0;
/* Somebody else might have raced and expanded it already */
if (address > vma->vm_end) {
unsigned long size, grow;
size = address - vma->vm_start;
grow = (address - vma->vm_end) >> PAGE_SHIFT;
error = acct_stack_growth(vma, size, grow);
if (!error)
vma->vm_end = address;
}
anon_vma_unlock(vma);
return error;
}
#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
#ifdef CONFIG_STACK_GROWSUP
int expand_stack(struct vm_area_struct *vma, unsigned long address)
{
return expand_upwards(vma, address);
}
struct vm_area_struct *
find_extend_vma(struct mm_struct *mm, unsigned long addr)
{
struct vm_area_struct *vma, *prev;
addr &= PAGE_MASK;
vma = find_vma_prev(mm, addr, &prev);
if (vma && (vma->vm_start <= addr))
return vma;
if (!prev || expand_stack(prev, addr))
return NULL;
if (prev->vm_flags & VM_LOCKED) {
make_pages_present(addr, prev->vm_end);
}
return prev;
}
#else
/*
* vma is the first one with address < vma->vm_start. Have to extend vma.
*/
int expand_stack(struct vm_area_struct *vma, unsigned long address)
{
int error;
/*
* We must make sure the anon_vma is allocated
* so that the anon_vma locking is not a noop.
*/
if (unlikely(anon_vma_prepare(vma)))
return -ENOMEM;
anon_vma_lock(vma);
/*
* vma->vm_start/vm_end cannot change under us because the caller
* is required to hold the mmap_sem in read mode. We need the
* anon_vma lock to serialize against concurrent expand_stacks.
*/
address &= PAGE_MASK;
error = 0;
/* Somebody else might have raced and expanded it already */
if (address < vma->vm_start) {
unsigned long size, grow;
size = vma->vm_end - address;
grow = (vma->vm_start - address) >> PAGE_SHIFT;
error = acct_stack_growth(vma, size, grow);
if (!error) {
vma->vm_start = address;
vma->vm_pgoff -= grow;
}
}
anon_vma_unlock(vma);
return error;
}
struct vm_area_struct *
find_extend_vma(struct mm_struct * mm, unsigned long addr)
{
struct vm_area_struct * vma;
unsigned long start;
addr &= PAGE_MASK;
vma = find_vma(mm,addr);
if (!vma)
return NULL;
if (vma->vm_start <= addr)
return vma;
if (!(vma->vm_flags & VM_GROWSDOWN))
return NULL;
start = vma->vm_start;
if (expand_stack(vma, addr))
return NULL;
if (vma->vm_flags & VM_LOCKED) {
make_pages_present(addr, start);
}
return vma;
}
#endif
/*
* Ok - we have the memory areas we should free on the vma list,
* so release them, and do the vma updates.
*
* Called with the mm semaphore held.
*/
static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
{
/* Update high watermark before we lower total_vm */
update_hiwater_vm(mm);
do {
long nrpages = vma_pages(vma);
mm->total_vm -= nrpages;
if (vma->vm_flags & VM_LOCKED)
mm->locked_vm -= nrpages;
vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
vma = remove_vma(vma);
} while (vma);
validate_mm(mm);
}
/*
* Get rid of page table information in the indicated region.
*
* Called with the mm semaphore held.
*/
static void unmap_region(struct mm_struct *mm,
struct vm_area_struct *vma, struct vm_area_struct *prev,
unsigned long start, unsigned long end)
{
struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
struct mmu_gather *tlb;
unsigned long nr_accounted = 0;
lru_add_drain();
tlb = tlb_gather_mmu(mm, 0);
update_hiwater_rss(mm);
unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
vm_unacct_memory(nr_accounted);
free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
next? next->vm_start: 0);
tlb_finish_mmu(tlb, start, end);
}
/*
* Create a list of vma's touched by the unmap, removing them from the mm's
* vma list as we go..
*/
static void
detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
struct vm_area_struct *prev, unsigned long end)
{
struct vm_area_struct **insertion_point;
struct vm_area_struct *tail_vma = NULL;
unsigned long addr;
insertion_point = (prev ? &prev->vm_next : &mm->mmap);
do {
rb_erase(&vma->vm_rb, &mm->mm_rb);
mm->map_count--;
tail_vma = vma;
vma = vma->vm_next;
} while (vma && vma->vm_start < end);
*insertion_point = vma;
tail_vma->vm_next = NULL;
if (mm->unmap_area == arch_unmap_area)
addr = prev ? prev->vm_end : mm->mmap_base;
else
addr = vma ? vma->vm_start : mm->mmap_base;
mm->unmap_area(mm, addr);
mm->mmap_cache = NULL; /* Kill the cache. */
}
/*
* Split a vma into two pieces at address 'addr', a new vma is allocated
* either for the first part or the the tail.
*/
int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
unsigned long addr, int new_below)
{
struct mempolicy *pol;
struct vm_area_struct *new;
if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK))
return -EINVAL;
if (mm->map_count >= sysctl_max_map_count)
return -ENOMEM;
new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
if (!new)
return -ENOMEM;
/* most fields are the same, copy all, and then fixup */
*new = *vma;
if (new_below)
new->vm_end = addr;
else {
new->vm_start = addr;
new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
}
pol = mpol_copy(vma_policy(vma));
if (IS_ERR(pol)) {
kmem_cache_free(vm_area_cachep, new);
return PTR_ERR(pol);
}
vma_set_policy(new, pol);
if (new->vm_file)
get_file(new->vm_file);
if (new->vm_ops && new->vm_ops->open)
new->vm_ops->open(new);
if (new_below)
vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
((addr - new->vm_start) >> PAGE_SHIFT), new);
else
vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
return 0;
}
/* Munmap is split into 2 main parts -- this part which finds
* what needs doing, and the areas themselves, which do the
* work. This now handles partial unmappings.
* Jeremy Fitzhardinge <jeremy@goop.org>
*/
int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
{
unsigned long end;
struct vm_area_struct *vma, *prev, *last;
if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
return -EINVAL;
if ((len = PAGE_ALIGN(len)) == 0)
return -EINVAL;
/* Find the first overlapping VMA */
vma = find_vma_prev(mm, start, &prev);
if (!vma)
return 0;
/* we have start < vma->vm_end */
/* if it doesn't overlap, we have nothing.. */
end = start + len;
if (vma->vm_start >= end)
return 0;
/*
* If we need to split any vma, do it now to save pain later.
*
* Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
* unmapped vm_area_struct will remain in use: so lower split_vma
* places tmp vma above, and higher split_vma places tmp vma below.
*/
if (start > vma->vm_start) {
int error = split_vma(mm, vma, start, 0);
if (error)
return error;
prev = vma;
}
/* Does it split the last one? */
last = find_vma(mm, end);
if (last && end > last->vm_start) {
int error = split_vma(mm, last, end, 1);
if (error)
return error;
}
vma = prev? prev->vm_next: mm->mmap;
/*
* Remove the vma's, and unmap the actual pages
*/
detach_vmas_to_be_unmapped(mm, vma, prev, end);
unmap_region(mm, vma, prev, start, end);
/* Fix up all other VM information */
remove_vma_list(mm, vma);
return 0;
}
EXPORT_SYMBOL(do_munmap);
asmlinkage long sys_munmap(unsigned long addr, size_t len)
{
int ret;
struct mm_struct *mm = current->mm;
profile_munmap(addr);
down_write(&mm->mmap_sem);
ret = do_munmap(mm, addr, len);
up_write(&mm->mmap_sem);
return ret;
}
static inline void verify_mm_writelocked(struct mm_struct *mm)
{
#ifdef CONFIG_DEBUG_VM
if (unlikely(down_read_trylock(&mm->mmap_sem))) {
WARN_ON(1);
up_read(&mm->mmap_sem);
}
#endif
}
/*
* this is really a simplified "do_mmap". it only handles
* anonymous maps. eventually we may be able to do some
* brk-specific accounting here.
*/
unsigned long do_brk(unsigned long addr, unsigned long len)
{
struct mm_struct * mm = current->mm;
struct vm_area_struct * vma, * prev;
unsigned long flags;
struct rb_node ** rb_link, * rb_parent;
pgoff_t pgoff = addr >> PAGE_SHIFT;
int error;
len = PAGE_ALIGN(len);
if (!len)
return addr;
if ((addr + len) > TASK_SIZE || (addr + len) < addr)
return -EINVAL;
if (is_hugepage_only_range(mm, addr, len))
return -EINVAL;
flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
error = arch_mmap_check(addr, len, flags);
if (error)
return error;
/*
* mlock MCL_FUTURE?
*/
if (mm->def_flags & VM_LOCKED) {
unsigned long locked, lock_limit;
locked = len >> PAGE_SHIFT;
locked += mm->locked_vm;
lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
lock_limit >>= PAGE_SHIFT;
if (locked > lock_limit && !capable(CAP_IPC_LOCK))
return -EAGAIN;
}
/*
* mm->mmap_sem is required to protect against another thread
* changing the mappings in case we sleep.
*/
verify_mm_writelocked(mm);
/*
* Clear old maps. this also does some error checking for us
*/
munmap_back:
vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
if (vma && vma->vm_start < addr + len) {
if (do_munmap(mm, addr, len))
return -ENOMEM;
goto munmap_back;
}
/* Check against address space limits *after* clearing old maps... */
if (!may_expand_vm(mm, len >> PAGE_SHIFT))
return -ENOMEM;
if (mm->map_count > sysctl_max_map_count)
return -ENOMEM;
if (security_vm_enough_memory(len >> PAGE_SHIFT))
return -ENOMEM;
/* Can we just expand an old private anonymous mapping? */
if (vma_merge(mm, prev, addr, addr + len, flags,
NULL, NULL, pgoff, NULL))
goto out;
/*
* create a vma struct for an anonymous mapping
*/
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
if (!vma) {
vm_unacct_memory(len >> PAGE_SHIFT);
return -ENOMEM;
}
vma->vm_mm = mm;
vma->vm_start = addr;
vma->vm_end = addr + len;
vma->vm_pgoff = pgoff;
vma->vm_flags = flags;
vma->vm_page_prot = protection_map[flags &
(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
vma_link(mm, vma, prev, rb_link, rb_parent);
out:
mm->total_vm += len >> PAGE_SHIFT;
if (flags & VM_LOCKED) {
mm->locked_vm += len >> PAGE_SHIFT;
make_pages_present(addr, addr + len);
}
return addr;
}
EXPORT_SYMBOL(do_brk);
/* Release all mmaps. */
void exit_mmap(struct mm_struct *mm)
{
struct mmu_gather *tlb;
struct vm_area_struct *vma = mm->mmap;
unsigned long nr_accounted = 0;
unsigned long end;
lru_add_drain();
flush_cache_mm(mm);
tlb = tlb_gather_mmu(mm, 1);
/* Don't update_hiwater_rss(mm) here, do_exit already did */
/* Use -1 here to ensure all VMAs in the mm are unmapped */
end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
vm_unacct_memory(nr_accounted);
free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
tlb_finish_mmu(tlb, 0, end);
/*
* Walk the list again, actually closing and freeing it,
* with preemption enabled, without holding any MM locks.
*/
while (vma)
vma = remove_vma(vma);
BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
}
/* Insert vm structure into process list sorted by address
* and into the inode's i_mmap tree. If vm_file is non-NULL
* then i_mmap_lock is taken here.
*/
int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
{
struct vm_area_struct * __vma, * prev;
struct rb_node ** rb_link, * rb_parent;
/*
* The vm_pgoff of a purely anonymous vma should be irrelevant
* until its first write fault, when page's anon_vma and index
* are set. But now set the vm_pgoff it will almost certainly
* end up with (unless mremap moves it elsewhere before that
* first wfault), so /proc/pid/maps tells a consistent story.
*
* By setting it to reflect the virtual start address of the
* vma, merges and splits can happen in a seamless way, just
* using the existing file pgoff checks and manipulations.
* Similarly in do_mmap_pgoff and in do_brk.
*/
if (!vma->vm_file) {
BUG_ON(vma->anon_vma);
vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
}
__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
if (__vma && __vma->vm_start < vma->vm_end)
return -ENOMEM;
if ((vma->vm_flags & VM_ACCOUNT) &&
security_vm_enough_memory(vma_pages(vma)))
return -ENOMEM;
vma_link(mm, vma, prev, rb_link, rb_parent);
return 0;
}
/*
* Copy the vma structure to a new location in the same mm,
* prior to moving page table entries, to effect an mremap move.
*/
struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
unsigned long addr, unsigned long len, pgoff_t pgoff)
{
struct vm_area_struct *vma = *vmap;
unsigned long vma_start = vma->vm_start;
struct mm_struct *mm = vma->vm_mm;
struct vm_area_struct *new_vma, *prev;
struct rb_node **rb_link, *rb_parent;
struct mempolicy *pol;
/*
* If anonymous vma has not yet been faulted, update new pgoff
* to match new location, to increase its chance of merging.
*/
if (!vma->vm_file && !vma->anon_vma)
pgoff = addr >> PAGE_SHIFT;
find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
if (new_vma) {
/*
* Source vma may have been merged into new_vma
*/
if (vma_start >= new_vma->vm_start &&
vma_start < new_vma->vm_end)
*vmap = new_vma;
} else {
new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
if (new_vma) {
*new_vma = *vma;
pol = mpol_copy(vma_policy(vma));
if (IS_ERR(pol)) {
kmem_cache_free(vm_area_cachep, new_vma);
return NULL;
}
vma_set_policy(new_vma, pol);
new_vma->vm_start = addr;
new_vma->vm_end = addr + len;
new_vma->vm_pgoff = pgoff;
if (new_vma->vm_file)
get_file(new_vma->vm_file);
if (new_vma->vm_ops && new_vma->vm_ops->open)
new_vma->vm_ops->open(new_vma);
vma_link(mm, new_vma, prev, rb_link, rb_parent);
}
}
return new_vma;
}
/*
* Return true if the calling process may expand its vm space by the passed
* number of pages
*/
int may_expand_vm(struct mm_struct *mm, unsigned long npages)
{
unsigned long cur = mm->total_vm; /* pages */
unsigned long lim;
lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
if (cur + npages > lim)
return 0;
return 1;
}