aboutsummaryrefslogblamecommitdiffstats
path: root/mm/migrate.c
blob: 96b9546e69e0f23cd99f03c6d06a67dfeadeda23 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
















                                                                          
                          
                          
                              





                            


                     










































                                                                                












































                                                                    
















































                                                                                











































































                                                                            
  
                                   




                                                  
   

                                                                   
 

                                    






                                          





                                                                    
                                                          

                                                      
                               



                                                               

                          
                  



                                                              
      






                                              



                                    
                                                                      




















                                              
                  
                                 
      











                                                               
 




                                                                   

                                                                




                                 





                                                              

                                                        




                                                                        
                                                               




                                         




                            



                                                                             

                                                        
 


                                      
                                    
                                                            


                                  
                                                               








































                                                        



































                                                                          
  




                                                             
                   






















































                                                                                
                             
                                                     
                    

                                                 
 
                  
                                                          



                                                                          
                                         


                                      







                                                      
                  




                                                                       
                                                                  
 
                                                     






                                                                          

                                                                       

                                                                           
 


                                                             


                                     


                                                          


                                  










                                                              

















                                                                              





































































                                                                            
/*
 * Memory Migration functionality - linux/mm/migration.c
 *
 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 *
 * Page migration was first developed in the context of the memory hotplug
 * project. The main authors of the migration code are:
 *
 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 * Hirokazu Takahashi <taka@valinux.co.jp>
 * Dave Hansen <haveblue@us.ibm.com>
 * Christoph Lameter <clameter@sgi.com>
 */

#include <linux/migrate.h>
#include <linux/module.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/pagemap.h>
#include <linux/buffer_head.h>
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>

#include "internal.h"

/* The maximum number of pages to take off the LRU for migration */
#define MIGRATE_CHUNK_SIZE 256

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

/*
 * Isolate one page from the LRU lists. If successful put it onto
 * the indicated list with elevated page count.
 *
 * Result:
 *  -EBUSY: page not on LRU list
 *  0: page removed from LRU list and added to the specified list.
 */
int isolate_lru_page(struct page *page, struct list_head *pagelist)
{
	int ret = -EBUSY;

	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
			ret = 0;
			get_page(page);
			ClearPageLRU(page);
			if (PageActive(page))
				del_page_from_active_list(zone, page);
			else
				del_page_from_inactive_list(zone, page);
			list_add_tail(&page->lru, pagelist);
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

/*
 * migrate_prep() needs to be called after we have compiled the list of pages
 * to be migrated using isolate_lru_page() but before we begin a series of calls
 * to migrate_pages().
 */
int migrate_prep(void)
{
	/*
	 * Clear the LRU lists so pages can be isolated.
	 * Note that pages may be moved off the LRU after we have
	 * drained them. Those pages will fail to migrate like other
	 * pages that may be busy.
	 */
	lru_add_drain_all();

	return 0;
}

static inline void move_to_lru(struct page *page)
{
	list_del(&page->lru);
	if (PageActive(page)) {
		/*
		 * lru_cache_add_active checks that
		 * the PG_active bit is off.
		 */
		ClearPageActive(page);
		lru_cache_add_active(page);
	} else {
		lru_cache_add(page);
	}
	put_page(page);
}

/*
 * Add isolated pages on the list back to the LRU.
 *
 * returns the number of pages put back.
 */
int putback_lru_pages(struct list_head *l)
{
	struct page *page;
	struct page *page2;
	int count = 0;

	list_for_each_entry_safe(page, page2, l, lru) {
		move_to_lru(page);
		count++;
	}
	return count;
}

static inline int is_swap_pte(pte_t pte)
{
	return !pte_none(pte) && !pte_present(pte) && !pte_file(pte);
}

/*
 * Restore a potential migration pte to a working pte entry
 */
static void remove_migration_pte(struct vm_area_struct *vma, unsigned long addr,
		struct page *old, struct page *new)
{
	struct mm_struct *mm = vma->vm_mm;
	swp_entry_t entry;
 	pgd_t *pgd;
 	pud_t *pud;
 	pmd_t *pmd;
	pte_t *ptep, pte;
 	spinlock_t *ptl;

 	pgd = pgd_offset(mm, addr);
	if (!pgd_present(*pgd))
                return;

	pud = pud_offset(pgd, addr);
	if (!pud_present(*pud))
                return;

	pmd = pmd_offset(pud, addr);
	if (!pmd_present(*pmd))
		return;

	ptep = pte_offset_map(pmd, addr);

	if (!is_swap_pte(*ptep)) {
		pte_unmap(ptep);
 		return;
 	}

 	ptl = pte_lockptr(mm, pmd);
 	spin_lock(ptl);
	pte = *ptep;
	if (!is_swap_pte(pte))
		goto out;

	entry = pte_to_swp_entry(pte);

	if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
		goto out;

	get_page(new);
	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
	if (is_write_migration_entry(entry))
		pte = pte_mkwrite(pte);
	set_pte_at(mm, addr, ptep, pte);
	page_add_anon_rmap(new, vma, addr);
out:
	pte_unmap_unlock(ptep, ptl);
}

/*
 * Get rid of all migration entries and replace them by
 * references to the indicated page.
 *
 * Must hold mmap_sem lock on at least one of the vmas containing
 * the page so that the anon_vma cannot vanish.
 */
static void remove_migration_ptes(struct page *old, struct page *new)
{
	struct anon_vma *anon_vma;
	struct vm_area_struct *vma;
	unsigned long mapping;

	mapping = (unsigned long)new->mapping;

	if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
		return;

	/*
	 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
	 */
	anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
	spin_lock(&anon_vma->lock);

	list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
		remove_migration_pte(vma, page_address_in_vma(new, vma),
					old, new);

	spin_unlock(&anon_vma->lock);
}

/*
 * Something used the pte of a page under migration. We need to
 * get to the page and wait until migration is finished.
 * When we return from this function the fault will be retried.
 *
 * This function is called from do_swap_page().
 */
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
				unsigned long address)
{
	pte_t *ptep, pte;
	spinlock_t *ptl;
	swp_entry_t entry;
	struct page *page;

	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
	pte = *ptep;
	if (!is_swap_pte(pte))
		goto out;

	entry = pte_to_swp_entry(pte);
	if (!is_migration_entry(entry))
		goto out;

	page = migration_entry_to_page(entry);

	get_page(page);
	pte_unmap_unlock(ptep, ptl);
	wait_on_page_locked(page);
	put_page(page);
	return;
out:
	pte_unmap_unlock(ptep, ptl);
}

/*
 * Replace the page in the mapping.
 *
 * The number of remaining references must be:
 * 1 for anonymous pages without a mapping
 * 2 for pages with a mapping
 * 3 for pages with a mapping and PagePrivate set.
 */
static int migrate_page_move_mapping(struct address_space *mapping,
		struct page *newpage, struct page *page)
{
	struct page **radix_pointer;

	if (!mapping) {
		/* Anonymous page */
		if (page_count(page) != 1)
			return -EAGAIN;
		return 0;
	}

	write_lock_irq(&mapping->tree_lock);

	radix_pointer = (struct page **)radix_tree_lookup_slot(
						&mapping->page_tree,
						page_index(page));

	if (page_count(page) != 2 + !!PagePrivate(page) ||
			*radix_pointer != page) {
		write_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

	/*
	 * Now we know that no one else is looking at the page.
	 */
	get_page(newpage);
#ifdef CONFIG_SWAP
	if (PageSwapCache(page)) {
		SetPageSwapCache(newpage);
		set_page_private(newpage, page_private(page));
	}
#endif

	*radix_pointer = newpage;
	__put_page(page);
	write_unlock_irq(&mapping->tree_lock);

	return 0;
}

/*
 * Copy the page to its new location
 */
static void migrate_page_copy(struct page *newpage, struct page *page)
{
	copy_highpage(newpage, page);

	if (PageError(page))
		SetPageError(newpage);
	if (PageReferenced(page))
		SetPageReferenced(newpage);
	if (PageUptodate(page))
		SetPageUptodate(newpage);
	if (PageActive(page))
		SetPageActive(newpage);
	if (PageChecked(page))
		SetPageChecked(newpage);
	if (PageMappedToDisk(page))
		SetPageMappedToDisk(newpage);

	if (PageDirty(page)) {
		clear_page_dirty_for_io(page);
		set_page_dirty(newpage);
 	}

#ifdef CONFIG_SWAP
	ClearPageSwapCache(page);
#endif
	ClearPageActive(page);
	ClearPagePrivate(page);
	set_page_private(page, 0);
	page->mapping = NULL;

	/*
	 * If any waiters have accumulated on the new page then
	 * wake them up.
	 */
	if (PageWriteback(newpage))
		end_page_writeback(newpage);
}

/************************************************************
 *                    Migration functions
 ***********************************************************/

/* Always fail migration. Used for mappings that are not movable */
int fail_migrate_page(struct address_space *mapping,
			struct page *newpage, struct page *page)
{
	return -EIO;
}
EXPORT_SYMBOL(fail_migrate_page);

/*
 * Common logic to directly migrate a single page suitable for
 * pages that do not use PagePrivate.
 *
 * Pages are locked upon entry and exit.
 */
int migrate_page(struct address_space *mapping,
		struct page *newpage, struct page *page)
{
	int rc;

	BUG_ON(PageWriteback(page));	/* Writeback must be complete */

	rc = migrate_page_move_mapping(mapping, newpage, page);

	if (rc)
		return rc;

	migrate_page_copy(newpage, page);
	return 0;
}
EXPORT_SYMBOL(migrate_page);

/*
 * Migration function for pages with buffers. This function can only be used
 * if the underlying filesystem guarantees that no other references to "page"
 * exist.
 */
int buffer_migrate_page(struct address_space *mapping,
		struct page *newpage, struct page *page)
{
	struct buffer_head *bh, *head;
	int rc;

	if (!page_has_buffers(page))
		return migrate_page(mapping, newpage, page);

	head = page_buffers(page);

	rc = migrate_page_move_mapping(mapping, newpage, page);

	if (rc)
		return rc;

	bh = head;
	do {
		get_bh(bh);
		lock_buffer(bh);
		bh = bh->b_this_page;

	} while (bh != head);

	ClearPagePrivate(page);
	set_page_private(newpage, page_private(page));
	set_page_private(page, 0);
	put_page(page);
	get_page(newpage);

	bh = head;
	do {
		set_bh_page(bh, newpage, bh_offset(bh));
		bh = bh->b_this_page;

	} while (bh != head);

	SetPagePrivate(newpage);

	migrate_page_copy(newpage, page);

	bh = head;
	do {
		unlock_buffer(bh);
 		put_bh(bh);
		bh = bh->b_this_page;

	} while (bh != head);

	return 0;
}
EXPORT_SYMBOL(buffer_migrate_page);

static int fallback_migrate_page(struct address_space *mapping,
	struct page *newpage, struct page *page)
{
	/*
	 * Default handling if a filesystem does not provide
	 * a migration function. We can only migrate clean
	 * pages so try to write out any dirty pages first.
	 */
	if (PageDirty(page)) {
		switch (pageout(page, mapping)) {
		case PAGE_KEEP:
		case PAGE_ACTIVATE:
			return -EAGAIN;

		case PAGE_SUCCESS:
			/* Relock since we lost the lock */
			lock_page(page);
			/* Must retry since page state may have changed */
			return -EAGAIN;

		case PAGE_CLEAN:
			; /* try to migrate the page below */
		}
	}

	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
	if (page_has_buffers(page) &&
	    !try_to_release_page(page, GFP_KERNEL))
		return -EAGAIN;

	return migrate_page(mapping, newpage, page);
}

/*
 * migrate_pages
 *
 * Two lists are passed to this function. The first list
 * contains the pages isolated from the LRU to be migrated.
 * The second list contains new pages that the pages isolated
 * can be moved to.
 *
 * The function returns after 10 attempts or if no pages
 * are movable anymore because to has become empty
 * or no retryable pages exist anymore.
 *
 * Return: Number of pages not migrated when "to" ran empty.
 */
int migrate_pages(struct list_head *from, struct list_head *to,
		  struct list_head *moved, struct list_head *failed)
{
	int retry;
	int nr_failed = 0;
	int pass = 0;
	struct page *page;
	struct page *page2;
	int swapwrite = current->flags & PF_SWAPWRITE;
	int rc;

	if (!swapwrite)
		current->flags |= PF_SWAPWRITE;

redo:
	retry = 0;

	list_for_each_entry_safe(page, page2, from, lru) {
		struct page *newpage = NULL;
		struct address_space *mapping;

		cond_resched();

		rc = 0;
		if (page_count(page) == 1)
			/* page was freed from under us. So we are done. */
			goto next;

		if (to && list_empty(to))
			break;

		/*
		 * Skip locked pages during the first two passes to give the
		 * functions holding the lock time to release the page. Later we
		 * use lock_page() to have a higher chance of acquiring the
		 * lock.
		 */
		rc = -EAGAIN;
		if (pass > 2)
			lock_page(page);
		else
			if (TestSetPageLocked(page))
				goto next;

		/*
		 * Only wait on writeback if we have already done a pass where
		 * we we may have triggered writeouts for lots of pages.
		 */
		if (pass > 0)
			wait_on_page_writeback(page);
		else
			if (PageWriteback(page))
				goto unlock_page;

		/*
		 * Establish migration ptes or remove ptes
		 */
		rc = -EPERM;
		if (try_to_unmap(page, 1) == SWAP_FAIL)
			/* A vma has VM_LOCKED set -> permanent failure */
			goto unlock_page;

		rc = -EAGAIN;
		if (page_mapped(page))
			goto unlock_page;

		newpage = lru_to_page(to);
		lock_page(newpage);
		/* Prepare mapping for the new page.*/
		newpage->index = page->index;
		newpage->mapping = page->mapping;

		/*
		 * Pages are properly locked and writeback is complete.
		 * Try to migrate the page.
		 */
		mapping = page_mapping(page);
		if (!mapping)
			rc = migrate_page(mapping, newpage, page);

		else if (mapping->a_ops->migratepage)
			/*
			 * Most pages have a mapping and most filesystems
			 * should provide a migration function. Anonymous
			 * pages are part of swap space which also has its
			 * own migration function. This is the most common
			 * path for page migration.
			 */
			rc = mapping->a_ops->migratepage(mapping,
							newpage, page);
		else
			rc = fallback_migrate_page(mapping, newpage, page);

		if (!rc)
			remove_migration_ptes(page, newpage);

		unlock_page(newpage);

unlock_page:
		if (rc)
			remove_migration_ptes(page, page);

		unlock_page(page);

next:
		if (rc) {
			if (newpage)
				newpage->mapping = NULL;

			if (rc == -EAGAIN)
				retry++;
			else {
				/* Permanent failure */
				list_move(&page->lru, failed);
				nr_failed++;
			}
		} else {
			if (newpage) {
				/* Successful migration. Return page to LRU */
				move_to_lru(newpage);
			}
			list_move(&page->lru, moved);
		}
	}
	if (retry && pass++ < 10)
		goto redo;

	if (!swapwrite)
		current->flags &= ~PF_SWAPWRITE;

	return nr_failed + retry;
}

/*
 * Migrate the list 'pagelist' of pages to a certain destination.
 *
 * Specify destination with either non-NULL vma or dest_node >= 0
 * Return the number of pages not migrated or error code
 */
int migrate_pages_to(struct list_head *pagelist,
			struct vm_area_struct *vma, int dest)
{
	LIST_HEAD(newlist);
	LIST_HEAD(moved);
	LIST_HEAD(failed);
	int err = 0;
	unsigned long offset = 0;
	int nr_pages;
	struct page *page;
	struct list_head *p;

redo:
	nr_pages = 0;
	list_for_each(p, pagelist) {
		if (vma) {
			/*
			 * The address passed to alloc_page_vma is used to
			 * generate the proper interleave behavior. We fake
			 * the address here by an increasing offset in order
			 * to get the proper distribution of pages.
			 *
			 * No decision has been made as to which page
			 * a certain old page is moved to so we cannot
			 * specify the correct address.
			 */
			page = alloc_page_vma(GFP_HIGHUSER, vma,
					offset + vma->vm_start);
			offset += PAGE_SIZE;
		}
		else
			page = alloc_pages_node(dest, GFP_HIGHUSER, 0);

		if (!page) {
			err = -ENOMEM;
			goto out;
		}
		list_add_tail(&page->lru, &newlist);
		nr_pages++;
		if (nr_pages > MIGRATE_CHUNK_SIZE)
			break;
	}
	err = migrate_pages(pagelist, &newlist, &moved, &failed);

	putback_lru_pages(&moved);	/* Call release pages instead ?? */

	if (err >= 0 && list_empty(&newlist) && !list_empty(pagelist))
		goto redo;
out:
	/* Return leftover allocated pages */
	while (!list_empty(&newlist)) {
		page = list_entry(newlist.next, struct page, lru);
		list_del(&page->lru);
		__free_page(page);
	}
	list_splice(&failed, pagelist);
	if (err < 0)
		return err;

	/* Calculate number of leftover pages */
	nr_pages = 0;
	list_for_each(p, pagelist)
		nr_pages++;
	return nr_pages;
}