aboutsummaryrefslogblamecommitdiffstats
path: root/litmus/sched_pfp.c
blob: b1d5b4326a0e181d6a0efe2238bf0c76986cc13d (plain) (tree)
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
































































































                                                                              





                                                                            



































































































































































































                                                                               
                                       












































                                                                                        
                                     
                                   

                                       


































































































































































































































































































































































































































































































































































































































                                                                                          

                                       











                                                                      





                                                                           
















































































































































































































































                                                                                             




















































































































                                                                   































































































































































































































































                                                                                   














                                                 













                                                                         
                                                          






                                     
                                                                    
                
      
 
                            
























































                                                                                   
/*
 * litmus/sched_pfp.c
 *
 * Implementation of partitioned fixed-priority scheduling.
 * Based on PSN-EDF.
 */

#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/module.h>

#include <litmus/litmus.h>
#include <litmus/wait.h>
#include <litmus/jobs.h>
#include <litmus/preempt.h>
#include <litmus/fp_common.h>
#include <litmus/sched_plugin.h>
#include <litmus/sched_trace.h>
#include <litmus/trace.h>
#include <litmus/budget.h>

#include <linux/uaccess.h>


typedef struct {
	rt_domain_t 		domain;
	struct fp_prio_queue	ready_queue;
	int          		cpu;
	struct task_struct* 	scheduled; /* only RT tasks */
/*
 * scheduling lock slock
 * protects the domain and serializes scheduling decisions
 */
#define slock domain.ready_lock

} pfp_domain_t;

DEFINE_PER_CPU(pfp_domain_t, pfp_domains);

pfp_domain_t* pfp_doms[NR_CPUS];

#define local_pfp		(&__get_cpu_var(pfp_domains))
#define remote_dom(cpu)		(&per_cpu(pfp_domains, cpu).domain)
#define remote_pfp(cpu)	(&per_cpu(pfp_domains, cpu))
#define task_dom(task)		remote_dom(get_partition(task))
#define task_pfp(task)		remote_pfp(get_partition(task))

/* we assume the lock is being held */
static void preempt(pfp_domain_t *pfp)
{
	preempt_if_preemptable(pfp->scheduled, pfp->cpu);
}

static unsigned int priority_index(struct task_struct* t)
{
#ifdef CONFIG_LOCKING
	if (unlikely(t->rt_param.inh_task))
		/* use effective priority */
		t = t->rt_param.inh_task;

	if (is_priority_boosted(t)) {
		/* zero is reserved for priority-boosted tasks */
		return 0;
	} else
#endif
		return get_priority(t);
}


static void pfp_release_jobs(rt_domain_t* rt, struct bheap* tasks)
{
	pfp_domain_t *pfp = container_of(rt, pfp_domain_t, domain);
	unsigned long flags;
	struct task_struct* t;
	struct bheap_node* hn;

	raw_spin_lock_irqsave(&pfp->slock, flags);

	while (!bheap_empty(tasks)) {
		hn = bheap_take(fp_ready_order, tasks);
		t = bheap2task(hn);
		TRACE_TASK(t, "released (part:%d prio:%d)\n",
			   get_partition(t), get_priority(t));
		fp_prio_add(&pfp->ready_queue, t, priority_index(t));
	}

	/* do we need to preempt? */
	if (fp_higher_prio(fp_prio_peek(&pfp->ready_queue), pfp->scheduled)) {
		TRACE_CUR("preempted by new release\n");
		preempt(pfp);
	}

	raw_spin_unlock_irqrestore(&pfp->slock, flags);
}

static void pfp_preempt_check(pfp_domain_t *pfp)
{
	if (fp_higher_prio(fp_prio_peek(&pfp->ready_queue), pfp->scheduled))
		preempt(pfp);
}

static void pfp_domain_init(pfp_domain_t* pfp,
			       int cpu)
{
	fp_domain_init(&pfp->domain, NULL, pfp_release_jobs);
	pfp->cpu      		= cpu;
	pfp->scheduled		= NULL;
	fp_prio_queue_init(&pfp->ready_queue);
}

static void requeue(struct task_struct* t, pfp_domain_t *pfp)
{
	if (t->state != TASK_RUNNING)
		TRACE_TASK(t, "requeue: !TASK_RUNNING\n");

	set_rt_flags(t, RT_F_RUNNING);
	if (is_released(t, litmus_clock()))
		fp_prio_add(&pfp->ready_queue, t, priority_index(t));
	else
		add_release(&pfp->domain, t); /* it has got to wait */
}

static void job_completion(struct task_struct* t, int forced)
{
	sched_trace_task_completion(t,forced);
	TRACE_TASK(t, "job_completion().\n");

	set_rt_flags(t, RT_F_SLEEP);
	prepare_for_next_period(t);
}

static void pfp_tick(struct task_struct *t)
{
	pfp_domain_t *pfp = local_pfp;

	/* Check for inconsistency. We don't need the lock for this since
	 * ->scheduled is only changed in schedule, which obviously is not
	 *  executing in parallel on this CPU
	 */
	BUG_ON(is_realtime(t) && t != pfp->scheduled);

	if (is_realtime(t) && budget_enforced(t) && budget_exhausted(t)) {
		if (!is_np(t)) {
			litmus_reschedule_local();
			TRACE("pfp_scheduler_tick: "
			      "%d is preemptable "
			      " => FORCE_RESCHED\n", t->pid);
		} else if (is_user_np(t)) {
			TRACE("pfp_scheduler_tick: "
			      "%d is non-preemptable, "
			      "preemption delayed.\n", t->pid);
			request_exit_np(t);
		}
	}
}

static struct task_struct* pfp_schedule(struct task_struct * prev)
{
	pfp_domain_t* 	pfp = local_pfp;
	struct task_struct*	next;

	int out_of_time, sleep, preempt, np, exists, blocks, resched, migrate;

	raw_spin_lock(&pfp->slock);

	/* sanity checking
	 * differently from gedf, when a task exits (dead)
	 * pfp->schedule may be null and prev _is_ realtime
	 */
	BUG_ON(pfp->scheduled && pfp->scheduled != prev);
	BUG_ON(pfp->scheduled && !is_realtime(prev));

	/* (0) Determine state */
	exists      = pfp->scheduled != NULL;
	blocks      = exists && !is_running(pfp->scheduled);
	out_of_time = exists &&
				  budget_enforced(pfp->scheduled) &&
				  budget_exhausted(pfp->scheduled);
	np 	    = exists && is_np(pfp->scheduled);
	sleep	    = exists && get_rt_flags(pfp->scheduled) == RT_F_SLEEP;
	migrate     = exists && get_partition(pfp->scheduled) != pfp->cpu;
	preempt     = migrate || fp_preemption_needed(&pfp->ready_queue, prev);

	/* If we need to preempt do so.
	 * The following checks set resched to 1 in case of special
	 * circumstances.
	 */
	resched = preempt;

	/* If a task blocks we have no choice but to reschedule.
	 */
	if (blocks)
		resched = 1;

	/* Request a sys_exit_np() call if we would like to preempt but cannot.
	 * Multiple calls to request_exit_np() don't hurt.
	 */
	if (np && (out_of_time || preempt || sleep))
		request_exit_np(pfp->scheduled);

	/* Any task that is preemptable and either exhausts its execution
	 * budget or wants to sleep completes. We may have to reschedule after
	 * this.
	 */
	if (!np && (out_of_time || sleep) && !blocks && !migrate) {
		job_completion(pfp->scheduled, !sleep);
		resched = 1;
	}

	/* The final scheduling decision. Do we need to switch for some reason?
	 * Switch if we are in RT mode and have no task or if we need to
	 * resched.
	 */
	next = NULL;
	if ((!np || blocks) && (resched || !exists)) {
		/* When preempting a task that does not block, then
		 * re-insert it into either the ready queue or the
		 * release queue (if it completed). requeue() picks
		 * the appropriate queue.
		 */
		if (pfp->scheduled && !blocks  && !migrate)
			requeue(pfp->scheduled, pfp);
		next = fp_prio_take(&pfp->ready_queue);
	} else
		/* Only override Linux scheduler if we have a real-time task
		 * scheduled that needs to continue.
		 */
		if (exists)
			next = prev;

	if (next) {
		TRACE_TASK(next, "scheduled at %llu\n", litmus_clock());
		set_rt_flags(next, RT_F_RUNNING);
	} else {
		TRACE("becoming idle at %llu\n", litmus_clock());
	}

	pfp->scheduled = next;
	sched_state_task_picked();
	raw_spin_unlock(&pfp->slock);

	return next;
}

#ifdef CONFIG_LITMUS_LOCKING

/* prev is no longer scheduled --- see if it needs to migrate */
static void pfp_finish_switch(struct task_struct *prev)
{
	pfp_domain_t *to;

	if (is_realtime(prev) &&
	    is_running(prev) &&
	    get_partition(prev) != smp_processor_id()) {
		TRACE_TASK(prev, "needs to migrate from P%d to P%d\n",
			   smp_processor_id(), get_partition(prev));

		to = task_pfp(prev);

		raw_spin_lock(&to->slock);

		TRACE_TASK(prev, "adding to queue on P%d\n", to->cpu);
		requeue(prev, to);
		if (fp_preemption_needed(&to->ready_queue, to->scheduled))
			preempt(to);

		raw_spin_unlock(&to->slock);

	}
}

#endif

/*	Prepare a task for running in RT mode
 */
static void pfp_task_new(struct task_struct * t, int on_rq, int running)
{
	pfp_domain_t* 	pfp = task_pfp(t);
	unsigned long		flags;

	TRACE_TASK(t, "P-FP: task new, cpu = %d\n",
		   t->rt_param.task_params.cpu);

	/* setup job parameters */
	release_at(t, litmus_clock());

	/* The task should be running in the queue, otherwise signal
	 * code will try to wake it up with fatal consequences.
	 */
	raw_spin_lock_irqsave(&pfp->slock, flags);
	if (running) {
		/* there shouldn't be anything else running at the time */
		BUG_ON(pfp->scheduled);
		pfp->scheduled = t;
	} else {
		requeue(t, pfp);
		/* maybe we have to reschedule */
		pfp_preempt_check(pfp);
	}
	raw_spin_unlock_irqrestore(&pfp->slock, flags);
}

static void pfp_task_wake_up(struct task_struct *task)
{
	unsigned long		flags;
	pfp_domain_t*		pfp = task_pfp(task);
	lt_t			now;

	TRACE_TASK(task, "wake_up at %llu\n", litmus_clock());
	raw_spin_lock_irqsave(&pfp->slock, flags);

#ifdef CONFIG_LITMUS_LOCKING
	/* Should only be queued when processing a fake-wake up due to a
	 * migration-related state change. */
	if (unlikely(is_queued(task))) {
		TRACE_TASK(task, "WARNING: waking task still queued. Is this right?\n");
		goto out_unlock;
	}
#else
	BUG_ON(is_queued(task));
#endif
	now = litmus_clock();
	if (is_tardy(task, now)
#ifdef CONFIG_LITMUS_LOCKING
	/* We need to take suspensions because of semaphores into
	 * account! If a job resumes after being suspended due to acquiring
	 * a semaphore, it should never be treated as a new job release.
	 */
	    && !is_priority_boosted(task)
#endif
		) {
		/* new sporadic release */
		release_at(task, now);
		sched_trace_task_release(task);
	}

	/* Only add to ready queue if it is not the currently-scheduled
	 * task. This could be the case if a task was woken up concurrently
	 * on a remote CPU before the executing CPU got around to actually
	 * de-scheduling the task, i.e., wake_up() raced with schedule()
	 * and won. Also, don't requeue if it is still queued, which can
	 * happen under the DPCP due wake-ups racing with migrations.
	 */
	if (pfp->scheduled != task) {
		requeue(task, pfp);
		pfp_preempt_check(pfp);
	}

out_unlock:
	raw_spin_unlock_irqrestore(&pfp->slock, flags);
	TRACE_TASK(task, "wake up done\n");
}

static void pfp_task_block(struct task_struct *t)
{
	/* only running tasks can block, thus t is in no queue */
	TRACE_TASK(t, "block at %llu, state=%d\n", litmus_clock(), t->state);

	BUG_ON(!is_realtime(t));

	/* If this task blocked normally, it shouldn't be queued. The exception is
	 * if this is a simulated block()/wakeup() pair from the pull-migration code path.
	 * This should only happen if the DPCP is being used.
	 */
#ifdef CONFIG_LITMUS_LOCKING
	if (unlikely(is_queued(t)))
		TRACE_TASK(t, "WARNING: blocking task still queued. Is this right?\n");
#else
	BUG_ON(is_queued(t));
#endif
}

static void pfp_task_exit(struct task_struct * t)
{
	unsigned long flags;
	pfp_domain_t* 	pfp = task_pfp(t);
	rt_domain_t*		dom;

	raw_spin_lock_irqsave(&pfp->slock, flags);
	if (is_queued(t)) {
		BUG(); /* This currently doesn't work. */
		/* dequeue */
		dom  = task_dom(t);
		remove(dom, t);
	}
	if (pfp->scheduled == t) {
		pfp->scheduled = NULL;
		preempt(pfp);
	}
	TRACE_TASK(t, "RIP, now reschedule\n");

	raw_spin_unlock_irqrestore(&pfp->slock, flags);
}

#ifdef CONFIG_LITMUS_LOCKING

#include <litmus/fdso.h>
#include <litmus/srp.h>

static void fp_dequeue(pfp_domain_t* pfp, struct task_struct* t)
{
	BUG_ON(pfp->scheduled == t && is_queued(t));
	if (is_queued(t))
		fp_prio_remove(&pfp->ready_queue, t, priority_index(t));
}

static void fp_set_prio_inh(pfp_domain_t* pfp, struct task_struct* t,
			    struct task_struct* prio_inh)
{
	int requeue;

	if (!t || t->rt_param.inh_task == prio_inh) {
		/* no update  required */
		if (t)
			TRACE_TASK(t, "no prio-inh update required\n");
		return;
	}

	requeue = is_queued(t);
	TRACE_TASK(t, "prio-inh: is_queued:%d\n", requeue);

	if (requeue)
		/* first remove */
		fp_dequeue(pfp, t);

	t->rt_param.inh_task = prio_inh;

	if (requeue)
		/* add again to the right queue */
		fp_prio_add(&pfp->ready_queue, t, priority_index(t));
}

static int effective_agent_priority(int prio)
{
	/* make sure agents have higher priority */
	return prio - LITMUS_MAX_PRIORITY;
}

static lt_t prio_point(int eprio)
{
	/* make sure we have non-negative prio points */
	return eprio + LITMUS_MAX_PRIORITY;
}

static int prio_from_point(lt_t prio_point)
{
	return ((int) prio_point) - LITMUS_MAX_PRIORITY;
}

static void boost_priority(struct task_struct* t, lt_t priority_point)
{
	unsigned long		flags;
	pfp_domain_t* 	pfp = task_pfp(t);

	raw_spin_lock_irqsave(&pfp->slock, flags);


	TRACE_TASK(t, "priority boosted at %llu\n", litmus_clock());

	tsk_rt(t)->priority_boosted = 1;
	/* tie-break by protocol-specific priority point */
	tsk_rt(t)->boost_start_time = priority_point;

	if (pfp->scheduled != t) {
		/* holder may be queued: first stop queue changes */
		raw_spin_lock(&pfp->domain.release_lock);
		if (is_queued(t) &&
		    /* If it is queued, then we need to re-order. */
		    bheap_decrease(fp_ready_order, tsk_rt(t)->heap_node) &&
		    /* If we bubbled to the top, then we need to check for preemptions. */
		    fp_preemption_needed(&pfp->ready_queue, pfp->scheduled))
				preempt(pfp);
		raw_spin_unlock(&pfp->domain.release_lock);
	} /* else: nothing to do since the job is not queued while scheduled */

	raw_spin_unlock_irqrestore(&pfp->slock, flags);
}

static void unboost_priority(struct task_struct* t)
{
	unsigned long		flags;
	pfp_domain_t* 	pfp = task_pfp(t);
	lt_t			now;

	raw_spin_lock_irqsave(&pfp->slock, flags);
	now = litmus_clock();

	/* assumption: this only happens when the job is scheduled */
	BUG_ON(pfp->scheduled != t);

	TRACE_TASK(t, "priority restored at %llu\n", now);

	/* priority boosted jobs must be scheduled */
	BUG_ON(pfp->scheduled != t);

	tsk_rt(t)->priority_boosted = 0;
	tsk_rt(t)->boost_start_time = 0;

	/* check if this changes anything */
	if (fp_preemption_needed(&pfp->ready_queue, pfp->scheduled))
		preempt(pfp);

	raw_spin_unlock_irqrestore(&pfp->slock, flags);
}

/* ******************** SRP support ************************ */

static unsigned int pfp_get_srp_prio(struct task_struct* t)
{
	return get_priority(t);
}

/* ******************** FMLP support ********************** */

struct fmlp_semaphore {
	struct litmus_lock litmus_lock;

	/* current resource holder */
	struct task_struct *owner;

	/* FIFO queue of waiting tasks */
	wait_queue_head_t wait;
};

static inline struct fmlp_semaphore* fmlp_from_lock(struct litmus_lock* lock)
{
	return container_of(lock, struct fmlp_semaphore, litmus_lock);
}
int pfp_fmlp_lock(struct litmus_lock* l)
{
	struct task_struct* t = current;
	struct fmlp_semaphore *sem = fmlp_from_lock(l);
	wait_queue_t wait;
	unsigned long flags;
	lt_t time_of_request;

	if (!is_realtime(t))
		return -EPERM;

	spin_lock_irqsave(&sem->wait.lock, flags);

	/* tie-break by this point in time */
	time_of_request = litmus_clock();

	/* Priority-boost ourself *before* we suspend so that
	 * our priority is boosted when we resume. */
	boost_priority(t, time_of_request);

	if (sem->owner) {
		/* resource is not free => must suspend and wait */

		init_waitqueue_entry(&wait, t);

		/* FIXME: interruptible would be nice some day */
		set_task_state(t, TASK_UNINTERRUPTIBLE);

		__add_wait_queue_tail_exclusive(&sem->wait, &wait);

		TS_LOCK_SUSPEND;

		/* release lock before sleeping */
		spin_unlock_irqrestore(&sem->wait.lock, flags);

		/* We depend on the FIFO order.  Thus, we don't need to recheck
		 * when we wake up; we are guaranteed to have the lock since
		 * there is only one wake up per release.
		 */

		schedule();

		TS_LOCK_RESUME;

		/* Since we hold the lock, no other task will change
		 * ->owner. We can thus check it without acquiring the spin
		 * lock. */
		BUG_ON(sem->owner != t);
	} else {
		/* it's ours now */
		sem->owner = t;

		spin_unlock_irqrestore(&sem->wait.lock, flags);
	}

	return 0;
}

int pfp_fmlp_unlock(struct litmus_lock* l)
{
	struct task_struct *t = current, *next;
	struct fmlp_semaphore *sem = fmlp_from_lock(l);
	unsigned long flags;
	int err = 0;

	spin_lock_irqsave(&sem->wait.lock, flags);

	if (sem->owner != t) {
		err = -EINVAL;
		goto out;
	}

	/* we lose the benefit of priority boosting */

	unboost_priority(t);

	/* check if there are jobs waiting for this resource */
	next = __waitqueue_remove_first(&sem->wait);
	if (next) {
		/* next becomes the resouce holder */
		sem->owner = next;

		/* Wake up next. The waiting job is already priority-boosted. */
		wake_up_process(next);
	} else
		/* resource becomes available */
		sem->owner = NULL;

out:
	spin_unlock_irqrestore(&sem->wait.lock, flags);
	return err;
}

int pfp_fmlp_close(struct litmus_lock* l)
{
	struct task_struct *t = current;
	struct fmlp_semaphore *sem = fmlp_from_lock(l);
	unsigned long flags;

	int owner;

	spin_lock_irqsave(&sem->wait.lock, flags);

	owner = sem->owner == t;

	spin_unlock_irqrestore(&sem->wait.lock, flags);

	if (owner)
		pfp_fmlp_unlock(l);

	return 0;
}

void pfp_fmlp_free(struct litmus_lock* lock)
{
	kfree(fmlp_from_lock(lock));
}

static struct litmus_lock_ops pfp_fmlp_lock_ops = {
	.close  = pfp_fmlp_close,
	.lock   = pfp_fmlp_lock,
	.unlock = pfp_fmlp_unlock,
	.deallocate = pfp_fmlp_free,
};

static struct litmus_lock* pfp_new_fmlp(void)
{
	struct fmlp_semaphore* sem;

	sem = kmalloc(sizeof(*sem), GFP_KERNEL);
	if (!sem)
		return NULL;

	sem->owner   = NULL;
	init_waitqueue_head(&sem->wait);
	sem->litmus_lock.ops = &pfp_fmlp_lock_ops;

	return &sem->litmus_lock;
}

/* ******************** MPCP support ********************** */

struct mpcp_semaphore {
	struct litmus_lock litmus_lock;

	/* current resource holder */
	struct task_struct *owner;

	/* priority queue of waiting tasks */
	wait_queue_head_t wait;

	/* priority ceiling per cpu */
	unsigned int prio_ceiling[NR_CPUS];

	/* should jobs spin "virtually" for this resource? */
	int vspin;
};

#define OMEGA_CEILING UINT_MAX

/* Since jobs spin "virtually" while waiting to acquire a lock,
 * they first must aquire a local per-cpu resource.
 */
static DEFINE_PER_CPU(wait_queue_head_t, mpcpvs_vspin_wait);
static DEFINE_PER_CPU(struct task_struct*, mpcpvs_vspin);

/* called with preemptions off <=> no local modifications */
static void mpcp_vspin_enter(void)
{
	struct task_struct* t = current;

	while (1) {
		if (__get_cpu_var(mpcpvs_vspin) == NULL) {
			/* good, we get to issue our request */
			__get_cpu_var(mpcpvs_vspin) = t;
			break;
		} else {
			/* some job is spinning => enqueue in request queue */
			prio_wait_queue_t wait;
			wait_queue_head_t* vspin = &__get_cpu_var(mpcpvs_vspin_wait);
			unsigned long flags;

			/* ordered by regular priority */
			init_prio_waitqueue_entry(&wait, t, prio_point(get_priority(t)));

			spin_lock_irqsave(&vspin->lock, flags);

			set_task_state(t, TASK_UNINTERRUPTIBLE);

			__add_wait_queue_prio_exclusive(vspin, &wait);

			spin_unlock_irqrestore(&vspin->lock, flags);

			TS_LOCK_SUSPEND;

			preempt_enable_no_resched();

			schedule();

			preempt_disable();

			TS_LOCK_RESUME;
			/* Recheck if we got it --- some higher-priority process might
			 * have swooped in. */
		}
	}
	/* ok, now it is ours */
}

/* called with preemptions off */
static void mpcp_vspin_exit(void)
{
	struct task_struct* t = current, *next;
	unsigned long flags;
	wait_queue_head_t* vspin = &__get_cpu_var(mpcpvs_vspin_wait);

	BUG_ON(__get_cpu_var(mpcpvs_vspin) != t);

	/* no spinning job */
	__get_cpu_var(mpcpvs_vspin) = NULL;

	/* see if anyone is waiting for us to stop "spinning" */
	spin_lock_irqsave(&vspin->lock, flags);
	next = __waitqueue_remove_first(vspin);

	if (next)
		wake_up_process(next);

	spin_unlock_irqrestore(&vspin->lock, flags);
}

static inline struct mpcp_semaphore* mpcp_from_lock(struct litmus_lock* lock)
{
	return container_of(lock, struct mpcp_semaphore, litmus_lock);
}

int pfp_mpcp_lock(struct litmus_lock* l)
{
	struct task_struct* t = current;
	struct mpcp_semaphore *sem = mpcp_from_lock(l);
	prio_wait_queue_t wait;
	unsigned long flags;

	if (!is_realtime(t))
		return -EPERM;

	preempt_disable();

	if (sem->vspin)
		mpcp_vspin_enter();

	/* Priority-boost ourself *before* we suspend so that
	 * our priority is boosted when we resume. Use the priority
	 * ceiling for the local partition. */
	boost_priority(t, sem->prio_ceiling[get_partition(t)]);

	spin_lock_irqsave(&sem->wait.lock, flags);

	preempt_enable_no_resched();

	if (sem->owner) {
		/* resource is not free => must suspend and wait */

		/* ordered by regular priority */
		init_prio_waitqueue_entry(&wait, t, prio_point(get_priority(t)));

		/* FIXME: interruptible would be nice some day */
		set_task_state(t, TASK_UNINTERRUPTIBLE);

		__add_wait_queue_prio_exclusive(&sem->wait, &wait);

		TS_LOCK_SUSPEND;

		/* release lock before sleeping */
		spin_unlock_irqrestore(&sem->wait.lock, flags);

		/* We depend on the FIFO order.  Thus, we don't need to recheck
		 * when we wake up; we are guaranteed to have the lock since
		 * there is only one wake up per release.
		 */

		schedule();

		TS_LOCK_RESUME;

		/* Since we hold the lock, no other task will change
		 * ->owner. We can thus check it without acquiring the spin
		 * lock. */
		BUG_ON(sem->owner != t);
	} else {
		/* it's ours now */
		sem->owner = t;

		spin_unlock_irqrestore(&sem->wait.lock, flags);
	}

	return 0;
}

int pfp_mpcp_unlock(struct litmus_lock* l)
{
	struct task_struct *t = current, *next;
	struct mpcp_semaphore *sem = mpcp_from_lock(l);
	unsigned long flags;
	int err = 0;

	spin_lock_irqsave(&sem->wait.lock, flags);

	if (sem->owner != t) {
		err = -EINVAL;
		goto out;
	}

	/* we lose the benefit of priority boosting */

	unboost_priority(t);

	/* check if there are jobs waiting for this resource */
	next = __waitqueue_remove_first(&sem->wait);
	if (next) {
		/* next becomes the resouce holder */
		sem->owner = next;

		/* Wake up next. The waiting job is already priority-boosted. */
		wake_up_process(next);
	} else
		/* resource becomes available */
		sem->owner = NULL;

out:
	spin_unlock_irqrestore(&sem->wait.lock, flags);

	if (sem->vspin && err == 0) {
		preempt_disable();
		mpcp_vspin_exit();
		preempt_enable();
	}

	return err;
}

int pfp_mpcp_open(struct litmus_lock* l, void* config)
{
	struct task_struct *t = current;
	struct mpcp_semaphore *sem = mpcp_from_lock(l);
	int cpu, local_cpu;
	unsigned long flags;

	if (!is_realtime(t))
		/* we need to know the real-time priority */
		return -EPERM;

	local_cpu = get_partition(t);

	spin_lock_irqsave(&sem->wait.lock, flags);

	for (cpu = 0; cpu < NR_CPUS; cpu++)
		if (cpu != local_cpu)
		{
			sem->prio_ceiling[cpu] = min(sem->prio_ceiling[cpu],
						     get_priority(t));
			TRACE_CUR("priority ceiling for sem %p is now %d on cpu %d\n",
				  sem, sem->prio_ceiling[cpu], cpu);
		}

	spin_unlock_irqrestore(&sem->wait.lock, flags);

	return 0;
}

int pfp_mpcp_close(struct litmus_lock* l)
{
	struct task_struct *t = current;
	struct mpcp_semaphore *sem = mpcp_from_lock(l);
	unsigned long flags;

	int owner;

	spin_lock_irqsave(&sem->wait.lock, flags);

	owner = sem->owner == t;

	spin_unlock_irqrestore(&sem->wait.lock, flags);

	if (owner)
		pfp_mpcp_unlock(l);

	return 0;
}

void pfp_mpcp_free(struct litmus_lock* lock)
{
	kfree(mpcp_from_lock(lock));
}

static struct litmus_lock_ops pfp_mpcp_lock_ops = {
	.close  = pfp_mpcp_close,
	.lock   = pfp_mpcp_lock,
	.open	= pfp_mpcp_open,
	.unlock = pfp_mpcp_unlock,
	.deallocate = pfp_mpcp_free,
};

static struct litmus_lock* pfp_new_mpcp(int vspin)
{
	struct mpcp_semaphore* sem;
	int cpu;

	sem = kmalloc(sizeof(*sem), GFP_KERNEL);
	if (!sem)
		return NULL;

	sem->owner   = NULL;
	init_waitqueue_head(&sem->wait);
	sem->litmus_lock.ops = &pfp_mpcp_lock_ops;

	for (cpu = 0; cpu < NR_CPUS; cpu++)
		sem->prio_ceiling[cpu] = OMEGA_CEILING;

	/* mark as virtual spinning */
	sem->vspin = vspin;

	return &sem->litmus_lock;
}


/* ******************** PCP support ********************** */


struct pcp_semaphore {
	struct litmus_lock litmus_lock;

	struct list_head ceiling;

	/* current resource holder */
	struct task_struct *owner;

	/* priority ceiling --- can be negative due to DPCP support */
	int prio_ceiling;

	/* on which processor is this PCP semaphore allocated? */
	int on_cpu;
};

static inline struct pcp_semaphore* pcp_from_lock(struct litmus_lock* lock)
{
	return container_of(lock, struct pcp_semaphore, litmus_lock);
}


struct pcp_state {
	struct list_head system_ceiling;

	/* highest-priority waiting task */
	struct task_struct* hp_waiter;

	/* list of jobs waiting to get past the system ceiling */
	wait_queue_head_t ceiling_blocked;
};

static void pcp_init_state(struct pcp_state* s)
{
	INIT_LIST_HEAD(&s->system_ceiling);
	s->hp_waiter = NULL;
	init_waitqueue_head(&s->ceiling_blocked);
}

static DEFINE_PER_CPU(struct pcp_state, pcp_state);

/* assumes preemptions are off */
static struct pcp_semaphore* pcp_get_ceiling(void)
{
	struct list_head* top = __get_cpu_var(pcp_state).system_ceiling.next;

	if (top)
		return list_entry(top, struct pcp_semaphore, ceiling);
	else
		return NULL;
}

/* assumes preempt off */
static void pcp_add_ceiling(struct pcp_semaphore* sem)
{
	struct list_head *pos;
	struct list_head *in_use = &__get_cpu_var(pcp_state).system_ceiling;
	struct pcp_semaphore* held;

	BUG_ON(sem->on_cpu != smp_processor_id());
	BUG_ON(in_list(&sem->ceiling));

	list_for_each(pos, in_use) {
		held = list_entry(pos, struct pcp_semaphore, ceiling);
		if (held->prio_ceiling >= sem->prio_ceiling) {
			__list_add(&sem->ceiling, pos->prev, pos);
			return;
		}
	}

	/* we hit the end of the list */

	list_add_tail(&sem->ceiling, in_use);
}

/* assumes preempt off */
static int pcp_exceeds_ceiling(struct pcp_semaphore* ceiling,
			      struct task_struct* task,
			      int effective_prio)
{
	return ceiling == NULL ||
		ceiling->prio_ceiling > effective_prio ||
		ceiling->owner == task;
}

/* assumes preempt off */
static void pcp_priority_inheritance(void)
{
	unsigned long	flags;
	pfp_domain_t* 	pfp = local_pfp;

	struct pcp_semaphore* ceiling = pcp_get_ceiling();
	struct task_struct *blocker, *blocked;

	blocker = ceiling ?  ceiling->owner : NULL;
	blocked = __get_cpu_var(pcp_state).hp_waiter;

	raw_spin_lock_irqsave(&pfp->slock, flags);

	/* Current is no longer inheriting anything by default.  This should be
	 * the currently scheduled job, and hence not currently queued. */
	BUG_ON(current != pfp->scheduled);

	fp_set_prio_inh(pfp, current, NULL);
	fp_set_prio_inh(pfp, blocked, NULL);
	fp_set_prio_inh(pfp, blocker, NULL);


	/* Let blocking job inherit priority of blocked job, if required. */
	if (blocker && blocked &&
	    fp_higher_prio(blocked, blocker)) {
		TRACE_TASK(blocker, "PCP inherits from %s/%d (prio %u -> %u) \n",
			   blocked->comm, blocked->pid,
			   get_priority(blocker), get_priority(blocked));
		fp_set_prio_inh(pfp, blocker, blocked);
	}

	/* check if anything changed */
	if (fp_higher_prio(fp_prio_peek(&pfp->ready_queue), pfp->scheduled))
		preempt(pfp);

	raw_spin_unlock_irqrestore(&pfp->slock, flags);
}

/* called with preemptions off */
static void pcp_raise_ceiling(struct pcp_semaphore* sem,
			      int effective_prio)
{
	struct task_struct* t = current;
	struct pcp_semaphore* ceiling;
	prio_wait_queue_t wait;
	unsigned int waiting_higher_prio;

	do {
		ceiling = pcp_get_ceiling();
		if (pcp_exceeds_ceiling(ceiling, t, effective_prio))
			break;

		TRACE_CUR("PCP ceiling-blocked, wanted sem %p, but %s/%d has the ceiling \n",
			  sem, ceiling->owner->comm, ceiling->owner->pid);

		/* we need to wait until the ceiling is lowered */

		/* enqueue in priority order */
		init_prio_waitqueue_entry(&wait, t, prio_point(effective_prio));
		set_task_state(t, TASK_UNINTERRUPTIBLE);
		waiting_higher_prio = add_wait_queue_prio_exclusive(
			&__get_cpu_var(pcp_state).ceiling_blocked, &wait);

		if (waiting_higher_prio == 0) {
			TRACE_CUR("PCP new highest-prio waiter => prio inheritance\n");

			/* we are the new highest-priority waiting job
			 * => update inheritance */
			__get_cpu_var(pcp_state).hp_waiter = t;
			pcp_priority_inheritance();
		}

		TS_LOCK_SUSPEND;

		preempt_enable_no_resched();
		schedule();
		preempt_disable();

		/* pcp_resume_unblocked() removed us from wait queue */

		TS_LOCK_RESUME;
	} while(1);

	TRACE_CUR("PCP got the ceiling and sem %p\n", sem);

	/* We are good to go. The semaphore should be available. */
	BUG_ON(sem->owner != NULL);

	sem->owner = t;

	pcp_add_ceiling(sem);
}

static void pcp_resume_unblocked(void)
{
	wait_queue_head_t *blocked =  &__get_cpu_var(pcp_state).ceiling_blocked;
	unsigned long flags;
	prio_wait_queue_t* q;
	struct task_struct* t = NULL;

	struct pcp_semaphore* ceiling = pcp_get_ceiling();

	spin_lock_irqsave(&blocked->lock, flags);

	while (waitqueue_active(blocked)) {
		/* check first == highest-priority waiting job */
		q = list_entry(blocked->task_list.next,
			       prio_wait_queue_t, wq.task_list);
		t = (struct task_struct*) q->wq.private;

		/* can it proceed now? => let it go */
		if (pcp_exceeds_ceiling(ceiling, t,
					prio_from_point(q->priority))) {
		    __remove_wait_queue(blocked, &q->wq);
		    wake_up_process(t);
		} else {
			/* We are done. Update highest-priority waiter. */
			__get_cpu_var(pcp_state).hp_waiter = t;
			goto out;
		}
	}
	/* If we get here, then there are no more waiting
	 * jobs. */
	__get_cpu_var(pcp_state).hp_waiter = NULL;
out:
	spin_unlock_irqrestore(&blocked->lock, flags);
}

/* assumes preempt off */
static void pcp_lower_ceiling(struct pcp_semaphore* sem)
{
	BUG_ON(!in_list(&sem->ceiling));
	BUG_ON(sem->owner != current);
	BUG_ON(sem->on_cpu != smp_processor_id());

	/* remove from ceiling list */
	list_del(&sem->ceiling);

	/* release */
	sem->owner = NULL;

	TRACE_CUR("PCP released sem %p\n", sem);

	/* Wake up all ceiling-blocked jobs that now pass the ceiling. */
	pcp_resume_unblocked();

	pcp_priority_inheritance();
}

static void pcp_update_prio_ceiling(struct pcp_semaphore* sem,
				    int effective_prio)
{
	/* This needs to be synchronized on something.
	 * Might as well use waitqueue lock for the processor.
	 * We assume this happens only before the task set starts execution,
	 * (i.e., during initialization), but it may happen on multiple processors
	 * at the same time.
	 */
	unsigned long flags;

	struct pcp_state* s = &per_cpu(pcp_state, sem->on_cpu);

	spin_lock_irqsave(&s->ceiling_blocked.lock, flags);

	sem->prio_ceiling = min(sem->prio_ceiling, effective_prio);

	spin_unlock_irqrestore(&s->ceiling_blocked.lock, flags);
}

static void pcp_init_semaphore(struct pcp_semaphore* sem, int cpu)
{
	sem->owner   = NULL;
	INIT_LIST_HEAD(&sem->ceiling);
	sem->prio_ceiling = INT_MAX;
	sem->on_cpu = cpu;
}

int pfp_pcp_lock(struct litmus_lock* l)
{
	struct task_struct* t = current;
	struct pcp_semaphore *sem = pcp_from_lock(l);

	int eprio = effective_agent_priority(get_priority(t));
	int from  = get_partition(t);
	int to    = sem->on_cpu;

	if (!is_realtime(t) || from != to)
		return -EPERM;

	preempt_disable();

	pcp_raise_ceiling(sem, eprio);

	preempt_enable();

	return 0;
}

int pfp_pcp_unlock(struct litmus_lock* l)
{
	struct task_struct *t = current;
	struct pcp_semaphore *sem = pcp_from_lock(l);

	int err = 0;

	preempt_disable();

	if (sem->on_cpu != smp_processor_id() || sem->owner != t) {
		err = -EINVAL;
		goto out;
	}

	/* give it back */
	pcp_lower_ceiling(sem);

out:
	preempt_enable();

	return err;
}

int pfp_pcp_open(struct litmus_lock* l, void* __user config)
{
	struct task_struct *t = current;
	struct pcp_semaphore *sem = pcp_from_lock(l);

	int cpu, eprio;

	if (!is_realtime(t))
		/* we need to know the real-time priority */
		return -EPERM;

	if (get_user(cpu, (int*) config))
		return -EFAULT;

	/* make sure the resource location matches */
	if (cpu != sem->on_cpu)
		return -EINVAL;

	eprio = effective_agent_priority(get_priority(t));

	pcp_update_prio_ceiling(sem, eprio);

	return 0;
}

int pfp_pcp_close(struct litmus_lock* l)
{
	struct task_struct *t = current;
	struct pcp_semaphore *sem = pcp_from_lock(l);

	int owner = 0;

	preempt_disable();

	if (sem->on_cpu == smp_processor_id())
		owner = sem->owner == t;

	preempt_enable();

	if (owner)
		pfp_pcp_unlock(l);

	return 0;
}

void pfp_pcp_free(struct litmus_lock* lock)
{
	kfree(pcp_from_lock(lock));
}


static struct litmus_lock_ops pfp_pcp_lock_ops = {
	.close  = pfp_pcp_close,
	.lock   = pfp_pcp_lock,
	.open	= pfp_pcp_open,
	.unlock = pfp_pcp_unlock,
	.deallocate = pfp_pcp_free,
};


static struct litmus_lock* pfp_new_pcp(int on_cpu)
{
	struct pcp_semaphore* sem;

	sem = kmalloc(sizeof(*sem), GFP_KERNEL);
	if (!sem)
		return NULL;

	sem->litmus_lock.ops = &pfp_pcp_lock_ops;
	pcp_init_semaphore(sem, on_cpu);

	return &sem->litmus_lock;
}

/* ******************** DPCP support ********************** */

struct dpcp_semaphore {
	struct litmus_lock litmus_lock;
	struct pcp_semaphore  pcp;
	int owner_cpu;
};

static inline struct dpcp_semaphore* dpcp_from_lock(struct litmus_lock* lock)
{
	return container_of(lock, struct dpcp_semaphore, litmus_lock);
}

/* called with preemptions disabled */
static void pfp_migrate_to(int target_cpu)
{
	struct task_struct* t = current;
	pfp_domain_t *from;

	if (get_partition(t) == target_cpu)
		return;

	/* make sure target_cpu makes sense */
	BUG_ON(!cpu_online(target_cpu));

	local_irq_disable();

	/* scheduled task should not be in any ready or release queue */
	BUG_ON(is_queued(t));

	/* lock both pfp domains in order of address */
	from = task_pfp(t);

	raw_spin_lock(&from->slock);

	/* switch partitions */
	tsk_rt(t)->task_params.cpu = target_cpu;

	raw_spin_unlock(&from->slock);

	/* Don't trace scheduler costs as part of
	 * locking overhead. Scheduling costs are accounted for
	 * explicitly. */
	TS_LOCK_SUSPEND;

	local_irq_enable();
	preempt_enable_no_resched();

	/* deschedule to be migrated */
	schedule();

	/* we are now on the target processor */
	preempt_disable();

	/* start recording costs again */
	TS_LOCK_RESUME;

	BUG_ON(smp_processor_id() != target_cpu);
}

int pfp_dpcp_lock(struct litmus_lock* l)
{
	struct task_struct* t = current;
	struct dpcp_semaphore *sem = dpcp_from_lock(l);
	int eprio = effective_agent_priority(get_priority(t));
	int from  = get_partition(t);
	int to    = sem->pcp.on_cpu;

	if (!is_realtime(t))
		return -EPERM;

	preempt_disable();

	/* Priority-boost ourself *before* we suspend so that
	 * our priority is boosted when we resume. */

	boost_priority(t, get_priority(t));

	pfp_migrate_to(to);

	pcp_raise_ceiling(&sem->pcp, eprio);

	/* yep, we got it => execute request */
	sem->owner_cpu = from;

	preempt_enable();

	return 0;
}

int pfp_dpcp_unlock(struct litmus_lock* l)
{
	struct task_struct *t = current;
	struct dpcp_semaphore *sem = dpcp_from_lock(l);
	int err = 0;
	int home;

	preempt_disable();

	if (sem->pcp.on_cpu != smp_processor_id() || sem->pcp.owner != t) {
		err = -EINVAL;
		goto out;
	}

	home = sem->owner_cpu;

	/* give it back */
	pcp_lower_ceiling(&sem->pcp);

	/* we lose the benefit of priority boosting */
	unboost_priority(t);

	pfp_migrate_to(home);

out:
	preempt_enable();

	return err;
}

int pfp_dpcp_open(struct litmus_lock* l, void* __user config)
{
	struct task_struct *t = current;
	struct dpcp_semaphore *sem = dpcp_from_lock(l);
	int cpu, eprio;

	if (!is_realtime(t))
		/* we need to know the real-time priority */
		return -EPERM;

	if (get_user(cpu, (int*) config))
		return -EFAULT;

	/* make sure the resource location matches */
	if (cpu != sem->pcp.on_cpu)
		return -EINVAL;

	eprio = effective_agent_priority(get_priority(t));

	pcp_update_prio_ceiling(&sem->pcp, eprio);

	return 0;
}

int pfp_dpcp_close(struct litmus_lock* l)
{
	struct task_struct *t = current;
	struct dpcp_semaphore *sem = dpcp_from_lock(l);
	int owner = 0;

	preempt_disable();

	if (sem->pcp.on_cpu == smp_processor_id())
		owner = sem->pcp.owner == t;

	preempt_enable();

	if (owner)
		pfp_dpcp_unlock(l);

	return 0;
}

void pfp_dpcp_free(struct litmus_lock* lock)
{
	kfree(dpcp_from_lock(lock));
}

static struct litmus_lock_ops pfp_dpcp_lock_ops = {
	.close  = pfp_dpcp_close,
	.lock   = pfp_dpcp_lock,
	.open	= pfp_dpcp_open,
	.unlock = pfp_dpcp_unlock,
	.deallocate = pfp_dpcp_free,
};

static struct litmus_lock* pfp_new_dpcp(int on_cpu)
{
	struct dpcp_semaphore* sem;

	sem = kmalloc(sizeof(*sem), GFP_KERNEL);
	if (!sem)
		return NULL;

	sem->litmus_lock.ops = &pfp_dpcp_lock_ops;
	sem->owner_cpu = NO_CPU;
	pcp_init_semaphore(&sem->pcp, on_cpu);

	return &sem->litmus_lock;
}


/* **** lock constructor **** */


static long pfp_allocate_lock(struct litmus_lock **lock, int type,
				 void* __user config)
{
	int err = -ENXIO, cpu;
	struct srp_semaphore* srp;

	/* P-FP currently supports the SRP for local resources and the FMLP
	 * for global resources. */
	switch (type) {
	case FMLP_SEM:
		/* FIFO Mutex Locking Protocol */
		*lock = pfp_new_fmlp();
		if (*lock)
			err = 0;
		else
			err = -ENOMEM;
		break;

	case MPCP_SEM:
		/* Multiprocesor Priority Ceiling Protocol */
		*lock = pfp_new_mpcp(0);
		if (*lock)
			err = 0;
		else
			err = -ENOMEM;
		break;

	case MPCP_VS_SEM:
		/* Multiprocesor Priority Ceiling Protocol with virtual spinning */
		*lock = pfp_new_mpcp(1);
		if (*lock)
			err = 0;
		else
			err = -ENOMEM;
		break;

	case DPCP_SEM:
		/* Distributed Priority Ceiling Protocol */
		if (get_user(cpu, (int*) config))
			return -EFAULT;

		if (!cpu_online(cpu))
			return -EINVAL;

		*lock = pfp_new_dpcp(cpu);
		if (*lock)
			err = 0;
		else
			err = -ENOMEM;
		break;

	case SRP_SEM:
		/* Baker's Stack Resource Policy */
		srp = allocate_srp_semaphore();
		if (srp) {
			*lock = &srp->litmus_lock;
			err = 0;
		} else
			err = -ENOMEM;
		break;

        case PCP_SEM:
		/* Priority Ceiling Protocol */
		if (get_user(cpu, (int*) config))
			return -EFAULT;

		if (!cpu_online(cpu))
			return -EINVAL;

		*lock = pfp_new_pcp(cpu);
		if (*lock)
			err = 0;
		else
			err = -ENOMEM;
		break;
	};

	return err;
}

#endif

static long pfp_admit_task(struct task_struct* tsk)
{
	if (task_cpu(tsk) == tsk->rt_param.task_params.cpu &&
#ifdef CONFIG_RELEASE_MASTER
	    /* don't allow tasks on release master CPU */
	    task_cpu(tsk) != remote_dom(task_cpu(tsk))->release_master &&
#endif
	    litmus_is_valid_fixed_prio(get_priority(tsk)))
		return 0;
	else
		return -EINVAL;
}

static long pfp_activate_plugin(void)
{
#if defined(CONFIG_RELEASE_MASTER) || defined(CONFIG_LITMUS_LOCKING)
	int cpu;
#endif

#ifdef CONFIG_RELEASE_MASTER
	for_each_online_cpu(cpu) {
		remote_dom(cpu)->release_master = atomic_read(&release_master_cpu);
	}
#endif

#ifdef CONFIG_LITMUS_LOCKING
	get_srp_prio = pfp_get_srp_prio;

	for_each_online_cpu(cpu) {
		init_waitqueue_head(&per_cpu(mpcpvs_vspin_wait, cpu));
		per_cpu(mpcpvs_vspin, cpu) = NULL;

		pcp_init_state(&per_cpu(pcp_state, cpu));
		pfp_doms[cpu] = remote_pfp(cpu);
	}

#endif

	return 0;
}


/*	Plugin object	*/
static struct sched_plugin pfp_plugin __cacheline_aligned_in_smp = {
	.plugin_name		= "P-FP",
	.tick			= pfp_tick,
	.task_new		= pfp_task_new,
	.complete_job		= complete_job,
	.task_exit		= pfp_task_exit,
	.schedule		= pfp_schedule,
	.task_wake_up		= pfp_task_wake_up,
	.task_block		= pfp_task_block,
	.admit_task		= pfp_admit_task,
	.activate_plugin	= pfp_activate_plugin,
#ifdef CONFIG_LITMUS_LOCKING
	.allocate_lock		= pfp_allocate_lock,
	.finish_switch		= pfp_finish_switch,
#endif
};


static int __init init_pfp(void)
{
	int i;

	/* We do not really want to support cpu hotplug, do we? ;)
	 * However, if we are so crazy to do so,
	 * we cannot use num_online_cpu()
	 */
	for (i = 0; i < num_online_cpus(); i++) {
		pfp_domain_init(remote_pfp(i), i);
	}
	return register_sched_plugin(&pfp_plugin);
}

module_init(init_pfp);