aboutsummaryrefslogblamecommitdiffstats
path: root/litmus/sched_pfair.c
blob: ea77d3295290603f601da00c8b0e197c41cc010b (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418













                                                             
                       


















































































































































































































































































































































































































                                                                                      
                                   































                                                                       
                                     


















































































































                                                                             
                                   











                                                                       
                                     















                                                                                  
                                                  









                                                       
                                                       









                                                                     
                                                  



















                                                                  
                                                       






















                                                                    
                                                  



                                                   
                                                       












                                                                  
                                                  
















                                                                       
                                                       


































































































































































































                                                                                      
/*
 * kernel/sched_pfair.c
 *
 * Implementation of the (global) Pfair scheduling algorithm.
 *
 */

#include <asm/div64.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/slab.h>

#include <litmus/litmus.h>
#include <litmus/jobs.h>
#include <litmus/rt_domain.h>
#include <litmus/sched_plugin.h>
#include <litmus/sched_trace.h>

#include <litmus/bheap.h>

struct subtask {
	/* measured in quanta relative to job release */
	quanta_t release;
        quanta_t deadline;
	quanta_t overlap; /* called "b bit" by PD^2 */
	quanta_t group_deadline;
};

struct pfair_param   {
	quanta_t	quanta;       /* number of subtasks */
	quanta_t	cur;          /* index of current subtask */

	quanta_t	release;      /* in quanta */
	quanta_t	period;       /* in quanta */

	quanta_t	last_quantum; /* when scheduled last */
	int		last_cpu;     /* where scheduled last */

	unsigned int	sporadic_release; /* On wakeup, new sporadic release? */

	struct subtask subtasks[0];   /* allocate together with pfair_param */
};

#define tsk_pfair(tsk) ((tsk)->rt_param.pfair)

struct pfair_state {
	int cpu;
	volatile quanta_t cur_tick;    /* updated by the CPU that is advancing
				        * the time */
	volatile quanta_t local_tick;  /* What tick is the local CPU currently
				        * executing? Updated only by the local
				        * CPU. In QEMU, this may lag behind the
					* current tick. In a real system, with
					* proper timers and aligned quanta,
					* that should only be the
					* case for a very short time after the
					* time advanced. With staggered quanta,
					* it will lag for the duration of the
					* offset.
					*/

	struct task_struct* linked;    /* the task that should be executing */
	struct task_struct* local;     /* the local copy of linked          */
	struct task_struct* scheduled; /* what is actually scheduled        */

	unsigned long missed_quanta;
	lt_t offset;			/* stagger offset */
};

/* Currently, we limit the maximum period of any task to 2000 quanta.
 * The reason is that it makes the implementation easier since we do not
 * need to reallocate the release wheel on task arrivals.
 * In the future
 */
#define PFAIR_MAX_PERIOD 2000

/* This is the release queue wheel. It is indexed by pfair_time %
 * PFAIR_MAX_PERIOD.  Each heap is ordered by PFAIR priority, so that it can be
 * merged with the ready queue.
 */
static struct bheap release_queue[PFAIR_MAX_PERIOD];

DEFINE_PER_CPU(struct pfair_state, pfair_state);
struct pfair_state* *pstate; /* short cut */

static quanta_t pfair_time = 0; /* the "official" PFAIR clock */
static quanta_t merge_time = 0; /* Updated after the release queue has been
				 * merged. Used by drop_all_references().
				 */

static rt_domain_t pfair;

/* The pfair_lock is used to serialize all scheduling events.
 */
#define pfair_lock pfair.ready_lock

/* Enable for lots of trace info.
 * #define PFAIR_DEBUG
 */

#ifdef PFAIR_DEBUG
#define PTRACE_TASK(t, f, args...)  TRACE_TASK(t, f, ## args)
#define PTRACE(f, args...) TRACE(f, ## args)
#else
#define PTRACE_TASK(t, f, args...)
#define PTRACE(f, args...)
#endif

/* gcc will inline all of these accessor functions... */
static struct subtask* cur_subtask(struct task_struct* t)
{
	return tsk_pfair(t)->subtasks + tsk_pfair(t)->cur;
}

static quanta_t cur_deadline(struct task_struct* t)
{
	return cur_subtask(t)->deadline +  tsk_pfair(t)->release;
}


static quanta_t cur_sub_release(struct task_struct* t)
{
	return cur_subtask(t)->release +  tsk_pfair(t)->release;
}

static quanta_t cur_release(struct task_struct* t)
{
#ifdef EARLY_RELEASE
	/* only the release of the first subtask counts when we early
	 * release */
	return tsk_pfair(t)->release;
#else
	return cur_sub_release(t);
#endif
}

static quanta_t cur_overlap(struct task_struct* t)
{
	return cur_subtask(t)->overlap;
}

static quanta_t cur_group_deadline(struct task_struct* t)
{
	quanta_t gdl = cur_subtask(t)->group_deadline;
	if (gdl)
		return gdl + tsk_pfair(t)->release;
	else
		return gdl;
}


static int pfair_higher_prio(struct task_struct* first,
			     struct task_struct* second)
{
	return  /* first task must exist */
		first && (
		/* Does the second task exist and is it a real-time task?  If
		 * not, the first task (which is a RT task) has higher
		 * priority.
		 */
		!second || !is_realtime(second)  ||

		/* Is the (subtask) deadline of the first task earlier?
		 * Then it has higher priority.
		 */
		time_before(cur_deadline(first), cur_deadline(second)) ||

		/* Do we have a deadline tie?
		 * Then break by B-bit.
		 */
		(cur_deadline(first) == cur_deadline(second) &&
		 (cur_overlap(first) > cur_overlap(second) ||

		/* Do we have a B-bit tie?
		 * Then break by group deadline.
		 */
		(cur_overlap(first) == cur_overlap(second) &&
		 (time_after(cur_group_deadline(first),
			     cur_group_deadline(second)) ||

		/* Do we have a group deadline tie?
		 * Then break by PID, which are unique.
		 */
		(cur_group_deadline(first) ==
		 cur_group_deadline(second) &&
		 first->pid < second->pid))))));
}

int pfair_ready_order(struct bheap_node* a, struct bheap_node* b)
{
	return pfair_higher_prio(bheap2task(a), bheap2task(b));
}

/* return the proper release queue for time t */
static struct bheap* relq(quanta_t t)
{
	struct bheap* rq = &release_queue[t % PFAIR_MAX_PERIOD];
	return rq;
}

static void prepare_release(struct task_struct* t, quanta_t at)
{
	tsk_pfair(t)->release    = at;
	tsk_pfair(t)->cur        = 0;
}

static void __pfair_add_release(struct task_struct* t, struct bheap* queue)
{
	bheap_insert(pfair_ready_order, queue,
		    tsk_rt(t)->heap_node);
}

static void pfair_add_release(struct task_struct* t)
{
	BUG_ON(bheap_node_in_heap(tsk_rt(t)->heap_node));
	__pfair_add_release(t, relq(cur_release(t)));
}

/* pull released tasks from the release queue */
static void poll_releases(quanta_t time)
{
	__merge_ready(&pfair, relq(time));
	merge_time = time;
}

static void check_preempt(struct task_struct* t)
{
	int cpu = NO_CPU;
	if (tsk_rt(t)->linked_on != tsk_rt(t)->scheduled_on &&
	    tsk_rt(t)->present) {
		/* the task can be scheduled and
		 * is not scheduled where it ought to be scheduled
		 */
		cpu = tsk_rt(t)->linked_on != NO_CPU ?
			tsk_rt(t)->linked_on         :
			tsk_rt(t)->scheduled_on;
		PTRACE_TASK(t, "linked_on:%d, scheduled_on:%d\n",
			   tsk_rt(t)->linked_on, tsk_rt(t)->scheduled_on);
		/* preempt */
		if (cpu == smp_processor_id())
			set_tsk_need_resched(current);
		else {
			smp_send_reschedule(cpu);
		}
	}
}

/* caller must hold pfair_lock */
static void drop_all_references(struct task_struct *t)
{
        int cpu;
        struct pfair_state* s;
        struct bheap* q;
        if (bheap_node_in_heap(tsk_rt(t)->heap_node)) {
                /* figure out what queue the node is in */
                if (time_before_eq(cur_release(t), merge_time))
                        q = &pfair.ready_queue;
                else
                        q = relq(cur_release(t));
                bheap_delete(pfair_ready_order, q,
                            tsk_rt(t)->heap_node);
        }
        for (cpu = 0; cpu < num_online_cpus(); cpu++) {
                s = &per_cpu(pfair_state, cpu);
                if (s->linked == t)
                        s->linked = NULL;
                if (s->local  == t)
                        s->local  = NULL;
                if (s->scheduled  == t)
                        s->scheduled = NULL;
        }
}

/* returns 1 if the task needs to go the release queue */
static int advance_subtask(quanta_t time, struct task_struct* t, int cpu)
{
	struct pfair_param* p = tsk_pfair(t);
	int to_relq;
	p->cur = (p->cur + 1) % p->quanta;
	if (!p->cur) {
		sched_trace_task_completion(t, 1);
		if (tsk_rt(t)->present) {
			/* we start a new job */
			prepare_for_next_period(t);
			sched_trace_task_release(t);
			get_rt_flags(t) = RT_F_RUNNING;
			p->release += p->period;
		} else {
			/* remove task from system until it wakes */
			drop_all_references(t);
			tsk_pfair(t)->sporadic_release = 1;
			TRACE_TASK(t, "on %d advanced to subtask %lu (not present)\n",
				   cpu, p->cur);
			return 0;
		}
	}
	to_relq = time_after(cur_release(t), time);
	TRACE_TASK(t, "on %d advanced to subtask %lu -> to_relq=%d\n",
		   cpu, p->cur, to_relq);
	return to_relq;
}

static void advance_subtasks(quanta_t time)
{
	int cpu, missed;
	struct task_struct* l;
	struct pfair_param* p;

	for_each_online_cpu(cpu) {
		l = pstate[cpu]->linked;
		missed = pstate[cpu]->linked != pstate[cpu]->local;
		if (l) {
			p = tsk_pfair(l);
			p->last_quantum = time;
			p->last_cpu     =  cpu;
			if (advance_subtask(time, l, cpu)) {
				pstate[cpu]->linked = NULL;
				pfair_add_release(l);
			}
		}
	}
}

static int target_cpu(quanta_t time, struct task_struct* t, int default_cpu)
{
	int cpu;
	if (tsk_rt(t)->scheduled_on != NO_CPU) {
		/* always observe scheduled_on linkage */
		default_cpu = tsk_rt(t)->scheduled_on;
	} else if (tsk_pfair(t)->last_quantum == time - 1) {
		/* back2back quanta */
		/* Only observe last_quantum if no scheduled_on is in the way.
		 * This should only kick in if a CPU missed quanta, and that
		 * *should* only happen in QEMU.
		 */
		cpu = tsk_pfair(t)->last_cpu;
		if (!pstate[cpu]->linked ||
		    tsk_rt(pstate[cpu]->linked)->scheduled_on != cpu) {
			default_cpu = cpu;
		}
	}
	return default_cpu;
}

/* returns one if linking was redirected */
static int pfair_link(quanta_t time, int cpu,
		      struct task_struct* t)
{
	int target = target_cpu(time, t, cpu);
	struct task_struct* prev  = pstate[cpu]->linked;
	struct task_struct* other;

	if (target != cpu) {
		other = pstate[target]->linked;
		pstate[target]->linked = t;
		tsk_rt(t)->linked_on   = target;
		if (!other)
			/* linked ok, but reschedule this CPU */
			return 1;
		if (target < cpu) {
			/* link other to cpu instead */
			tsk_rt(other)->linked_on = cpu;
			pstate[cpu]->linked      = other;
			if (prev) {
				/* prev got pushed back into the ready queue */
				tsk_rt(prev)->linked_on = NO_CPU;
				__add_ready(&pfair, prev);
			}
			/* we are done with this cpu */
			return 0;
		} else {
			/* re-add other, it's original CPU was not considered yet */
			tsk_rt(other)->linked_on = NO_CPU;
			__add_ready(&pfair, other);
			/* reschedule this CPU */
			return 1;
		}
	} else {
		pstate[cpu]->linked  = t;
		tsk_rt(t)->linked_on = cpu;
		if (prev) {
			/* prev got pushed back into the ready queue */
			tsk_rt(prev)->linked_on = NO_CPU;
			__add_ready(&pfair, prev);
		}
		/* we are done with this CPU */
		return 0;
	}
}

static void schedule_subtasks(quanta_t time)
{
	int cpu, retry;

	for_each_online_cpu(cpu) {
		retry = 1;
		while (retry) {
			if (pfair_higher_prio(__peek_ready(&pfair),
					      pstate[cpu]->linked))
				retry = pfair_link(time, cpu,
						   __take_ready(&pfair));
			else
				retry = 0;
		}
	}
}

static void schedule_next_quantum(quanta_t time)
{
	int cpu;

	/* called with interrupts disabled */
	PTRACE("--- Q %lu at %llu PRE-SPIN\n",
	       time, litmus_clock());
	raw_spin_lock(&pfair_lock);
	PTRACE("<<< Q %lu at %llu\n",
	       time, litmus_clock());

	sched_trace_quantum_boundary();

	advance_subtasks(time);
	poll_releases(time);
	schedule_subtasks(time);

	for (cpu = 0; cpu < num_online_cpus(); cpu++)
		if (pstate[cpu]->linked)
			PTRACE_TASK(pstate[cpu]->linked,
				    " linked on %d.\n", cpu);
		else
			PTRACE("(null) linked on %d.\n", cpu);

	/* We are done. Advance time. */
	mb();
	for (cpu = 0; cpu < num_online_cpus(); cpu++) {
		if (pstate[cpu]->local_tick != pstate[cpu]->cur_tick) {
			TRACE("BAD Quantum not acked on %d "
			      "(l:%lu c:%lu p:%lu)\n",
			      cpu,
			      pstate[cpu]->local_tick,
			      pstate[cpu]->cur_tick,
			      pfair_time);
			pstate[cpu]->missed_quanta++;
		}
		pstate[cpu]->cur_tick = time;
	}
	PTRACE(">>> Q %lu at %llu\n",
	       time, litmus_clock());
	raw_spin_unlock(&pfair_lock);
}

static noinline void wait_for_quantum(quanta_t q, struct pfair_state* state)
{
	quanta_t loc;

	goto first; /* skip mb() on first iteration */
	do {
		cpu_relax();
		mb();
	first:	loc = state->cur_tick;
		/* FIXME: what if loc > cur? */
	} while (time_before(loc, q));
	PTRACE("observed cur_tick:%lu >= q:%lu\n",
	       loc, q);
}

static quanta_t current_quantum(struct pfair_state* state)
{
	lt_t t = litmus_clock() - state->offset;
	return time2quanta(t, FLOOR);
}

static void catchup_quanta(quanta_t from, quanta_t target,
			   struct pfair_state* state)
{
	quanta_t cur = from, time;
	TRACE("+++< BAD catching up quanta from %lu to %lu\n",
	      from, target);
	while (time_before(cur, target)) {
		wait_for_quantum(cur, state);
		cur++;
		time = cmpxchg(&pfair_time,
			       cur - 1,   /* expected */
			       cur        /* next     */
			);
		if (time == cur - 1)
			schedule_next_quantum(cur);
	}
	TRACE("+++> catching up done\n");
}

/* pfair_tick - this function is called for every local timer
 *                         interrupt.
 */
static void pfair_tick(struct task_struct* t)
{
	struct pfair_state* state = &__get_cpu_var(pfair_state);
	quanta_t time, cur;
	int retry = 10;

	do {
		cur  = current_quantum(state);
		PTRACE("q %lu at %llu\n", cur, litmus_clock());

		/* Attempt to advance time. First CPU to get here
		 * will prepare the next quantum.
		 */
		time = cmpxchg(&pfair_time,
			       cur - 1,   /* expected */
			       cur        /* next     */
			);
		if (time == cur - 1) {
			/* exchange succeeded */
			wait_for_quantum(cur - 1, state);
			schedule_next_quantum(cur);
			retry = 0;
		} else if (time_before(time, cur - 1)) {
			/* the whole system missed a tick !? */
			catchup_quanta(time, cur, state);
			retry--;
		} else if (time_after(time, cur)) {
			/* our timer lagging behind!? */
			TRACE("BAD pfair_time:%lu > cur:%lu\n", time, cur);
			retry--;
		} else {
			/* Some other CPU already started scheduling
			 * this quantum. Let it do its job and then update.
			 */
			retry = 0;
		}
	} while (retry);

	/* Spin locally until time advances. */
	wait_for_quantum(cur, state);

	/* copy assignment */
	/* FIXME: what if we race with a future update? Corrupted state? */
	state->local      = state->linked;
	/* signal that we are done */
	mb();
	state->local_tick = state->cur_tick;

	if (state->local != current
	    && (is_realtime(current) || is_present(state->local)))
		set_tsk_need_resched(current);
}

static int safe_to_schedule(struct task_struct* t, int cpu)
{
	int where = tsk_rt(t)->scheduled_on;
	if (where != NO_CPU && where != cpu) {
		TRACE_TASK(t, "BAD: can't be scheduled on %d, "
			   "scheduled already on %d.\n", cpu, where);
		return 0;
	} else
		return tsk_rt(t)->present && get_rt_flags(t) == RT_F_RUNNING;
}

static struct task_struct* pfair_schedule(struct task_struct * prev)
{
	struct pfair_state* state = &__get_cpu_var(pfair_state);
	int blocks;
	struct task_struct* next = NULL;

	raw_spin_lock(&pfair_lock);

	blocks  = is_realtime(prev) && !is_running(prev);

	if (state->local && safe_to_schedule(state->local, state->cpu))
		next = state->local;

	if (prev != next) {
		tsk_rt(prev)->scheduled_on = NO_CPU;
		if (next)
			tsk_rt(next)->scheduled_on = state->cpu;
	}

	raw_spin_unlock(&pfair_lock);

	if (next)
		TRACE_TASK(next, "scheduled rel=%lu at %lu (%llu)\n",
			   tsk_pfair(next)->release, pfair_time, litmus_clock());
	else if (is_realtime(prev))
		TRACE("Becomes idle at %lu (%llu)\n", pfair_time, litmus_clock());

	return next;
}

static void pfair_task_new(struct task_struct * t, int on_rq, int running)
{
	unsigned long 		flags;

	TRACE("pfair: task new %d state:%d\n", t->pid, t->state);

	raw_spin_lock_irqsave(&pfair_lock, flags);
	if (running)
		t->rt_param.scheduled_on = task_cpu(t);
	else
		t->rt_param.scheduled_on = NO_CPU;

	prepare_release(t, pfair_time + 1);
	tsk_pfair(t)->sporadic_release = 0;
	pfair_add_release(t);
	check_preempt(t);

	raw_spin_unlock_irqrestore(&pfair_lock, flags);
}

static void pfair_task_wake_up(struct task_struct *t)
{
	unsigned long flags;
	lt_t now;

	TRACE_TASK(t, "wakes at %llu, release=%lu, pfair_time:%lu\n",
		   litmus_clock(), cur_release(t), pfair_time);

	raw_spin_lock_irqsave(&pfair_lock, flags);

	/* It is a little unclear how to deal with Pfair
	 * tasks that block for a while and then wake. For now,
	 * if a task blocks and wakes before its next job release,
	 * then it may resume if it is currently linked somewhere
	 * (as if it never blocked at all). Otherwise, we have a
	 * new sporadic job release.
	 */
	if (tsk_pfair(t)->sporadic_release) {
		now = litmus_clock();
		release_at(t, now);
		prepare_release(t, time2quanta(now, CEIL));
		sched_trace_task_release(t);
		/* FIXME: race with pfair_time advancing */
		pfair_add_release(t);
		tsk_pfair(t)->sporadic_release = 0;
	}

	check_preempt(t);

	raw_spin_unlock_irqrestore(&pfair_lock, flags);
	TRACE_TASK(t, "wake up done at %llu\n", litmus_clock());
}

static void pfair_task_block(struct task_struct *t)
{
	BUG_ON(!is_realtime(t));
	TRACE_TASK(t, "blocks at %llu, state:%d\n",
		   litmus_clock(), t->state);
}

static void pfair_task_exit(struct task_struct * t)
{
	unsigned long flags;

	BUG_ON(!is_realtime(t));

	/* Remote task from release or ready queue, and ensure
	 * that it is not the scheduled task for ANY CPU. We
	 * do this blanket check because occassionally when
	 * tasks exit while blocked, the task_cpu of the task
	 * might not be the same as the CPU that the PFAIR scheduler
	 * has chosen for it.
	 */
	raw_spin_lock_irqsave(&pfair_lock, flags);

	TRACE_TASK(t, "RIP, state:%d\n", t->state);
	drop_all_references(t);

	raw_spin_unlock_irqrestore(&pfair_lock, flags);

	kfree(t->rt_param.pfair);
	t->rt_param.pfair = NULL;
}


static void pfair_release_at(struct task_struct* task, lt_t start)
{
	unsigned long flags;
	quanta_t release;

	BUG_ON(!is_realtime(task));

	raw_spin_lock_irqsave(&pfair_lock, flags);
	release_at(task, start);
	release = time2quanta(start, CEIL);

	if (release - pfair_time >= PFAIR_MAX_PERIOD)
		release = pfair_time + PFAIR_MAX_PERIOD;

	TRACE_TASK(task, "sys release at %lu\n", release);

	drop_all_references(task);
	prepare_release(task, release);
	pfair_add_release(task);

	/* Clear sporadic release flag, since this release subsumes any
	 * sporadic release on wake.
	 */
	tsk_pfair(task)->sporadic_release = 0;

	raw_spin_unlock_irqrestore(&pfair_lock, flags);
}

static void init_subtask(struct subtask* sub, unsigned long i,
			 lt_t quanta, lt_t period)
{
	/* since i is zero-based, the formulas are shifted by one */
	lt_t tmp;

	/* release */
	tmp = period * i;
	do_div(tmp, quanta); /* floor */
	sub->release = (quanta_t) tmp;

	/* deadline */
	tmp = period * (i + 1);
	if (do_div(tmp, quanta)) /* ceil */
		tmp++;
	sub->deadline = (quanta_t) tmp;

	/* next release */
	tmp = period * (i + 1);
	do_div(tmp, quanta); /* floor */
	sub->overlap =  sub->deadline - (quanta_t) tmp;

	/* Group deadline.
	 * Based on the formula given in Uma's thesis.
	 */
	if (2 * quanta >= period) {
		/* heavy */
		tmp = (sub->deadline - (i + 1)) * period;
		if (period > quanta &&
		    do_div(tmp, (period - quanta))) /* ceil */
			tmp++;
		sub->group_deadline = (quanta_t) tmp;
	} else
		sub->group_deadline = 0;
}

static void dump_subtasks(struct task_struct* t)
{
	unsigned long i;
	for (i = 0; i < t->rt_param.pfair->quanta; i++)
		TRACE_TASK(t, "SUBTASK %lu: rel=%lu dl=%lu bbit:%lu gdl:%lu\n",
			   i + 1,
			   t->rt_param.pfair->subtasks[i].release,
			   t->rt_param.pfair->subtasks[i].deadline,
			   t->rt_param.pfair->subtasks[i].overlap,
			   t->rt_param.pfair->subtasks[i].group_deadline);
}

static long pfair_admit_task(struct task_struct* t)
{
	lt_t quanta;
	lt_t period;
	s64  quantum_length = ktime_to_ns(tick_period);
	struct pfair_param* param;
	unsigned long i;

	/* Pfair is a tick-based method, so the time
	 * of interest is jiffies. Calculate tick-based
	 * times for everything.
	 * (Ceiling of exec cost, floor of period.)
	 */

	quanta = get_exec_cost(t);
	period = get_rt_period(t);

	quanta = time2quanta(get_exec_cost(t), CEIL);

	if (do_div(period, quantum_length))
		printk(KERN_WARNING
		       "The period of %s/%d is not a multiple of %llu.\n",
		       t->comm, t->pid, (unsigned long long) quantum_length);

	if (period >= PFAIR_MAX_PERIOD) {
		printk(KERN_WARNING
		       "PFAIR: Rejecting task %s/%d; its period is too long.\n",
		       t->comm, t->pid);
		return -EINVAL;
	}

	if (quanta == period) {
		/* special case: task has weight 1.0 */
		printk(KERN_INFO
		       "Admitting weight 1.0 task. (%s/%d, %llu, %llu).\n",
		       t->comm, t->pid, quanta, period);
		quanta = 1;
		period = 1;
	}

	param = kmalloc(sizeof(*param) +
			quanta * sizeof(struct subtask), GFP_ATOMIC);

	if (!param)
		return -ENOMEM;

	param->quanta  = quanta;
	param->cur     = 0;
	param->release = 0;
	param->period  = period;

	for (i = 0; i < quanta; i++)
		init_subtask(param->subtasks + i, i, quanta, period);

	if (t->rt_param.pfair)
		/* get rid of stale allocation */
		kfree(t->rt_param.pfair);

	t->rt_param.pfair = param;

	/* spew out some debug info */
	dump_subtasks(t);

	return 0;
}

static long pfair_activate_plugin(void)
{
	int cpu;
	struct pfair_state* state;

	state = &__get_cpu_var(pfair_state);
	pfair_time = current_quantum(state);

	TRACE("Activating PFAIR at q=%lu\n", pfair_time);

	for (cpu = 0; cpu < num_online_cpus(); cpu++)  {
		state = &per_cpu(pfair_state, cpu);
		state->cur_tick   = pfair_time;
		state->local_tick = pfair_time;
		state->missed_quanta = 0;
		state->offset     = cpu_stagger_offset(cpu);
	}

	return 0;
}

/*	Plugin object	*/
static struct sched_plugin pfair_plugin __cacheline_aligned_in_smp = {
	.plugin_name		= "PFAIR",
	.tick			= pfair_tick,
	.task_new		= pfair_task_new,
	.task_exit		= pfair_task_exit,
	.schedule		= pfair_schedule,
	.task_wake_up		= pfair_task_wake_up,
	.task_block		= pfair_task_block,
	.admit_task		= pfair_admit_task,
	.release_at		= pfair_release_at,
	.complete_job		= complete_job,
	.activate_plugin	= pfair_activate_plugin,
};

static int __init init_pfair(void)
{
	int cpu, i;
	struct pfair_state *state;


	/*
	 * initialize short_cut for per-cpu pfair state;
	 * there may be a problem here if someone removes a cpu
	 * while we are doing this initialization... and if cpus
	 * are added / removed later... is it a _real_ problem?
	 */
	pstate = kmalloc(sizeof(struct pfair_state*) * num_online_cpus(), GFP_KERNEL);

	/* initialize release queue */
	for (i = 0; i < PFAIR_MAX_PERIOD; i++)
		bheap_init(&release_queue[i]);

	/* initialize CPU state */
	for (cpu = 0; cpu < num_online_cpus(); cpu++)  {
		state = &per_cpu(pfair_state, cpu);
		state->cpu 	  = cpu;
		state->cur_tick   = 0;
		state->local_tick = 0;
		state->linked     = NULL;
		state->local      = NULL;
		state->scheduled  = NULL;
		state->missed_quanta = 0;
		state->offset     = cpu_stagger_offset(cpu);
		pstate[cpu] = state;
	}

	rt_domain_init(&pfair, pfair_ready_order, NULL, NULL);
	return register_sched_plugin(&pfair_plugin);
}

static void __exit clean_pfair(void)
{
	kfree(pstate);
}

module_init(init_pfair);
module_exit(clean_pfair);