/*
* litmus/sched_gsn_edf.c
*
* Implementation of the GSN-EDF scheduling algorithm.
*
* This version uses the simple approach and serializes all scheduling
* decisions by the use of a queue lock. This is probably not the
* best way to do it, but it should suffice for now.
*/
#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/sched.h>
#include <litmus/litmus.h>
#include <litmus/jobs.h>
#include <litmus/sched_plugin.h>
#include <litmus/edf_common.h>
#include <litmus/sched_trace.h>
#include <litmus/bheap.h>
#include <linux/module.h>
/* Overview of GSN-EDF operations.
*
* For a detailed explanation of GSN-EDF have a look at the FMLP paper. This
* description only covers how the individual operations are implemented in
* LITMUS.
*
* link_task_to_cpu(T, cpu) - Low-level operation to update the linkage
* structure (NOT the actually scheduled
* task). If there is another linked task To
* already it will set To->linked_on = NO_CPU
* (thereby removing its association with this
* CPU). However, it will not requeue the
* previously linked task (if any). It will set
* T's state to RT_F_RUNNING and check whether
* it is already running somewhere else. If T
* is scheduled somewhere else it will link
* it to that CPU instead (and pull the linked
* task to cpu). T may be NULL.
*
* unlink(T) - Unlink removes T from all scheduler data
* structures. If it is linked to some CPU it
* will link NULL to that CPU. If it is
* currently queued in the gsnedf queue it will
* be removed from the rt_domain. It is safe to
* call unlink(T) if T is not linked. T may not
* be NULL.
*
* requeue(T) - Requeue will insert T into the appropriate
* queue. If the system is in real-time mode and
* the T is released already, it will go into the
* ready queue. If the system is not in
* real-time mode is T, then T will go into the
* release queue. If T's release time is in the
* future, it will go into the release
* queue. That means that T's release time/job
* no/etc. has to be updated before requeu(T) is
* called. It is not safe to call requeue(T)
* when T is already queued. T may not be NULL.
*
* gsnedf_job_arrival(T) - This is the catch all function when T enters
* the system after either a suspension or at a
* job release. It will queue T (which means it
* is not safe to call gsnedf_job_arrival(T) if
* T is already queued) and then check whether a
* preemption is necessary. If a preemption is
* necessary it will update the linkage
* accordingly and cause scheduled to be called
* (either with an IPI or need_resched). It is
* safe to call gsnedf_job_arrival(T) if T's
* next job has not been actually released yet
* (releast time in the future). T will be put
* on the release queue in that case.
*
* job_completion(T) - Take care of everything that needs to be done
* to prepare T for its next release and place
* it in the right queue with
* gsnedf_job_arrival().
*
*
* When we now that T is linked to CPU then link_task_to_cpu(NULL, CPU) is
* equivalent to unlink(T). Note that if you unlink a task from a CPU none of
* the functions will automatically propagate pending task from the ready queue
* to a linked task. This is the job of the calling function ( by means of
* __take_ready).
*/
/* cpu_entry_t - maintain the linked and scheduled state
*/
typedef struct {
int cpu;
struct task_struct* linked; /* only RT tasks */
struct task_struct* scheduled; /* only RT tasks */
atomic_t will_schedule; /* prevent unneeded IPIs */
struct bheap_node* hn;
} cpu_entry_t;
DEFINE_PER_CPU(cpu_entry_t, gsnedf_cpu_entries);
cpu_entry_t* gsnedf_cpus[NR_CPUS];
#define set_will_schedule() \
(atomic_set(&__get_cpu_var(gsnedf_cpu_entries).will_schedule, 1))
#define clear_will_schedule() \
(atomic_set(&__get_cpu_var(gsnedf_cpu_entries).will_schedule, 0))
#define test_will_schedule(cpu) \
(atomic_read(&per_cpu(gsnedf_cpu_entries, cpu).will_schedule))
/* the cpus queue themselves according to priority in here */
static struct bheap_node gsnedf_heap_node[NR_CPUS];
static struct bheap gsnedf_cpu_heap;
static rt_domain_t gsnedf;
#define gsnedf_lock (gsnedf.ready_lock)
/* Uncomment this if you want to see all scheduling decisions in the
* TRACE() log.
#define WANT_ALL_SCHED_EVENTS
*/
static int cpu_lower_prio(struct bheap_node *_a, struct bheap_node *_b)
{
cpu_entry_t *a, *b;
a = _a->value;
b = _b->value;
/* Note that a and b are inverted: we want the lowest-priority CPU at
* the top of the heap.
*/
return edf_higher_prio(b->linked, a->linked);
}
/* update_cpu_position - Move the cpu entry to the correct place to maintain
* order in the cpu queue. Caller must hold gsnedf lock.
*/
static void update_cpu_position(cpu_entry_t *entry)
{
if (likely(bheap_node_in_heap(entry->hn)))
bheap_delete(cpu_lower_prio, &gsnedf_cpu_heap, entry->hn);
bheap_insert(cpu_lower_prio, &gsnedf_cpu_heap, entry->hn);
}
/* caller must hold gsnedf lock */
static cpu_entry_t* lowest_prio_cpu(void)
{
struct bheap_node* hn;
hn = bheap_peek(cpu_lower_prio, &gsnedf_cpu_heap);
return hn->value;
}
/* link_task_to_cpu - Update the link of a CPU.
* Handles the case where the to-be-linked task is already
* scheduled on a different CPU.
*/
static noinline void link_task_to_cpu(struct task_struct* linked,
cpu_entry_t *entry)
{
cpu_entry_t *sched;
struct task_struct* tmp;
int on_cpu;
BUG_ON(linked && !is_realtime(linked));
/* Currently linked task is set to be unlinked. */
if (entry->linked) {
entry->linked->rt_param.linked_on = NO_CPU;
}
/* Link new task to CPU. */
if (linked) {
set_rt_flags(linked, RT_F_RUNNING);
/* handle task is already scheduled somewhere! */
on_cpu = linked->rt_param.scheduled_on;
if (on_cpu != NO_CPU) {
sched = &per_cpu(gsnedf_cpu_entries, on_cpu);
/* this should only happen if not linked already */
BUG_ON(sched->linked == linked);
/* If we are already scheduled on the CPU to which we
* wanted to link, we don't need to do the swap --
* we just link ourselves to the CPU and depend on
* the caller to get things right.
*/
if (entry != sched) {
TRACE_TASK(linked,
"already scheduled on %d, updating link.\n",
sched->cpu);
tmp = sched->linked;
linked->rt_param.linked_on = sched->cpu;
sched->linked = linked;
update_cpu_position(sched);
linked = tmp;
}
}
if (linked) /* might be NULL due to swap */
linked->rt_param.linked_on = entry->cpu;
}
entry->linked = linked;
#ifdef WANT_ALL_SCHED_EVENTS
if (linked)
TRACE_TASK(linked, "linked to %d.\n", entry->cpu);
else
TRACE("NULL linked to %d.\n", entry->cpu);
#endif
update_cpu_position(entry);
}
/* unlink - Make sure a task is not linked any longer to an entry
* where it was linked before. Must hold gsnedf_lock.
*/
static noinline void unlink(struct task_struct* t)
{
cpu_entry_t *entry;
if (unlikely(!t)) {
TRACE_BUG_ON(!t);
return;
}
if (t->rt_param.linked_on != NO_CPU) {
/* unlink */
entry = &per_cpu(gsnedf_cpu_entries, t->rt_param.linked_on);
t->rt_param.linked_on = NO_CPU;
link_task_to_cpu(NULL, entry);
} else if (is_queued(t)) {
/* This is an interesting situation: t is scheduled,
* but was just recently unlinked. It cannot be
* linked anywhere else (because then it would have
* been relinked to this CPU), thus it must be in some
* queue. We must remove it from the list in this
* case.
*/
remove(&gsnedf, t);
}
}
/* preempt - force a CPU to reschedule
*/
static void preempt(cpu_entry_t *entry)
{
preempt_if_preemptable(entry->scheduled, entry->cpu);
}
/* requeue - Put an unlinked task into gsn-edf domain.
* Caller must hold gsnedf_lock.
*/
static noinline void requeue(struct task_struct* task)
{
BUG_ON(!task);
/* sanity check before insertion */
BUG_ON(is_queued(task));
if (is_released(task, litmus_clock()))
__add_ready(&gsnedf, task);
else {
/* it has got to wait */
add_release(&gsnedf, task);
}
}
/* check for any necessary preemptions */
static void check_for_preemptions(void)
{
struct task_struct *task;
cpu_entry_t* last;
for(last = lowest_prio_cpu();
edf_preemption_needed(&gsnedf, last->linked);
last = lowest_prio_cpu()) {
/* preemption necessary */
task = __take_ready(&gsnedf);
TRACE("check_for_preemptions: attempting to link task %d to %d\n",
task->pid, last->cpu);
if (last->linked)
requeue(last->linked);
link_task_to_cpu(task, last);
preempt(last);
}
}
/* gsnedf_job_arrival: task is either resumed or released */
static noinline void gsnedf_job_arrival(struct task_struct* task)
{
BUG_ON(!task);
requeue(task);
check_for_preemptions();
}
static void gsnedf_release_jobs(rt_domain_t* rt, struct bheap* tasks)
{
unsigned long flags;
raw_spin_lock_irqsave(&gsnedf_lock, flags);
__merge_ready(rt, tasks);
check_for_preemptions();
raw_spin_unlock_irqrestore(&gsnedf_lock, flags);
}
/* caller holds gsnedf_lock */
static noinline void job_completion(struct task_struct *t, int forced)
{
BUG_ON(!t);
sched_trace_task_completion(t, forced);
TRACE_TASK(t, "job_completion().\n");
/* set flags */
set_rt_flags(t, RT_F_SLEEP);
/* prepare for next period */
prepare_for_next_period(t);
if (is_released(t, litmus_clock()))
sched_trace_task_release(t);
/* unlink */
unlink(t);
/* requeue
* But don't requeue a blocking task. */
if (is_running(t))
gsnedf_job_arrival(t);
}
/* gsnedf_tick - this function is called for every local timer
* interrupt.
*
* checks whether the current task has expired and checks
* whether we need to preempt it if it has not expired
*/
static void gsnedf_tick(struct task_struct* t)
{
if (is_realtime(t) && budget_enforced(t) && budget_exhausted(t)) {
if (!is_np(t)) {
/* np tasks will be preempted when they become
* preemptable again
*/
set_tsk_need_resched(t);
set_will_schedule();
TRACE("gsnedf_scheduler_tick: "
"%d is preemptable "
" => FORCE_RESCHED\n", t->pid);
} else if (is_user_np(t)) {
TRACE("gsnedf_scheduler_tick: "
"%d is non-preemptable, "
"preemption delayed.\n", t->pid);
request_exit_np(t);
}
}
}
/* Getting schedule() right is a bit tricky. schedule() may not make any
* assumptions on the state of the current task since it may be called for a
* number of reasons. The reasons include a scheduler_tick() determined that it
* was necessary, because sys_exit_np() was called, because some Linux
* subsystem determined so, or even (in the worst case) because there is a bug
* hidden somewhere. Thus, we must take extreme care to determine what the
* current state is.
*
* The CPU could currently be scheduling a task (or not), be linked (or not).
*
* The following assertions for the scheduled task could hold:
*
* - !is_running(scheduled) // the job blocks
* - scheduled->timeslice == 0 // the job completed (forcefully)
* - get_rt_flag() == RT_F_SLEEP // the job completed (by syscall)
* - linked != scheduled // we need to reschedule (for any reason)
* - is_np(scheduled) // rescheduling must be delayed,
* sys_exit_np must be requested
*
* Any of these can occur together.
*/
static struct task_struct* gsnedf_schedule(struct task_struct * prev)
{
cpu_entry_t* entry = &__get_cpu_var(gsnedf_cpu_entries);
int out_of_time, sleep, preempt, np, exists, blocks;
struct task_struct* next = NULL;
#ifdef CONFIG_RELEASE_MASTER
/* Bail out early if we are the release master.
* The release master never schedules any real-time tasks.
*/
if (gsnedf.release_master == entry->cpu)
return NULL;
#endif
raw_spin_lock(&gsnedf_lock);
clear_will_schedule();
/* sanity checking */
BUG_ON(entry->scheduled && entry->scheduled != prev);
BUG_ON(entry->scheduled && !is_realtime(prev));
BUG_ON(is_realtime(prev) && !entry->scheduled);
/* (0) Determine state */
exists = entry->scheduled != NULL;
blocks = exists && !is_running(entry->scheduled);
out_of_time = exists &&
budget_enforced(entry->scheduled) &&
budget_exhausted(entry->scheduled);
np = exists && is_np(entry->scheduled);
sleep = exists && get_rt_flags(entry->scheduled) == RT_F_SLEEP;
preempt = entry->scheduled != entry->linked;
#ifdef WANT_ALL_SCHED_EVENTS
TRACE_TASK(prev, "invoked gsnedf_schedule.\n");
#endif
if (exists)
TRACE_TASK(prev,
"blocks:%d out_of_time:%d np:%d sleep:%d preempt:%d "
"state:%d sig:%d\n",
blocks, out_of_time, np, sleep, preempt,
prev->state, signal_pending(prev));
if (entry->linked && preempt)
TRACE_TASK(prev, "will be preempted by %s/%d\n",
entry->linked->comm, entry->linked->pid);
/* If a task blocks we have no choice but to reschedule.
*/
if (blocks)
unlink(entry->scheduled);
/* Request a sys_exit_np() call if we would like to preempt but cannot.
* We need to make sure to update the link structure anyway in case
* that we are still linked. Multiple calls to request_exit_np() don't
* hurt.
*/
if (np && (out_of_time || preempt || sleep)) {
unlink(entry->scheduled);
request_exit_np(entry->scheduled);
}
/* Any task that is preemptable and either exhausts its execution
* budget or wants to sleep completes. We may have to reschedule after
* this. Don't do a job completion if we block (can't have timers running
* for blocked jobs). Preemption go first for the same reason.
*/
if (!np && (out_of_time || sleep) && !blocks && !preempt)
job_completion(entry->scheduled, !sleep);
/* Link pending task if we became unlinked.
*/
if (!entry->linked)
link_task_to_cpu(__take_ready(&gsnedf), entry);
/* The final scheduling decision. Do we need to switch for some reason?
* If linked is different from scheduled, then select linked as next.
*/
if ((!np || blocks) &&
entry->linked != entry->scheduled) {
/* Schedule a linked job? */
if (entry->linked) {
entry->linked->rt_param.scheduled_on = entry->cpu;
next = entry->linked;
}
if (entry->scheduled) {
/* not gonna be scheduled soon */
entry->scheduled->rt_param.scheduled_on = NO_CPU;
TRACE_TASK(entry->scheduled, "scheduled_on = NO_CPU\n");
}
} else
/* Only override Linux scheduler if we have a real-time task
* scheduled that needs to continue.
*/
if (exists)
next = prev;
raw_spin_unlock(&gsnedf_lock);
#ifdef WANT_ALL_SCHED_EVENTS
TRACE("gsnedf_lock released, next=0x%p\n", next);
if (next)
TRACE_TASK(next, "scheduled at %llu\n", litmus_clock());
else if (exists && !next)
TRACE("becomes idle at %llu.\n", litmus_clock());
#endif
return next;
}
/* _finish_switch - we just finished the switch away from prev
*/
static void gsnedf_finish_switch(struct task_struct *prev)
{
cpu_entry_t* entry = &__get_cpu_var(gsnedf_cpu_entries);
entry->scheduled = is_realtime(current) ? current : NULL;
#ifdef WANT_ALL_SCHED_EVENTS
TRACE_TASK(prev, "switched away from\n");
#endif
}
/* Prepare a task for running in RT mode
*/
static void gsnedf_task_new(struct task_struct * t, int on_rq, int running)
{
unsigned long flags;
cpu_entry_t* entry;
TRACE("gsn edf: task new %d\n", t->pid);
raw_spin_lock_irqsave(&gsnedf_lock, flags);
/* setup job params */
release_at(t, litmus_clock());
if (running) {
entry = &per_cpu(gsnedf_cpu_entries, task_cpu(t));
BUG_ON(entry->scheduled);
#ifdef CONFIG_RELEASE_MASTER
if (entry->cpu != gsnedf.release_master) {
#endif
entry->scheduled = t;
tsk_rt(t)->scheduled_on = task_cpu(t);
#ifdef CONFIG_RELEASE_MASTER
} else {
/* do not schedule on release master */
preempt(entry); /* force resched */
tsk_rt(t)->scheduled_on = NO_CPU;
}
#endif
} else {
t->rt_param.scheduled_on = NO_CPU;
}
t->rt_param.linked_on = NO_CPU;
gsnedf_job_arrival(t);
raw_spin_unlock_irqrestore(&gsnedf_lock, flags);
}
static void gsnedf_task_wake_up(struct task_struct *task)
{
unsigned long flags;
lt_t now;
TRACE_TASK(task, "wake_up at %llu\n", litmus_clock());
raw_spin_lock_irqsave(&gsnedf_lock, flags);
/* We need to take suspensions because of semaphores into
* account! If a job resumes after being suspended due to acquiring
* a semaphore, it should never be treated as a new job release.
*/
if (get_rt_flags(task) == RT_F_EXIT_SEM) {
set_rt_flags(task, RT_F_RUNNING);
} else {
now = litmus_clock();
if (is_tardy(task, now)) {
/* new sporadic release */
release_at(task, now);
sched_trace_task_release(task);
}
else {
if (task->rt.time_slice) {
/* came back in time before deadline
*/
set_rt_flags(task, RT_F_RUNNING);
}
}
}
gsnedf_job_arrival(task);
raw_spin_unlock_irqrestore(&gsnedf_lock, flags);
}
static void gsnedf_task_block(struct task_struct *t)
{
unsigned long flags;
TRACE_TASK(t, "block at %llu\n", litmus_clock());
/* unlink if necessary */
raw_spin_lock_irqsave(&gsnedf_lock, flags);
unlink(t);
raw_spin_unlock_irqrestore(&gsnedf_lock, flags);
BUG_ON(!is_realtime(t));
}
static void gsnedf_task_exit(struct task_struct * t)
{
unsigned long flags;
/* unlink if necessary */
raw_spin_lock_irqsave(&gsnedf_lock, flags);
unlink(t);
if (tsk_rt(t)->scheduled_on != NO_CPU) {
gsnedf_cpus[tsk_rt(t)->scheduled_on]->scheduled = NULL;
tsk_rt(t)->scheduled_on = NO_CPU;
}
raw_spin_unlock_irqrestore(&gsnedf_lock, flags);
BUG_ON(!is_realtime(t));
TRACE_TASK(t, "RIP\n");
}
#ifdef CONFIG_FMLP
/* Update the queue position of a task that got it's priority boosted via
* priority inheritance. */
static void update_queue_position(struct task_struct *holder)
{
/* We don't know whether holder is in the ready queue. It should, but
* on a budget overrun it may already be in a release queue. Hence,
* calling unlink() is not possible since it assumes that the task is
* not in a release queue. However, we can safely check whether
* sem->holder is currently in a queue or scheduled after locking both
* the release and the ready queue lock. */
/* Assumption: caller holds gsnedf_lock */
int check_preempt = 0;
if (tsk_rt(holder)->linked_on != NO_CPU) {
TRACE_TASK(holder, "%s: linked on %d\n",
__FUNCTION__, tsk_rt(holder)->linked_on);
/* Holder is scheduled; need to re-order CPUs.
* We can't use heap_decrease() here since
* the cpu_heap is ordered in reverse direction, so
* it is actually an increase. */
bheap_delete(cpu_lower_prio, &gsnedf_cpu_heap,
gsnedf_cpus[tsk_rt(holder)->linked_on]->hn);
bheap_insert(cpu_lower_prio, &gsnedf_cpu_heap,
gsnedf_cpus[tsk_rt(holder)->linked_on]->hn);
} else {
/* holder may be queued: first stop queue changes */
raw_spin_lock(&gsnedf.release_lock);
if (is_queued(holder)) {
TRACE_TASK(holder, "%s: is queued\n",
__FUNCTION__);
/* We need to update the position
* of holder in some heap. Note that this
* may be a release heap. */
check_preempt =
!bheap_decrease(edf_ready_order,
tsk_rt(holder)->heap_node);
} else {
/* Nothing to do: if it is not queued and not linked
* then it is currently being moved by other code
* (e.g., a timer interrupt handler) that will use the
* correct priority when enqueuing the task. */
TRACE_TASK(holder, "%s: is NOT queued => Done.\n",
__FUNCTION__);
}
raw_spin_unlock(&gsnedf.release_lock);
/* If holder was enqueued in a release heap, then the following
* preemption check is pointless, but we can't easily detect
* that case. If you want to fix this, then consider that
* simply adding a state flag requires O(n) time to update when
* releasing n tasks, which conflicts with the goal to have
* O(log n) merges. */
if (check_preempt) {
/* heap_decrease() hit the top level of the heap: make
* sure preemption checks get the right task, not the
* potentially stale cache. */
bheap_uncache_min(edf_ready_order,
&gsnedf.ready_queue);
check_for_preemptions();
}
}
}
static long gsnedf_pi_block(struct pi_semaphore *sem,
struct task_struct *new_waiter)
{
/* This callback has to handle the situation where a new waiter is
* added to the wait queue of the semaphore.
*
* We must check if has a higher priority than the currently
* highest-priority task, and then potentially reschedule.
*/
BUG_ON(!new_waiter);
if (edf_higher_prio(new_waiter, sem->hp.task)) {
TRACE_TASK(new_waiter, " boosts priority via %p\n", sem);
/* called with IRQs disabled */
raw_spin_lock(&gsnedf_lock);
/* store new highest-priority task */
sem->hp.task = new_waiter;
if (sem->holder) {
TRACE_TASK(sem->holder,
" holds %p and will inherit from %s/%d\n",
sem,
new_waiter->comm, new_waiter->pid);
/* let holder inherit */
sem->holder->rt_param.inh_task = new_waiter;
update_queue_position(sem->holder);
}
raw_spin_unlock(&gsnedf_lock);
}
return 0;
}
static long gsnedf_inherit_priority(struct pi_semaphore *sem,
struct task_struct *new_owner)
{
/* We don't need to acquire the gsnedf_lock since at the time of this
* call new_owner isn't actually scheduled yet (it's still sleeping)
* and since the calling function already holds sem->wait.lock, which
* prevents concurrent sem->hp.task changes.
*/
if (sem->hp.task && sem->hp.task != new_owner) {
new_owner->rt_param.inh_task = sem->hp.task;
TRACE_TASK(new_owner, "inherited priority from %s/%d\n",
sem->hp.task->comm, sem->hp.task->pid);
} else
TRACE_TASK(new_owner,
"cannot inherit priority, "
"no higher priority job waits.\n");
return 0;
}
/* This function is called on a semaphore release, and assumes that
* the current task is also the semaphore holder.
*/
static long gsnedf_return_priority(struct pi_semaphore *sem)
{
struct task_struct* t = current;
int ret = 0;
/* Find new highest-priority semaphore task
* if holder task is the current hp.task.
*
* Calling function holds sem->wait.lock.
*/
if (t == sem->hp.task)
edf_set_hp_task(sem);
TRACE_CUR("gsnedf_return_priority for lock %p\n", sem);
if (t->rt_param.inh_task) {
/* interrupts already disabled by PI code */
raw_spin_lock(&gsnedf_lock);
/* Reset inh_task to NULL. */
t->rt_param.inh_task = NULL;
/* Check if rescheduling is necessary */
unlink(t);
gsnedf_job_arrival(t);
raw_spin_unlock(&gsnedf_lock);
}
return ret;
}
#endif
static long gsnedf_admit_task(struct task_struct* tsk)
{
return 0;
}
static long gsnedf_activate_plugin(void)
{
int cpu;
cpu_entry_t *entry;
bheap_init(&gsnedf_cpu_heap);
#ifdef CONFIG_RELEASE_MASTER
gsnedf.release_master = atomic_read(&release_master_cpu);
#endif
for_each_online_cpu(cpu) {
entry = &per_cpu(gsnedf_cpu_entries, cpu);
bheap_node_init(&entry->hn, entry);
atomic_set(&entry->will_schedule, 0);
entry->linked = NULL;
entry->scheduled = NULL;
#ifdef CONFIG_RELEASE_MASTER
if (cpu != gsnedf.release_master) {
#endif
TRACE("GSN-EDF: Initializing CPU #%d.\n", cpu);
update_cpu_position(entry);
#ifdef CONFIG_RELEASE_MASTER
} else {
TRACE("GSN-EDF: CPU %d is release master.\n", cpu);
}
#endif
}
return 0;
}
/* Plugin object */
static struct sched_plugin gsn_edf_plugin __cacheline_aligned_in_smp = {
.plugin_name = "GSN-EDF",
.finish_switch = gsnedf_finish_switch,
.tick = gsnedf_tick,
.task_new = gsnedf_task_new,
.complete_job = complete_job,
.task_exit = gsnedf_task_exit,
.schedule = gsnedf_schedule,
.task_wake_up = gsnedf_task_wake_up,
.task_block = gsnedf_task_block,
#ifdef CONFIG_FMLP
.fmlp_active = 1,
.pi_block = gsnedf_pi_block,
.inherit_priority = gsnedf_inherit_priority,
.return_priority = gsnedf_return_priority,
#endif
.admit_task = gsnedf_admit_task,
.activate_plugin = gsnedf_activate_plugin,
};
static int __init init_gsn_edf(void)
{
int cpu;
cpu_entry_t *entry;
bheap_init(&gsnedf_cpu_heap);
/* initialize CPU state */
for (cpu = 0; cpu < NR_CPUS; cpu++) {
entry = &per_cpu(gsnedf_cpu_entries, cpu);
gsnedf_cpus[cpu] = entry;
atomic_set(&entry->will_schedule, 0);
entry->cpu = cpu;
entry->hn = &gsnedf_heap_node[cpu];
bheap_node_init(&entry->hn, entry);
}
edf_domain_init(&gsnedf, NULL, gsnedf_release_jobs);
return register_sched_plugin(&gsn_edf_plugin);
}
module_init(init_gsn_edf);