/*
* litmus/sched_gsn_edf.c
*
* Implementation of the GSN-EDF scheduling algorithm.
*
* This version uses the simple approach and serializes all scheduling
* decisions by the use of a queue lock. This is probably not the
* best way to do it, but it should suffice for now.
*/
#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/slab.h>
#ifdef CONFIG_LITMUS_NESTED_LOCKING
#include <linux/uaccess.h>
#endif
#include <litmus/litmus.h>
#include <litmus/jobs.h>
#include <litmus/sched_plugin.h>
#include <litmus/edf_common.h>
#include <litmus/sched_trace.h>
#include <litmus/trace.h>
#include <litmus/preempt.h>
#include <litmus/bheap.h>
#include <litmus/binheap.h>
#ifdef CONFIG_SCHED_CPU_AFFINITY
#include <litmus/affinity.h>
#endif
#include <linux/module.h>
/* Overview of GSN-EDF operations.
*
* For a detailed explanation of GSN-EDF have a look at the FMLP paper. This
* description only covers how the individual operations are implemented in
* LITMUS.
*
* link_task_to_cpu(T, cpu) - Low-level operation to update the linkage
* structure (NOT the actually scheduled
* task). If there is another linked task To
* already it will set To->linked_on = NO_CPU
* (thereby removing its association with this
* CPU). However, it will not requeue the
* previously linked task (if any). It will set
* T's state to RT_F_RUNNING and check whether
* it is already running somewhere else. If T
* is scheduled somewhere else it will link
* it to that CPU instead (and pull the linked
* task to cpu). T may be NULL.
*
* unlink(T) - Unlink removes T from all scheduler data
* structures. If it is linked to some CPU it
* will link NULL to that CPU. If it is
* currently queued in the gsnedf queue it will
* be removed from the rt_domain. It is safe to
* call unlink(T) if T is not linked. T may not
* be NULL.
*
* requeue(T) - Requeue will insert T into the appropriate
* queue. If the system is in real-time mode and
* the T is released already, it will go into the
* ready queue. If the system is not in
* real-time mode is T, then T will go into the
* release queue. If T's release time is in the
* future, it will go into the release
* queue. That means that T's release time/job
* no/etc. has to be updated before requeu(T) is
* called. It is not safe to call requeue(T)
* when T is already queued. T may not be NULL.
*
* gsnedf_job_arrival(T) - This is the catch all function when T enters
* the system after either a suspension or at a
* job release. It will queue T (which means it
* is not safe to call gsnedf_job_arrival(T) if
* T is already queued) and then check whether a
* preemption is necessary. If a preemption is
* necessary it will update the linkage
* accordingly and cause scheduled to be called
* (either with an IPI or need_resched). It is
* safe to call gsnedf_job_arrival(T) if T's
* next job has not been actually released yet
* (releast time in the future). T will be put
* on the release queue in that case.
*
* job_completion(T) - Take care of everything that needs to be done
* to prepare T for its next release and place
* it in the right queue with
* gsnedf_job_arrival().
*
*
* When we now that T is linked to CPU then link_task_to_cpu(NULL, CPU) is
* equivalent to unlink(T). Note that if you unlink a task from a CPU none of
* the functions will automatically propagate pending task from the ready queue
* to a linked task. This is the job of the calling function ( by means of
* __take_ready).
*/
/* cpu_entry_t - maintain the linked and scheduled state
*/
typedef struct {
int cpu;
struct task_struct* linked; /* only RT tasks */
struct task_struct* scheduled; /* only RT tasks */
struct binheap_node hn;
} cpu_entry_t;
DEFINE_PER_CPU(cpu_entry_t, gsnedf_cpu_entries);
cpu_entry_t* gsnedf_cpus[NR_CPUS];
/* the cpus queue themselves according to priority in here */
static struct binheap_handle gsnedf_cpu_heap;
static rt_domain_t gsnedf;
#define gsnedf_lock (gsnedf.ready_lock)
#ifdef CONFIG_LITMUS_DGL_SUPPORT
static raw_spinlock_t dgl_lock;
#endif
/* Uncomment this if you want to see all scheduling decisions in the
* TRACE() log.
#define WANT_ALL_SCHED_EVENTS
*/
static int cpu_lower_prio(struct binheap_node *_a, struct binheap_node *_b)
{
cpu_entry_t *a = binheap_entry(_a, cpu_entry_t, hn);
cpu_entry_t *b = binheap_entry(_b, cpu_entry_t, hn);
/* Note that a and b are inverted: we want the lowest-priority CPU at
* the top of the heap.
*/
return edf_higher_prio(b->linked, a->linked);
}
/* update_cpu_position - Move the cpu entry to the correct place to maintain
* order in the cpu queue. Caller must hold gsnedf lock.
*/
static void update_cpu_position(cpu_entry_t *entry)
{
if (likely(binheap_is_in_heap(&entry->hn))) {
binheap_delete(&entry->hn, &gsnedf_cpu_heap);
}
binheap_add(&entry->hn, &gsnedf_cpu_heap, cpu_entry_t, hn);
}
/* caller must hold gsnedf lock */
static cpu_entry_t* lowest_prio_cpu(void)
{
return binheap_top_entry(&gsnedf_cpu_heap, cpu_entry_t, hn);
}
/* link_task_to_cpu - Update the link of a CPU.
* Handles the case where the to-be-linked task is already
* scheduled on a different CPU.
*/
static noinline void link_task_to_cpu(struct task_struct* linked,
cpu_entry_t *entry)
{
cpu_entry_t *sched;
struct task_struct* tmp;
int on_cpu;
BUG_ON(linked && !is_realtime(linked));
/* Currently linked task is set to be unlinked. */
if (entry->linked) {
entry->linked->rt_param.linked_on = NO_CPU;
}
/* Link new task to CPU. */
if (linked) {
set_rt_flags(linked, RT_F_RUNNING);
/* handle task is already scheduled somewhere! */
on_cpu = linked->rt_param.scheduled_on;
if (on_cpu != NO_CPU) {
sched = &per_cpu(gsnedf_cpu_entries, on_cpu);
/* this should only happen if not linked already */
BUG_ON(sched->linked == linked);
/* If we are already scheduled on the CPU to which we
* wanted to link, we don't need to do the swap --
* we just link ourselves to the CPU and depend on
* the caller to get things right.
*/
if (entry != sched) {
TRACE_TASK(linked,
"already scheduled on %d, updating link.\n",
sched->cpu);
tmp = sched->linked;
linked->rt_param.linked_on = sched->cpu;
sched->linked = linked;
update_cpu_position(sched);
linked = tmp;
}
}
if (linked) /* might be NULL due to swap */
linked->rt_param.linked_on = entry->cpu;
}
entry->linked = linked;
#ifdef WANT_ALL_SCHED_EVENTS
if (linked)
TRACE_TASK(linked, "linked to %d.\n", entry->cpu);
else
TRACE("NULL linked to %d.\n", entry->cpu);
#endif
update_cpu_position(entry);
}
/* unlink - Make sure a task is not linked any longer to an entry
* where it was linked before. Must hold gsnedf_lock.
*/
static noinline void unlink(struct task_struct* t)
{
cpu_entry_t *entry;
if (t->rt_param.linked_on != NO_CPU) {
/* unlink */
entry = &per_cpu(gsnedf_cpu_entries, t->rt_param.linked_on);
t->rt_param.linked_on = NO_CPU;
link_task_to_cpu(NULL, entry);
} else if (is_queued(t)) {
/* This is an interesting situation: t is scheduled,
* but was just recently unlinked. It cannot be
* linked anywhere else (because then it would have
* been relinked to this CPU), thus it must be in some
* queue. We must remove it from the list in this
* case.
*/
remove(&gsnedf, t);
}
}
/* preempt - force a CPU to reschedule
*/
static void preempt(cpu_entry_t *entry)
{
preempt_if_preemptable(entry->scheduled, entry->cpu);
}
/* requeue - Put an unlinked task into gsn-edf domain.
* Caller must hold gsnedf_lock.
*/
static noinline void requeue(struct task_struct* task)
{
BUG_ON(!task);
/* sanity check before insertion */
BUG_ON(is_queued(task));
if (is_released(task, litmus_clock()))
__add_ready(&gsnedf, task);
else {
/* it has got to wait */
add_release(&gsnedf, task);
}
}
#ifdef CONFIG_SCHED_CPU_AFFINITY
static cpu_entry_t* gsnedf_get_nearest_available_cpu(cpu_entry_t *start)
{
cpu_entry_t *affinity;
get_nearest_available_cpu(affinity, start, gsnedf_cpu_entries,
#ifdef CONFIG_RELEASE_MASTER
gsnedf.release_master
#else
NO_CPU
#endif
);
return(affinity);
}
#endif
/* check for any necessary preemptions */
static void check_for_preemptions(void)
{
struct task_struct *task;
cpu_entry_t *last;
for (last = lowest_prio_cpu();
edf_preemption_needed(&gsnedf, last->linked);
last = lowest_prio_cpu()) {
/* preemption necessary */
task = __take_ready(&gsnedf);
TRACE("check_for_preemptions: attempting to link task %d to %d\n",
task->pid, last->cpu);
#ifdef CONFIG_SCHED_CPU_AFFINITY
{
cpu_entry_t *affinity =
gsnedf_get_nearest_available_cpu(
&per_cpu(gsnedf_cpu_entries, task_cpu(task)));
if (affinity)
last = affinity;
else if (last->linked)
requeue(last->linked);
}
#else
if (last->linked)
requeue(last->linked);
#endif
link_task_to_cpu(task, last);
preempt(last);
}
}
/* gsnedf_job_arrival: task is either resumed or released */
static noinline void gsnedf_job_arrival(struct task_struct* task)
{
BUG_ON(!task);
requeue(task);
check_for_preemptions();
}
static void gsnedf_release_jobs(rt_domain_t* rt, struct bheap* tasks)
{
unsigned long flags;
raw_spin_lock_irqsave(&gsnedf_lock, flags);
__merge_ready(rt, tasks);
check_for_preemptions();
raw_spin_unlock_irqrestore(&gsnedf_lock, flags);
}
/* caller holds gsnedf_lock */
static noinline void job_completion(struct task_struct *t, int forced)
{
BUG_ON(!t);
sched_trace_task_completion(t, forced);
TRACE_TASK(t, "job_completion().\n");
/* set flags */
set_rt_flags(t, RT_F_SLEEP);
/* prepare for next period */
prepare_for_next_period(t);
if (is_released(t, litmus_clock()))
sched_trace_task_release(t);
/* unlink */
unlink(t);
/* requeue
* But don't requeue a blocking task. */
if (is_running(t))
gsnedf_job_arrival(t);
}
/* gsnedf_tick - this function is called for every local timer
* interrupt.
*
* checks whether the current task has expired and checks
* whether we need to preempt it if it has not expired
*/
static void gsnedf_tick(struct task_struct* t)
{
if (is_realtime(t) && budget_enforced(t) && budget_exhausted(t)) {
if (!is_np(t)) {
/* np tasks will be preempted when they become
* preemptable again
*/
litmus_reschedule_local();
TRACE("gsnedf_scheduler_tick: "
"%d is preemptable "
" => FORCE_RESCHED\n", t->pid);
} else if (is_user_np(t)) {
TRACE("gsnedf_scheduler_tick: "
"%d is non-preemptable, "
"preemption delayed.\n", t->pid);
request_exit_np(t);
}
}
}
/* Getting schedule() right is a bit tricky. schedule() may not make any
* assumptions on the state of the current task since it may be called for a
* number of reasons. The reasons include a scheduler_tick() determined that it
* was necessary, because sys_exit_np() was called, because some Linux
* subsystem determined so, or even (in the worst case) because there is a bug
* hidden somewhere. Thus, we must take extreme care to determine what the
* current state is.
*
* The CPU could currently be scheduling a task (or not), be linked (or not).
*
* The following assertions for the scheduled task could hold:
*
* - !is_running(scheduled) // the job blocks
* - scheduled->timeslice == 0 // the job completed (forcefully)
* - get_rt_flag() == RT_F_SLEEP // the job completed (by syscall)
* - linked != scheduled // we need to reschedule (for any reason)
* - is_np(scheduled) // rescheduling must be delayed,
* sys_exit_np must be requested
*
* Any of these can occur together.
*/
static struct task_struct* gsnedf_schedule(struct task_struct * prev)
{
cpu_entry_t* entry = &__get_cpu_var(gsnedf_cpu_entries);
int out_of_time, sleep, preempt, np, exists, blocks;
struct task_struct* next = NULL;
#ifdef CONFIG_RELEASE_MASTER
/* Bail out early if we are the release master.
* The release master never schedules any real-time tasks.
*/
if (unlikely(gsnedf.release_master == entry->cpu)) {
sched_state_task_picked();
return NULL;
}
#endif
raw_spin_lock(&gsnedf_lock);
/* sanity checking */
BUG_ON(entry->scheduled && entry->scheduled != prev);
BUG_ON(entry->scheduled && !is_realtime(prev));
BUG_ON(is_realtime(prev) && !entry->scheduled);
/* (0) Determine state */
exists = entry->scheduled != NULL;
blocks = exists && !is_running(entry->scheduled);
out_of_time = exists &&
budget_enforced(entry->scheduled) &&
budget_exhausted(entry->scheduled);
np = exists && is_np(entry->scheduled);
sleep = exists && get_rt_flags(entry->scheduled) == RT_F_SLEEP;
preempt = entry->scheduled != entry->linked;
#ifdef WANT_ALL_SCHED_EVENTS
TRACE_TASK(prev, "invoked gsnedf_schedule.\n");
#endif
if (exists)
TRACE_TASK(prev,
"blocks:%d out_of_time:%d np:%d sleep:%d preempt:%d "
"state:%d sig:%d\n",
blocks, out_of_time, np, sleep, preempt,
prev->state, signal_pending(prev));
if (entry->linked && preempt)
TRACE_TASK(prev, "will be preempted by %s/%d\n",
entry->linked->comm, entry->linked->pid);
/* If a task blocks we have no choice but to reschedule.
*/
if (blocks)
unlink(entry->scheduled);
/* Request a sys_exit_np() call if we would like to preempt but cannot.
* We need to make sure to update the link structure anyway in case
* that we are still linked. Multiple calls to request_exit_np() don't
* hurt.
*/
if (np && (out_of_time || preempt || sleep)) {
unlink(entry->scheduled);
request_exit_np(entry->scheduled);
}
/* Any task that is preemptable and either exhausts its execution
* budget or wants to sleep completes. We may have to reschedule after
* this. Don't do a job completion if we block (can't have timers running
* for blocked jobs). Preemption go first for the same reason.
*/
if (!np && (out_of_time || sleep) && !blocks && !preempt)
job_completion(entry->scheduled, !sleep);
/* Link pending task if we became unlinked.
*/
if (!entry->linked)
link_task_to_cpu(__take_ready(&gsnedf), entry);
/* The final scheduling decision. Do we need to switch for some reason?
* If linked is different from scheduled, then select linked as next.
*/
if ((!np || blocks) &&
entry->linked != entry->scheduled) {
/* Schedule a linked job? */
if (entry->linked) {
entry->linked->rt_param.scheduled_on = entry->cpu;
next = entry->linked;
TRACE_TASK(next, "scheduled_on = P%d\n", smp_processor_id());
}
if (entry->scheduled) {
/* not gonna be scheduled soon */
entry->scheduled->rt_param.scheduled_on = NO_CPU;
TRACE_TASK(entry->scheduled, "scheduled_on = NO_CPU\n");
}
} else
/* Only override Linux scheduler if we have a real-time task
* scheduled that needs to continue.
*/
if (exists)
next = prev;
sched_state_task_picked();
raw_spin_unlock(&gsnedf_lock);
#ifdef WANT_ALL_SCHED_EVENTS
TRACE("gsnedf_lock released, next=0x%p\n", next);
if (next)
TRACE_TASK(next, "scheduled at %llu\n", litmus_clock());
else if (exists && !next)
TRACE("becomes idle at %llu.\n", litmus_clock());
#endif
return next;
}
/* _finish_switch - we just finished the switch away from prev
*/
static void gsnedf_finish_switch(struct task_struct *prev)
{
cpu_entry_t* entry = &__get_cpu_var(gsnedf_cpu_entries);
entry->scheduled = is_realtime(current) ? current : NULL;
#ifdef WANT_ALL_SCHED_EVENTS
TRACE_TASK(prev, "switched away from\n");
#endif
}
/* Prepare a task for running in RT mode
*/
static void gsnedf_task_new(struct task_struct * t, int on_rq, int running)
{
unsigned long flags;
cpu_entry_t* entry;
TRACE("gsn edf: task new %d\n", t->pid);
raw_spin_lock_irqsave(&gsnedf_lock, flags);
/* setup job params */
release_at(t, litmus_clock());
if (running) {
entry = &per_cpu(gsnedf_cpu_entries, task_cpu(t));
BUG_ON(entry->scheduled);
#ifdef CONFIG_RELEASE_MASTER
if (entry->cpu != gsnedf.release_master) {
#endif
entry->scheduled = t;
tsk_rt(t)->scheduled_on = task_cpu(t);
#ifdef CONFIG_RELEASE_MASTER
} else {
/* do not schedule on release master */
preempt(entry); /* force resched */
tsk_rt(t)->scheduled_on = NO_CPU;
}
#endif
} else {
t->rt_param.scheduled_on = NO_CPU;
}
t->rt_param.linked_on = NO_CPU;
gsnedf_job_arrival(t);
raw_spin_unlock_irqrestore(&gsnedf_lock, flags);
}
static void gsnedf_task_wake_up(struct task_struct *task)
{
unsigned long flags;
lt_t now;
TRACE_TASK(task, "wake_up at %llu\n", litmus_clock());
raw_spin_lock_irqsave(&gsnedf_lock, flags);
/* We need to take suspensions because of semaphores into
* account! If a job resumes after being suspended due to acquiring
* a semaphore, it should never be treated as a new job release.
*/
if (get_rt_flags(task) == RT_F_EXIT_SEM) {
set_rt_flags(task, RT_F_RUNNING);
} else {
now = litmus_clock();
if (is_tardy(task, now)) {
/* new sporadic release */
release_at(task, now);
sched_trace_task_release(task);
}
else {
if (task->rt.time_slice) {
/* came back in time before deadline
*/
set_rt_flags(task, RT_F_RUNNING);
}
}
}
gsnedf_job_arrival(task);
raw_spin_unlock_irqrestore(&gsnedf_lock, flags);
}
static void gsnedf_task_block(struct task_struct *t)
{
unsigned long flags;
TRACE_TASK(t, "block at %llu\n", litmus_clock());
/* unlink if necessary */
raw_spin_lock_irqsave(&gsnedf_lock, flags);
unlink(t);
raw_spin_unlock_irqrestore(&gsnedf_lock, flags);
BUG_ON(!is_realtime(t));
}
static void gsnedf_task_exit(struct task_struct * t)
{
unsigned long flags;
/* unlink if necessary */
raw_spin_lock_irqsave(&gsnedf_lock, flags);
unlink(t);
if (tsk_rt(t)->scheduled_on != NO_CPU) {
gsnedf_cpus[tsk_rt(t)->scheduled_on]->scheduled = NULL;
tsk_rt(t)->scheduled_on = NO_CPU;
}
raw_spin_unlock_irqrestore(&gsnedf_lock, flags);
BUG_ON(!is_realtime(t));
TRACE_TASK(t, "RIP\n");
}
static long gsnedf_admit_task(struct task_struct* tsk)
{
#ifdef CONFIG_LITMUS_NESTED_LOCKING
INIT_BINHEAP_HANDLE(&tsk_rt(tsk)->hp_blocked_tasks, edf_max_heap_base_priority_order);
#endif
return 0;
}
#ifdef CONFIG_LITMUS_LOCKING
extern raw_spinlock_t rsm_global_lock;
#include <litmus/fdso.h>
/* called with IRQs off */
static void increase_priority_inheritance(struct task_struct* t, struct task_struct* prio_inh)
{
int linked_on;
int check_preempt = 0;
raw_spin_lock(&gsnedf_lock);
/* this sanity check allows for weaker locking in protocols */
if(__edf_higher_prio(prio_inh, BASE, t, EFFECTIVE)) {
TRACE_TASK(t, "inherits priority from %s/%d\n", prio_inh->comm, prio_inh->pid);
tsk_rt(t)->inh_task = prio_inh;
linked_on = tsk_rt(t)->linked_on;
/* If it is scheduled, then we need to reorder the CPU heap. */
if (linked_on != NO_CPU) {
TRACE_TASK(t, "%s: linked on %d\n",
__FUNCTION__, linked_on);
/* Holder is scheduled; need to re-order CPUs.
* We can't use heap_decrease() here since
* the cpu_heap is ordered in reverse direction, so
* it is actually an increase. */
binheap_delete(&gsnedf_cpus[linked_on]->hn, &gsnedf_cpu_heap);
binheap_add(&gsnedf_cpus[linked_on]->hn,
&gsnedf_cpu_heap, cpu_entry_t, hn);
} else {
/* holder may be queued: first stop queue changes */
raw_spin_lock(&gsnedf.release_lock);
if (is_queued(t)) {
TRACE_TASK(t, "%s: is queued\n",
__FUNCTION__);
/* We need to update the position of holder in some
* heap. Note that this could be a release heap if we
* budget enforcement is used and this job overran. */
check_preempt =
!bheap_decrease(edf_ready_order,
tsk_rt(t)->heap_node);
} else {
/* Nothing to do: if it is not queued and not linked
* then it is either sleeping or currently being moved
* by other code (e.g., a timer interrupt handler) that
* will use the correct priority when enqueuing the
* task. */
TRACE_TASK(t, "%s: is NOT queued => Done.\n",
__FUNCTION__);
}
raw_spin_unlock(&gsnedf.release_lock);
/* If holder was enqueued in a release heap, then the following
* preemption check is pointless, but we can't easily detect
* that case. If you want to fix this, then consider that
* simply adding a state flag requires O(n) time to update when
* releasing n tasks, which conflicts with the goal to have
* O(log n) merges. */
if (check_preempt) {
/* heap_decrease() hit the top level of the heap: make
* sure preemption checks get the right task, not the
* potentially stale cache. */
bheap_uncache_min(edf_ready_order,
&gsnedf.ready_queue);
check_for_preemptions();
}
}
}
else {
TRACE_TASK(t, "Spurious invalid priority increase. "
"Inheritance request: %s/%d [eff_prio = %s/%d] to inherit from %s/%d\n"
"Occurance is likely okay: probably due to (hopefully safe) concurrent priority updates.\n",
t->comm, t->pid,
effective_priority(t)->comm, effective_priority(t)->pid,
prio_inh->comm, prio_inh->pid);
}
raw_spin_unlock(&gsnedf_lock);
}
/* called with IRQs off */
static void decrease_priority_inheritance(struct task_struct* t, struct task_struct* prio_inh)
{
raw_spin_lock(&gsnedf_lock);
if(__edf_higher_prio(t, EFFECTIVE, prio_inh, BASE)) {
/* A job only stops inheriting a priority when it releases a
* resource. Thus we can make the following assumption.*/
if(prio_inh)
TRACE_TASK(t, "EFFECTIVE priority decreased to %s/%d\n", prio_inh->comm, prio_inh->pid);
else
TRACE_TASK(t, "base priority restored.\n");
tsk_rt(t)->inh_task = prio_inh;
if(tsk_rt(t)->scheduled_on != NO_CPU) {
TRACE_TASK(t, "is scheduled.\n");
/* Check if rescheduling is necessary. We can't use heap_decrease()
* since the priority was effectively lowered. */
unlink(t);
gsnedf_job_arrival(t);
}
else {
/* task is queued */
raw_spin_lock(&gsnedf.release_lock);
if (is_queued(t)) {
TRACE_TASK(t, "is queued.\n");
/* decrease in priority, so we have to re-add to binomial heap */
unlink(t);
gsnedf_job_arrival(t);
}
else {
TRACE_TASK(t, "is not in scheduler. Probably on wait queue somewhere.\n");
}
raw_spin_unlock(&gsnedf.release_lock);
}
}
else {
TRACE_TASK(t, "Spurious invalid priority decrease. "
"Inheritance request: %s/%d [eff_prio = %s/%d] to inherit from %s/%d\n"
"Occurance is likely okay: probably due to (hopefully safe) concurrent priority updates.\n",
t->comm, t->pid,
effective_priority(t)->comm, effective_priority(t)->pid,
(prio_inh) ? prio_inh->comm : "nil",
(prio_inh) ? prio_inh->pid : -1);
}
raw_spin_unlock(&gsnedf_lock);
}
#ifdef CONFIG_LITMUS_NESTED_LOCKING
void print_hp_waiters(struct binheap_node* n, int depth)
{
struct litmus_lock *l;
struct nested_info *nest;
char padding[81] = " ";
struct task_struct *hp = NULL;
struct task_struct *hp_eff = NULL;
struct task_struct *node_prio = NULL;
if(n == NULL) {
TRACE("+-> %p\n", NULL);
return;
}
nest = binheap_entry(n, struct nested_info, hp_binheap_node);
l = nest->lock;
if(depth*2 <= 80)
padding[depth*2] = '\0';
if(nest->hp_waiter_ptr && *(nest->hp_waiter_ptr)) {
hp = *(nest->hp_waiter_ptr);
if(tsk_rt(hp)->inh_task) {
hp_eff = tsk_rt(hp)->inh_task;
}
}
node_prio = nest->hp_waiter_eff_prio;
TRACE("%s+-> %s/%d [waiter = %s/%d] [waiter's inh = %s/%d] (lock = %d)\n",
padding,
(node_prio) ? node_prio->comm : "nil",
(node_prio) ? node_prio->pid : -1,
(hp) ? hp->comm : "nil",
(hp) ? hp->pid : -1,
(hp_eff) ? hp_eff->comm : "nil",
(hp_eff) ? hp_eff->pid : -1,
l->ident);
if(n->left) print_hp_waiters(n->left, depth+1);
if(n->right) print_hp_waiters(n->right, depth+1);
}
void dump_node_data(struct binheap_node* parent, struct binheap_node* child)
{
struct binheap_node *root = (parent != BINHEAP_POISON) ? parent : child;
struct binheap_node *bad_node = (parent == BINHEAP_POISON) ? parent : child;
struct nested_info *nest;
while(root->parent != NULL) {
root = root->parent;
}
if(parent == BINHEAP_POISON) {
TRACE_CUR("parent was bad node.\n");
}
else {
TRACE_CUR("child was bad node.\n");
}
TRACE_CUR("Bad node info: data = %p, left = %p, right = %p\n", bad_node->data, bad_node->left, bad_node->right);
nest = binheap_entry(bad_node, struct nested_info, hp_binheap_node);
TRACE_CUR("Lock with bad node: lock = %d\n", (nest->lock) ? nest->lock->ident : -1);
print_hp_waiters(root, 1);
}
void dump_node_data2(struct binheap_handle *handle, struct binheap_node* bad_node)
{
struct binheap_node *root = handle->root;
struct nested_info *nest;
TRACE_CUR("Bad node info: data = %p, left = %p, right = %p\n", bad_node->data, bad_node->left, bad_node->right);
nest = binheap_entry(bad_node, struct nested_info, hp_binheap_node);
TRACE_CUR("Lock with bad node: lock = %d\n", (nest->lock) ? nest->lock->ident : -1);
print_hp_waiters(root, 1);
}
/* called with IRQs off */
/* preconditions:
(1) The 'hp_blocked_tasks_lock' of task 't' is held.
(2) The lock 'to_unlock' is held.
*/
static void nested_increase_priority_inheritance(struct task_struct* t, struct task_struct* prio_inh, raw_spinlock_t *to_unlock, unsigned long irqflags)
{
struct litmus_lock *blocked_lock = tsk_rt(t)->blocked_lock;
if(tsk_rt(t)->inh_task != prio_inh) { // shield redundent calls.
increase_priority_inheritance(t, prio_inh); // increase our prio.
}
raw_spin_unlock(&tsk_rt(t)->hp_blocked_tasks_lock); // unlock the t's heap.
if(blocked_lock) {
if(blocked_lock->ops->propagate_increase_inheritance) {
TRACE_TASK(t, "Inheritor is blocked (...perhaps). Checking lock %d.\n", blocked_lock->ident);
// beware: recursion
blocked_lock->ops->propagate_increase_inheritance(blocked_lock, t, to_unlock, irqflags);
}
else {
TRACE_TASK(t, "Inheritor is blocked on lock (%d) that does not support nesting!\n", blocked_lock->ident);
unlock_fine_irqrestore(to_unlock, irqflags);
}
}
else {
TRACE_TASK(t, "is not blocked. No propagation.\n");
unlock_fine_irqrestore(to_unlock, irqflags);
}
}
/* called with IRQs off */
/* preconditions:
(1) The 'hp_blocked_tasks_lock' of task 't' is held.
(2) The lock 'to_unlock' is held.
*/
static void nested_decrease_priority_inheritance(struct task_struct* t, struct task_struct* prio_inh, raw_spinlock_t *to_unlock, unsigned long irqflags)
{
struct litmus_lock *blocked_lock = tsk_rt(t)->blocked_lock;
decrease_priority_inheritance(t, prio_inh);
raw_spin_unlock(&tsk_rt(t)->hp_blocked_tasks_lock); // unlock the t's heap.
if(blocked_lock) {
if(blocked_lock->ops->propagate_decrease_inheritance) {
TRACE_TASK(t, "Inheritor is blocked (...perhaps). Checking lock %d.\n", blocked_lock->ident);
// beware: recursion
blocked_lock->ops->propagate_decrease_inheritance(blocked_lock, t, to_unlock, irqflags);
}
else {
TRACE_TASK(t, "Inheritor is blocked on lock (%p) that does not support nesting!\n", blocked_lock);
unlock_fine_irqrestore(to_unlock, irqflags);
}
}
else {
TRACE_TASK(t, "is not blocked. No propagation.\n");
unlock_fine_irqrestore(to_unlock, irqflags);
}
}
/* ******************** RSM MUTEX ********************** */
/* struct for semaphore with priority inheritance */
struct rsm_mutex {
struct litmus_lock litmus_lock;
/* current resource holder */
struct task_struct *owner;
/* highest-priority waiter */
struct task_struct *hp_waiter;
/* FIFO queue of waiting tasks -- for now. time stamp in the future. */
wait_queue_head_t wait;
/* we do some nesting within spinlocks, so we can't use the normal
sleeplocks found in wait_queue_head_t. */
raw_spinlock_t lock;
};
static inline struct rsm_mutex* rsm_mutex_from_lock(struct litmus_lock* lock)
{
return container_of(lock, struct rsm_mutex, litmus_lock);
}
/* caller is responsible for locking */
struct task_struct* rsm_mutex_find_hp_waiter(struct rsm_mutex *mutex,
struct task_struct* skip)
{
wait_queue_t *q;
struct list_head *pos;
struct task_struct *queued = NULL, *found = NULL;
#ifdef CONFIG_LITMUS_DGL_SUPPORT
dgl_wait_state_t *dgl_wait = NULL;
#endif
list_for_each(pos, &mutex->wait.task_list) {
q = list_entry(pos, wait_queue_t, task_list);
#ifdef CONFIG_LITMUS_DGL_SUPPORT
if(q->func == dgl_wake_up) {
dgl_wait = (dgl_wait_state_t*) q->private;
if(tsk_rt(dgl_wait->task)->blocked_lock == &mutex->litmus_lock) {
queued = dgl_wait->task;
}
else {
queued = NULL; // skip it.
}
}
else {
queued = (struct task_struct*) q->private;
}
#else
queued = (struct task_struct*) q->private;
#endif
/* Compare task prios, find high prio task. */
if (queued && queued != skip && edf_higher_prio(queued, found)) {
found = queued;
}
}
return found;
}
static inline struct task_struct* top_priority(struct binheap_handle* handle) {
if(!binheap_empty(handle)) {
return (struct task_struct*)(binheap_top_entry(handle, struct nested_info, hp_binheap_node)->hp_waiter_eff_prio);
}
return NULL;
}
#ifdef CONFIG_LITMUS_DGL_SUPPORT
//static void gsnedf_rsm_mutex_reserve(struct litmus_lock *l, unsigned long *irqflags)
//{
// struct rsm_mutex *mutex = rsm_mutex_from_lock(l);
// raw_spin_lock_irqsave(&mutex->lock, *irqflags);
//}
//
//static void gsnedf_rsm_mutex_unreserve(struct litmus_lock *l, unsigned long irqflags)
//{
// struct rsm_mutex *mutex = rsm_mutex_from_lock(l);
// raw_spin_unlock_irqrestore(&mutex->lock, irqflags);
//}
static raw_spinlock_t* gsn_edf_get_dgl_spinlock(struct task_struct *t)
{
return(&dgl_lock);
}
static int gsn_edf_rsm_mutex_is_owner(struct litmus_lock *l, struct task_struct *t)
{
struct rsm_mutex *mutex = rsm_mutex_from_lock(l);
return(mutex->owner == t);
}
// return 1 if resource was immediatly acquired.
// Assumes mutex->lock is held.
// Must set task state to TASK_UNINTERRUPTIBLE if task blocks.
static int gsn_edf_rsm_mutex_dgl_lock(struct litmus_lock *l, dgl_wait_state_t* dgl_wait, wait_queue_t* wq_node)
{
struct rsm_mutex *mutex = rsm_mutex_from_lock(l);
struct task_struct *t = dgl_wait->task;
int acquired_immediatly = 0;
BUG_ON(t != current);
if (mutex->owner) {
TRACE_TASK(t, "Enqueuing on lock %d.\n", l->ident);
init_dgl_waitqueue_entry(wq_node, dgl_wait);
set_task_state(t, TASK_UNINTERRUPTIBLE);
__add_wait_queue_tail_exclusive(&mutex->wait, wq_node);
} else {
TRACE_TASK(t, "Acquired lock %d with no blocking.\n", l->ident);
/* it's ours now */
mutex->owner = t;
raw_spin_lock(&tsk_rt(t)->hp_blocked_tasks_lock);
binheap_add(&l->nest.hp_binheap_node, &tsk_rt(t)->hp_blocked_tasks, struct nested_info, hp_binheap_node);
raw_spin_unlock(&tsk_rt(t)->hp_blocked_tasks_lock);
acquired_immediatly = 1;
}
return acquired_immediatly;
}
// Assumes mutex->lock is held.
static void gsn_edf_rsm_enable_priority(struct litmus_lock *l, dgl_wait_state_t* dgl_wait)
{
struct rsm_mutex *mutex = rsm_mutex_from_lock(l);
struct task_struct *t = dgl_wait->task;
struct task_struct *owner = mutex->owner;
unsigned long flags = 0; // these are unused under DGL coarse-grain locking
BUG_ON(owner == t);
tsk_rt(t)->blocked_lock = l;
mb();
if (edf_higher_prio(t, mutex->hp_waiter)) {
struct task_struct *old_max_eff_prio;
struct task_struct *new_max_eff_prio;
struct task_struct *new_prio = NULL;
if(mutex->hp_waiter)
TRACE_TASK(t, "has higher prio than hp_waiter (%s/%d).\n", mutex->hp_waiter->comm, mutex->hp_waiter->pid);
else
TRACE_TASK(t, "has higher prio than hp_waiter (NIL).\n");
raw_spin_lock(&tsk_rt(owner)->hp_blocked_tasks_lock);
//TRACE_TASK(owner, "Heap Before:\n");
//print_hp_waiters(tsk_rt(owner)->hp_blocked_tasks.root, 0);
old_max_eff_prio = top_priority(&tsk_rt(owner)->hp_blocked_tasks);
mutex->hp_waiter = t;
l->nest.hp_waiter_eff_prio = effective_priority(mutex->hp_waiter);
binheap_decrease(&l->nest.hp_binheap_node, &tsk_rt(owner)->hp_blocked_tasks);
//TRACE_TASK(owner, "Heap After:\n");
//print_hp_waiters(tsk_rt(owner)->hp_blocked_tasks.root, 0);
new_max_eff_prio = top_priority(&tsk_rt(owner)->hp_blocked_tasks);
if(new_max_eff_prio != old_max_eff_prio) {
TRACE_TASK(t, "is new hp_waiter.\n");
if ((effective_priority(owner) == old_max_eff_prio) ||
(__edf_higher_prio(new_max_eff_prio, BASE, owner, EFFECTIVE))){
new_prio = new_max_eff_prio;
}
}
else {
TRACE_TASK(t, "no change in max_eff_prio of heap.\n");
}
//raw_spin_unlock(&tsk_rt(owner)->hp_blocked_tasks_lock);
if(new_prio) {
nested_increase_priority_inheritance(owner, new_prio, &mutex->lock, flags); // unlocks lock.
}
else {
raw_spin_unlock(&tsk_rt(owner)->hp_blocked_tasks_lock);
unlock_fine_irqrestore(&mutex->lock, flags);
}
}
else {
TRACE_TASK(t, "no change in hp_waiter.\n");
unlock_fine_irqrestore(&mutex->lock, flags);
}
}
#endif
int gsnedf_rsm_mutex_lock(struct litmus_lock* l)
{
struct task_struct *t = current;
struct task_struct *owner;
struct rsm_mutex *mutex = rsm_mutex_from_lock(l);
wait_queue_t wait;
unsigned long flags;
if (!is_realtime(t))
return -EPERM;
lock_global_irqsave(&dgl_lock, flags);
lock_fine_irqsave(&mutex->lock, flags);
if (mutex->owner) {
TRACE_TASK(t, "Blocking on lock %d.\n", l->ident);
/* resource is not free => must suspend and wait */
owner = mutex->owner;
init_waitqueue_entry(&wait, t);
tsk_rt(t)->blocked_lock = l; /* record where we are blocked */
mb(); // needed?
/* FIXME: interruptible would be nice some day */
set_task_state(t, TASK_UNINTERRUPTIBLE);
__add_wait_queue_tail_exclusive(&mutex->wait, &wait);
/* check if we need to activate priority inheritance */
if (edf_higher_prio(t, mutex->hp_waiter)) {
struct task_struct *old_max_eff_prio;
struct task_struct *new_max_eff_prio;
struct task_struct *new_prio = NULL;
if(mutex->hp_waiter)
TRACE_TASK(t, "has higher prio than hp_waiter (%s/%d).\n", mutex->hp_waiter->comm, mutex->hp_waiter->pid);
else
TRACE_TASK(t, "has higher prio than hp_waiter (NIL).\n");
raw_spin_lock(&tsk_rt(owner)->hp_blocked_tasks_lock);
//TRACE_TASK(owner, "Heap Before:\n");
//print_hp_waiters(tsk_rt(owner)->hp_blocked_tasks.root, 0);
old_max_eff_prio = top_priority(&tsk_rt(owner)->hp_blocked_tasks);
mutex->hp_waiter = t;
l->nest.hp_waiter_eff_prio = effective_priority(mutex->hp_waiter);
binheap_decrease(&l->nest.hp_binheap_node, &tsk_rt(owner)->hp_blocked_tasks);
//TRACE_TASK(owner, "Heap After:\n");
//print_hp_waiters(tsk_rt(owner)->hp_blocked_tasks.root, 0);
new_max_eff_prio = top_priority(&tsk_rt(owner)->hp_blocked_tasks);
if(new_max_eff_prio != old_max_eff_prio) {
TRACE_TASK(t, "is new hp_waiter.\n");
if ((effective_priority(owner) == old_max_eff_prio) ||
(__edf_higher_prio(new_max_eff_prio, BASE, owner, EFFECTIVE))){
new_prio = new_max_eff_prio;
}
}
else {
TRACE_TASK(t, "no change in max_eff_prio of heap.\n");
}
if(new_prio) {
nested_increase_priority_inheritance(owner, new_prio, &mutex->lock, flags); // unlocks lock.
}
else {
raw_spin_unlock(&tsk_rt(owner)->hp_blocked_tasks_lock);
unlock_fine_irqrestore(&mutex->lock, flags);
}
}
else {
TRACE_TASK(t, "no change in hp_waiter.\n");
unlock_fine_irqrestore(&mutex->lock, flags);
}
unlock_global_irqrestore(&dgl_lock, flags);
TS_LOCK_SUSPEND;
/* We depend on the FIFO order. Thus, we don't need to recheck
* when we wake up; we are guaranteed to have the lock since
* there is only one wake up per release.
*/
schedule();
TS_LOCK_RESUME;
/* Since we hold the lock, no other task will change
* ->owner. We can thus check it without acquiring the spin
* lock. */
BUG_ON(mutex->owner != t);
TRACE_TASK(t, "Acquired lock %d.\n", l->ident);
} else {
TRACE_TASK(t, "Acquired lock %d with no blocking.\n", l->ident);
/* it's ours now */
mutex->owner = t;
raw_spin_lock(&tsk_rt(mutex->owner)->hp_blocked_tasks_lock);
binheap_add(&l->nest.hp_binheap_node, &tsk_rt(t)->hp_blocked_tasks, struct nested_info, hp_binheap_node);
raw_spin_unlock(&tsk_rt(mutex->owner)->hp_blocked_tasks_lock);
unlock_fine_irqrestore(&mutex->lock, flags);
unlock_global_irqrestore(&dgl_lock, flags);
}
return 0;
}
#ifdef CONFIG_LITMUS_DGL_SUPPORT
void select_next_lock_if_primary(struct litmus_lock *l, dgl_wait_state_t *dgl_wait)
{
if(tsk_rt(dgl_wait->task)->blocked_lock == l) {
TRACE_CUR("Lock %d in DGL was primary for %s/%d.\n", l->ident, dgl_wait->task->comm, dgl_wait->task->pid);
tsk_rt(dgl_wait->task)->blocked_lock = NULL;
mb();
select_next_lock(dgl_wait, l); // pick the next lock to be blocked on
}
else {
TRACE_CUR("Got lock early! Lock %d in DGL was NOT primary for %s/%d.\n", l->ident, dgl_wait->task->comm, dgl_wait->task->pid);
}
}
#endif
int gsnedf_rsm_mutex_unlock(struct litmus_lock* l)
{
struct task_struct *t = current, *next = NULL;
struct rsm_mutex *mutex = rsm_mutex_from_lock(l);
unsigned long flags;
struct task_struct *old_max_eff_prio;
int wake_up_task = 1;
#ifdef CONFIG_LITMUS_DGL_SUPPORT
dgl_wait_state_t *dgl_wait = NULL;
#endif
int err = 0;
lock_global_irqsave(&dgl_lock, flags);
lock_fine_irqsave(&mutex->lock, flags);
if (mutex->owner != t) {
err = -EINVAL;
unlock_fine_irqrestore(&mutex->lock, flags);
unlock_global_irqrestore(&dgl_lock, flags);
return err;
}
raw_spin_lock(&tsk_rt(t)->hp_blocked_tasks_lock);
TRACE_TASK(t, "Freeing lock %d\n", l->ident);
//TRACE_TASK(t, "Heap Before:\n");
//print_hp_waiters(tsk_rt(t)->hp_blocked_tasks.root, 0);
//old_max_hp_waiter = *(binheap_top_entry(&tsk_rt(t)->hp_blocked_tasks, struct nested_info, hp_binheap_node)->hp_waiter_ptr);
old_max_eff_prio = top_priority(&tsk_rt(t)->hp_blocked_tasks);
binheap_delete(&l->nest.hp_binheap_node, &tsk_rt(t)->hp_blocked_tasks);
//raw_spin_unlock(&tsk_rt(t)->hp_blocked_tasks_lock);
//TRACE_TASK(t, "Heap After:\n");
//print_hp_waiters(tsk_rt(t)->hp_blocked_tasks.root, 0);
if(tsk_rt(t)->inh_task){
struct task_struct *new_max_eff_prio = top_priority(&tsk_rt(t)->hp_blocked_tasks);
if((new_max_eff_prio == NULL) ||
( (new_max_eff_prio != old_max_eff_prio) /* there was a change in eff prio */ &&
(effective_priority(t) == old_max_eff_prio) /* and owner had the old eff prio */) )
{
// old_max_eff_prio > new_max_eff_prio
if(__edf_higher_prio(new_max_eff_prio, BASE, t, EFFECTIVE)) {
TRACE_TASK(t, "new_max_eff_prio > task's eff_prio-- new_max_eff_prio: %s/%d task: %s/%d [%s/%d]\n",
new_max_eff_prio->comm, new_max_eff_prio->pid,
t->comm, t->pid, tsk_rt(t)->inh_task->comm, tsk_rt(t)->inh_task->pid);
WARN_ON(1);
}
decrease_priority_inheritance(t, new_max_eff_prio);
}
}
if(binheap_empty(&tsk_rt(t)->hp_blocked_tasks) && tsk_rt(t)->inh_task != NULL)
{
WARN_ON(tsk_rt(t)->inh_task != NULL);
TRACE_TASK(t, "No more locks are held, but eff_prio = %s/%d\n",
tsk_rt(t)->inh_task->comm, tsk_rt(t)->inh_task->pid);
}
raw_spin_unlock(&tsk_rt(t)->hp_blocked_tasks_lock);
/* check if there are jobs waiting for this resource */
#ifdef CONFIG_LITMUS_DGL_SUPPORT
__waitqueue_dgl_remove_first(&mutex->wait, &dgl_wait, &next);
if(dgl_wait) {
next = dgl_wait->task;
//select_next_lock_if_primary(l, dgl_wait);
}
#else
next = __waitqueue_remove_first(&mutex->wait);
#endif
if (next) {
/* next becomes the resouce holder */
mutex->owner = next;
TRACE_CUR("lock ownership passed to %s/%d\n", next->comm, next->pid);
// if(tsk_rt(next)->blocked_lock == &mutex->litmus_lock) { // might be false for DGL.
// tsk_rt(next)->blocked_lock = NULL;
// mb();
// }
/* determine new hp_waiter if necessary */
if (next == mutex->hp_waiter) {
TRACE_TASK(next, "was highest-prio waiter\n");
/* next has the highest priority --- it doesn't need to
* inherit. However, we need to make sure that the
* next-highest priority in the queue is reflected in
* hp_waiter. */
mutex->hp_waiter = rsm_mutex_find_hp_waiter(mutex, next);
l->nest.hp_waiter_eff_prio = (mutex->hp_waiter) ? effective_priority(mutex->hp_waiter) : NULL;
if (mutex->hp_waiter)
TRACE_TASK(mutex->hp_waiter, "is new highest-prio waiter\n");
else
TRACE("no further waiters\n");
raw_spin_lock(&tsk_rt(next)->hp_blocked_tasks_lock);
//TRACE_TASK(next, "Heap Before:\n");
//print_hp_waiters(tsk_rt(next)->hp_blocked_tasks.root, 0);
binheap_add(&l->nest.hp_binheap_node, &tsk_rt(next)->hp_blocked_tasks, struct nested_info, hp_binheap_node);
//TRACE_TASK(next, "Heap After:\n");
//print_hp_waiters(tsk_rt(next)->hp_blocked_tasks.root, 0);
#ifdef CONFIG_LITMUS_DGL_SUPPORT
if(dgl_wait) {
select_next_lock_if_primary(l, dgl_wait);
//wake_up_task = atomic_dec_and_test(&dgl_wait->nr_remaining);
--(dgl_wait->nr_remaining);
wake_up_task = (dgl_wait->nr_remaining == 0);
}
#endif
raw_spin_unlock(&tsk_rt(next)->hp_blocked_tasks_lock);
}
else {
/* Well, if 'next' is not the highest-priority waiter,
* then it (probably) ought to inherit the highest-priority
* waiter's priority. */
TRACE_TASK(next, "is not hp_waiter of lock %d.\n", l->ident);
raw_spin_lock(&tsk_rt(next)->hp_blocked_tasks_lock);
//TRACE_TASK(next, "Heap Before:\n");
//print_hp_waiters(tsk_rt(next)->hp_blocked_tasks.root, 0);
binheap_add(&l->nest.hp_binheap_node, &tsk_rt(next)->hp_blocked_tasks,
struct nested_info, hp_binheap_node);
#ifdef CONFIG_LITMUS_DGL_SUPPORT
if(dgl_wait) {
select_next_lock_if_primary(l, dgl_wait);
// wake_up_task = atomic_dec_and_test(&dgl_wait->nr_remaining);
--(dgl_wait->nr_remaining);
wake_up_task = (dgl_wait->nr_remaining == 0);
}
#endif
//TRACE_TASK(next, "Heap After:\n");
//print_hp_waiters(tsk_rt(next)->hp_blocked_tasks.root, 0);
/* It is possible that 'next' *should* be the hp_waiter, but isn't
* because that update hasn't yet executed (update operation is
* probably blocked on mutex->lock). So only inherit if the top of
* 'next's top heap node is indeed the effective prio. of hp_waiter.
* (We use l->hp_waiter_eff_prio instead of effective_priority(hp_waiter)
* since the effective priority of hp_waiter can change (and the
* update has not made it to this lock).)
*/
#ifdef CONFIG_LITMUS_DGL_SUPPORT
if((l->nest.hp_waiter_eff_prio != NULL) && (top_priority(&tsk_rt(next)->hp_blocked_tasks) == l->nest.hp_waiter_eff_prio))
{
if(dgl_wait && tsk_rt(next)->blocked_lock) {
BUG_ON(wake_up_task);
if(__edf_higher_prio(l->nest.hp_waiter_eff_prio, BASE, next, EFFECTIVE)) {
nested_increase_priority_inheritance(next, l->nest.hp_waiter_eff_prio, &mutex->lock, flags); // unlocks lock && hp_blocked_tasks_lock.
goto out; // all spinlocks are released. bail out now.
}
}
else {
increase_priority_inheritance(next, l->nest.hp_waiter_eff_prio);
}
}
raw_spin_unlock(&tsk_rt(next)->hp_blocked_tasks_lock);
#else
if(likely(top_priority(&tsk_rt(next)->hp_blocked_tasks) == l->nest.hp_waiter_eff_prio))
{
increase_priority_inheritance(next, l->nest.hp_waiter_eff_prio);
}
raw_spin_unlock(&tsk_rt(next)->hp_blocked_tasks_lock);
#endif
}
if(wake_up_task) {
TRACE_TASK(next, "waking up since it is no longer blocked.\n");
tsk_rt(next)->blocked_lock = NULL;
mb();
wake_up_process(next);
}
else {
TRACE_TASK(next, "is still blocked.\n");
}
}
else {
/* becomes available */
mutex->owner = NULL;
}
unlock_fine_irqrestore(&mutex->lock, flags);
out:
unlock_global_irqrestore(&dgl_lock, flags);
return err;
}
void gsnedf_rsm_mutex_propagate_increase_inheritance(struct litmus_lock* l,
struct task_struct* t,
raw_spinlock_t* to_unlock,
unsigned long irqflags)
{
struct rsm_mutex *mutex = rsm_mutex_from_lock(l);
// relay-style locking
lock_fine(&mutex->lock);
unlock_fine(to_unlock);
if(tsk_rt(t)->blocked_lock == l) { // prevent race on tsk_rt(t)->blocked
struct task_struct *owner = mutex->owner;
struct task_struct *old_max_eff_prio;
struct task_struct *new_max_eff_prio;
raw_spin_lock(&tsk_rt(owner)->hp_blocked_tasks_lock);
old_max_eff_prio = top_priority(&tsk_rt(owner)->hp_blocked_tasks);
if((t != mutex->hp_waiter) && edf_higher_prio(t, mutex->hp_waiter)) {
TRACE_TASK(t, "is new highest-prio waiter by propagation.\n");
mutex->hp_waiter = t;
}
if(t == mutex->hp_waiter) {
// reflect the decreased priority in the heap node.
l->nest.hp_waiter_eff_prio = effective_priority(mutex->hp_waiter);
BUG_ON(!binheap_is_in_heap(&l->nest.hp_binheap_node));
BUG_ON(!binheap_is_in_this_heap(&l->nest.hp_binheap_node, &tsk_rt(owner)->hp_blocked_tasks));
binheap_decrease(&l->nest.hp_binheap_node, &tsk_rt(owner)->hp_blocked_tasks);
}
new_max_eff_prio = top_priority(&tsk_rt(owner)->hp_blocked_tasks);
if(new_max_eff_prio != old_max_eff_prio) {
// new_max_eff_prio > old_max_eff_prio holds.
if ((effective_priority(owner) == old_max_eff_prio) ||
(__edf_higher_prio(new_max_eff_prio, BASE, owner, EFFECTIVE))) {
TRACE_CUR("Propagating inheritance to holder of lock %d.\n", l->ident);
// beware: recursion
nested_increase_priority_inheritance(owner, new_max_eff_prio, &mutex->lock, irqflags); // unlocks mutex->lock
}
else {
TRACE_CUR("Lower priority than holder %s/%d. No propagation.\n", owner->comm, owner->pid);
raw_spin_unlock(&tsk_rt(owner)->hp_blocked_tasks_lock);
unlock_fine_irqrestore(&mutex->lock, irqflags);
}
}
else {
TRACE_TASK(mutex->owner, "No change in maxiumum effective priority.\n");
raw_spin_unlock(&tsk_rt(owner)->hp_blocked_tasks_lock);
unlock_fine_irqrestore(&mutex->lock, irqflags);
}
}
else {
struct litmus_lock *still_blocked = tsk_rt(t)->blocked_lock;
TRACE_TASK(t, "is not blocked on lock %d.\n", l->ident);
if(still_blocked) {
TRACE_TASK(t, "is still blocked on a lock though (lock %d).\n", still_blocked->ident);
if(still_blocked->ops->propagate_increase_inheritance) {
/* due to relay-style nesting of spinlocks (acq. A, acq. B, free A, free B)
we know that task 't' has not released any locks behind us in this
chain. Propagation just needs to catch up with task 't'. */
still_blocked->ops->propagate_increase_inheritance(still_blocked, t, &mutex->lock, irqflags);
}
else {
TRACE_TASK(t, "Inheritor is blocked on lock (%p) that does not support nesting!\n", still_blocked);
unlock_fine_irqrestore(&mutex->lock, irqflags);
}
}
else {
unlock_fine_irqrestore(&mutex->lock, irqflags);
}
}
}
void gsnedf_rsm_mutex_propagate_decrease_inheritance(struct litmus_lock* l,
struct task_struct* t,
raw_spinlock_t* to_unlock,
unsigned long irqflags)
{
struct rsm_mutex *mutex = rsm_mutex_from_lock(l);
// relay-style locking
lock_fine(&mutex->lock);
unlock_fine(to_unlock);
if(tsk_rt(t)->blocked_lock == l) { // prevent race on tsk_rt(t)->blocked
if(t == mutex->hp_waiter) {
struct task_struct *owner = mutex->owner;
struct task_struct *old_max_eff_prio;
struct task_struct *new_max_eff_prio;
raw_spin_lock(&tsk_rt(owner)->hp_blocked_tasks_lock);
old_max_eff_prio = top_priority(&tsk_rt(owner)->hp_blocked_tasks);
binheap_delete(&l->nest.hp_binheap_node, &tsk_rt(owner)->hp_blocked_tasks);
mutex->hp_waiter = rsm_mutex_find_hp_waiter(mutex, NULL);
l->nest.hp_waiter_eff_prio = (mutex->hp_waiter) ? effective_priority(mutex->hp_waiter) : NULL;
binheap_add(&l->nest.hp_binheap_node, &tsk_rt(owner)->hp_blocked_tasks, struct nested_info, hp_binheap_node);
new_max_eff_prio = top_priority(&tsk_rt(owner)->hp_blocked_tasks);
if((old_max_eff_prio != new_max_eff_prio) &&
(effective_priority(owner) == old_max_eff_prio))
{
// Need to set new effective_priority for owner
struct task_struct *decreased_prio;
TRACE_CUR("Propagating decreased inheritance to holder of lock %d.\n", l->ident);
if(__edf_higher_prio(new_max_eff_prio, BASE, owner, BASE)) {
TRACE_CUR("%s/%d has greater base priority than base priority of owner (%s/%d) of lock %d.\n",
(new_max_eff_prio) ? new_max_eff_prio->comm : "nil",
(new_max_eff_prio) ? new_max_eff_prio->pid : -1,
owner->comm,
owner->pid,
l->ident);
decreased_prio = new_max_eff_prio;
}
else {
TRACE_CUR("%s/%d has lesser base priority than base priority of owner (%s/%d) of lock %d.\n",
(new_max_eff_prio) ? new_max_eff_prio->comm : "nil",
(new_max_eff_prio) ? new_max_eff_prio->pid : -1,
owner->comm,
owner->pid,
l->ident);
decreased_prio = NULL;
}
// beware: recursion
nested_decrease_priority_inheritance(owner, decreased_prio, &mutex->lock, irqflags); // will unlock mutex->lock
}
else {
raw_spin_unlock(&tsk_rt(owner)->hp_blocked_tasks_lock);
unlock_fine_irqrestore(&mutex->lock, irqflags);
}
}
else {
TRACE_TASK(t, "is not hp_waiter. No propagation.\n");
unlock_fine_irqrestore(&mutex->lock, irqflags);
}
}
else {
struct litmus_lock *still_blocked = tsk_rt(t)->blocked_lock;
TRACE_TASK(t, "is not blocked on lock %d.\n", l->ident);
if(still_blocked) {
TRACE_TASK(t, "is still blocked on a lock though (lock %d).\n", still_blocked->ident);
if(still_blocked->ops->propagate_decrease_inheritance) {
/* due to linked nesting of spinlocks (acq. A, acq. B, free A, free B)
we know that task 't' has not released any locks behind us in this
chain. propagation just needs to catch up with task 't' */
still_blocked->ops->propagate_decrease_inheritance(still_blocked, t, &mutex->lock, irqflags);
}
else {
TRACE_TASK(t, "Inheritor is blocked on lock (%p) that does not support nesting!\n", still_blocked);
unlock_fine_irqrestore(&mutex->lock, irqflags);
}
}
else {
unlock_fine_irqrestore(&mutex->lock, irqflags);
}
}
}
int gsnedf_rsm_mutex_close(struct litmus_lock* l)
{
struct task_struct *t = current;
struct rsm_mutex *mutex = rsm_mutex_from_lock(l);
unsigned long flags;
int owner;
lock_global_irqsave(&dgl_lock, flags);
lock_fine_irqsave(&mutex->lock, flags);
owner = (mutex->owner == t);
unlock_fine_irqrestore(&mutex->lock, flags);
unlock_global_irqrestore(&dgl_lock, flags);
if (owner)
gsnedf_rsm_mutex_unlock(l);
return 0;
}
void gsnedf_rsm_mutex_free(struct litmus_lock* lock)
{
kfree(rsm_mutex_from_lock(lock));
}
static struct litmus_lock_ops gsnedf_rsm_mutex_lock_ops = {
.close = gsnedf_rsm_mutex_close,
.lock = gsnedf_rsm_mutex_lock,
.unlock = gsnedf_rsm_mutex_unlock,
.deallocate = gsnedf_rsm_mutex_free,
.propagate_increase_inheritance = gsnedf_rsm_mutex_propagate_increase_inheritance,
.propagate_decrease_inheritance = gsnedf_rsm_mutex_propagate_decrease_inheritance,
#ifdef CONFIG_LITMUS_DGL_SUPPORT
// .reserve = gsnedf_rsm_mutex_reserve,
// .unreserve = gsnedf_rsm_mutex_unreserve,
.dgl_lock = gsn_edf_rsm_mutex_dgl_lock,
.is_owner = gsn_edf_rsm_mutex_is_owner,
.enable_priority = gsn_edf_rsm_enable_priority,
#endif
};
static struct litmus_lock* gsnedf_new_rsm_mutex(void)
{
struct rsm_mutex* mutex;
mutex = kmalloc(sizeof(*mutex), GFP_KERNEL);
if (!mutex)
return NULL;
mutex->owner = NULL;
mutex->hp_waiter = NULL;
init_waitqueue_head(&mutex->wait);
#ifdef CONFIG_DEBUG_SPINLOCK
{
__raw_spin_lock_init(&mutex->lock, ((struct litmus_lock*)mutex)->cheat_lockdep, &((struct litmus_lock*)mutex)->key);
}
#else
raw_spin_lock_init(&mutex->lock);
#endif
mutex->litmus_lock.ops = &gsnedf_rsm_mutex_lock_ops;
((struct litmus_lock*)mutex)->nest.hp_waiter_ptr = &mutex->hp_waiter;
return &mutex->litmus_lock;
}
/* **** lock constructor **** */
/* ******************** IKGLP ********************** */
typedef struct ikglp_heap_node
{
struct task_struct *task;
struct binheap_node node;
} ikglp_heap_node_t;
static int ikglp_edf_max_heap_base_priority_order(struct binheap_node *a, struct binheap_node *b)
{
ikglp_heap_node_t *d_a = binheap_entry(a, ikglp_heap_node_t, node);
ikglp_heap_node_t *d_b = binheap_entry(b, ikglp_heap_node_t, node);
BUG_ON(!d_a);
BUG_ON(!d_b);
return __edf_higher_prio(d_a->task, BASE, d_b->task, BASE);
}
static int ikglp_edf_min_heap_base_priority_order(struct binheap_node *a, struct binheap_node *b)
{
ikglp_heap_node_t *d_a = binheap_entry(a, ikglp_heap_node_t, node);
ikglp_heap_node_t *d_b = binheap_entry(b, ikglp_heap_node_t, node);
return __edf_higher_prio(d_b->task, BASE, d_a->task, BASE);
}
struct fifo_queue;
struct ikglp_wait_state;
typedef struct ikglp_donee_heap_node
{
struct task_struct *task;
struct fifo_queue *fq;
struct ikglp_wait_state *donor_info; // cross-linked with ikglp_wait_state_t of donor
struct binheap_node node;
} ikglp_donee_heap_node_t;
// Maintains the state of a request as it goes through the IKGLP
typedef struct ikglp_wait_state {
struct task_struct *task; // pointer back to the requesting task
// Data for while waiting in FIFO Queue
wait_queue_t fq_node;
ikglp_heap_node_t global_heap_node;
ikglp_donee_heap_node_t donee_heap_node;
// Data for while waiting in PQ
ikglp_heap_node_t pq_node;
// Data for while waiting as a donor
ikglp_donee_heap_node_t *donee_info; // cross-linked with donee's ikglp_donee_heap_node_t
struct nested_info prio_donation;
struct binheap_node node;
} ikglp_wait_state_t;
static int ikglp_donor_edf_max_heap_base_priority_order(struct binheap_node *a, struct binheap_node *b)
{
ikglp_wait_state_t *d_a = binheap_entry(a, ikglp_wait_state_t, node);
ikglp_wait_state_t *d_b = binheap_entry(b, ikglp_wait_state_t, node);
return __edf_higher_prio(d_a->task, BASE, d_b->task, BASE);
}
static int ikglp_edf_min_heap_donee_order(struct binheap_node *a, struct binheap_node *b)
{
struct task_struct *prio_a, *prio_b;
ikglp_donee_heap_node_t *d_a = binheap_entry(a, ikglp_donee_heap_node_t, node);
ikglp_donee_heap_node_t *d_b = binheap_entry(b, ikglp_donee_heap_node_t, node);
if(!d_a->donor_info) {
prio_a = d_a->task;
}
else {
prio_a = d_a->donor_info->task;
BUG_ON(d_a->task != d_a->donor_info->donee_info->task);
}
if(!d_b->donor_info) {
prio_b = d_b->task;
}
else {
prio_b = d_b->donor_info->task;
BUG_ON(d_b->task != d_b->donor_info->donee_info->task);
}
// note reversed order
return __edf_higher_prio(prio_b, BASE, prio_a, BASE);
}
/* struct for semaphore with priority inheritance */
struct fifo_queue
{
wait_queue_head_t wait;
struct task_struct* owner;
// used for bookkeepping
ikglp_heap_node_t global_heap_node;
ikglp_donee_heap_node_t donee_heap_node;
struct task_struct* hp_waiter;
int count; /* number of waiters + holder */
struct nested_info nest;
};
struct ikglp_semaphore
{
struct litmus_lock litmus_lock;
raw_spinlock_t lock;
raw_spinlock_t real_lock;
int nr_replicas; // AKA k
int m;
int max_fifo_len; // max len of a fifo queue
struct binheap_handle top_m; // min heap, base prio
int top_m_size; // number of nodes in top_m
struct binheap_handle not_top_m; // max heap, base prio
struct binheap_handle donees; // min-heap, base prio
struct fifo_queue *shortest_fifo_queue; // pointer to shortest fifo queue
/* data structures for holding requests */
struct fifo_queue *fifo_queues; // array nr_replicas in length
struct binheap_handle priority_queue; // max-heap, base prio
struct binheap_handle donors; // max-heap, base prio
};
static inline struct ikglp_semaphore* ikglp_from_lock(struct litmus_lock* lock)
{
return container_of(lock, struct ikglp_semaphore, litmus_lock);
}
static inline int ikglp_get_idx(struct ikglp_semaphore *sem,
struct fifo_queue *queue)
{
return (queue - &sem->fifo_queues[0]);
}
static inline struct fifo_queue* ikglp_get_queue(
struct ikglp_semaphore *sem,
struct task_struct *holder)
{
int i;
for(i = 0; i < sem->nr_replicas; ++i)
if(sem->fifo_queues[i].owner == holder)
return(&sem->fifo_queues[i]);
return(NULL);
}
static struct task_struct* ikglp_find_hp_waiter(
struct fifo_queue *kqueue,
struct task_struct *skip)
{
struct list_head *pos;
struct task_struct *queued, *found = NULL;
list_for_each(pos, &kqueue->wait.task_list) {
queued = (struct task_struct*) list_entry(pos, wait_queue_t, task_list)->private;
/* Compare task prios, find high prio task. */
if (queued != skip && edf_higher_prio(queued, found))
found = queued;
}
return found;
}
static struct fifo_queue* ikglp_find_shortest(
struct ikglp_semaphore *sem,
struct fifo_queue *search_start)
{
// we start our search at search_start instead of at the beginning of the
// queue list to load-balance across all resources.
struct fifo_queue* step = search_start;
struct fifo_queue* shortest = sem->shortest_fifo_queue;
do {
step = (step+1 != &sem->fifo_queues[sem->nr_replicas]) ?
step+1 : &sem->fifo_queues[0];
if(step->count < shortest->count) {
shortest = step;
if(step->count == 0)
break; /* can't get any shorter */
}
}while(step != search_start);
return(shortest);
}
static inline struct task_struct* ikglp_mth_highest(struct ikglp_semaphore *sem)
{
return binheap_top_entry(&sem->top_m, ikglp_heap_node_t, node)->task;
}
void print_global_list(struct binheap_node* n, int depth)
{
ikglp_heap_node_t *global_heap_node;
char padding[81] = " ";
if(n == NULL) {
TRACE_CUR("+-> %p\n", NULL);
return;
}
global_heap_node = binheap_entry(n, ikglp_heap_node_t, node);
if(depth*2 <= 80)
padding[depth*2] = '\0';
TRACE_CUR("%s+-> %s/%d\n",
padding,
global_heap_node->task->comm,
global_heap_node->task->pid);
if(n->left) print_global_list(n->left, depth+1);
if(n->right) print_global_list(n->right, depth+1);
}
static void ikglp_add_global_list(struct ikglp_semaphore *sem, struct task_struct *t, ikglp_heap_node_t *node)
{
node->task = t;
INIT_BINHEAP_NODE(&node->node);
if(sem->top_m_size < sem->m) {
TRACE_CUR("Trivially adding %s/%d to top-m global list.\n", t->comm, t->pid);
// TRACE_CUR("Top-M Before (size = %d):\n", sem->top_m_size);
// print_global_list(sem->top_m.root, 1);
binheap_add(&node->node, &sem->top_m, ikglp_heap_node_t, node);
++(sem->top_m_size);
TRACE_CUR("Top-M After (size = %d):\n", sem->top_m_size);
print_global_list(sem->top_m.root, 1);
}
else if(__edf_higher_prio(t, BASE, ikglp_mth_highest(sem), BASE)) {
ikglp_heap_node_t *evicted = binheap_top_entry(&sem->top_m, ikglp_heap_node_t, node);
TRACE_CUR("Adding %s/%d to top-m and evicting %s/%d.\n",
t->comm, t->pid,
evicted->task->comm, evicted->task->pid);
// TRACE_CUR("Not-Top-M Before:\n");
// print_global_list(sem->not_top_m.root, 1);
// TRACE_CUR("Top-M Before (size = %d):\n", sem->top_m_size);
// print_global_list(sem->top_m.root, 1);
binheap_delete_root(&sem->top_m, ikglp_heap_node_t, node);
INIT_BINHEAP_NODE(&evicted->node);
binheap_add(&evicted->node, &sem->not_top_m, ikglp_heap_node_t, node);
binheap_add(&node->node, &sem->top_m, ikglp_heap_node_t, node);
TRACE_CUR("Top-M After (size = %d):\n", sem->top_m_size);
print_global_list(sem->top_m.root, 1);
TRACE_CUR("Not-Top-M After:\n");
print_global_list(sem->not_top_m.root, 1);
}
else {
TRACE_CUR("Trivially adding %s/%d to not-top-m global list.\n", t->comm, t->pid);
// TRACE_CUR("Not-Top-M Before:\n");
// print_global_list(sem->not_top_m.root, 1);
binheap_add(&node->node, &sem->not_top_m, ikglp_heap_node_t, node);
TRACE_CUR("Not-Top-M After:\n");
print_global_list(sem->not_top_m.root, 1);
}
}
static void ikglp_del_global_list(struct ikglp_semaphore *sem, struct task_struct *t, ikglp_heap_node_t *node)
{
BUG_ON(!binheap_is_in_heap(&node->node));
TRACE_CUR("Removing %s/%d from global list.\n", t->comm, t->pid);
if(binheap_is_in_this_heap(&node->node, &sem->top_m)) {
TRACE_CUR("%s/%d is in top-m\n", t->comm, t->pid);
// TRACE_CUR("Not-Top-M Before:\n");
// print_global_list(sem->not_top_m.root, 1);
// TRACE_CUR("Top-M Before (size = %d):\n", sem->top_m_size);
// print_global_list(sem->top_m.root, 1);
binheap_delete(&node->node, &sem->top_m);
if(!binheap_empty(&sem->not_top_m)) {
ikglp_heap_node_t *promoted = binheap_top_entry(&sem->not_top_m, ikglp_heap_node_t, node);
TRACE_CUR("Promoting %s/%d to top-m\n", promoted->task->comm, promoted->task->pid);
binheap_delete_root(&sem->not_top_m, ikglp_heap_node_t, node);
INIT_BINHEAP_NODE(&promoted->node);
binheap_add(&promoted->node, &sem->top_m, ikglp_heap_node_t, node);
}
else {
TRACE_CUR("No one to promote to top-m.\n");
--(sem->top_m_size);
}
TRACE_CUR("Top-M After (size = %d):\n", sem->top_m_size);
print_global_list(sem->top_m.root, 1);
TRACE_CUR("Not-Top-M After:\n");
print_global_list(sem->not_top_m.root, 1);
}
else {
// TRACE_CUR("%s/%d is in not-top-m\n", t->comm, t->pid);
// TRACE_CUR("Not-Top-M Before:\n");
// print_global_list(sem->not_top_m.root, 1);
binheap_delete(&node->node, &sem->not_top_m);
TRACE_CUR("Not-Top-M After:\n");
print_global_list(sem->not_top_m.root, 1);
}
}
void print_donees(struct ikglp_semaphore *sem, struct binheap_node *n, int depth)
{
ikglp_donee_heap_node_t *donee_node;
char padding[81] = " ";
struct task_struct* donor = NULL;
if(n == NULL) {
TRACE_CUR("+-> %p\n", NULL);
return;
}
donee_node = binheap_entry(n, ikglp_donee_heap_node_t, node);
if(depth*2 <= 80)
padding[depth*2] = '\0';
if(donee_node->donor_info) {
donor = donee_node->donor_info->task;
}
TRACE_CUR("%s+-> %s/%d (d: %s/%d) (fq: %d)\n",
padding,
donee_node->task->comm,
donee_node->task->pid,
(donor) ? donor->comm : "nil",
(donor) ? donor->pid : -1,
ikglp_get_idx(sem, donee_node->fq));
if(n->left) print_donees(sem, n->left, depth+1);
if(n->right) print_donees(sem, n->right, depth+1);
}
static void ikglp_add_donees(struct ikglp_semaphore *sem, struct fifo_queue *fq, struct task_struct *t, ikglp_donee_heap_node_t* node)
{
// TRACE_CUR("Adding %s/%d to donee list.\n", t->comm, t->pid);
// TRACE_CUR("donees Before:\n");
// print_donees(sem, sem->donees.root, 1);
node->task = t;
node->donor_info = NULL;
node->fq = fq;
INIT_BINHEAP_NODE(&node->node);
binheap_add(&node->node, &sem->donees, ikglp_donee_heap_node_t, node);
TRACE_CUR("donees After:\n");
print_donees(sem, sem->donees.root, 1);
}
static void ikglp_refresh_owners_prio_increase(struct task_struct *t, struct fifo_queue *fq, struct ikglp_semaphore *sem, unsigned long flags)
{
// priority of 't' has increased (note: 't' might already be hp_waiter).
if ((t == fq->hp_waiter) || edf_higher_prio(t, fq->hp_waiter)) {
struct task_struct *old_max_eff_prio;
struct task_struct *new_max_eff_prio;
struct task_struct *new_prio = NULL;
struct task_struct *owner = fq->owner;
if(fq->hp_waiter)
TRACE_TASK(t, "has higher prio than hp_waiter (%s/%d).\n", fq->hp_waiter->comm, fq->hp_waiter->pid);
else
TRACE_TASK(t, "has higher prio than hp_waiter (NIL).\n");
if(owner)
{
raw_spin_lock(&tsk_rt(owner)->hp_blocked_tasks_lock);
//TRACE_TASK(owner, "Heap Before:\n");
//print_hp_waiters(tsk_rt(owner)->hp_blocked_tasks.root, 0);
old_max_eff_prio = top_priority(&tsk_rt(owner)->hp_blocked_tasks);
fq->hp_waiter = t;
fq->nest.hp_waiter_eff_prio = effective_priority(fq->hp_waiter);
binheap_decrease(&fq->nest.hp_binheap_node, &tsk_rt(owner)->hp_blocked_tasks);
//TRACE_TASK(owner, "Heap After:\n");
//print_hp_waiters(tsk_rt(owner)->hp_blocked_tasks.root, 0);
new_max_eff_prio = top_priority(&tsk_rt(owner)->hp_blocked_tasks);
if(new_max_eff_prio != old_max_eff_prio) {
TRACE_TASK(t, "is new hp_waiter.\n");
if ((effective_priority(owner) == old_max_eff_prio) ||
(__edf_higher_prio(new_max_eff_prio, BASE, owner, EFFECTIVE))){
new_prio = new_max_eff_prio;
}
}
else {
TRACE_TASK(t, "no change in max_eff_prio of heap.\n");
}
if(new_prio) {
// set new inheritance and propagate
TRACE_TASK(t, "Effective priority changed for owner %s/%d to %s/%d\n",
owner->comm, owner->pid,
new_prio->comm, new_prio->pid);
nested_increase_priority_inheritance(owner, new_prio, &sem->lock, flags); // unlocks lock.
}
else {
TRACE_TASK(t, "No change in effective priority (is %s/%d). Propagation halted.\n",
new_max_eff_prio->comm, new_max_eff_prio->pid);
raw_spin_unlock(&tsk_rt(owner)->hp_blocked_tasks_lock);
unlock_fine_irqrestore(&sem->lock, flags);
}
}
else {
fq->hp_waiter = t;
fq->nest.hp_waiter_eff_prio = effective_priority(fq->hp_waiter);
TRACE_TASK(t, "no owner??\n");
unlock_fine_irqrestore(&sem->lock, flags);
}
}
else {
TRACE_TASK(t, "hp_waiter is unaffected.\n");
unlock_fine_irqrestore(&sem->lock, flags);
}
}
// hp_waiter has decreased
static void ikglp_refresh_owners_prio_decrease(struct fifo_queue *fq, struct ikglp_semaphore *sem, unsigned long flags)
{
struct task_struct *owner = fq->owner;
struct task_struct *old_max_eff_prio;
struct task_struct *new_max_eff_prio;
if(!owner) {
TRACE_CUR("No owner. Returning.\n");
unlock_fine_irqrestore(&sem->lock, flags);
return;
}
raw_spin_lock(&tsk_rt(owner)->hp_blocked_tasks_lock);
old_max_eff_prio = top_priority(&tsk_rt(owner)->hp_blocked_tasks);
binheap_delete(&fq->nest.hp_binheap_node, &tsk_rt(owner)->hp_blocked_tasks);
fq->nest.hp_waiter_eff_prio = fq->hp_waiter;
binheap_add(&fq->nest.hp_binheap_node, &tsk_rt(owner)->hp_blocked_tasks, struct nested_info, hp_binheap_node);
new_max_eff_prio = top_priority(&tsk_rt(owner)->hp_blocked_tasks);
if((old_max_eff_prio != new_max_eff_prio) &&
(effective_priority(owner) == old_max_eff_prio))
{
// Need to set new effective_priority for owner
struct task_struct *decreased_prio;
TRACE_CUR("Propagating decreased inheritance to holder of fq %d.\n", ikglp_get_idx(sem, fq));
if(__edf_higher_prio(new_max_eff_prio, BASE, owner, BASE)) {
TRACE_CUR("%s/%d has greater base priority than base priority of owner (%s/%d) of fq %d.\n",
(new_max_eff_prio) ? new_max_eff_prio->comm : "nil",
(new_max_eff_prio) ? new_max_eff_prio->pid : -1,
owner->comm,
owner->pid,
ikglp_get_idx(sem, fq));
decreased_prio = new_max_eff_prio;
}
else {
TRACE_CUR("%s/%d has lesser base priority than base priority of owner (%s/%d) of fq %d.\n",
(new_max_eff_prio) ? new_max_eff_prio->comm : "nil",
(new_max_eff_prio) ? new_max_eff_prio->pid : -1,
owner->comm,
owner->pid,
ikglp_get_idx(sem, fq));
decreased_prio = NULL;
}
// beware: recursion
nested_decrease_priority_inheritance(owner, decreased_prio, &sem->lock, flags); // will unlock mutex->lock
}
else {
TRACE_TASK(owner, "No need to propagate priority decrease forward.\n");
raw_spin_unlock(&tsk_rt(owner)->hp_blocked_tasks_lock);
unlock_fine_irqrestore(&sem->lock, flags);
}
}
static void ikglp_remove_donation_from_owner(struct binheap_node *n, struct fifo_queue *fq, struct ikglp_semaphore *sem, unsigned long flags)
{
struct task_struct *owner = fq->owner;
struct task_struct *old_max_eff_prio;
struct task_struct *new_max_eff_prio;
BUG_ON(!owner);
raw_spin_lock(&tsk_rt(owner)->hp_blocked_tasks_lock);
old_max_eff_prio = top_priority(&tsk_rt(owner)->hp_blocked_tasks);
binheap_delete(n, &tsk_rt(owner)->hp_blocked_tasks);
new_max_eff_prio = top_priority(&tsk_rt(owner)->hp_blocked_tasks);
if((old_max_eff_prio != new_max_eff_prio) &&
(effective_priority(owner) == old_max_eff_prio))
{
// Need to set new effective_priority for owner
struct task_struct *decreased_prio;
TRACE_CUR("Propagating decreased inheritance to holder of fq %d.\n", ikglp_get_idx(sem, fq));
if(__edf_higher_prio(new_max_eff_prio, BASE, owner, BASE)) {
TRACE_CUR("has greater base priority than base priority of owner of fq %d.\n", ikglp_get_idx(sem, fq));
decreased_prio = new_max_eff_prio;
}
else {
TRACE_CUR("has lesser base priority than base priority of owner of fq %d.\n", ikglp_get_idx(sem, fq));
decreased_prio = NULL;
}
// beware: recursion
nested_decrease_priority_inheritance(owner, decreased_prio, &sem->lock, flags); // will unlock mutex->lock
}
else {
TRACE_TASK(owner, "No need to propagate priority decrease forward.\n");
raw_spin_unlock(&tsk_rt(owner)->hp_blocked_tasks_lock);
unlock_fine_irqrestore(&sem->lock, flags);
}
}
static void ikglp_remove_donation_from_fq_waiter(struct task_struct *t, struct binheap_node *n)
{
struct task_struct *old_max_eff_prio;
struct task_struct *new_max_eff_prio;
raw_spin_lock(&tsk_rt(t)->hp_blocked_tasks_lock);
old_max_eff_prio = top_priority(&tsk_rt(t)->hp_blocked_tasks);
binheap_delete(n, &tsk_rt(t)->hp_blocked_tasks);
new_max_eff_prio = top_priority(&tsk_rt(t)->hp_blocked_tasks);
if((old_max_eff_prio != new_max_eff_prio) &&
(effective_priority(t) == old_max_eff_prio))
{
// Need to set new effective_priority for owner
struct task_struct *decreased_prio;
if(__edf_higher_prio(new_max_eff_prio, BASE, t, BASE)) {
decreased_prio = new_max_eff_prio;
}
else {
decreased_prio = NULL;
}
tsk_rt(t)->inh_task = decreased_prio;
}
raw_spin_unlock(&tsk_rt(t)->hp_blocked_tasks_lock);
}
static void ikglp_get_immediate(struct task_struct* t, struct fifo_queue *fq, struct ikglp_semaphore *sem, unsigned long flags)
{
// resource available now
TRACE_CUR("queue %d: acquired immediately\n", ikglp_get_idx(sem, fq));
fq->owner = t;
raw_spin_lock(&tsk_rt(t)->hp_blocked_tasks_lock);
binheap_add(&fq->nest.hp_binheap_node, &tsk_rt(t)->hp_blocked_tasks, struct nested_info, hp_binheap_node);
raw_spin_unlock(&tsk_rt(t)->hp_blocked_tasks_lock);
++(fq->count);
ikglp_add_global_list(sem, t, &fq->global_heap_node);
ikglp_add_donees(sem, fq, t, &fq->donee_heap_node);
sem->shortest_fifo_queue = ikglp_find_shortest(sem, sem->shortest_fifo_queue);
unlock_fine_irqrestore(&sem->lock, flags);
}
static void __ikglp_enqueue_on_fq(
struct ikglp_semaphore *sem,
struct fifo_queue* fq,
struct task_struct* t,
wait_queue_t *wait,
ikglp_heap_node_t *global_heap_node,
ikglp_donee_heap_node_t *donee_heap_node)
{
/* resource is not free => must suspend and wait */
TRACE_TASK(t, "Enqueuing on fq %d.\n",
ikglp_get_idx(sem, fq));
init_waitqueue_entry(wait, t);
__add_wait_queue_tail_exclusive(&fq->wait, wait);
++(fq->count);
// update global list.
if(likely(global_heap_node)) {
if(binheap_is_in_heap(&global_heap_node->node)) {
WARN_ON(1);
ikglp_del_global_list(sem, t, global_heap_node);
}
ikglp_add_global_list(sem, t, global_heap_node);
}
// update donor eligiblity list.
if(likely(donee_heap_node)) {
// if(binheap_is_in_heap(&donee_heap_node->node)) {
// WARN_ON(1);
// }
ikglp_add_donees(sem, fq, t, donee_heap_node);
}
if(likely(sem->shortest_fifo_queue == fq)) {
sem->shortest_fifo_queue = ikglp_find_shortest(sem, fq);
}
TRACE_TASK(t, "shortest queue is now %d\n", ikglp_get_idx(sem, fq));
}
static void ikglp_enqueue_on_fq(
struct ikglp_semaphore *sem,
struct fifo_queue *fq,
ikglp_wait_state_t *wait,
unsigned long flags)
{
/* resource is not free => must suspend and wait */
TRACE_TASK(wait->task, "queue %d: Resource is not free => must suspend and wait.\n",
ikglp_get_idx(sem, fq));
INIT_BINHEAP_NODE(&wait->global_heap_node.node);
INIT_BINHEAP_NODE(&wait->donee_heap_node.node);
__ikglp_enqueue_on_fq(sem, fq, wait->task, &wait->fq_node, &wait->global_heap_node, &wait->donee_heap_node);
ikglp_refresh_owners_prio_increase(wait->task, fq, sem, flags); // unlocks sem->lock
}
static void __ikglp_enqueue_on_pq(struct ikglp_semaphore *sem, ikglp_wait_state_t *wait)
{
TRACE_TASK(wait->task, "goes to PQ.\n");
wait->pq_node.task = wait->task; // copy over task (little redundant...)
binheap_add(&wait->pq_node.node, &sem->priority_queue, ikglp_heap_node_t, node);
}
static void ikglp_enqueue_on_pq(struct ikglp_semaphore *sem, ikglp_wait_state_t *wait)
{
INIT_BINHEAP_NODE(&wait->global_heap_node.node);
INIT_BINHEAP_NODE(&wait->donee_heap_node.node);
INIT_BINHEAP_NODE(&wait->pq_node.node);
__ikglp_enqueue_on_pq(sem, wait);
}
void print_donors(struct binheap_node *n, int depth)
{
ikglp_wait_state_t *donor_node;
char padding[81] = " ";
if(n == NULL) {
TRACE_CUR("+-> %p\n", NULL);
return;
}
donor_node = binheap_entry(n, ikglp_wait_state_t, node);
if(depth*2 <= 80)
padding[depth*2] = '\0';
TRACE_CUR("%s+-> %s/%d (donee: %s/%d)\n",
padding,
donor_node->task->comm,
donor_node->task->pid,
donor_node->donee_info->task->comm,
donor_node->donee_info->task->pid);
if(n->left) print_donors(n->left, depth+1);
if(n->right) print_donors(n->right, depth+1);
}
static void ikglp_enqueue_on_donor(struct ikglp_semaphore *sem, ikglp_wait_state_t* wait, unsigned long flags)
{
struct task_struct *t = wait->task;
ikglp_donee_heap_node_t *donee_node = NULL;
struct task_struct *donee;
struct task_struct *old_max_eff_prio;
struct task_struct *new_max_eff_prio;
struct task_struct *new_prio = NULL;
INIT_BINHEAP_NODE(&wait->global_heap_node.node);
INIT_BINHEAP_NODE(&wait->donee_heap_node.node);
INIT_BINHEAP_NODE(&wait->pq_node.node);
INIT_BINHEAP_NODE(&wait->node);
// TRACE_CUR("Adding %s/%d as donor.\n", t->comm, t->pid);
// TRACE_CUR("donors Before:\n");
// print_donors(sem->donors.root, 1);
// Add donor to the global list.
ikglp_add_global_list(sem, t, &wait->global_heap_node);
// Select a donee
donee_node = binheap_top_entry(&sem->donees, ikglp_donee_heap_node_t, node);
donee = donee_node->task;
TRACE_TASK(t, "Donee selected: %s/%d\n", donee->comm, donee->pid);
TRACE_CUR("Temporarily removing %s/%d to donee list.\n", donee->comm, donee->pid);
// TRACE_CUR("donees Before:\n");
// print_donees(sem, sem->donees.root, 1);
binheap_delete_root(&sem->donees, ikglp_donee_heap_node_t, node); // will re-add it shortly
TRACE_CUR("donees After:\n");
print_donees(sem, sem->donees.root, 1);
wait->donee_info = donee_node;
// Add t to donor heap.
binheap_add(&wait->node, &sem->donors, ikglp_wait_state_t, node);
// Now adjust the donee's priority.
// Lock the donee's inheritance heap.
raw_spin_lock(&tsk_rt(donee)->hp_blocked_tasks_lock);
old_max_eff_prio = top_priority(&tsk_rt(donee)->hp_blocked_tasks);
if(donee_node->donor_info) {
// Steal donation relation. Evict old donor to PQ.
// Remove old donor from donor heap
ikglp_wait_state_t *old_wait = donee_node->donor_info;
struct task_struct *old_donor = old_wait->task;
TRACE_TASK(t, "Donee (%s/%d) had donor %s/%d. Moving old donor to PQ.\n",
donee->comm, donee->pid, old_donor->comm, old_donor->pid);
binheap_delete(&old_wait->node, &sem->donors);
// Remove donation from donee's inheritance heap.
binheap_delete(&old_wait->prio_donation.hp_binheap_node, &tsk_rt(donee)->hp_blocked_tasks);
// WARNING: have not updated inh_prio!
// Add old donor to PQ.
__ikglp_enqueue_on_pq(sem, old_wait);
// Remove old donor from the global heap.
ikglp_del_global_list(sem, old_donor, &old_wait->global_heap_node);
}
// Add back donee's node to the donees heap with increased prio
donee_node->donor_info = wait;
INIT_BINHEAP_NODE(&donee_node->node);
TRACE_CUR("Adding %s/%d back to donee list.\n", donee->comm, donee->pid);
// TRACE_CUR("donees Before:\n");
print_donees(sem, sem->donees.root, 1);
binheap_add(&donee_node->node, &sem->donees, ikglp_donee_heap_node_t, node);
TRACE_CUR("donees After:\n");
print_donees(sem, sem->donees.root, 1);
// Add an inheritance/donation to the donee's inheritance heap.
wait->prio_donation.lock = (struct litmus_lock*)sem;
wait->prio_donation.hp_waiter_eff_prio = t;
wait->prio_donation.hp_waiter_ptr = NULL;
INIT_BINHEAP_NODE(&wait->prio_donation.hp_binheap_node);
binheap_add(&wait->prio_donation.hp_binheap_node, &tsk_rt(donee)->hp_blocked_tasks, struct nested_info, hp_binheap_node);
new_max_eff_prio = top_priority(&tsk_rt(donee)->hp_blocked_tasks);
if(new_max_eff_prio != old_max_eff_prio) {
if ((effective_priority(donee) == old_max_eff_prio) ||
(__edf_higher_prio(new_max_eff_prio, BASE, donee, EFFECTIVE))){
TRACE_TASK(t, "Donation increases %s/%d's effective priority\n", donee->comm, donee->pid);
new_prio = new_max_eff_prio;
}
// else {
// // should be bug. donor would not be in top-m.
// TRACE_TASK(t, "Donation is not greater than base prio of %s/%d?\n", donee->comm, donee->pid);
// WARN_ON(1);
// }
// }
// else {
// // should be bug. donor would not be in top-m.
// TRACE_TASK(t, "No change in %s/%d's inheritance heap?\n", donee->comm, donee->pid);
// WARN_ON(1);
}
if(new_prio) {
struct fifo_queue *donee_fq = donee_node->fq;
if(donee != donee_fq->owner) {
TRACE_TASK(t, "%s/%d is not the owner. Propagating priority to owner %s/%d.\n",
donee->comm, donee->pid,
donee_fq->owner->comm, donee_fq->owner->pid);
raw_spin_unlock(&tsk_rt(donee)->hp_blocked_tasks_lock);
ikglp_refresh_owners_prio_increase(donee, donee_fq, sem, flags); // unlocks sem->lock
}
else {
TRACE_TASK(t, "%s/%d is the owner. Progatating priority immediatly.\n",
donee->comm, donee->pid);
nested_increase_priority_inheritance(donee, new_prio, &sem->lock, flags); // unlocks sem->lock and donee's heap lock
}
}
else {
TRACE_TASK(t, "No change in effective priority (it is %d/%s). BUG?\n",
new_max_eff_prio->comm, new_max_eff_prio->pid);
raw_spin_unlock(&tsk_rt(donee)->hp_blocked_tasks_lock);
unlock_fine_irqrestore(&sem->lock, flags);
}
TRACE_CUR("donors After:\n");
print_donors(sem->donors.root, 1);
}
static int gsnedf_ikglp_lock(struct litmus_lock* l)
{
struct task_struct* t = current;
struct ikglp_semaphore *sem = ikglp_from_lock(l);
unsigned long flags = 0, real_flags;
struct fifo_queue *fq = NULL;
int replica = -EINVAL;
ikglp_wait_state_t wait;
if (!is_realtime(t))
return -EPERM;
raw_spin_lock_irqsave(&sem->real_lock, real_flags);
lock_global_irqsave(&dgl_lock, flags);
lock_fine_irqsave(&sem->lock, flags);
if(sem->shortest_fifo_queue->count == 0) {
// take available resource
replica = ikglp_get_idx(sem, sem->shortest_fifo_queue);
ikglp_get_immediate(t, sem->shortest_fifo_queue, sem, flags); // unlocks sem->lock
unlock_global_irqrestore(&dgl_lock, flags);
raw_spin_unlock_irqrestore(&sem->real_lock, real_flags);
}
else
{
// we have to suspend.
wait.task = t; // THIS IS CRITICALLY IMPORTANT!!!
tsk_rt(t)->blocked_lock = (struct litmus_lock*)sem; // record where we are blocked
mb();
/* FIXME: interruptible would be nice some day */
set_task_state(t, TASK_UNINTERRUPTIBLE);
if(sem->shortest_fifo_queue->count < sem->max_fifo_len) {
// enqueue on fq
ikglp_enqueue_on_fq(sem, sem->shortest_fifo_queue, &wait, flags); // unlocks sem->lock
}
else {
TRACE_CUR("IKGLP fifo queues are full.\n");
// no room in fifos. Go to PQ or donors.
if(__edf_higher_prio(ikglp_mth_highest(sem), BASE, t, BASE)) {
// enqueue on PQ
ikglp_enqueue_on_pq(sem, &wait);
unlock_fine_irqrestore(&sem->lock, flags);
}
else {
// enqueue as donor
ikglp_enqueue_on_donor(sem, &wait, flags); // unlocks sem->lock
}
}
unlock_global_irqrestore(&dgl_lock, flags);
raw_spin_unlock_irqrestore(&sem->real_lock, real_flags);
TS_LOCK_SUSPEND;
schedule();
TS_LOCK_RESUME;
fq = ikglp_get_queue(sem, t);
BUG_ON(!fq);
replica = ikglp_get_idx(sem, fq);
}
TRACE_CUR("Acquired lock %d, queue %d\n",
l->ident, replica);
return replica;
}
static void ikglp_move_donor_to_fq(struct ikglp_semaphore *sem, struct fifo_queue *fq, ikglp_wait_state_t *donor_info)
{
struct task_struct *t = donor_info->task;
TRACE_CUR("Donor %s/%d being moved to fq %d\n",
t->comm,
t->pid,
ikglp_get_idx(sem, fq));
binheap_delete(&donor_info->node, &sem->donors);
__ikglp_enqueue_on_fq(sem, fq, t,
&donor_info->fq_node,
NULL, // already in global_list, so pass null to prevent adding 2nd time.
//&donor_info->global_heap_node,
&donor_info->donee_heap_node);
// warning:
// ikglp_update_owners_prio(t, fq, sem, flags) has not been called.
}
static void ikglp_move_pq_to_fq(struct ikglp_semaphore *sem, struct fifo_queue *fq, ikglp_wait_state_t *wait)
{
struct task_struct *t = wait->task;
TRACE_CUR("PQ request %s/%d being moved to fq %d\n",
t->comm,
t->pid,
ikglp_get_idx(sem, fq));
binheap_delete(&wait->pq_node.node, &sem->priority_queue);
__ikglp_enqueue_on_fq(sem, fq, t,
&wait->fq_node,
&wait->global_heap_node,
&wait->donee_heap_node);
// warning:
// ikglp_update_owners_prio(t, fq, sem, flags) has not been called.
}
static ikglp_wait_state_t* ikglp_find_hp_waiter_to_steal(struct ikglp_semaphore* sem)
{
/* must hold sem->lock */
struct fifo_queue *fq = NULL;
struct list_head *pos;
struct task_struct *queued;
int i;
for(i = 0; i < sem->nr_replicas; ++i) {
if( (sem->fifo_queues[i].count > 1) &&
(!fq || edf_higher_prio(sem->fifo_queues[i].hp_waiter, fq->hp_waiter)) ) {
TRACE_CUR("hp_waiter on fq %d (%s/%d) has higher prio than hp_waiter on fq %d (%s/%d)\n",
ikglp_get_idx(sem, &sem->fifo_queues[i]),
sem->fifo_queues[i].hp_waiter->comm,
sem->fifo_queues[i].hp_waiter->pid,
(fq) ? ikglp_get_idx(sem, fq) : -1,
(fq) ? ((fq->hp_waiter) ? fq->hp_waiter->comm : "nil") : "nilXX",
(fq) ? ((fq->hp_waiter) ? fq->hp_waiter->pid : -1) : -2);
fq = &sem->fifo_queues[i];
WARN_ON(!(fq->hp_waiter));
}
}
if(fq) {
struct task_struct *max_hp = fq->hp_waiter;
ikglp_wait_state_t* ret = NULL;
TRACE_CUR("Searching for %s/%d on fq %d\n",
max_hp->comm,
max_hp->pid,
ikglp_get_idx(sem, fq));
BUG_ON(!max_hp);
list_for_each(pos, &fq->wait.task_list) {
wait_queue_t *wait = list_entry(pos, wait_queue_t, task_list);
queued = (struct task_struct*) wait->private;
TRACE_CUR("fq %d entry: %s/%d\n", ikglp_get_idx(sem, fq), queued->comm, queued->pid);
/* Compare task prios, find high prio task. */
if (queued == max_hp) {
TRACE_CUR("Found it!\n");
ret = container_of(wait, ikglp_wait_state_t, fq_node);
}
}
// list_for_each(pos, &fq->wait.task_list) {
// wait_queue_t *wait = list_entry(pos, wait_queue_t, task_list);
//
// queued = (struct task_struct*) wait->private;
// /* Compare task prios, find high prio task. */
// if (queued == max_hp) {
// TRACE_CUR("Found it!\n");
// return container_of(wait, ikglp_wait_state_t, fq_node);
// }
// }
if(!ret) {
WARN_ON(1);
}
return ret;
}
return(NULL);
}
static void ikglp_steal_to_fq(struct ikglp_semaphore *sem, struct fifo_queue *fq, ikglp_wait_state_t *fq_wait)
{
struct task_struct *t = fq_wait->task;
struct fifo_queue *fq_steal = fq_wait->donee_heap_node.fq;
WARN_ON(t != fq_steal->hp_waiter);
TRACE_CUR("FQ request %s/%d being moved to fq %d\n",
t->comm,
t->pid,
ikglp_get_idx(sem, fq));
fq_wait->donee_heap_node.fq = fq; // just to be safe
__remove_wait_queue(&fq_steal->wait, &fq_wait->fq_node);
--(fq_steal->count);
fq_steal->hp_waiter = ikglp_find_hp_waiter(fq_steal, NULL);
TRACE_TASK(t, "New hp_waiter for fq %d is %s/%d!\n",
ikglp_get_idx(sem, fq_steal),
(fq_steal->hp_waiter) ? fq_steal->hp_waiter->comm : "nil",
(fq_steal->hp_waiter) ? fq_steal->hp_waiter->pid : -1);
// Update shortest.
if(fq_steal->count < sem->shortest_fifo_queue->count) {
sem->shortest_fifo_queue = fq_steal;
}
__ikglp_enqueue_on_fq(sem, fq, t,
&fq_wait->fq_node,
NULL,
NULL);
// warning: We have not checked the priority inheritance of fq's owner yet.
}
static void ikglp_migrate_fq_to_owner_heap_nodes(struct ikglp_semaphore *sem, struct fifo_queue *fq, ikglp_wait_state_t *old_wait)
{
struct task_struct *t = old_wait->task;
BUG_ON(old_wait->donee_heap_node.fq != fq);
TRACE_TASK(t, "Migrating wait_state to memory of queue %d.\n", ikglp_get_idx(sem, fq));
// need to migrate global_heap_node and donee_heap_node off of the stack
// to the nodes allocated for the owner of this fq.
// TODO: Enhance binheap() to perform this operation in place.
ikglp_del_global_list(sem, t, &old_wait->global_heap_node); // remove
fq->global_heap_node = old_wait->global_heap_node; // copy
ikglp_add_global_list(sem, t, &fq->global_heap_node); // re-add
binheap_delete(&old_wait->donee_heap_node.node, &sem->donees); // remove
fq->donee_heap_node = old_wait->donee_heap_node; // copy
if(fq->donee_heap_node.donor_info) {
// let donor know that our location has changed
BUG_ON(fq->donee_heap_node.donor_info->donee_info->task != t); // validate cross-link
fq->donee_heap_node.donor_info->donee_info = &fq->donee_heap_node;
}
INIT_BINHEAP_NODE(&fq->donee_heap_node.node);
binheap_add(&fq->donee_heap_node.node, &sem->donees, ikglp_donee_heap_node_t, node); // re-add
}
static int gsnedf_ikglp_unlock(struct litmus_lock* l)
{
struct ikglp_semaphore *sem = ikglp_from_lock(l);
struct task_struct *t = current;
struct task_struct *donee = NULL;
struct task_struct *next = NULL;
struct task_struct *new_on_fq = NULL;
ikglp_wait_state_t *other_donor_info = NULL;
struct fifo_queue *to_steal = NULL;
struct fifo_queue *fq;
unsigned long flags = 0, real_flags;
int err = 0;
raw_spin_lock_irqsave(&sem->real_lock, real_flags);
lock_global_irqsave(&dgl_lock, flags); // TODO: Push this deeper
lock_fine_irqsave(&sem->lock, flags);
fq = ikglp_get_queue(sem, t); // returns NULL if 't' is not owner.
if (!fq) {
err = -EINVAL;
goto out;
}
TRACE_TASK(t, "Freeing replica %d.\n", ikglp_get_idx(sem, fq));
// Remove 't' from the heaps, but data in nodes will still be good.
ikglp_del_global_list(sem, t, &fq->global_heap_node);
binheap_delete(&fq->donee_heap_node.node, &sem->donees);
// Move the next request into the FQ and update heaps as needed.
// We defer re-evaluation of priorities to later in the function.
if(fq->donee_heap_node.donor_info) { // move my doner to FQ
ikglp_wait_state_t *donor_info = fq->donee_heap_node.donor_info;
new_on_fq = donor_info->task;
TRACE_TASK(t, "Moving MY donor (%s/%d) to fq %d.\n",
new_on_fq->comm, new_on_fq->pid,
ikglp_get_idx(sem, fq));
// donor moved to FQ
donee = t;
ikglp_move_donor_to_fq(sem, fq, donor_info);
// TODO: Terminate donation
}
else if(!binheap_empty(&sem->donors)) { // No donor, so move any donor to FQ
// move other donor to FQ
other_donor_info = binheap_top_entry(&sem->donors, ikglp_wait_state_t, node);
new_on_fq = other_donor_info->task;
donee = other_donor_info->donee_info->task;
// update the donee's heap position.
other_donor_info->donee_info->donor_info = NULL; // clear the cross-link
binheap_decrease(&other_donor_info->donee_info->node, &sem->donees);
TRACE_TASK(t, "Moving a donor (%s/%d) to fq %d.\n",
new_on_fq->comm, new_on_fq->pid,
ikglp_get_idx(sem, fq));
ikglp_move_donor_to_fq(sem, fq, other_donor_info);
// TODO: Terminate donation
}
else if(!binheap_empty(&sem->priority_queue)) { // No donors, so move PQ
ikglp_heap_node_t *pq_node = binheap_top_entry(&sem->priority_queue, ikglp_heap_node_t, node);
ikglp_wait_state_t *pq_wait = container_of(pq_node, ikglp_wait_state_t, pq_node);
new_on_fq = pq_wait->task;
TRACE_TASK(t, "Moving a pq waiter (%s/%d) to fq %d.\n",
new_on_fq->comm, new_on_fq->pid,
ikglp_get_idx(sem, fq));
ikglp_move_pq_to_fq(sem, fq, pq_wait);
}
else if(fq->count == 1) { // No PQ and this queue is empty, so steal
// steal.
ikglp_wait_state_t *fq_wait;
TRACE_TASK(t, "Looking to steal a request for fq %d...\n",
ikglp_get_idx(sem, fq));
fq_wait = ikglp_find_hp_waiter_to_steal(sem);
if(fq_wait) {
to_steal = fq_wait->donee_heap_node.fq;
new_on_fq = fq_wait->task;
TRACE_TASK(t, "Found %s/%d of fq %d to steal for fq %d...\n",
new_on_fq->comm, new_on_fq->pid,
ikglp_get_idx(sem, to_steal),
ikglp_get_idx(sem, fq));
ikglp_steal_to_fq(sem, fq, fq_wait);
// TODO: Update prio of old queue.
}
else {
TRACE_TASK(t, "Found nothing to steal for fq %d.\n",
ikglp_get_idx(sem, fq));
}
}
else { // move no one
}
// 't' must drop all priority and clean up data structures before hand-off.
// DROP ALL INHERITANCE. IKGLP MUST BE OUTER-MOST
raw_spin_lock(&tsk_rt(t)->hp_blocked_tasks_lock);
{
int count = 0;
while(!binheap_empty(&tsk_rt(t)->hp_blocked_tasks)) {
binheap_delete_root(&tsk_rt(t)->hp_blocked_tasks, struct nested_info, hp_binheap_node);
++count;
}
decrease_priority_inheritance(t, NULL);
WARN_ON(count > 2); // should not be greater than 2. only local fq inh and donation can be possible.
}
raw_spin_unlock(&tsk_rt(t)->hp_blocked_tasks_lock);
// Updating the owner and updating sem->shortest_fifo_queue
// could have been done sooner, but it is deffered, hoping
// that it will reduce thrashing of sem->shortest_fifo_queue
// assignment.
fq->owner = NULL; // no longer owned!!
--(fq->count);
if(fq->count < sem->shortest_fifo_queue->count) {
sem->shortest_fifo_queue = fq;
}
// Now patch up other priorities.
//
// At most one of the following:
// if(donee && donee != t), decrease prio, propagate to owner, or onward
// if(to_steal), update owner's prio (hp_waiter has already been set)
//
BUG_ON((other_donor_info != NULL) && (to_steal != NULL));
if(other_donor_info) {
struct fifo_queue *other_fq = other_donor_info->donee_info->fq;
BUG_ON(!donee);
BUG_ON(donee == t);
TRACE_TASK(t, "Terminating donation relation of donor %s/%d to donee %s/%d!\n",
other_donor_info->task->comm, other_donor_info->task->pid,
donee->comm, donee->pid);
// need to terminate donation relation.
if(donee == other_fq->owner) {
TRACE_TASK(t, "Donee %s/%d is an owner of fq %d.\n",
donee->comm, donee->pid,
ikglp_get_idx(sem, other_fq));
ikglp_remove_donation_from_owner(&other_donor_info->prio_donation.hp_binheap_node, other_fq, sem, flags);
lock_fine_irqsave(&sem->lock, flags); // there should be no contention!!!!
}
else {
TRACE_TASK(t, "Donee %s/%d is an blocked in of fq %d.\n",
donee->comm, donee->pid,
ikglp_get_idx(sem, other_fq));
ikglp_remove_donation_from_fq_waiter(donee, &other_donor_info->prio_donation.hp_binheap_node);
if(donee == other_fq->hp_waiter) {
TRACE_TASK(t, "Donee %s/%d was an hp_waiter of fq %d. Rechecking hp_waiter.\n",
donee->comm, donee->pid,
ikglp_get_idx(sem, other_fq));
other_fq->hp_waiter = ikglp_find_hp_waiter(other_fq, NULL);
TRACE_TASK(t, "New hp_waiter for fq %d is %s/%d!\n",
ikglp_get_idx(sem, other_fq),
(other_fq->hp_waiter) ? other_fq->hp_waiter->comm : "nil",
(other_fq->hp_waiter) ? other_fq->hp_waiter->pid : -1);
ikglp_refresh_owners_prio_decrease(other_fq, sem, flags); // unlocks sem->lock. reacquire it.
lock_fine_irqsave(&sem->lock, flags); // there should be no contention!!!!
}
}
}
else if(to_steal) {
TRACE_TASK(t, "Rechecking priority inheritance of fq %d, triggered by stealing.\n",
ikglp_get_idx(sem, to_steal));
ikglp_refresh_owners_prio_decrease(to_steal, sem, flags); // unlocks sem->lock. reacquire it.
lock_fine_irqsave(&sem->lock, flags); // there should be no contention!!!!
}
// check for new HP waiter.
if(new_on_fq) {
// fq->owner is null, so just update the hp_waiter without locking.
if(new_on_fq == fq->hp_waiter) {
TRACE_TASK(t, "new_on_fq is already hp_waiter.\n", fq->hp_waiter->comm, fq->hp_waiter->pid);
fq->nest.hp_waiter_eff_prio = effective_priority(fq->hp_waiter); // set this just to be sure...
}
else if(edf_higher_prio(new_on_fq, fq->hp_waiter)) {
if(fq->hp_waiter)
TRACE_TASK(t, "has higher prio than hp_waiter (%s/%d).\n", fq->hp_waiter->comm, fq->hp_waiter->pid);
else
TRACE_TASK(t, "has higher prio than hp_waiter (NIL).\n");
fq->hp_waiter = new_on_fq;
fq->nest.hp_waiter_eff_prio = effective_priority(fq->hp_waiter);
TRACE_TASK(t, "New hp_waiter for fq %d is %s/%d!\n",
ikglp_get_idx(sem, fq),
(fq->hp_waiter) ? fq->hp_waiter->comm : "nil",
(fq->hp_waiter) ? fq->hp_waiter->pid : -1);
}
}
if(waitqueue_active(&fq->wait))
{
wait_queue_t *wait = list_entry(fq->wait.task_list.next, wait_queue_t, task_list);
ikglp_wait_state_t *fq_wait = container_of(wait, ikglp_wait_state_t, fq_node);
next = (struct task_struct*) wait->private;
__remove_wait_queue(&fq->wait, wait);
TRACE_CUR("queue %d: ASSIGNING %s/%d as owner - next\n",
ikglp_get_idx(sem, fq),
next->comm, next->pid);
// migrate wait-state to fifo-memory.
ikglp_migrate_fq_to_owner_heap_nodes(sem, fq, fq_wait);
/* next becomes the resouce holder */
fq->owner = next;
tsk_rt(next)->blocked_lock = NULL;
/* determine new hp_waiter if necessary */
if (next == fq->hp_waiter) {
TRACE_TASK(next, "was highest-prio waiter\n");
/* next has the highest priority --- it doesn't need to
* inherit. However, we need to make sure that the
* next-highest priority in the queue is reflected in
* hp_waiter. */
fq->hp_waiter = ikglp_find_hp_waiter(fq, NULL);
TRACE_TASK(next, "New hp_waiter for fq %d is %s/%d!\n",
ikglp_get_idx(sem, fq),
(fq->hp_waiter) ? fq->hp_waiter->comm : "nil",
(fq->hp_waiter) ? fq->hp_waiter->pid : -1);
fq->nest.hp_waiter_eff_prio = (fq->hp_waiter) ? effective_priority(fq->hp_waiter) : NULL;
if (fq->hp_waiter)
TRACE_TASK(fq->hp_waiter, "is new highest-prio waiter\n");
else
TRACE("no further waiters\n");
raw_spin_lock(&tsk_rt(next)->hp_blocked_tasks_lock);
//TRACE_TASK(next, "Heap Before:\n");
//print_hp_waiters(tsk_rt(next)->hp_blocked_tasks.root, 0);
binheap_add(&fq->nest.hp_binheap_node, &tsk_rt(next)->hp_blocked_tasks, struct nested_info, hp_binheap_node);
//TRACE_TASK(next, "Heap After:\n");
//print_hp_waiters(tsk_rt(next)->hp_blocked_tasks.root, 0);
raw_spin_unlock(&tsk_rt(next)->hp_blocked_tasks_lock);
}
else {
/* Well, if 'next' is not the highest-priority waiter,
* then it (probably) ought to inherit the highest-priority
* waiter's priority. */
TRACE_TASK(next, "is not hp_waiter of replica %d. hp_waiter is %s/%d\n",
ikglp_get_idx(sem, fq),
(fq->hp_waiter) ? fq->hp_waiter->comm : "nil",
(fq->hp_waiter) ? fq->hp_waiter->pid : -1);
raw_spin_lock(&tsk_rt(next)->hp_blocked_tasks_lock);
binheap_add(&fq->nest.hp_binheap_node, &tsk_rt(next)->hp_blocked_tasks,
struct nested_info, hp_binheap_node);
/* It is possible that 'next' *should* be the hp_waiter, but isn't
* because that update hasn't yet executed (update operation is
* probably blocked on mutex->lock). So only inherit if the top of
* 'next's top heap node is indeed the effective prio. of hp_waiter.
* (We use fq->hp_waiter_eff_prio instead of effective_priority(hp_waiter)
* since the effective priority of hp_waiter can change (and the
* update has not made it to this lock).)
*/
if(likely(top_priority(&tsk_rt(next)->hp_blocked_tasks) == fq->nest.hp_waiter_eff_prio))
{
if(fq->nest.hp_waiter_eff_prio)
increase_priority_inheritance(next, fq->nest.hp_waiter_eff_prio);
else
WARN_ON(1);
}
raw_spin_unlock(&tsk_rt(next)->hp_blocked_tasks_lock);
}
// wake up the new resource holder!
wake_up_process(next);
}
out:
unlock_fine_irqrestore(&sem->lock, flags);
unlock_global_irqrestore(&dgl_lock, flags);
raw_spin_unlock_irqrestore(&sem->real_lock, real_flags);
return err;
}
static int gsnedf_ikglp_close(struct litmus_lock* l)
{
struct task_struct *t = current;
struct ikglp_semaphore *sem = ikglp_from_lock(l);
unsigned long flags;
int owner = 0;
int i;
raw_spin_lock_irqsave(&sem->real_lock, flags);
for(i = 0; i < sem->nr_replicas; ++i) {
if(sem->fifo_queues[i].owner == t) {
owner = 1;
break;
}
}
raw_spin_unlock_irqrestore(&sem->real_lock, flags);
if (owner)
gsnedf_ikglp_unlock(l);
return 0;
}
static void gsnedf_ikglp_free(struct litmus_lock* l)
{
struct ikglp_semaphore *sem = ikglp_from_lock(l);
kfree(sem->fifo_queues);
kfree(sem);
}
static struct litmus_lock_ops gsnedf_ikglp_lock_ops = {
.lock = gsnedf_ikglp_lock,
.unlock = gsnedf_ikglp_unlock,
// ikglp can only be an outer-most lock.
.propagate_increase_inheritance = NULL,
.propagate_decrease_inheritance = NULL,
.close = gsnedf_ikglp_close,
.deallocate = gsnedf_ikglp_free,
};
static struct litmus_lock* gsnedf_new_ikglp(void* __user arg)
{
struct ikglp_semaphore* sem;
int nr_replicas = 0;
int i;
if(!access_ok(VERIFY_READ, arg, sizeof(nr_replicas)))
{
return(NULL);
}
if(__copy_from_user(&nr_replicas, arg, sizeof(nr_replicas)))
{
return(NULL);
}
if(nr_replicas < 1)
{
return(NULL);
}
sem = kmalloc(sizeof(*sem), GFP_KERNEL);
if(!sem)
{
return NULL;
}
sem->fifo_queues = kmalloc(sizeof(struct fifo_queue)*nr_replicas, GFP_KERNEL);
if(!sem->fifo_queues)
{
kfree(sem);
return NULL;
}
sem->litmus_lock.ops = &gsnedf_ikglp_lock_ops;
#ifdef CONFIG_DEBUG_SPINLOCK
{
__raw_spin_lock_init(&sem->lock, ((struct litmus_lock*)sem)->cheat_lockdep, &((struct litmus_lock*)sem)->key);
}
#else
raw_spin_lock_init(&sem->lock);
#endif
raw_spin_lock_init(&sem->real_lock);
sem->nr_replicas = nr_replicas;
sem->m = num_online_cpus(); // default 'm' to number of CPUs.
sem->max_fifo_len = (sem->m/nr_replicas) + ((sem->m%nr_replicas) != 0);
TRACE("New IKGLP Sem: m = %d, k = %d, max fifo_len = %d\n",
sem->m,
sem->nr_replicas,
sem->max_fifo_len);
for(i = 0; i < nr_replicas; ++i)
{
struct fifo_queue* q = &(sem->fifo_queues[i]);
q->owner = NULL;
q->hp_waiter = NULL;
init_waitqueue_head(&q->wait);
q->count = 0;
q->global_heap_node.task = NULL;
INIT_BINHEAP_NODE(&q->global_heap_node.node);
q->donee_heap_node.task = NULL;
q->donee_heap_node.donor_info = NULL;
q->donee_heap_node.fq = NULL;
INIT_BINHEAP_NODE(&q->donee_heap_node.node);
q->nest.lock = (struct litmus_lock*)sem;
q->nest.hp_waiter_eff_prio = NULL;
q->nest.hp_waiter_ptr = &q->hp_waiter;
INIT_BINHEAP_NODE(&q->nest.hp_binheap_node);
}
sem->shortest_fifo_queue = &sem->fifo_queues[0];
sem->top_m_size = 0;
// init heaps
INIT_BINHEAP_HANDLE(&sem->top_m, ikglp_edf_min_heap_base_priority_order);
INIT_BINHEAP_HANDLE(&sem->not_top_m, ikglp_edf_max_heap_base_priority_order);
INIT_BINHEAP_HANDLE(&sem->donees, ikglp_edf_min_heap_donee_order);
INIT_BINHEAP_HANDLE(&sem->priority_queue, ikglp_edf_max_heap_base_priority_order);
INIT_BINHEAP_HANDLE(&sem->donors, ikglp_donor_edf_max_heap_base_priority_order);
return &sem->litmus_lock;
}
#endif
/* ******************** FMLP support ********************** */
/* struct for semaphore with priority inheritance */
struct fmlp_semaphore {
struct litmus_lock litmus_lock;
/* current resource holder */
struct task_struct *owner;
/* highest-priority waiter */
struct task_struct *hp_waiter;
/* FIFO queue of waiting tasks */
wait_queue_head_t wait;
};
static inline struct fmlp_semaphore* fmlp_from_lock(struct litmus_lock* lock)
{
return container_of(lock, struct fmlp_semaphore, litmus_lock);
}
/* caller is responsible for locking */
struct task_struct* find_hp_waiter(struct fmlp_semaphore *sem,
struct task_struct* skip)
{
struct list_head *pos;
struct task_struct *queued, *found = NULL;
list_for_each(pos, &sem->wait.task_list) {
queued = (struct task_struct*) list_entry(pos, wait_queue_t,
task_list)->private;
/* Compare task prios, find high prio task. */
if (queued != skip && edf_higher_prio(queued, found))
found = queued;
}
return found;
}
int gsnedf_fmlp_lock(struct litmus_lock* l)
{
struct task_struct* t = current;
struct fmlp_semaphore *sem = fmlp_from_lock(l);
wait_queue_t wait;
unsigned long flags;
if (!is_realtime(t))
return -EPERM;
spin_lock_irqsave(&sem->wait.lock, flags);
if (sem->owner) {
/* resource is not free => must suspend and wait */
init_waitqueue_entry(&wait, t);
/* FIXME: interruptible would be nice some day */
set_task_state(t, TASK_UNINTERRUPTIBLE);
__add_wait_queue_tail_exclusive(&sem->wait, &wait);
/* check if we need to activate priority inheritance */
if (edf_higher_prio(t, sem->hp_waiter)) {
sem->hp_waiter = t;
if (edf_higher_prio(t, sem->owner))
increase_priority_inheritance(sem->owner, sem->hp_waiter);
}
TS_LOCK_SUSPEND;
/* release lock before sleeping */
spin_unlock_irqrestore(&sem->wait.lock, flags);
/* We depend on the FIFO order. Thus, we don't need to recheck
* when we wake up; we are guaranteed to have the lock since
* there is only one wake up per release.
*/
schedule();
TS_LOCK_RESUME;
/* Since we hold the lock, no other task will change
* ->owner. We can thus check it without acquiring the spin
* lock. */
BUG_ON(sem->owner != t);
} else {
/* it's ours now */
sem->owner = t;
spin_unlock_irqrestore(&sem->wait.lock, flags);
}
return 0;
}
int gsnedf_fmlp_unlock(struct litmus_lock* l)
{
struct task_struct *t = current, *next;
struct fmlp_semaphore *sem = fmlp_from_lock(l);
unsigned long flags;
int err = 0;
spin_lock_irqsave(&sem->wait.lock, flags);
if (sem->owner != t) {
err = -EINVAL;
goto out;
}
/* check if there are jobs waiting for this resource */
next = __waitqueue_remove_first(&sem->wait);
if (next) {
/* next becomes the resouce holder */
sem->owner = next;
TRACE_CUR("lock ownership passed to %s/%d\n", next->comm, next->pid);
/* determine new hp_waiter if necessary */
if (next == sem->hp_waiter) {
TRACE_TASK(next, "was highest-prio waiter\n");
/* next has the highest priority --- it doesn't need to
* inherit. However, we need to make sure that the
* next-highest priority in the queue is reflected in
* hp_waiter. */
sem->hp_waiter = find_hp_waiter(sem, next);
if (sem->hp_waiter)
TRACE_TASK(sem->hp_waiter, "is new highest-prio waiter\n");
else
TRACE("no further waiters\n");
} else {
/* Well, if next is not the highest-priority waiter,
* then it ought to inherit the highest-priority
* waiter's priority. */
increase_priority_inheritance(next, sem->hp_waiter);
}
/* wake up next */
wake_up_process(next);
} else
/* becomes available */
sem->owner = NULL;
/* we lose the benefit of priority inheritance (if any) */
if (tsk_rt(t)->inh_task)
decrease_priority_inheritance(t, NULL);
out:
spin_unlock_irqrestore(&sem->wait.lock, flags);
return err;
}
int gsnedf_fmlp_close(struct litmus_lock* l)
{
struct task_struct *t = current;
struct fmlp_semaphore *sem = fmlp_from_lock(l);
unsigned long flags;
int owner;
spin_lock_irqsave(&sem->wait.lock, flags);
owner = sem->owner == t;
spin_unlock_irqrestore(&sem->wait.lock, flags);
if (owner)
gsnedf_fmlp_unlock(l);
return 0;
}
void gsnedf_fmlp_free(struct litmus_lock* lock)
{
kfree(fmlp_from_lock(lock));
}
static struct litmus_lock_ops gsnedf_fmlp_lock_ops = {
.close = gsnedf_fmlp_close,
.lock = gsnedf_fmlp_lock,
.unlock = gsnedf_fmlp_unlock,
.deallocate = gsnedf_fmlp_free,
#ifdef CONFIG_LITMUS_NESTED_LOCKING
.propagate_increase_inheritance = NULL,
.propagate_decrease_inheritance = NULL
#endif
};
static struct litmus_lock* gsnedf_new_fmlp(void)
{
struct fmlp_semaphore* sem;
sem = kmalloc(sizeof(*sem), GFP_KERNEL);
if (!sem)
return NULL;
sem->owner = NULL;
sem->hp_waiter = NULL;
init_waitqueue_head(&sem->wait);
sem->litmus_lock.ops = &gsnedf_fmlp_lock_ops;
return &sem->litmus_lock;
}
/* **** lock constructor **** */
static long gsnedf_allocate_lock(struct litmus_lock **lock, int type,
void* __user args)
{
int err;
/* GSN-EDF currently only supports the FMLP for global resources. */
switch (type) {
case FMLP_SEM:
/* Flexible Multiprocessor Locking Protocol */
*lock = gsnedf_new_fmlp();
break;
#ifdef CONFIG_LITMUS_NESTED_LOCKING
case RSM_MUTEX:
*lock = gsnedf_new_rsm_mutex();
break;
case IKGLP_SEM:
*lock = gsnedf_new_ikglp(args);
break;
#endif
default:
err = -ENXIO;
goto UNSUPPORTED_LOCK;
};
if (*lock)
err = 0;
else
err = -ENOMEM;
UNSUPPORTED_LOCK:
return err;
}
#endif
static long gsnedf_activate_plugin(void)
{
int cpu;
cpu_entry_t *entry;
INIT_BINHEAP_HANDLE(&gsnedf_cpu_heap, cpu_lower_prio);
#ifdef CONFIG_RELEASE_MASTER
gsnedf.release_master = atomic_read(&release_master_cpu);
#endif
for_each_online_cpu(cpu) {
entry = &per_cpu(gsnedf_cpu_entries, cpu);
INIT_BINHEAP_NODE(&entry->hn);
entry->linked = NULL;
entry->scheduled = NULL;
#ifdef CONFIG_RELEASE_MASTER
if (cpu != gsnedf.release_master) {
#endif
TRACE("GSN-EDF: Initializing CPU #%d.\n", cpu);
update_cpu_position(entry);
#ifdef CONFIG_RELEASE_MASTER
} else {
TRACE("GSN-EDF: CPU %d is release master.\n", cpu);
}
#endif
}
return 0;
}
/* Plugin object */
static struct sched_plugin gsn_edf_plugin __cacheline_aligned_in_smp = {
.plugin_name = "GSN-EDF",
.finish_switch = gsnedf_finish_switch,
.tick = gsnedf_tick,
.task_new = gsnedf_task_new,
.complete_job = complete_job,
.task_exit = gsnedf_task_exit,
.schedule = gsnedf_schedule,
.task_wake_up = gsnedf_task_wake_up,
.task_block = gsnedf_task_block,
.admit_task = gsnedf_admit_task,
.activate_plugin = gsnedf_activate_plugin,
#ifdef CONFIG_LITMUS_LOCKING
.allocate_lock = gsnedf_allocate_lock,
#endif
#ifdef CONFIG_LITMUS_DGL_SUPPORT
.get_dgl_spinlock = gsn_edf_get_dgl_spinlock,
#endif
};
static int __init init_gsn_edf(void)
{
int cpu;
cpu_entry_t *entry;
INIT_BINHEAP_HANDLE(&gsnedf_cpu_heap, cpu_lower_prio);
/* initialize CPU state */
for (cpu = 0; cpu < NR_CPUS; ++cpu) {
entry = &per_cpu(gsnedf_cpu_entries, cpu);
gsnedf_cpus[cpu] = entry;
entry->cpu = cpu;
INIT_BINHEAP_NODE(&entry->hn);
}
#ifdef CONFIG_LITMUS_DGL_SUPPORT
raw_spin_lock_init(&dgl_lock);
#endif
edf_domain_init(&gsnedf, NULL, gsnedf_release_jobs);
return register_sched_plugin(&gsn_edf_plugin);
}
module_init(init_gsn_edf);