/*
* litmus/sched_gsn_edf.c
*
* Implementation of the GSN-EDF scheduling algorithm.
*
* This version uses the simple approach and serializes all scheduling
* decisions by the use of a queue lock. This is probably not the
* best way to do it, but it should suffice for now.
*/
#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#ifdef CONFIG_LITMUS_NESTED_LOCKING
#include <linux/uaccess.h>
#endif
#include <litmus/litmus.h>
#include <litmus/jobs.h>
#include <litmus/sched_plugin.h>
#include <litmus/edf_common.h>
#include <litmus/sched_trace.h>
#include <litmus/trace.h>
#include <litmus/preempt.h>
#include <litmus/bheap.h>
#include <litmus/binheap.h>
#include <litmus/kfmlp_lock.h>
#ifdef CONFIG_LITMUS_NESTED_LOCKING
#include <litmus/rsm_lock.h>
#include <litmus/ikglp_lock.h>
#endif
#ifdef CONFIG_SCHED_CPU_AFFINITY
#include <litmus/affinity.h>
#endif
#include <linux/module.h>
#ifdef CONFIG_SCHED_CPU_AFFINITY
#include <litmus/affinity.h>
#endif
#ifdef CONFIG_LITMUS_SOFTIRQD
#include <litmus/litmus_softirq.h>
#endif
#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
#include <linux/interrupt.h>
#include <litmus/trace.h>
#endif
#ifdef CONFIG_LITMUS_NVIDIA
#include <litmus/nvidia_info.h>
#endif
/* Overview of GSN-EDF operations.
*
* For a detailed explanation of GSN-EDF have a look at the FMLP paper. This
* description only covers how the individual operations are implemented in
* LITMUS.
*
* link_task_to_cpu(T, cpu) - Low-level operation to update the linkage
* structure (NOT the actually scheduled
* task). If there is another linked task To
* already it will set To->linked_on = NO_CPU
* (thereby removing its association with this
* CPU). However, it will not requeue the
* previously linked task (if any). It will set
* T's state to RT_F_RUNNING and check whether
* it is already running somewhere else. If T
* is scheduled somewhere else it will link
* it to that CPU instead (and pull the linked
* task to cpu). T may be NULL.
*
* unlink(T) - Unlink removes T from all scheduler data
* structures. If it is linked to some CPU it
* will link NULL to that CPU. If it is
* currently queued in the gsnedf queue it will
* be removed from the rt_domain. It is safe to
* call unlink(T) if T is not linked. T may not
* be NULL.
*
* requeue(T) - Requeue will insert T into the appropriate
* queue. If the system is in real-time mode and
* the T is released already, it will go into the
* ready queue. If the system is not in
* real-time mode is T, then T will go into the
* release queue. If T's release time is in the
* future, it will go into the release
* queue. That means that T's release time/job
* no/etc. has to be updated before requeu(T) is
* called. It is not safe to call requeue(T)
* when T is already queued. T may not be NULL.
*
* gsnedf_job_arrival(T) - This is the catch all function when T enters
* the system after either a suspension or at a
* job release. It will queue T (which means it
* is not safe to call gsnedf_job_arrival(T) if
* T is already queued) and then check whether a
* preemption is necessary. If a preemption is
* necessary it will update the linkage
* accordingly and cause scheduled to be called
* (either with an IPI or need_resched). It is
* safe to call gsnedf_job_arrival(T) if T's
* next job has not been actually released yet
* (releast time in the future). T will be put
* on the release queue in that case.
*
* job_completion(T) - Take care of everything that needs to be done
* to prepare T for its next release and place
* it in the right queue with
* gsnedf_job_arrival().
*
*
* When we now that T is linked to CPU then link_task_to_cpu(NULL, CPU) is
* equivalent to unlink(T). Note that if you unlink a task from a CPU none of
* the functions will automatically propagate pending task from the ready queue
* to a linked task. This is the job of the calling function ( by means of
* __take_ready).
*/
/* cpu_entry_t - maintain the linked and scheduled state
*/
typedef struct {
int cpu;
struct task_struct* linked; /* only RT tasks */
struct task_struct* scheduled; /* only RT tasks */
struct binheap_node hn;
} cpu_entry_t;
DEFINE_PER_CPU(cpu_entry_t, gsnedf_cpu_entries);
cpu_entry_t* gsnedf_cpus[NR_CPUS];
/* the cpus queue themselves according to priority in here */
static struct binheap_handle gsnedf_cpu_heap;
static rt_domain_t gsnedf;
#define gsnedf_lock (gsnedf.ready_lock)
#ifdef CONFIG_LITMUS_DGL_SUPPORT
static raw_spinlock_t dgl_lock;
static raw_spinlock_t* gsnedf_get_dgl_spinlock(struct task_struct *t)
{
return(&dgl_lock);
}
#endif
#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
struct tasklet_head
{
struct tasklet_struct *head;
struct tasklet_struct **tail;
};
struct tasklet_head gsnedf_pending_tasklets;
#endif
/* Uncomment this if you want to see all scheduling decisions in the
* TRACE() log.
#define WANT_ALL_SCHED_EVENTS
*/
static int cpu_lower_prio(struct binheap_node *_a, struct binheap_node *_b)
{
cpu_entry_t *a = binheap_entry(_a, cpu_entry_t, hn);
cpu_entry_t *b = binheap_entry(_b, cpu_entry_t, hn);
/* Note that a and b are inverted: we want the lowest-priority CPU at
* the top of the heap.
*/
return edf_higher_prio(b->linked, a->linked);
}
/* update_cpu_position - Move the cpu entry to the correct place to maintain
* order in the cpu queue. Caller must hold gsnedf lock.
*/
static void update_cpu_position(cpu_entry_t *entry)
{
if (likely(binheap_is_in_heap(&entry->hn))) {
binheap_delete(&entry->hn, &gsnedf_cpu_heap);
}
binheap_add(&entry->hn, &gsnedf_cpu_heap, cpu_entry_t, hn);
}
/* caller must hold gsnedf lock */
static cpu_entry_t* lowest_prio_cpu(void)
{
return binheap_top_entry(&gsnedf_cpu_heap, cpu_entry_t, hn);
}
/* link_task_to_cpu - Update the link of a CPU.
* Handles the case where the to-be-linked task is already
* scheduled on a different CPU.
*/
static noinline void link_task_to_cpu(struct task_struct* linked,
cpu_entry_t *entry)
{
cpu_entry_t *sched;
struct task_struct* tmp;
int on_cpu;
BUG_ON(linked && !is_realtime(linked));
/* Currently linked task is set to be unlinked. */
if (entry->linked) {
entry->linked->rt_param.linked_on = NO_CPU;
}
/* Link new task to CPU. */
if (linked) {
set_rt_flags(linked, RT_F_RUNNING);
/* handle task is already scheduled somewhere! */
on_cpu = linked->rt_param.scheduled_on;
if (on_cpu != NO_CPU) {
sched = &per_cpu(gsnedf_cpu_entries, on_cpu);
/* this should only happen if not linked already */
BUG_ON(sched->linked == linked);
/* If we are already scheduled on the CPU to which we
* wanted to link, we don't need to do the swap --
* we just link ourselves to the CPU and depend on
* the caller to get things right.
*/
if (entry != sched) {
TRACE_TASK(linked,
"already scheduled on %d, updating link.\n",
sched->cpu);
tmp = sched->linked;
linked->rt_param.linked_on = sched->cpu;
sched->linked = linked;
update_cpu_position(sched);
linked = tmp;
}
}
if (linked) /* might be NULL due to swap */
linked->rt_param.linked_on = entry->cpu;
}
entry->linked = linked;
#ifdef WANT_ALL_SCHED_EVENTS
if (linked)
TRACE_TASK(linked, "linked to %d.\n", entry->cpu);
else
TRACE("NULL linked to %d.\n", entry->cpu);
#endif
update_cpu_position(entry);
}
/* unlink - Make sure a task is not linked any longer to an entry
* where it was linked before. Must hold gsnedf_lock.
*/
static noinline void unlink(struct task_struct* t)
{
cpu_entry_t *entry;
if (t->rt_param.linked_on != NO_CPU) {
/* unlink */
entry = &per_cpu(gsnedf_cpu_entries, t->rt_param.linked_on);
t->rt_param.linked_on = NO_CPU;
link_task_to_cpu(NULL, entry);
} else if (is_queued(t)) {
/* This is an interesting situation: t is scheduled,
* but was just recently unlinked. It cannot be
* linked anywhere else (because then it would have
* been relinked to this CPU), thus it must be in some
* queue. We must remove it from the list in this
* case.
*/
remove(&gsnedf, t);
}
}
/* preempt - force a CPU to reschedule
*/
static void preempt(cpu_entry_t *entry)
{
preempt_if_preemptable(entry->scheduled, entry->cpu);
}
/* requeue - Put an unlinked task into gsn-edf domain.
* Caller must hold gsnedf_lock.
*/
static noinline void requeue(struct task_struct* task)
{
BUG_ON(!task);
/* sanity check before insertion */
BUG_ON(is_queued(task));
if (is_released(task, litmus_clock()))
__add_ready(&gsnedf, task);
else {
/* it has got to wait */
add_release(&gsnedf, task);
}
}
#ifdef CONFIG_SCHED_CPU_AFFINITY
static cpu_entry_t* gsnedf_get_nearest_available_cpu(cpu_entry_t *start)
{
cpu_entry_t *affinity;
get_nearest_available_cpu(affinity, start, gsnedf_cpu_entries,
#ifdef CONFIG_RELEASE_MASTER
gsnedf.release_master
#else
NO_CPU
#endif
);
return(affinity);
}
#endif
/* check for any necessary preemptions */
static void check_for_preemptions(void)
{
struct task_struct *task;
cpu_entry_t *last;
for (last = lowest_prio_cpu();
edf_preemption_needed(&gsnedf, last->linked);
last = lowest_prio_cpu()) {
/* preemption necessary */
task = __take_ready(&gsnedf);
TRACE("check_for_preemptions: attempting to link task %d to %d\n",
task->pid, last->cpu);
#ifdef CONFIG_SCHED_CPU_AFFINITY
{
cpu_entry_t *affinity =
gsnedf_get_nearest_available_cpu(
&per_cpu(gsnedf_cpu_entries, task_cpu(task)));
if (affinity)
last = affinity;
else if (last->linked)
requeue(last->linked);
}
#else
if (last->linked)
requeue(last->linked);
#endif
link_task_to_cpu(task, last);
preempt(last);
}
}
/* gsnedf_job_arrival: task is either resumed or released */
static noinline void gsnedf_job_arrival(struct task_struct* task)
{
BUG_ON(!task);
requeue(task);
check_for_preemptions();
}
static void gsnedf_release_jobs(rt_domain_t* rt, struct bheap* tasks)
{
unsigned long flags;
raw_spin_lock_irqsave(&gsnedf_lock, flags);
__merge_ready(rt, tasks);
check_for_preemptions();
raw_spin_unlock_irqrestore(&gsnedf_lock, flags);
}
/* caller holds gsnedf_lock */
static noinline void job_completion(struct task_struct *t, int forced)
{
BUG_ON(!t);
sched_trace_task_completion(t, forced);
#ifdef CONFIG_LITMUS_NVIDIA
atomic_set(&tsk_rt(t)->nv_int_count, 0);
#endif
TRACE_TASK(t, "job_completion().\n");
/* set flags */
set_rt_flags(t, RT_F_SLEEP);
/* prepare for next period */
prepare_for_next_period(t);
if (is_released(t, litmus_clock()))
sched_trace_task_release(t);
/* unlink */
unlink(t);
/* requeue
* But don't requeue a blocking task. */
if (is_running(t))
gsnedf_job_arrival(t);
}
/* gsnedf_tick - this function is called for every local timer
* interrupt.
*
* checks whether the current task has expired and checks
* whether we need to preempt it if it has not expired
*/
static void gsnedf_tick(struct task_struct* t)
{
if (is_realtime(t) && budget_enforced(t) && budget_exhausted(t)) {
if (!is_np(t)) {
/* np tasks will be preempted when they become
* preemptable again
*/
litmus_reschedule_local();
TRACE("gsnedf_scheduler_tick: "
"%d is preemptable "
" => FORCE_RESCHED\n", t->pid);
} else if (is_user_np(t)) {
TRACE("gsnedf_scheduler_tick: "
"%d is non-preemptable, "
"preemption delayed.\n", t->pid);
request_exit_np(t);
}
}
}
#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
static void __do_lit_tasklet(struct tasklet_struct* tasklet, unsigned long flushed)
{
if (!atomic_read(&tasklet->count)) {
sched_trace_tasklet_begin(tasklet->owner);
if (!test_and_clear_bit(TASKLET_STATE_SCHED, &tasklet->state))
{
BUG();
}
TRACE("%s: Invoking tasklet with owner pid = %d (flushed = %d).\n", __FUNCTION__, tasklet->owner->pid, flushed);
tasklet->func(tasklet->data);
tasklet_unlock(tasklet);
sched_trace_tasklet_end(tasklet->owner, flushed);
}
else {
BUG();
}
}
static void do_lit_tasklets(struct task_struct* sched_task)
{
int work_to_do = 1;
struct tasklet_struct *tasklet = NULL;
unsigned long flags;
while(work_to_do) {
TS_NV_SCHED_BOTISR_START;
// execute one tasklet that has higher priority
raw_spin_lock_irqsave(&gsnedf_lock, flags);
if(gsnedf_pending_tasklets.head != NULL) {
struct tasklet_struct *prev = NULL;
tasklet = gsnedf_pending_tasklets.head;
while(tasklet && edf_higher_prio(sched_task, tasklet->owner)) {
prev = tasklet;
tasklet = tasklet->next;
}
// remove the tasklet from the queue
if(prev) {
prev->next = tasklet->next;
if(prev->next == NULL) {
TRACE("%s: Tasklet for %d is the last element in tasklet queue.\n", __FUNCTION__, tasklet->owner->pid);
gsnedf_pending_tasklets.tail = &(prev);
}
}
else {
gsnedf_pending_tasklets.head = tasklet->next;
if(tasklet->next == NULL) {
TRACE("%s: Tasklet for %d is the last element in tasklet queue.\n", __FUNCTION__, tasklet->owner->pid);
gsnedf_pending_tasklets.tail = &(gsnedf_pending_tasklets.head);
}
}
}
else {
TRACE("%s: Tasklet queue is empty.\n", __FUNCTION__);
}
raw_spin_unlock_irqrestore(&gsnedf_lock, flags);
if(tasklet) {
__do_lit_tasklet(tasklet, 0ul);
tasklet = NULL;
}
else {
work_to_do = 0;
}
TS_NV_SCHED_BOTISR_END;
}
}
//static void do_lit_tasklets(struct task_struct* sched_task)
//{
// int work_to_do = 1;
// struct tasklet_struct *tasklet = NULL;
// //struct tasklet_struct *step;
// unsigned long flags;
//
// while(work_to_do) {
//
// TS_NV_SCHED_BOTISR_START;
//
// // remove tasklet at head of list if it has higher priority.
// raw_spin_lock_irqsave(&gsnedf_lock, flags);
//
// if(gsnedf_pending_tasklets.head != NULL) {
// // remove tasklet at head.
// tasklet = gsnedf_pending_tasklets.head;
//
// if(edf_higher_prio(tasklet->owner, sched_task)) {
//
// if(NULL == tasklet->next) {
// // tasklet is at the head, list only has one element
// TRACE("%s: Tasklet for %d is the last element in tasklet queue.\n", __FUNCTION__, tasklet->owner->pid);
// gsnedf_pending_tasklets.tail = &(gsnedf_pending_tasklets.head);
// }
//
// // remove the tasklet from the queue
// gsnedf_pending_tasklets.head = tasklet->next;
//
// TRACE("%s: Removed tasklet for %d from tasklet queue.\n", __FUNCTION__, tasklet->owner->pid);
// }
// else {
// TRACE("%s: Pending tasklet (%d) does not have priority to run on this CPU (%d).\n", __FUNCTION__, tasklet->owner->pid, smp_processor_id());
// tasklet = NULL;
// }
// }
// else {
// TRACE("%s: Tasklet queue is empty.\n", __FUNCTION__);
// }
//
// raw_spin_unlock_irqrestore(&gsnedf_lock, flags);
//
// TS_NV_SCHED_BOTISR_END;
//
// if(tasklet) {
// __do_lit_tasklet(tasklet, 0ul);
// tasklet = NULL;
// }
// else {
// work_to_do = 0;
// }
// }
//
// //TRACE("%s: exited.\n", __FUNCTION__);
//}
static void __add_pai_tasklet(struct tasklet_struct* tasklet)
{
struct tasklet_struct* step;
tasklet->next = NULL; // make sure there are no old values floating around
step = gsnedf_pending_tasklets.head;
if(step == NULL) {
TRACE("%s: tasklet queue empty. inserting tasklet for %d at head.\n", __FUNCTION__, tasklet->owner->pid);
// insert at tail.
*(gsnedf_pending_tasklets.tail) = tasklet;
gsnedf_pending_tasklets.tail = &(tasklet->next);
}
else if((*(gsnedf_pending_tasklets.tail) != NULL) &&
edf_higher_prio((*(gsnedf_pending_tasklets.tail))->owner, tasklet->owner)) {
// insert at tail.
TRACE("%s: tasklet belongs at end. inserting tasklet for %d at tail.\n", __FUNCTION__, tasklet->owner->pid);
*(gsnedf_pending_tasklets.tail) = tasklet;
gsnedf_pending_tasklets.tail = &(tasklet->next);
}
else {
// insert the tasklet somewhere in the middle.
TRACE("%s: tasklet belongs somewhere in the middle.\n", __FUNCTION__);
while(step->next && edf_higher_prio(step->next->owner, tasklet->owner)) {
step = step->next;
}
// insert tasklet right before step->next.
TRACE("%s: inserting tasklet for %d between %d and %d.\n", __FUNCTION__, tasklet->owner->pid, step->owner->pid, (step->next) ? step->next->owner->pid : -1);
tasklet->next = step->next;
step->next = tasklet;
// patch up the head if needed.
if(gsnedf_pending_tasklets.head == step)
{
TRACE("%s: %d is the new tasklet queue head.\n", __FUNCTION__, tasklet->owner->pid);
gsnedf_pending_tasklets.head = tasklet;
}
}
}
static void gsnedf_run_tasklets(struct task_struct* sched_task)
{
preempt_disable();
if(gsnedf_pending_tasklets.head != NULL) {
TRACE("%s: There are tasklets to process.\n", __FUNCTION__);
do_lit_tasklets(sched_task);
}
preempt_enable_no_resched();
}
static int gsnedf_enqueue_pai_tasklet(struct tasklet_struct* tasklet)
{
cpu_entry_t *targetCPU = NULL;
int thisCPU;
int runLocal = 0;
int runNow = 0;
unsigned long flags;
if(unlikely((tasklet->owner == NULL) || !is_realtime(tasklet->owner)))
{
TRACE("%s: No owner associated with this tasklet!\n", __FUNCTION__);
return 0;
}
raw_spin_lock_irqsave(&gsnedf_lock, flags);
thisCPU = smp_processor_id();
#ifdef CONFIG_SCHED_CPU_AFFINITY
{
cpu_entry_t* affinity = NULL;
// use this CPU if it is in our cluster and isn't running any RT work.
if(
#ifdef CONFIG_RELEASE_MASTER
(thisCPU != gsnedf.release_master) &&
#endif
(__get_cpu_var(gsnedf_cpu_entries).linked == NULL)) {
affinity = &(__get_cpu_var(gsnedf_cpu_entries));
}
else {
// this CPU is busy or shouldn't run tasklet in this cluster.
// look for available near by CPUs.
// NOTE: Affinity towards owner and not this CPU. Is this right?
affinity =
gsnedf_get_nearest_available_cpu(
&per_cpu(gsnedf_cpu_entries, task_cpu(tasklet->owner)));
}
targetCPU = affinity;
}
#endif
if (targetCPU == NULL) {
targetCPU = lowest_prio_cpu();
}
if (edf_higher_prio(tasklet->owner, targetCPU->linked)) {
if (thisCPU == targetCPU->cpu) {
TRACE("%s: Run tasklet locally (and now).\n", __FUNCTION__);
runLocal = 1;
runNow = 1;
}
else {
TRACE("%s: Run tasklet remotely (and now).\n", __FUNCTION__);
runLocal = 0;
runNow = 1;
}
}
else {
runLocal = 0;
runNow = 0;
}
if(!runLocal) {
// enqueue the tasklet
__add_pai_tasklet(tasklet);
}
raw_spin_unlock_irqrestore(&gsnedf_lock, flags);
if (runLocal /*&& runNow */) { // runNow == 1 is implied
TRACE("%s: Running tasklet on CPU where it was received.\n", __FUNCTION__);
__do_lit_tasklet(tasklet, 0ul);
}
else if (runNow /*&& !runLocal */) { // runLocal == 0 is implied
TRACE("%s: Triggering CPU %d to run tasklet.\n", __FUNCTION__, targetCPU->cpu);
preempt(targetCPU); // need to be protected by cedf_lock?
}
else {
TRACE("%s: Scheduling of tasklet was deferred.\n", __FUNCTION__);
}
return(1); // success
}
static void gsnedf_change_prio_pai_tasklet(struct task_struct *old_prio,
struct task_struct *new_prio)
{
struct tasklet_struct* step;
unsigned long flags;
raw_spin_lock_irqsave(&gsnedf_lock, flags);
for(step = gsnedf_pending_tasklets.head; step != NULL; step = step->next) {
if(step->owner == old_prio) {
TRACE("%s: Found tasklet to flush: %d\n", __FUNCTION__, step->owner->pid);
step->owner = new_prio;
}
}
raw_spin_unlock_irqrestore(&gsnedf_lock, flags);
}
#endif // end PAI
/* Getting schedule() right is a bit tricky. schedule() may not make any
* assumptions on the state of the current task since it may be called for a
* number of reasons. The reasons include a scheduler_tick() determined that it
* was necessary, because sys_exit_np() was called, because some Linux
* subsystem determined so, or even (in the worst case) because there is a bug
* hidden somewhere. Thus, we must take extreme care to determine what the
* current state is.
*
* The CPU could currently be scheduling a task (or not), be linked (or not).
*
* The following assertions for the scheduled task could hold:
*
* - !is_running(scheduled) // the job blocks
* - scheduled->timeslice == 0 // the job completed (forcefully)
* - get_rt_flag() == RT_F_SLEEP // the job completed (by syscall)
* - linked != scheduled // we need to reschedule (for any reason)
* - is_np(scheduled) // rescheduling must be delayed,
* sys_exit_np must be requested
*
* Any of these can occur together.
*/
static struct task_struct* gsnedf_schedule(struct task_struct * prev)
{
cpu_entry_t* entry = &__get_cpu_var(gsnedf_cpu_entries);
int out_of_time, sleep, preempt, np, exists, blocks;
struct task_struct* next = NULL;
#ifdef CONFIG_RELEASE_MASTER
/* Bail out early if we are the release master.
* The release master never schedules any real-time tasks.
*/
if (unlikely(gsnedf.release_master == entry->cpu)) {
sched_state_task_picked();
return NULL;
}
#endif
raw_spin_lock(&gsnedf_lock);
/* sanity checking */
BUG_ON(entry->scheduled && entry->scheduled != prev);
BUG_ON(entry->scheduled && !is_realtime(prev));
BUG_ON(is_realtime(prev) && !entry->scheduled);
/* (0) Determine state */
exists = entry->scheduled != NULL;
blocks = exists && !is_running(entry->scheduled);
out_of_time = exists &&
budget_enforced(entry->scheduled) &&
budget_exhausted(entry->scheduled);
np = exists && is_np(entry->scheduled);
sleep = exists && get_rt_flags(entry->scheduled) == RT_F_SLEEP;
preempt = entry->scheduled != entry->linked;
#ifdef WANT_ALL_SCHED_EVENTS
TRACE_TASK(prev, "invoked gsnedf_schedule.\n");
#endif
/*
if (exists)
TRACE_TASK(prev,
"blocks:%d out_of_time:%d np:%d sleep:%d preempt:%d "
"state:%d sig:%d\n",
blocks, out_of_time, np, sleep, preempt,
prev->state, signal_pending(prev));
*/
if (entry->linked && preempt)
TRACE_TASK(prev, "will be preempted by %s/%d\n",
entry->linked->comm, entry->linked->pid);
/* If a task blocks we have no choice but to reschedule.
*/
if (blocks)
unlink(entry->scheduled);
/* Request a sys_exit_np() call if we would like to preempt but cannot.
* We need to make sure to update the link structure anyway in case
* that we are still linked. Multiple calls to request_exit_np() don't
* hurt.
*/
if (np && (out_of_time || preempt || sleep)) {
unlink(entry->scheduled);
request_exit_np(entry->scheduled);
}
/* Any task that is preemptable and either exhausts its execution
* budget or wants to sleep completes. We may have to reschedule after
* this. Don't do a job completion if we block (can't have timers running
* for blocked jobs). Preemption go first for the same reason.
*/
if (!np && (out_of_time || sleep) && !blocks && !preempt)
job_completion(entry->scheduled, !sleep);
/* Link pending task if we became unlinked.
*/
if (!entry->linked)
link_task_to_cpu(__take_ready(&gsnedf), entry);
/* The final scheduling decision. Do we need to switch for some reason?
* If linked is different from scheduled, then select linked as next.
*/
if ((!np || blocks) &&
entry->linked != entry->scheduled) {
/* Schedule a linked job? */
if (entry->linked) {
entry->linked->rt_param.scheduled_on = entry->cpu;
next = entry->linked;
TRACE_TASK(next, "scheduled_on = P%d\n", smp_processor_id());
}
if (entry->scheduled) {
/* not gonna be scheduled soon */
entry->scheduled->rt_param.scheduled_on = NO_CPU;
TRACE_TASK(entry->scheduled, "scheduled_on = NO_CPU\n");
}
}
else
{
/* Only override Linux scheduler if we have a real-time task
* scheduled that needs to continue.
*/
if (exists)
next = prev;
}
sched_state_task_picked();
raw_spin_unlock(&gsnedf_lock);
#ifdef WANT_ALL_SCHED_EVENTS
TRACE("gsnedf_lock released, next=0x%p\n", next);
if (next)
TRACE_TASK(next, "scheduled at %llu\n", litmus_clock());
else if (exists && !next)
TRACE("becomes idle at %llu.\n", litmus_clock());
#endif
return next;
}
/* _finish_switch - we just finished the switch away from prev
*/
static void gsnedf_finish_switch(struct task_struct *prev)
{
cpu_entry_t* entry = &__get_cpu_var(gsnedf_cpu_entries);
entry->scheduled = is_realtime(current) ? current : NULL;
#ifdef WANT_ALL_SCHED_EVENTS
TRACE_TASK(prev, "switched away from\n");
#endif
}
/* Prepare a task for running in RT mode
*/
static void gsnedf_task_new(struct task_struct * t, int on_rq, int running)
{
unsigned long flags;
cpu_entry_t* entry;
TRACE("gsn edf: task new %d\n", t->pid);
raw_spin_lock_irqsave(&gsnedf_lock, flags);
/* setup job params */
release_at(t, litmus_clock());
if (running) {
entry = &per_cpu(gsnedf_cpu_entries, task_cpu(t));
BUG_ON(entry->scheduled);
#ifdef CONFIG_RELEASE_MASTER
if (entry->cpu != gsnedf.release_master) {
#endif
entry->scheduled = t;
tsk_rt(t)->scheduled_on = task_cpu(t);
#ifdef CONFIG_RELEASE_MASTER
} else {
/* do not schedule on release master */
preempt(entry); /* force resched */
tsk_rt(t)->scheduled_on = NO_CPU;
}
#endif
} else {
t->rt_param.scheduled_on = NO_CPU;
}
t->rt_param.linked_on = NO_CPU;
gsnedf_job_arrival(t);
raw_spin_unlock_irqrestore(&gsnedf_lock, flags);
}
static void gsnedf_task_wake_up(struct task_struct *task)
{
unsigned long flags;
//lt_t now;
TRACE_TASK(task, "wake_up at %llu\n", litmus_clock());
raw_spin_lock_irqsave(&gsnedf_lock, flags);
#if 0 // sporadic task model
/* We need to take suspensions because of semaphores into
* account! If a job resumes after being suspended due to acquiring
* a semaphore, it should never be treated as a new job release.
*/
if (get_rt_flags(task) == RT_F_EXIT_SEM) {
set_rt_flags(task, RT_F_RUNNING);
} else {
now = litmus_clock();
if (is_tardy(task, now)) {
/* new sporadic release */
release_at(task, now);
sched_trace_task_release(task);
}
else {
if (task->rt.time_slice) {
/* came back in time before deadline
*/
set_rt_flags(task, RT_F_RUNNING);
}
}
}
#else // periodic task model
set_rt_flags(task, RT_F_RUNNING);
#endif
gsnedf_job_arrival(task);
raw_spin_unlock_irqrestore(&gsnedf_lock, flags);
}
static void gsnedf_task_block(struct task_struct *t)
{
// TODO: is this called on preemption??
unsigned long flags;
TRACE_TASK(t, "block at %llu\n", litmus_clock());
/* unlink if necessary */
raw_spin_lock_irqsave(&gsnedf_lock, flags);
unlink(t);
raw_spin_unlock_irqrestore(&gsnedf_lock, flags);
BUG_ON(!is_realtime(t));
}
static void gsnedf_task_exit(struct task_struct * t)
{
unsigned long flags;
#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
gsnedf_change_prio_pai_tasklet(t, NULL);
#endif
/* unlink if necessary */
raw_spin_lock_irqsave(&gsnedf_lock, flags);
unlink(t);
if (tsk_rt(t)->scheduled_on != NO_CPU) {
gsnedf_cpus[tsk_rt(t)->scheduled_on]->scheduled = NULL;
tsk_rt(t)->scheduled_on = NO_CPU;
}
raw_spin_unlock_irqrestore(&gsnedf_lock, flags);
BUG_ON(!is_realtime(t));
TRACE_TASK(t, "RIP\n");
}
static long gsnedf_admit_task(struct task_struct* tsk)
{
#ifdef CONFIG_LITMUS_NESTED_LOCKING
INIT_BINHEAP_HANDLE(&tsk_rt(tsk)->hp_blocked_tasks,
edf_max_heap_base_priority_order);
#endif
return 0;
}
#ifdef CONFIG_LITMUS_LOCKING
#include <litmus/fdso.h>
/* called with IRQs off */
static void __increase_priority_inheritance(struct task_struct* t,
struct task_struct* prio_inh)
{
int linked_on;
int check_preempt = 0;
#ifdef CONFIG_LITMUS_NESTED_LOCKING
/* this sanity check allows for weaker locking in protocols */
if(__edf_higher_prio(prio_inh, BASE, t, EFFECTIVE)) {
#endif
TRACE_TASK(t, "inherits priority from %s/%d\n",
prio_inh->comm, prio_inh->pid);
tsk_rt(t)->inh_task = prio_inh;
linked_on = tsk_rt(t)->linked_on;
/* If it is scheduled, then we need to reorder the CPU heap. */
if (linked_on != NO_CPU) {
TRACE_TASK(t, "%s: linked on %d\n",
__FUNCTION__, linked_on);
/* Holder is scheduled; need to re-order CPUs.
* We can't use heap_decrease() here since
* the cpu_heap is ordered in reverse direction, so
* it is actually an increase. */
binheap_delete(&gsnedf_cpus[linked_on]->hn, &gsnedf_cpu_heap);
binheap_add(&gsnedf_cpus[linked_on]->hn,
&gsnedf_cpu_heap, cpu_entry_t, hn);
} else {
/* holder may be queued: first stop queue changes */
raw_spin_lock(&gsnedf.release_lock);
if (is_queued(t)) {
TRACE_TASK(t, "%s: is queued\n",
__FUNCTION__);
/* We need to update the position of holder in some
* heap. Note that this could be a release heap if we
* budget enforcement is used and this job overran. */
check_preempt =
!bheap_decrease(edf_ready_order,
tsk_rt(t)->heap_node);
} else {
/* Nothing to do: if it is not queued and not linked
* then it is either sleeping or currently being moved
* by other code (e.g., a timer interrupt handler) that
* will use the correct priority when enqueuing the
* task. */
TRACE_TASK(t, "%s: is NOT queued => Done.\n",
__FUNCTION__);
}
raw_spin_unlock(&gsnedf.release_lock);
/* If holder was enqueued in a release heap, then the following
* preemption check is pointless, but we can't easily detect
* that case. If you want to fix this, then consider that
* simply adding a state flag requires O(n) time to update when
* releasing n tasks, which conflicts with the goal to have
* O(log n) merges. */
if (check_preempt) {
/* heap_decrease() hit the top level of the heap: make
* sure preemption checks get the right task, not the
* potentially stale cache. */
bheap_uncache_min(edf_ready_order,
&gsnedf.ready_queue);
check_for_preemptions();
}
}
#ifdef CONFIG_LITMUS_NESTED_LOCKING
}
else {
TRACE_TASK(t, "Spurious invalid priority increase. "
"Inheritance request: %s/%d [eff_prio = %s/%d] to inherit from %s/%d\n"
"Occurance is likely okay: probably due to (hopefully safe) concurrent priority updates.\n",
t->comm, t->pid,
effective_priority(t)->comm, effective_priority(t)->pid,
prio_inh->comm, prio_inh->pid);
}
#endif
}
/* called with IRQs off */
static void increase_priority_inheritance(struct task_struct* t, struct task_struct* prio_inh)
{
int i = 0;
raw_spin_lock(&gsnedf_lock);
__increase_priority_inheritance(t, prio_inh);
#ifdef CONFIG_LITMUS_SOFTIRQD
if(tsk_rt(t)->cur_klitirqd != NULL)
{
TRACE_TASK(t, "%s/%d inherits a new priority!\n",
tsk_rt(t)->cur_klitirqd->comm, tsk_rt(t)->cur_klitirqd->pid);
__increase_priority_inheritance(tsk_rt(t)->cur_klitirqd, prio_inh);
}
#endif
raw_spin_unlock(&gsnedf_lock);
#if defined(CONFIG_LITMUS_PAI_SOFTIRQD) && defined(CONFIG_LITMUS_NVIDIA)
for(i = find_first_bit(&tsk_rt(t)->held_gpus, sizeof(tsk_rt(t)->held_gpus));
i < NV_DEVICE_NUM;
i = find_next_bit(&tsk_rt(t)->held_gpus, sizeof(tsk_rt(t)->held_gpus), i)) {
pai_check_priority_increase(t, i);
}
#endif
}
/* called with IRQs off */
static void __decrease_priority_inheritance(struct task_struct* t,
struct task_struct* prio_inh)
{
#ifdef CONFIG_LITMUS_NESTED_LOCKING
if(__edf_higher_prio(t, EFFECTIVE, prio_inh, BASE)) {
#endif
/* A job only stops inheriting a priority when it releases a
* resource. Thus we can make the following assumption.*/
if(prio_inh)
TRACE_TASK(t, "EFFECTIVE priority decreased to %s/%d\n",
prio_inh->comm, prio_inh->pid);
else
TRACE_TASK(t, "base priority restored.\n");
tsk_rt(t)->inh_task = prio_inh;
if(tsk_rt(t)->scheduled_on != NO_CPU) {
TRACE_TASK(t, "is scheduled.\n");
/* Check if rescheduling is necessary. We can't use heap_decrease()
* since the priority was effectively lowered. */
unlink(t);
gsnedf_job_arrival(t);
}
else {
/* task is queued */
raw_spin_lock(&gsnedf.release_lock);
if (is_queued(t)) {
TRACE_TASK(t, "is queued.\n");
/* decrease in priority, so we have to re-add to binomial heap */
unlink(t);
gsnedf_job_arrival(t);
}
else {
TRACE_TASK(t, "is not in scheduler. Probably on wait queue somewhere.\n");
}
raw_spin_unlock(&gsnedf.release_lock);
}
#ifdef CONFIG_LITMUS_NESTED_LOCKING
}
else {
TRACE_TASK(t, "Spurious invalid priority decrease. "
"Inheritance request: %s/%d [eff_prio = %s/%d] to inherit from %s/%d\n"
"Occurance is likely okay: probably due to (hopefully safe) concurrent priority updates.\n",
t->comm, t->pid,
effective_priority(t)->comm, effective_priority(t)->pid,
(prio_inh) ? prio_inh->comm : "nil",
(prio_inh) ? prio_inh->pid : -1);
}
#endif
}
static void decrease_priority_inheritance(struct task_struct* t,
struct task_struct* prio_inh)
{
int i;
raw_spin_lock(&gsnedf_lock);
__decrease_priority_inheritance(t, prio_inh);
#ifdef CONFIG_LITMUS_SOFTIRQD
if(tsk_rt(t)->cur_klitirqd != NULL)
{
TRACE_TASK(t, "%s/%d decreases in priority!\n",
tsk_rt(t)->cur_klitirqd->comm, tsk_rt(t)->cur_klitirqd->pid);
__decrease_priority_inheritance(tsk_rt(t)->cur_klitirqd, prio_inh);
}
#endif
raw_spin_unlock(&gsnedf_lock);
#if defined(CONFIG_LITMUS_PAI_SOFTIRQD) && defined(CONFIG_LITMUS_NVIDIA)
for(i = find_first_bit(&tsk_rt(t)->held_gpus, sizeof(tsk_rt(t)->held_gpus));
i < NV_DEVICE_NUM;
i = find_next_bit(&tsk_rt(t)->held_gpus, sizeof(tsk_rt(t)->held_gpus), i)) {
pai_check_priority_decrease(t, i);
}
#endif
}
#ifdef CONFIG_LITMUS_SOFTIRQD
/* called with IRQs off */
static void increase_priority_inheritance_klitirqd(struct task_struct* klitirqd,
struct task_struct* old_owner,
struct task_struct* new_owner)
{
BUG_ON(!(tsk_rt(klitirqd)->is_proxy_thread));
raw_spin_lock(&gsnedf_lock);
if(old_owner != new_owner)
{
if(old_owner)
{
// unreachable?
tsk_rt(old_owner)->cur_klitirqd = NULL;
}
TRACE_TASK(klitirqd, "giving ownership to %s/%d.\n",
new_owner->comm, new_owner->pid);
tsk_rt(new_owner)->cur_klitirqd = klitirqd;
}
__decrease_priority_inheritance(klitirqd, NULL); // kludge to clear out cur prio.
__increase_priority_inheritance(klitirqd,
(tsk_rt(new_owner)->inh_task == NULL) ?
new_owner :
tsk_rt(new_owner)->inh_task);
raw_spin_unlock(&gsnedf_lock);
}
/* called with IRQs off */
static void decrease_priority_inheritance_klitirqd(struct task_struct* klitirqd,
struct task_struct* old_owner,
struct task_struct* new_owner)
{
BUG_ON(!(tsk_rt(klitirqd)->is_proxy_thread));
raw_spin_lock(&gsnedf_lock);
TRACE_TASK(klitirqd, "priority restored\n");
__decrease_priority_inheritance(klitirqd, new_owner);
tsk_rt(old_owner)->cur_klitirqd = NULL;
raw_spin_unlock(&gsnedf_lock);
}
#endif
#ifdef CONFIG_LITMUS_NESTED_LOCKING
/* called with IRQs off */
/* preconditions:
(1) The 'hp_blocked_tasks_lock' of task 't' is held.
(2) The lock 'to_unlock' is held.
*/
static void nested_increase_priority_inheritance(struct task_struct* t,
struct task_struct* prio_inh,
raw_spinlock_t *to_unlock,
unsigned long irqflags)
{
struct litmus_lock *blocked_lock = tsk_rt(t)->blocked_lock;
if(tsk_rt(t)->inh_task != prio_inh) { // shield redundent calls.
increase_priority_inheritance(t, prio_inh); // increase our prio.
}
raw_spin_unlock(&tsk_rt(t)->hp_blocked_tasks_lock); // unlock the t's heap.
if(blocked_lock) {
if(blocked_lock->ops->propagate_increase_inheritance) {
TRACE_TASK(t, "Inheritor is blocked (...perhaps). Checking lock %d.\n",
blocked_lock->ident);
// beware: recursion
blocked_lock->ops->propagate_increase_inheritance(blocked_lock,
t, to_unlock,
irqflags);
}
else {
TRACE_TASK(t, "Inheritor is blocked on lock (%d) that does not support nesting!\n",
blocked_lock->ident);
unlock_fine_irqrestore(to_unlock, irqflags);
}
}
else {
TRACE_TASK(t, "is not blocked. No propagation.\n");
unlock_fine_irqrestore(to_unlock, irqflags);
}
}
/* called with IRQs off */
/* preconditions:
(1) The 'hp_blocked_tasks_lock' of task 't' is held.
(2) The lock 'to_unlock' is held.
*/
static void nested_decrease_priority_inheritance(struct task_struct* t,
struct task_struct* prio_inh,
raw_spinlock_t *to_unlock,
unsigned long irqflags)
{
struct litmus_lock *blocked_lock = tsk_rt(t)->blocked_lock;
decrease_priority_inheritance(t, prio_inh);
raw_spin_unlock(&tsk_rt(t)->hp_blocked_tasks_lock); // unlock the t's heap.
if(blocked_lock) {
if(blocked_lock->ops->propagate_decrease_inheritance) {
TRACE_TASK(t, "Inheritor is blocked (...perhaps). Checking lock %d.\n",
blocked_lock->ident);
// beware: recursion
blocked_lock->ops->propagate_decrease_inheritance(blocked_lock, t,
to_unlock,
irqflags);
}
else {
TRACE_TASK(t, "Inheritor is blocked on lock (%p) that does not support nesting!\n",
blocked_lock);
unlock_fine_irqrestore(to_unlock, irqflags);
}
}
else {
TRACE_TASK(t, "is not blocked. No propagation.\n");
unlock_fine_irqrestore(to_unlock, irqflags);
}
}
/* ******************** RSM MUTEX ********************** */
static struct litmus_lock_ops gsnedf_rsm_mutex_lock_ops = {
.lock = rsm_mutex_lock,
.unlock = rsm_mutex_unlock,
.close = rsm_mutex_close,
.deallocate = rsm_mutex_free,
.propagate_increase_inheritance = rsm_mutex_propagate_increase_inheritance,
.propagate_decrease_inheritance = rsm_mutex_propagate_decrease_inheritance,
#ifdef CONFIG_LITMUS_DGL_SUPPORT
.dgl_lock = rsm_mutex_dgl_lock,
.is_owner = rsm_mutex_is_owner,
.enable_priority = rsm_mutex_enable_priority,
#endif
};
static struct litmus_lock* gsnedf_new_rsm_mutex(void)
{
return rsm_mutex_new(&gsnedf_rsm_mutex_lock_ops);
}
/* ******************** IKGLP ********************** */
static struct litmus_lock_ops gsnedf_ikglp_lock_ops = {
.lock = ikglp_lock,
.unlock = ikglp_unlock,
.close = ikglp_close,
.deallocate = ikglp_free,
// ikglp can only be an outer-most lock.
.propagate_increase_inheritance = NULL,
.propagate_decrease_inheritance = NULL,
};
static struct litmus_lock* gsnedf_new_ikglp(void* __user arg)
{
return ikglp_new(num_online_cpus(), &gsnedf_ikglp_lock_ops, arg);
}
#endif /* CONFIG_LITMUS_NESTED_LOCKING */
/* ******************** KFMLP support ********************** */
static struct litmus_lock_ops gsnedf_kfmlp_lock_ops = {
.lock = kfmlp_lock,
.unlock = kfmlp_unlock,
.close = kfmlp_close,
.deallocate = kfmlp_free,
// kfmlp can only be an outer-most lock.
.propagate_increase_inheritance = NULL,
.propagate_decrease_inheritance = NULL,
};
static struct litmus_lock* gsnedf_new_kfmlp(void* __user arg)
{
return kfmlp_new(&gsnedf_kfmlp_lock_ops, arg);
}
/* ******************** FMLP support ********************** */
/* struct for semaphore with priority inheritance */
struct fmlp_semaphore {
struct litmus_lock litmus_lock;
/* current resource holder */
struct task_struct *owner;
/* highest-priority waiter */
struct task_struct *hp_waiter;
/* FIFO queue of waiting tasks */
wait_queue_head_t wait;
};
static inline struct fmlp_semaphore* fmlp_from_lock(struct litmus_lock* lock)
{
return container_of(lock, struct fmlp_semaphore, litmus_lock);
}
/* caller is responsible for locking */
struct task_struct* find_hp_waiter(struct fmlp_semaphore *sem,
struct task_struct* skip)
{
struct list_head *pos;
struct task_struct *queued, *found = NULL;
list_for_each(pos, &sem->wait.task_list) {
queued = (struct task_struct*) list_entry(pos, wait_queue_t,
task_list)->private;
/* Compare task prios, find high prio task. */
if (queued != skip && edf_higher_prio(queued, found))
found = queued;
}
return found;
}
int gsnedf_fmlp_lock(struct litmus_lock* l)
{
struct task_struct* t = current;
struct fmlp_semaphore *sem = fmlp_from_lock(l);
wait_queue_t wait;
unsigned long flags;
if (!is_realtime(t))
return -EPERM;
spin_lock_irqsave(&sem->wait.lock, flags);
if (sem->owner) {
/* resource is not free => must suspend and wait */
init_waitqueue_entry(&wait, t);
/* FIXME: interruptible would be nice some day */
set_task_state(t, TASK_UNINTERRUPTIBLE);
__add_wait_queue_tail_exclusive(&sem->wait, &wait);
/* check if we need to activate priority inheritance */
if (edf_higher_prio(t, sem->hp_waiter)) {
sem->hp_waiter = t;
if (edf_higher_prio(t, sem->owner))
increase_priority_inheritance(sem->owner, sem->hp_waiter);
}
TS_LOCK_SUSPEND;
/* release lock before sleeping */
spin_unlock_irqrestore(&sem->wait.lock, flags);
/* We depend on the FIFO order. Thus, we don't need to recheck
* when we wake up; we are guaranteed to have the lock since
* there is only one wake up per release.
*/
schedule();
TS_LOCK_RESUME;
/* Since we hold the lock, no other task will change
* ->owner. We can thus check it without acquiring the spin
* lock. */
BUG_ON(sem->owner != t);
} else {
/* it's ours now */
sem->owner = t;
spin_unlock_irqrestore(&sem->wait.lock, flags);
}
return 0;
}
int gsnedf_fmlp_unlock(struct litmus_lock* l)
{
struct task_struct *t = current, *next;
struct fmlp_semaphore *sem = fmlp_from_lock(l);
unsigned long flags;
int err = 0;
spin_lock_irqsave(&sem->wait.lock, flags);
if (sem->owner != t) {
err = -EINVAL;
goto out;
}
/* check if there are jobs waiting for this resource */
next = __waitqueue_remove_first(&sem->wait);
if (next) {
/* next becomes the resouce holder */
sem->owner = next;
TRACE_CUR("lock ownership passed to %s/%d\n", next->comm, next->pid);
/* determine new hp_waiter if necessary */
if (next == sem->hp_waiter) {
TRACE_TASK(next, "was highest-prio waiter\n");
/* next has the highest priority --- it doesn't need to
* inherit. However, we need to make sure that the
* next-highest priority in the queue is reflected in
* hp_waiter. */
sem->hp_waiter = find_hp_waiter(sem, next);
if (sem->hp_waiter)
TRACE_TASK(sem->hp_waiter, "is new highest-prio waiter\n");
else
TRACE("no further waiters\n");
} else {
/* Well, if next is not the highest-priority waiter,
* then it ought to inherit the highest-priority
* waiter's priority. */
increase_priority_inheritance(next, sem->hp_waiter);
}
/* wake up next */
wake_up_process(next);
} else
/* becomes available */
sem->owner = NULL;
/* we lose the benefit of priority inheritance (if any) */
if (tsk_rt(t)->inh_task)
decrease_priority_inheritance(t, NULL);
out:
spin_unlock_irqrestore(&sem->wait.lock, flags);
return err;
}
int gsnedf_fmlp_close(struct litmus_lock* l)
{
struct task_struct *t = current;
struct fmlp_semaphore *sem = fmlp_from_lock(l);
unsigned long flags;
int owner;
spin_lock_irqsave(&sem->wait.lock, flags);
owner = sem->owner == t;
spin_unlock_irqrestore(&sem->wait.lock, flags);
if (owner)
gsnedf_fmlp_unlock(l);
return 0;
}
void gsnedf_fmlp_free(struct litmus_lock* lock)
{
kfree(fmlp_from_lock(lock));
}
static struct litmus_lock_ops gsnedf_fmlp_lock_ops = {
.close = gsnedf_fmlp_close,
.lock = gsnedf_fmlp_lock,
.unlock = gsnedf_fmlp_unlock,
.deallocate = gsnedf_fmlp_free,
#ifdef CONFIG_LITMUS_NESTED_LOCKING
.propagate_increase_inheritance = NULL,
.propagate_decrease_inheritance = NULL
#endif
};
static struct litmus_lock* gsnedf_new_fmlp(void)
{
struct fmlp_semaphore* sem;
sem = kmalloc(sizeof(*sem), GFP_KERNEL);
if (!sem)
return NULL;
sem->owner = NULL;
sem->hp_waiter = NULL;
init_waitqueue_head(&sem->wait);
sem->litmus_lock.ops = &gsnedf_fmlp_lock_ops;
return &sem->litmus_lock;
}
static long gsnedf_allocate_lock(struct litmus_lock **lock, int type,
void* __user args)
{
int err;
/* GSN-EDF currently only supports the FMLP for global resources. */
switch (type) {
case FMLP_SEM:
/* Flexible Multiprocessor Locking Protocol */
*lock = gsnedf_new_fmlp();
break;
#ifdef CONFIG_LITMUS_NESTED_LOCKING
case RSM_MUTEX:
*lock = gsnedf_new_rsm_mutex();
break;
case IKGLP_SEM:
*lock = gsnedf_new_ikglp(args);
break;
#endif
case KFMLP_SEM:
*lock = gsnedf_new_kfmlp(args);
break;
default:
err = -ENXIO;
goto UNSUPPORTED_LOCK;
};
if (*lock)
err = 0;
else
err = -ENOMEM;
UNSUPPORTED_LOCK:
return err;
}
#endif
static long gsnedf_activate_plugin(void)
{
int cpu;
cpu_entry_t *entry;
INIT_BINHEAP_HANDLE(&gsnedf_cpu_heap, cpu_lower_prio);
#ifdef CONFIG_RELEASE_MASTER
gsnedf.release_master = atomic_read(&release_master_cpu);
#endif
for_each_online_cpu(cpu) {
entry = &per_cpu(gsnedf_cpu_entries, cpu);
INIT_BINHEAP_NODE(&entry->hn);
entry->linked = NULL;
entry->scheduled = NULL;
#ifdef CONFIG_RELEASE_MASTER
if (cpu != gsnedf.release_master) {
#endif
TRACE("GSN-EDF: Initializing CPU #%d.\n", cpu);
update_cpu_position(entry);
#ifdef CONFIG_RELEASE_MASTER
} else {
TRACE("GSN-EDF: CPU %d is release master.\n", cpu);
}
#endif
}
#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
gsnedf_pending_tasklets.head = NULL;
gsnedf_pending_tasklets.tail = &(gsnedf_pending_tasklets.head);
#endif
#ifdef CONFIG_LITMUS_SOFTIRQD
spawn_klitirqd(NULL);
#endif
#ifdef CONFIG_LITMUS_NVIDIA
init_nvidia_info();
#endif
return 0;
}
/* Plugin object */
static struct sched_plugin gsn_edf_plugin __cacheline_aligned_in_smp = {
.plugin_name = "GSN-EDF",
.finish_switch = gsnedf_finish_switch,
.tick = gsnedf_tick,
.task_new = gsnedf_task_new,
.complete_job = complete_job,
.task_exit = gsnedf_task_exit,
.schedule = gsnedf_schedule,
.task_wake_up = gsnedf_task_wake_up,
.task_block = gsnedf_task_block,
.admit_task = gsnedf_admit_task,
.activate_plugin = gsnedf_activate_plugin,
#ifdef CONFIG_LITMUS_LOCKING
.allocate_lock = gsnedf_allocate_lock,
.increase_prio = increase_priority_inheritance,
.decrease_prio = decrease_priority_inheritance,
#endif
#ifdef CONFIG_LITMUS_NESTED_LOCKING
.nested_increase_prio = nested_increase_priority_inheritance,
.nested_decrease_prio = nested_decrease_priority_inheritance,
#endif
#ifdef CONFIG_LITMUS_DGL_SUPPORT
.get_dgl_spinlock = gsnedf_get_dgl_spinlock,
#endif
#ifdef CONFIG_LITMUS_SOFTIRQD
.increase_prio_klitirqd = increase_priority_inheritance_klitirqd,
.decrease_prio_klitirqd = decrease_priority_inheritance_klitirqd,
#endif
#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
.enqueue_pai_tasklet = gsnedf_enqueue_pai_tasklet,
.change_prio_pai_tasklet = gsnedf_change_prio_pai_tasklet,
.run_tasklets = gsnedf_run_tasklets,
#endif
};
static int __init init_gsn_edf(void)
{
int cpu;
cpu_entry_t *entry;
INIT_BINHEAP_HANDLE(&gsnedf_cpu_heap, cpu_lower_prio);
/* initialize CPU state */
for (cpu = 0; cpu < NR_CPUS; ++cpu) {
entry = &per_cpu(gsnedf_cpu_entries, cpu);
gsnedf_cpus[cpu] = entry;
entry->cpu = cpu;
INIT_BINHEAP_NODE(&entry->hn);
}
#ifdef CONFIG_LITMUS_DGL_SUPPORT
raw_spin_lock_init(&dgl_lock);
#endif
edf_domain_init(&gsnedf, NULL, gsnedf_release_jobs);
return register_sched_plugin(&gsn_edf_plugin);
}
module_init(init_gsn_edf);