aboutsummaryrefslogblamecommitdiffstats
path: root/litmus/sched_cfifo.c
blob: 7fbdec3f1d156859955c004613cee7c310955e40 (plain) (tree)
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
























































                                                                          

                                 
                         

      



































                                                                              








                                     
















                                                                      





                                             














































































































































                                                                                            
                                                     














































































































































                                                                                                     



















































































































                                                                                                                                


                                         





















































                                                                                                                                                                                                   

                                       


















































































































































































































































                                                                                                                                                                                           




















































































































































                                                                                 
                                              





























































































                                                                           



                                   









                                                                           
        
















































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                                                                        





                                                                                   














































































































                                                                                      



                                                   






























                                                                                       
/*
 * litmus/sched_cfifo.c
 *
 * Implementation of the C-FIFO scheduling algorithm.
 *
 * This implementation is based on G-EDF:
 * - CPUs are clustered around L2 or L3 caches.
 * - Clusters topology is automatically detected (this is arch dependent
 *   and is working only on x86 at the moment --- and only with modern
 *   cpus that exports cpuid4 information)
 * - The plugins _does not_ attempt to put tasks in the right cluster i.e.
 *   the programmer needs to be aware of the topology to place tasks
 *   in the desired cluster
 * - default clustering is around L2 cache (cache index = 2)
 *   supported clusters are: L1 (private cache: pedf), L2, L3, ALL (all
 *   online_cpus are placed in a single cluster).
 *
 *   For details on functions, take a look at sched_gsn_edf.c
 *
 * Currently, we do not support changes in the number of online cpus.
 * If the num_online_cpus() dynamically changes, the plugin is broken.
 *
 * This version uses the simple approach and serializes all scheduling
 * decisions by the use of a queue lock. This is probably not the
 * best way to do it, but it should suffice for now.
 */

#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/uaccess.h>

#include <linux/module.h>

#include <litmus/litmus.h>
#include <litmus/jobs.h>
#include <litmus/preempt.h>
#include <litmus/sched_plugin.h>
#include <litmus/fifo_common.h>
#include <litmus/sched_trace.h>

#include <litmus/clustered.h>

#include <litmus/bheap.h>

/* to configure the cluster size */
#include <litmus/litmus_proc.h>

#ifdef CONFIG_SCHED_CPU_AFFINITY
#include <litmus/affinity.h>
#endif

#ifdef CONFIG_LITMUS_SOFTIRQD
#include <litmus/litmus_softirq.h>
#endif

#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
#include <linux/interrupt.h>
#include <litmus/trace.h>
#endif

#ifdef CONFIG_LITMUS_NVIDIA
#include <litmus/nvidia_info.h>
#endif

/* Reference configuration variable. Determines which cache level is used to
 * group CPUs into clusters.  GLOBAL_CLUSTER, which is the default, means that
 * all CPUs form a single cluster (just like GSN-EDF).
 */
static enum cache_level cluster_config = GLOBAL_CLUSTER;

struct clusterdomain;

/* cpu_entry_t - maintain the linked and scheduled state
 *
 * A cpu also contains a pointer to the cfifo_domain_t cluster
 * that owns it (struct clusterdomain*)
 */
typedef struct  {
	int 			cpu;
	struct clusterdomain*	cluster;	/* owning cluster */
	struct task_struct*	linked;		/* only RT tasks */
	struct task_struct*	scheduled;	/* only RT tasks */
	atomic_t		will_schedule;	/* prevent unneeded IPIs */
	struct bheap_node*	hn;
} cpu_entry_t;

/* one cpu_entry_t per CPU */
DEFINE_PER_CPU(cpu_entry_t, cfifo_cpu_entries);

#define set_will_schedule() \
	(atomic_set(&__get_cpu_var(cfifo_cpu_entries).will_schedule, 1))
#define clear_will_schedule() \
	(atomic_set(&__get_cpu_var(cfifo_cpu_entries).will_schedule, 0))
#define test_will_schedule(cpu) \
	(atomic_read(&per_cpu(cfifo_cpu_entries, cpu).will_schedule))


#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
struct tasklet_head
{
	struct tasklet_struct *head;
	struct tasklet_struct **tail;
};
#endif

/*
 * In C-FIFO there is a cfifo domain _per_ cluster
 * The number of clusters is dynamically determined accordingly to the
 * total cpu number and the cluster size
 */
typedef struct clusterdomain {
	/* rt_domain for this cluster */
	rt_domain_t	domain;
	/* cpus in this cluster */
	cpu_entry_t*	*cpus;
	/* map of this cluster cpus */
	cpumask_var_t	cpu_map;
	/* the cpus queue themselves according to priority in here */
	struct bheap_node *heap_node;
	struct bheap      cpu_heap;
	/* lock for this cluster */
#define cfifo_lock domain.ready_lock
	
	
#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
	struct tasklet_head pending_tasklets;
#endif	

} cfifo_domain_t;

/* a cfifo_domain per cluster; allocation is done at init/activation time */
cfifo_domain_t *cfifo;

#define remote_cluster(cpu)	((cfifo_domain_t *) per_cpu(cfifo_cpu_entries, cpu).cluster)
#define task_cpu_cluster(task)	remote_cluster(get_partition(task))

/* Uncomment WANT_ALL_SCHED_EVENTS if you want to see all scheduling
 * decisions in the TRACE() log; uncomment VERBOSE_INIT for verbose
 * information during the initialization of the plugin (e.g., topology)
#define WANT_ALL_SCHED_EVENTS
 */
#define VERBOSE_INIT

static int cpu_lower_prio(struct bheap_node *_a, struct bheap_node *_b)
{
	cpu_entry_t *a, *b;
	a = _a->value;
	b = _b->value;
	/* Note that a and b are inverted: we want the lowest-priority CPU at
	 * the top of the heap.
	 */
	return fifo_higher_prio(b->linked, a->linked);
}

/* update_cpu_position - Move the cpu entry to the correct place to maintain
 *                       order in the cpu queue. Caller must hold cfifo lock.
 */
static void update_cpu_position(cpu_entry_t *entry)
{
	cfifo_domain_t *cluster = entry->cluster;

	if (likely(bheap_node_in_heap(entry->hn)))
		bheap_delete(cpu_lower_prio,
				&cluster->cpu_heap,
				entry->hn);

	bheap_insert(cpu_lower_prio, &cluster->cpu_heap, entry->hn);
}

/* caller must hold cfifo lock */
static cpu_entry_t* lowest_prio_cpu(cfifo_domain_t *cluster)
{
	struct bheap_node* hn;
	hn = bheap_peek(cpu_lower_prio, &cluster->cpu_heap);
	return hn->value;
}


/* link_task_to_cpu - Update the link of a CPU.
 *                    Handles the case where the to-be-linked task is already
 *                    scheduled on a different CPU.
 */
static noinline void link_task_to_cpu(struct task_struct* linked,
				      cpu_entry_t *entry)
{
	cpu_entry_t *sched;
	struct task_struct* tmp;
	int on_cpu;

	BUG_ON(linked && !is_realtime(linked));

	/* Currently linked task is set to be unlinked. */
	if (entry->linked) {
		entry->linked->rt_param.linked_on = NO_CPU;
	}

	/* Link new task to CPU. */
	if (linked) {
		set_rt_flags(linked, RT_F_RUNNING);
		/* handle task is already scheduled somewhere! */
		on_cpu = linked->rt_param.scheduled_on;
		if (on_cpu != NO_CPU) {
			sched = &per_cpu(cfifo_cpu_entries, on_cpu);
			/* this should only happen if not linked already */
			BUG_ON(sched->linked == linked);

			/* If we are already scheduled on the CPU to which we
			 * wanted to link, we don't need to do the swap --
			 * we just link ourselves to the CPU and depend on
			 * the caller to get things right.
			 */
			if (entry != sched) {
				TRACE_TASK(linked,
					   "already scheduled on %d, updating link.\n",
					   sched->cpu);
				tmp = sched->linked;
				linked->rt_param.linked_on = sched->cpu;
				sched->linked = linked;
				update_cpu_position(sched);
				linked = tmp;
			}
		}
		if (linked) /* might be NULL due to swap */
			linked->rt_param.linked_on = entry->cpu;
	}
	entry->linked = linked;
#ifdef WANT_ALL_SCHED_EVENTS
	if (linked)
		TRACE_TASK(linked, "linked to %d.\n", entry->cpu);
	else
		TRACE("NULL linked to %d.\n", entry->cpu);
#endif
	update_cpu_position(entry);
}

/* unlink - Make sure a task is not linked any longer to an entry
 *          where it was linked before. Must hold cfifo_lock.
 */
static noinline void unlink(struct task_struct* t)
{
    	cpu_entry_t *entry;

	if (t->rt_param.linked_on != NO_CPU) {
		/* unlink */
		entry = &per_cpu(cfifo_cpu_entries, t->rt_param.linked_on);
		t->rt_param.linked_on = NO_CPU;
		link_task_to_cpu(NULL, entry);
	} else if (is_queued(t)) {
		/* This is an interesting situation: t is scheduled,
		 * but was just recently unlinked.  It cannot be
		 * linked anywhere else (because then it would have
		 * been relinked to this CPU), thus it must be in some
		 * queue. We must remove it from the list in this
		 * case.
		 *
		 * in C-FIFO case is should be somewhere in the queue for
		 * its domain, therefore and we can get the domain using
		 * task_cpu_cluster
		 */
		remove(&(task_cpu_cluster(t))->domain, t);
	}
}


/* preempt - force a CPU to reschedule
 */
static void preempt(cpu_entry_t *entry)
{
	preempt_if_preemptable(entry->scheduled, entry->cpu);
}

/* requeue - Put an unlinked task into c-fifo domain.
 *           Caller must hold cfifo_lock.
 */
static noinline void requeue(struct task_struct* task)
{
	cfifo_domain_t *cluster = task_cpu_cluster(task);
	BUG_ON(!task);
	/* sanity check before insertion */
	BUG_ON(is_queued(task));

	if (is_released(task, litmus_clock()))
		__add_ready(&cluster->domain, task);
	else {
		/* it has got to wait */
		add_release(&cluster->domain, task);
	}
}

#ifdef CONFIG_SCHED_CPU_AFFINITY
static cpu_entry_t* cfifo_get_nearest_available_cpu(
				cfifo_domain_t *cluster, cpu_entry_t* start)
{
	cpu_entry_t* affinity;

	get_nearest_available_cpu(affinity, start, cfifo_cpu_entries, -1);

	/* make sure CPU is in our cluster */
	if(affinity && cpu_isset(affinity->cpu, *cluster->cpu_map))
		return(affinity);
	else
		return(NULL);
}
#endif


/* check for any necessary preemptions */
static void check_for_preemptions(cfifo_domain_t *cluster)
{
	struct task_struct *task;
	cpu_entry_t *last;

	for(last = lowest_prio_cpu(cluster);
	    fifo_preemption_needed(&cluster->domain, last->linked);
	    last = lowest_prio_cpu(cluster)) {
		/* preemption necessary */
		task = __take_ready(&cluster->domain);
#ifdef CONFIG_SCHED_CPU_AFFINITY
		{
			cpu_entry_t* affinity =
					cfifo_get_nearest_available_cpu(cluster,
							&per_cpu(cfifo_cpu_entries, task_cpu(task)));
			if(affinity)
				last = affinity;
			else if(last->linked)
				requeue(last->linked);
		}
#else
		if (last->linked)
			requeue(last->linked);
#endif
		TRACE("check_for_preemptions: attempting to link task %d to %d\n",
				task->pid, last->cpu);
		link_task_to_cpu(task, last);
		preempt(last);
	}
}

/* cfifo_job_arrival: task is either resumed or released */
static noinline void cfifo_job_arrival(struct task_struct* task)
{
	cfifo_domain_t *cluster = task_cpu_cluster(task);
	BUG_ON(!task);

	requeue(task);
	check_for_preemptions(cluster);
}

static void cfifo_release_jobs(rt_domain_t* rt, struct bheap* tasks)
{
	cfifo_domain_t* cluster = container_of(rt, cfifo_domain_t, domain);
	unsigned long flags;

	raw_spin_lock_irqsave(&cluster->cfifo_lock, flags);

	__merge_ready(&cluster->domain, tasks);
	check_for_preemptions(cluster);

	raw_spin_unlock_irqrestore(&cluster->cfifo_lock, flags);
}

/* caller holds cfifo_lock */
static noinline void job_completion(struct task_struct *t, int forced)
{
	BUG_ON(!t);

	sched_trace_task_completion(t, forced);

#ifdef CONFIG_LITMUS_NVIDIA
	atomic_set(&tsk_rt(t)->nv_int_count, 0);
#endif

	TRACE_TASK(t, "job_completion().\n");

	/* set flags */
	set_rt_flags(t, RT_F_SLEEP);
	/* prepare for next period */
	prepare_for_next_period(t);
	if (is_released(t, litmus_clock()))
		sched_trace_task_release(t);
	/* unlink */
	unlink(t);
	/* requeue
	 * But don't requeue a blocking task. */
	if (is_running(t))
		cfifo_job_arrival(t);
}

/* cfifo_tick - this function is called for every local timer
 *                         interrupt.
 *
 *                   checks whether the current task has expired and checks
 *                   whether we need to preempt it if it has not expired
 */
static void cfifo_tick(struct task_struct* t)
{
	if (is_realtime(t) && budget_enforced(t) && budget_exhausted(t)) {
		if (!is_np(t)) {
			/* np tasks will be preempted when they become
			 * preemptable again
			 */
			litmus_reschedule_local();
			set_will_schedule();
			TRACE("cfifo_scheduler_tick: "
			      "%d is preemptable "
			      " => FORCE_RESCHED\n", t->pid);
		} else if (is_user_np(t)) {
			TRACE("cfifo_scheduler_tick: "
			      "%d is non-preemptable, "
			      "preemption delayed.\n", t->pid);
			request_exit_np(t);
		}
	}
}












#ifdef CONFIG_LITMUS_PAI_SOFTIRQD


static void __do_lit_tasklet(struct tasklet_struct* tasklet, unsigned long flushed)
{
	if (!atomic_read(&tasklet->count)) {
		sched_trace_tasklet_begin(tasklet->owner);
		
		if (!test_and_clear_bit(TASKLET_STATE_SCHED, &tasklet->state))
		{
			BUG();
		}
		TRACE("%s: Invoking tasklet with owner pid = %d (flushed = %d).\n", __FUNCTION__, tasklet->owner->pid, flushed);
		tasklet->func(tasklet->data);
		tasklet_unlock(tasklet);
		
		sched_trace_tasklet_end(tasklet->owner, flushed);
	}
	else {
		BUG();
	}
}


static void __extract_tasklets(cfifo_domain_t* cluster, struct task_struct* task, struct tasklet_head* task_tasklets)
{
	struct tasklet_struct* step;
	struct tasklet_struct* tasklet;
	struct tasklet_struct* prev;
	
	task_tasklets->head = NULL;
	task_tasklets->tail = &(task_tasklets->head);
	
	prev = NULL;
	for(step = cluster->pending_tasklets.head; step != NULL; step = step->next)
	{
		if(step->owner == task)
		{
			TRACE("%s: Found tasklet to flush: %d\n", __FUNCTION__, step->owner->pid);
			
			tasklet = step;
			
			if(prev) {
				prev->next = tasklet->next;
			}
			else if(cluster->pending_tasklets.head == tasklet) {
				// we're at the head.
				cluster->pending_tasklets.head = tasklet->next;
			}
			
			if(cluster->pending_tasklets.tail == &tasklet) {
				// we're at the tail
				if(prev) {
					cluster->pending_tasklets.tail = &prev;
				}
				else {
					cluster->pending_tasklets.tail = &(cluster->pending_tasklets.head);
				}
			}
			
			tasklet->next = NULL;
			*(task_tasklets->tail) = tasklet;
			task_tasklets->tail = &(tasklet->next);
		}
		else {
			prev = step;
		}
	}
}

static void flush_tasklets(cfifo_domain_t* cluster, struct task_struct* task)
{
	unsigned long flags;
	struct tasklet_head task_tasklets;
	struct tasklet_struct* step;
	
	raw_spin_lock_irqsave(&cluster->cfifo_lock, flags);
	__extract_tasklets(cluster, task, &task_tasklets);
	raw_spin_unlock_irqrestore(&cluster->cfifo_lock, flags);
	
	if(cluster->pending_tasklets.head != NULL) {
		TRACE("%s: Flushing tasklets for %d...\n", __FUNCTION__, task->pid);
	}
	
	// now execute any flushed tasklets.
	for(step = cluster->pending_tasklets.head; step != NULL; /**/)
	{
		struct tasklet_struct* temp = step->next;
		
		step->next = NULL;
		__do_lit_tasklet(step, 1ul);
		
		step = temp;
	}
}


static void do_lit_tasklets(cfifo_domain_t* cluster, struct task_struct* sched_task)
{
	int work_to_do = 1;
	struct tasklet_struct *tasklet = NULL;
	//struct tasklet_struct *step;
	unsigned long flags;
	
	while(work_to_do) {
		
		TS_NV_SCHED_BOTISR_START;
		
		// remove tasklet at head of list if it has higher priority.
		raw_spin_lock_irqsave(&cluster->cfifo_lock, flags);	
		
		/*
		step = cluster->pending_tasklets.head;
		TRACE("%s: (BEFORE) dumping tasklet queue...\n", __FUNCTION__);
		while(step != NULL){
			TRACE("%s: %p (%d)\n", __FUNCTION__, step, step->owner->pid);
			step = step->next;
		}
		TRACE("%s: tail = %p (%d)\n", __FUNCTION__, *(cluster->pending_tasklets.tail), (*(cluster->pending_tasklets.tail) != NULL) ? (*(cluster->pending_tasklets.tail))->owner->pid : -1);
		TRACE("%s: done.\n", __FUNCTION__);
		 */
		
		
		if(cluster->pending_tasklets.head != NULL) {
			// remove tasklet at head.
			tasklet = cluster->pending_tasklets.head;
			
			if(fifo_higher_prio(tasklet->owner, sched_task)) {
				
				if(NULL == tasklet->next) {
					// tasklet is at the head, list only has one element
					TRACE("%s: Tasklet for %d is the last element in tasklet queue.\n", __FUNCTION__, tasklet->owner->pid);
					cluster->pending_tasklets.tail = &(cluster->pending_tasklets.head);
				}
				
				// remove the tasklet from the queue
				cluster->pending_tasklets.head = tasklet->next;
				
				TRACE("%s: Removed tasklet for %d from tasklet queue.\n", __FUNCTION__, tasklet->owner->pid);
			}
			else {
				TRACE("%s: Pending tasklet (%d) does not have priority to run on this CPU (%d).\n", __FUNCTION__, tasklet->owner->pid, smp_processor_id());
				tasklet = NULL;
			}
		}
		else {
			TRACE("%s: Tasklet queue is empty.\n", __FUNCTION__);
		}
		
		/*
		step = cluster->pending_tasklets.head;
		TRACE("%s: (AFTER) dumping tasklet queue...\n", __FUNCTION__);
		while(step != NULL){
			TRACE("%s: %p (%d)\n", __FUNCTION__, step, step->owner->pid);
			step = step->next;
		}
		TRACE("%s: tail = %p (%d)\n", __FUNCTION__, *(cluster->pending_tasklets.tail), (*(cluster->pending_tasklets.tail) != NULL) ? (*(cluster->pending_tasklets.tail))->owner->pid : -1);
		TRACE("%s: done.\n", __FUNCTION__);
		 */
		
		raw_spin_unlock_irqrestore(&cluster->cfifo_lock, flags);
		
		TS_NV_SCHED_BOTISR_END;
		
		if(tasklet) {
			__do_lit_tasklet(tasklet, 0ul);
			tasklet = NULL;	
		}
		else {
			work_to_do = 0;
		}
	}
	
	//TRACE("%s: exited.\n", __FUNCTION__);
}


static void run_tasklets(struct task_struct* sched_task)
{
	cfifo_domain_t* cluster;
	
#if 0
	int task_is_rt = is_realtime(sched_task);
	cfifo_domain_t* cluster;
	
	if(is_realtime(sched_task)) {
		cluster = task_cpu_cluster(sched_task);
	}
	else {
		cluster = remote_cluster(get_cpu());
	}
	
	if(cluster && cluster->pending_tasklets.head != NULL) {
		TRACE("%s: There are tasklets to process.\n", __FUNCTION__);
		
		do_lit_tasklets(cluster, sched_task);
	}
	
	if(!task_is_rt) {
		put_cpu_no_resched();
	}
#else
	
	preempt_disable();
	
	cluster = (is_realtime(sched_task)) ?
		task_cpu_cluster(sched_task) :
		remote_cluster(smp_processor_id());
	
	if(cluster && cluster->pending_tasklets.head != NULL) {
		TRACE("%s: There are tasklets to process.\n", __FUNCTION__);
		do_lit_tasklets(cluster, sched_task);
	}
	
	preempt_enable_no_resched();
	
#endif
}


static void __add_pai_tasklet(struct tasklet_struct* tasklet, cfifo_domain_t* cluster)
{
	struct tasklet_struct* step;
	
	/*
	step = cluster->pending_tasklets.head;
	TRACE("%s: (BEFORE) dumping tasklet queue...\n", __FUNCTION__);
	while(step != NULL){
		TRACE("%s: %p (%d)\n", __FUNCTION__, step, step->owner->pid);
		step = step->next;
	}
	TRACE("%s: tail = %p (%d)\n", __FUNCTION__, *(cluster->pending_tasklets.tail), (*(cluster->pending_tasklets.tail) != NULL) ? (*(cluster->pending_tasklets.tail))->owner->pid : -1);
	TRACE("%s: done.\n", __FUNCTION__);
	 */
	
	
	tasklet->next = NULL;  // make sure there are no old values floating around
	
	step = cluster->pending_tasklets.head;
	if(step == NULL) {
		TRACE("%s: tasklet queue empty.  inserting tasklet for %d at head.\n", __FUNCTION__, tasklet->owner->pid);
		// insert at tail.
		*(cluster->pending_tasklets.tail) = tasklet;
		cluster->pending_tasklets.tail = &(tasklet->next);		
	}
	else if((*(cluster->pending_tasklets.tail) != NULL) &&
			fifo_higher_prio((*(cluster->pending_tasklets.tail))->owner, tasklet->owner)) {
		// insert at tail.
		TRACE("%s: tasklet belongs at end.  inserting tasklet for %d at tail.\n", __FUNCTION__, tasklet->owner->pid);
		
		*(cluster->pending_tasklets.tail) = tasklet;
		cluster->pending_tasklets.tail = &(tasklet->next);
	}
	else {
		
        //WARN_ON(1 == 1);
		
		// insert the tasklet somewhere in the middle.
		
        TRACE("%s: tasklet belongs somewhere in the middle.\n", __FUNCTION__);
		
		while(step->next && fifo_higher_prio(step->next->owner, tasklet->owner)) {
			step = step->next;
		}
		
		// insert tasklet right before step->next.
		
		TRACE("%s: inserting tasklet for %d between %d and %d.\n", __FUNCTION__, tasklet->owner->pid, step->owner->pid, (step->next) ? step->next->owner->pid : -1);
		
		tasklet->next = step->next;
		step->next = tasklet;
		
		// patch up the head if needed.
		if(cluster->pending_tasklets.head == step)
		{
			TRACE("%s: %d is the new tasklet queue head.\n", __FUNCTION__, tasklet->owner->pid);
			cluster->pending_tasklets.head = tasklet;
		}
	}
	
	/*
	step = cluster->pending_tasklets.head;
	TRACE("%s: (AFTER) dumping tasklet queue...\n", __FUNCTION__);
	while(step != NULL){
		TRACE("%s: %p (%d)\n", __FUNCTION__, step, step->owner->pid);
		step = step->next;
	}
	TRACE("%s: tail = %p (%d)\n", __FUNCTION__, *(cluster->pending_tasklets.tail), (*(cluster->pending_tasklets.tail) != NULL) ? (*(cluster->pending_tasklets.tail))->owner->pid : -1);
	TRACE("%s: done.\n", __FUNCTION__);
	 */
	
	// TODO: Maintain this list in priority order.
	//	tasklet->next = NULL;
	//	*(cluster->pending_tasklets.tail) = tasklet;
	//	cluster->pending_tasklets.tail = &tasklet->next;
}

static int enqueue_pai_tasklet(struct tasklet_struct* tasklet)
{
	cfifo_domain_t *cluster = NULL;
	cpu_entry_t *targetCPU = NULL;
	int thisCPU;
	int runLocal = 0;
	int runNow = 0;
	unsigned long flags;
	
    if(unlikely((tasklet->owner == NULL) || !is_realtime(tasklet->owner)))
    {
        TRACE("%s: No owner associated with this tasklet!\n", __FUNCTION__);
		return 0;
    }	
	
	cluster = task_cpu_cluster(tasklet->owner);
	
	raw_spin_lock_irqsave(&cluster->cfifo_lock, flags);		
	
	thisCPU = smp_processor_id();
	
#if 1
#ifdef CONFIG_SCHED_CPU_AFFINITY
	{
		cpu_entry_t* affinity = NULL;
		
		// use this CPU if it is in our cluster and isn't running any RT work.
		if(cpu_isset(thisCPU, *cluster->cpu_map) && (__get_cpu_var(cfifo_cpu_entries).linked == NULL)) {
			affinity = &(__get_cpu_var(cfifo_cpu_entries));
		}
		else {
			// this CPU is busy or shouldn't run tasklet in this cluster.
			// look for available near by CPUs.
			// NOTE: Affinity towards owner and not this CPU.  Is this right?
			affinity = 
			cfifo_get_nearest_available_cpu(cluster,
										   &per_cpu(cfifo_cpu_entries, task_cpu(tasklet->owner)));
		}
		
		targetCPU = affinity;
	}
#endif
#endif
	
	if (targetCPU == NULL) {
		targetCPU = lowest_prio_cpu(cluster);
	}
	
	if (fifo_higher_prio(tasklet->owner, targetCPU->linked)) {
		if (thisCPU == targetCPU->cpu) {
			TRACE("%s: Run tasklet locally (and now).\n", __FUNCTION__);
			runLocal = 1;
			runNow = 1;
		}
		else {
			TRACE("%s: Run tasklet remotely (and now).\n", __FUNCTION__);
			runLocal = 0;
			runNow = 1;
		}
	}
	else {
		runLocal = 0;
		runNow = 0;
	}
	
	if(!runLocal) {
		// enqueue the tasklet
		__add_pai_tasklet(tasklet, cluster);
	}
	
	raw_spin_unlock_irqrestore(&cluster->cfifo_lock, flags);
	
	
	if (runLocal /*&& runNow */) {  // runNow == 1 is implied
		TRACE("%s: Running tasklet on CPU where it was received.\n", __FUNCTION__);
		__do_lit_tasklet(tasklet, 0ul);
	}
	else if (runNow /*&& !runLocal */) {  // runLocal == 0 is implied
		TRACE("%s: Triggering CPU %d to run tasklet.\n", __FUNCTION__, targetCPU->cpu);
		preempt(targetCPU);  // need to be protected by cfifo_lock?
	}
	else {
		TRACE("%s: Scheduling of tasklet was deferred.\n", __FUNCTION__);
	}
	
	return(1); // success
}


#endif




















/* Getting schedule() right is a bit tricky. schedule() may not make any
 * assumptions on the state of the current task since it may be called for a
 * number of reasons. The reasons include a scheduler_tick() determined that it
 * was necessary, because sys_exit_np() was called, because some Linux
 * subsystem determined so, or even (in the worst case) because there is a bug
 * hidden somewhere. Thus, we must take extreme care to determine what the
 * current state is.
 *
 * The CPU could currently be scheduling a task (or not), be linked (or not).
 *
 * The following assertions for the scheduled task could hold:
 *
 *      - !is_running(scheduled)        // the job blocks
 *	- scheduled->timeslice == 0	// the job completed (forcefully)
 *	- get_rt_flag() == RT_F_SLEEP	// the job completed (by syscall)
 * 	- linked != scheduled		// we need to reschedule (for any reason)
 * 	- is_np(scheduled)		// rescheduling must be delayed,
 *					   sys_exit_np must be requested
 *
 * Any of these can occur together.
 */
static struct task_struct* cfifo_schedule(struct task_struct * prev)
{
	cpu_entry_t* entry = &__get_cpu_var(cfifo_cpu_entries);
	cfifo_domain_t *cluster = entry->cluster;
	int out_of_time, sleep, preempt, np, exists, blocks;
	struct task_struct* next = NULL;

	raw_spin_lock(&cluster->cfifo_lock);
	clear_will_schedule();

	/* sanity checking */
	BUG_ON(entry->scheduled && entry->scheduled != prev);
	BUG_ON(entry->scheduled && !is_realtime(prev));
	BUG_ON(is_realtime(prev) && !entry->scheduled);

	/* (0) Determine state */
	exists      = entry->scheduled != NULL;
	blocks      = exists && !is_running(entry->scheduled);
	out_of_time = exists &&
				  budget_enforced(entry->scheduled) &&
				  budget_exhausted(entry->scheduled);
	np 	    = exists && is_np(entry->scheduled);
	sleep	    = exists && get_rt_flags(entry->scheduled) == RT_F_SLEEP;
	preempt     = entry->scheduled != entry->linked;

#ifdef WANT_ALL_SCHED_EVENTS
	TRACE_TASK(prev, "invoked cfifo_schedule.\n");
#endif

	if (exists)
		TRACE_TASK(prev,
			   "blocks:%d out_of_time:%d np:%d sleep:%d preempt:%d "
			   "state:%d sig:%d\n",
			   blocks, out_of_time, np, sleep, preempt,
			   prev->state, signal_pending(prev));
	if (entry->linked && preempt)
		TRACE_TASK(prev, "will be preempted by %s/%d\n",
			   entry->linked->comm, entry->linked->pid);


	/* If a task blocks we have no choice but to reschedule.
	 */
	if (blocks)
		unlink(entry->scheduled);

	/* Request a sys_exit_np() call if we would like to preempt but cannot.
	 * We need to make sure to update the link structure anyway in case
	 * that we are still linked. Multiple calls to request_exit_np() don't
	 * hurt.
	 */
	if (np && (out_of_time || preempt || sleep)) {
		unlink(entry->scheduled);
		request_exit_np(entry->scheduled);
	}

	/* Any task that is preemptable and either exhausts its execution
	 * budget or wants to sleep completes. We may have to reschedule after
	 * this. Don't do a job completion if we block (can't have timers running
	 * for blocked jobs). Preemption go first for the same reason.
	 */
	if (!np && (out_of_time || sleep) && !blocks && !preempt)
		job_completion(entry->scheduled, !sleep);

	/* Link pending task if we became unlinked.
	 */
	if (!entry->linked)
		link_task_to_cpu(__take_ready(&cluster->domain), entry);

	/* The final scheduling decision. Do we need to switch for some reason?
	 * If linked is different from scheduled, then select linked as next.
	 */
	if ((!np || blocks) &&
	    entry->linked != entry->scheduled) {
		/* Schedule a linked job? */
		if (entry->linked) {
			entry->linked->rt_param.scheduled_on = entry->cpu;
			next = entry->linked;
		}
		if (entry->scheduled) {
			/* not gonna be scheduled soon */
			entry->scheduled->rt_param.scheduled_on = NO_CPU;
			TRACE_TASK(entry->scheduled, "scheduled_on = NO_CPU\n");
		}
	} else
		/* Only override Linux scheduler if we have a real-time task
		 * scheduled that needs to continue.
		 */
		if (exists)
			next = prev;

	sched_state_task_picked();
	raw_spin_unlock(&cluster->cfifo_lock);

#ifdef WANT_ALL_SCHED_EVENTS
	TRACE("cfifo_lock released, next=0x%p\n", next);

	if (next)
		TRACE_TASK(next, "scheduled at %llu\n", litmus_clock());
	else if (exists && !next)
		TRACE("becomes idle at %llu.\n", litmus_clock());
#endif


	return next;
}


/* _finish_switch - we just finished the switch away from prev
 */
static void cfifo_finish_switch(struct task_struct *prev)
{
	cpu_entry_t* 	entry = &__get_cpu_var(cfifo_cpu_entries);

	entry->scheduled = is_realtime(current) ? current : NULL;
#ifdef WANT_ALL_SCHED_EVENTS
	TRACE_TASK(prev, "switched away from\n");
#endif
}


/*	Prepare a task for running in RT mode
 */
static void cfifo_task_new(struct task_struct * t, int on_rq, int running)
{
	unsigned long 		flags;
	cpu_entry_t* 		entry;
	cfifo_domain_t*		cluster;

	TRACE("cfifo: task new %d\n", t->pid);

	/* the cluster doesn't change even if t is running */
	cluster = task_cpu_cluster(t);

	raw_spin_lock_irqsave(&cluster->cfifo_lock, flags);

	/* setup job params */
	release_at(t, litmus_clock());

	if (running) {
		entry = &per_cpu(cfifo_cpu_entries, task_cpu(t));
		BUG_ON(entry->scheduled);

		entry->scheduled = t;
		tsk_rt(t)->scheduled_on = task_cpu(t);
	} else {
		t->rt_param.scheduled_on = NO_CPU;
	}
	t->rt_param.linked_on          = NO_CPU;

	cfifo_job_arrival(t);
	raw_spin_unlock_irqrestore(&cluster->cfifo_lock, flags);
}

static void cfifo_task_wake_up(struct task_struct *task)
{
	unsigned long flags;
	//lt_t now;
	cfifo_domain_t *cluster;

	TRACE_TASK(task, "wake_up at %llu\n", litmus_clock());

	cluster = task_cpu_cluster(task);

	raw_spin_lock_irqsave(&cluster->cfifo_lock, flags);

#if 0  // sporadic task model
	/* We need to take suspensions because of semaphores into
	 * account! If a job resumes after being suspended due to acquiring
	 * a semaphore, it should never be treated as a new job release.
	 */
	if (get_rt_flags(task) == RT_F_EXIT_SEM) {
		set_rt_flags(task, RT_F_RUNNING);
	} else {
		now = litmus_clock();
		if (is_tardy(task, now)) {
			/* new sporadic release */
			release_at(task, now);
			sched_trace_task_release(task);
		}
		else {
			if (task->rt.time_slice) {
				/* came back in time before deadline
				*/
				set_rt_flags(task, RT_F_RUNNING);
			}
		}
	}
#endif

	//BUG_ON(tsk_rt(task)->linked_on != NO_CPU);
	set_rt_flags(task, RT_F_RUNNING);  // periodic model

	if(tsk_rt(task)->linked_on == NO_CPU)
		cfifo_job_arrival(task);
	else
		TRACE("WTF, mate?!\n");

	raw_spin_unlock_irqrestore(&cluster->cfifo_lock, flags);
}

static void cfifo_task_block(struct task_struct *t)
{
	unsigned long flags;
	cfifo_domain_t *cluster;

	TRACE_TASK(t, "block at %llu\n", litmus_clock());

	cluster = task_cpu_cluster(t);

	/* unlink if necessary */
	raw_spin_lock_irqsave(&cluster->cfifo_lock, flags);
	unlink(t);
	raw_spin_unlock_irqrestore(&cluster->cfifo_lock, flags);

	BUG_ON(!is_realtime(t));
}


static void cfifo_task_exit(struct task_struct * t)
{
	unsigned long flags;
	cfifo_domain_t *cluster = task_cpu_cluster(t);

#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
	flush_tasklets(cluster, t);
#endif		
	
	/* unlink if necessary */
	raw_spin_lock_irqsave(&cluster->cfifo_lock, flags);
	unlink(t);
	if (tsk_rt(t)->scheduled_on != NO_CPU) {
		cpu_entry_t *cpu;
		cpu = &per_cpu(cfifo_cpu_entries, tsk_rt(t)->scheduled_on);
		cpu->scheduled = NULL;
		tsk_rt(t)->scheduled_on = NO_CPU;
	}
	raw_spin_unlock_irqrestore(&cluster->cfifo_lock, flags);
	
	BUG_ON(!is_realtime(t));
        TRACE_TASK(t, "RIP\n");
}

static long cfifo_admit_task(struct task_struct* tsk)
{
	return task_cpu(tsk) == tsk->rt_param.task_params.cpu ? 0 : -EINVAL;
}













#ifdef CONFIG_LITMUS_LOCKING

#include <litmus/fdso.h>


static void __set_priority_inheritance(struct task_struct* t, struct task_struct* prio_inh)
{
	int linked_on;
	int check_preempt = 0;	
	
	cfifo_domain_t* cluster = task_cpu_cluster(t);
	
	if(prio_inh != NULL)
		TRACE_TASK(t, "inherits priority from %s/%d\n", prio_inh->comm, prio_inh->pid);
	else
		TRACE_TASK(t, "inherits priority from %p\n", prio_inh);
	
	sched_trace_eff_prio_change(t, prio_inh);
	
	tsk_rt(t)->inh_task = prio_inh;
	
	linked_on  = tsk_rt(t)->linked_on;
	
	/* If it is scheduled, then we need to reorder the CPU heap. */
	if (linked_on != NO_CPU) {
		TRACE_TASK(t, "%s: linked  on %d\n",
				   __FUNCTION__, linked_on);
		/* Holder is scheduled; need to re-order CPUs.
		 * We can't use heap_decrease() here since
		 * the cpu_heap is ordered in reverse direction, so
		 * it is actually an increase. */
		bheap_delete(cpu_lower_prio, &cluster->cpu_heap,
                     per_cpu(cfifo_cpu_entries, linked_on).hn);
		bheap_insert(cpu_lower_prio, &cluster->cpu_heap,
                     per_cpu(cfifo_cpu_entries, linked_on).hn);
	} else {
		/* holder may be queued: first stop queue changes */
		raw_spin_lock(&cluster->domain.release_lock);
		if (is_queued(t)) {
			TRACE_TASK(t, "%s: is queued\n", __FUNCTION__);
			
			/* We need to update the position of holder in some
			 * heap. Note that this could be a release heap if we
			 * budget enforcement is used and this job overran. */
			check_preempt = !bheap_decrease(fifo_ready_order, tsk_rt(t)->heap_node);
			
		} else {
			/* Nothing to do: if it is not queued and not linked
			 * then it is either sleeping or currently being moved
			 * by other code (e.g., a timer interrupt handler) that
			 * will use the correct priority when enqueuing the
			 * task. */
			TRACE_TASK(t, "%s: is NOT queued => Done.\n", __FUNCTION__);
		}
		raw_spin_unlock(&cluster->domain.release_lock);
		
		/* If holder was enqueued in a release heap, then the following
		 * preemption check is pointless, but we can't easily detect
		 * that case. If you want to fix this, then consider that
		 * simply adding a state flag requires O(n) time to update when
		 * releasing n tasks, which conflicts with the goal to have
		 * O(log n) merges. */
		if (check_preempt) {
			/* heap_decrease() hit the top level of the heap: make
			 * sure preemption checks get the right task, not the
			 * potentially stale cache. */
			bheap_uncache_min(fifo_ready_order, &cluster->domain.ready_queue);
			check_for_preemptions(cluster);
		}
	}
}

/* called with IRQs off */
static void set_priority_inheritance(struct task_struct* t, struct task_struct* prio_inh)
{
	cfifo_domain_t* cluster = task_cpu_cluster(t);
	
	raw_spin_lock(&cluster->cfifo_lock);
	
	__set_priority_inheritance(t, prio_inh);
	
#ifdef CONFIG_LITMUS_SOFTIRQD
	if(tsk_rt(t)->cur_klitirqd != NULL)
	{
		TRACE_TASK(t, "%s/%d inherits a new priority!\n",
				   tsk_rt(t)->cur_klitirqd->comm, tsk_rt(t)->cur_klitirqd->pid);
		
		__set_priority_inheritance(tsk_rt(t)->cur_klitirqd, prio_inh);
	}
#endif
	
	raw_spin_unlock(&cluster->cfifo_lock);
}


/* called with IRQs off */
static void __clear_priority_inheritance(struct task_struct* t)
{
    TRACE_TASK(t, "priority restored\n");
	
    if(tsk_rt(t)->scheduled_on != NO_CPU)
    {
		sched_trace_eff_prio_change(t, NULL);
		
        tsk_rt(t)->inh_task = NULL;
        
        /* Check if rescheduling is necessary. We can't use heap_decrease()
         * since the priority was effectively lowered. */
        unlink(t);
        cfifo_job_arrival(t);
    }
    else
    {
        __set_priority_inheritance(t, NULL);
    }
	
#ifdef CONFIG_LITMUS_SOFTIRQD
	if(tsk_rt(t)->cur_klitirqd != NULL)
	{
		TRACE_TASK(t, "%s/%d inheritance set back to owner.\n",
				   tsk_rt(t)->cur_klitirqd->comm, tsk_rt(t)->cur_klitirqd->pid);
		
		if(tsk_rt(tsk_rt(t)->cur_klitirqd)->scheduled_on != NO_CPU)
		{
			sched_trace_eff_prio_change(tsk_rt(t)->cur_klitirqd, t);
			
			tsk_rt(tsk_rt(t)->cur_klitirqd)->inh_task = t;
			
			/* Check if rescheduling is necessary. We can't use heap_decrease()
			 * since the priority was effectively lowered. */
			unlink(tsk_rt(t)->cur_klitirqd);
			cfifo_job_arrival(tsk_rt(t)->cur_klitirqd);
		}
		else
		{
			__set_priority_inheritance(tsk_rt(t)->cur_klitirqd, t);
		}
	}
#endif
}

/* called with IRQs off */
static void clear_priority_inheritance(struct task_struct* t)
{
	cfifo_domain_t* cluster = task_cpu_cluster(t);
	
	raw_spin_lock(&cluster->cfifo_lock);
	__clear_priority_inheritance(t);
	raw_spin_unlock(&cluster->cfifo_lock);
}



#ifdef CONFIG_LITMUS_SOFTIRQD
/* called with IRQs off */
static void set_priority_inheritance_klitirqd(struct task_struct* klitirqd,
											  struct task_struct* old_owner,
											  struct task_struct* new_owner)
{
	cfifo_domain_t* cluster = task_cpu_cluster(klitirqd);
	
	BUG_ON(!(tsk_rt(klitirqd)->is_proxy_thread));
	
	raw_spin_lock(&cluster->cfifo_lock);
	
	if(old_owner != new_owner)
	{
		if(old_owner)
		{
			// unreachable?
			tsk_rt(old_owner)->cur_klitirqd = NULL;
		}
		
		TRACE_TASK(klitirqd, "giving ownership to %s/%d.\n",
				   new_owner->comm, new_owner->pid);
		
		tsk_rt(new_owner)->cur_klitirqd = klitirqd;
	}
	
	__set_priority_inheritance(klitirqd,
							   (tsk_rt(new_owner)->inh_task == NULL) ?
							   new_owner :
							   tsk_rt(new_owner)->inh_task);
	
	raw_spin_unlock(&cluster->cfifo_lock);
}

/* called with IRQs off */
static void clear_priority_inheritance_klitirqd(struct task_struct* klitirqd,
												struct task_struct* old_owner)
{
	cfifo_domain_t* cluster = task_cpu_cluster(klitirqd);
	
	BUG_ON(!(tsk_rt(klitirqd)->is_proxy_thread));
	
	raw_spin_lock(&cluster->cfifo_lock);
    
    TRACE_TASK(klitirqd, "priority restored\n");
	
    if(tsk_rt(klitirqd)->scheduled_on != NO_CPU)
    {
        tsk_rt(klitirqd)->inh_task = NULL;
        
        /* Check if rescheduling is necessary. We can't use heap_decrease()
         * since the priority was effectively lowered. */
        unlink(klitirqd);
        cfifo_job_arrival(klitirqd);
    }
    else
    {
        __set_priority_inheritance(klitirqd, NULL);
    }
	
	tsk_rt(old_owner)->cur_klitirqd = NULL;
	
	raw_spin_unlock(&cluster->cfifo_lock);
}
#endif  // CONFIG_LITMUS_SOFTIRQD


/* ******************** KFMLP support ********************** */

/* struct for semaphore with priority inheritance */
struct kfmlp_queue
{
	wait_queue_head_t wait;
	struct task_struct* owner;
	struct task_struct* hp_waiter;
	int count; /* number of waiters + holder */
};

struct kfmlp_semaphore
{
	struct litmus_lock litmus_lock;
	
	spinlock_t lock;
	
	int num_resources; /* aka k */
	struct kfmlp_queue *queues; /* array */
	struct kfmlp_queue *shortest_queue; /* pointer to shortest queue */
};

static inline struct kfmlp_semaphore* kfmlp_from_lock(struct litmus_lock* lock)
{
	return container_of(lock, struct kfmlp_semaphore, litmus_lock);
}

static inline int kfmlp_get_idx(struct kfmlp_semaphore* sem,
								struct kfmlp_queue* queue)
{
	return (queue - &sem->queues[0]);
}

static inline struct kfmlp_queue* kfmlp_get_queue(struct kfmlp_semaphore* sem,
												  struct task_struct* holder)
{
	int i;
	for(i = 0; i < sem->num_resources; ++i)
		if(sem->queues[i].owner == holder)
			return(&sem->queues[i]);
	return(NULL);
}

/* caller is responsible for locking */
static struct task_struct* kfmlp_find_hp_waiter(struct kfmlp_queue *kqueue,
										 struct task_struct *skip)
{
	struct list_head	*pos;
	struct task_struct 	*queued, *found = NULL;
	
	list_for_each(pos, &kqueue->wait.task_list) {
		queued  = (struct task_struct*) list_entry(pos, wait_queue_t,
												   task_list)->private;
		
		/* Compare task prios, find high prio task. */
		if (queued != skip && fifo_higher_prio(queued, found))
			found = queued;
	}
	return found;
}

static inline struct kfmlp_queue* kfmlp_find_shortest(
										  struct kfmlp_semaphore* sem,
										  struct kfmlp_queue* search_start)
{
	// we start our search at search_start instead of at the beginning of the
	// queue list to load-balance across all resources.
	struct kfmlp_queue* step = search_start;
	struct kfmlp_queue* shortest = sem->shortest_queue;
	
	do
	{
		step = (step+1 != &sem->queues[sem->num_resources]) ?
		step+1 : &sem->queues[0];
		if(step->count < shortest->count)
		{
			shortest = step;
			if(step->count == 0)
				break; /* can't get any shorter */
		}
	}while(step != search_start);
	
	return(shortest);
}

static struct task_struct* kfmlp_remove_hp_waiter(struct kfmlp_semaphore* sem)
{
	/* must hold sem->lock */
	
	struct kfmlp_queue *my_queue = NULL;
	struct task_struct *max_hp = NULL;
	
	
	struct list_head	*pos;
	struct task_struct 	*queued;
	int i;
	
	for(i = 0; i < sem->num_resources; ++i)
	{
		if( (sem->queues[i].count > 1) &&
		   ((my_queue == NULL) ||
			(fifo_higher_prio(sem->queues[i].hp_waiter, my_queue->hp_waiter))) )
		{
			my_queue = &sem->queues[i];
		}
	}
	
	if(my_queue)
	{
		cfifo_domain_t* cluster;
		
		max_hp = my_queue->hp_waiter;
		BUG_ON(!max_hp);

		TRACE_CUR("queue %d: stealing %s/%d from queue %d\n",
				  kfmlp_get_idx(sem, my_queue),
				  max_hp->comm, max_hp->pid,
				  kfmlp_get_idx(sem, my_queue));
		
		my_queue->hp_waiter = kfmlp_find_hp_waiter(my_queue, max_hp);
		
		/*
		 if(my_queue->hp_waiter)
		 TRACE_CUR("queue %d: new hp_waiter is %s/%d\n",
		 kfmlp_get_idx(sem, my_queue),
		 my_queue->hp_waiter->comm,
		 my_queue->hp_waiter->pid);
		 else
		 TRACE_CUR("queue %d: new hp_waiter is %p\n",
		 kfmlp_get_idx(sem, my_queue), NULL);
		 */
	
		cluster = task_cpu_cluster(max_hp);

		raw_spin_lock(&cluster->cfifo_lock);
		
		/*
		 if(my_queue->owner)
		 TRACE_CUR("queue %d: owner is %s/%d\n",
		 kfmlp_get_idx(sem, my_queue),
		 my_queue->owner->comm,
		 my_queue->owner->pid);
		 else
		 TRACE_CUR("queue %d: owner is %p\n",
		 kfmlp_get_idx(sem, my_queue),
		 NULL);
		 */
		
		if(tsk_rt(my_queue->owner)->inh_task == max_hp)
		{
			__clear_priority_inheritance(my_queue->owner);
			if(my_queue->hp_waiter != NULL)
			{
				__set_priority_inheritance(my_queue->owner, my_queue->hp_waiter);
			}
		}
		raw_spin_unlock(&cluster->cfifo_lock);
		
		list_for_each(pos, &my_queue->wait.task_list)
		{
			queued  = (struct task_struct*) list_entry(pos, wait_queue_t,
													   task_list)->private;
			/* Compare task prios, find high prio task. */
			if (queued == max_hp)
			{
				/*
				 TRACE_CUR("queue %d: found entry in wait queue.  REMOVING!\n",
				 kfmlp_get_idx(sem, my_queue));
				 */
				__remove_wait_queue(&my_queue->wait,
									list_entry(pos, wait_queue_t, task_list));
				break;
			}
		}
		--(my_queue->count);
	}
	
	return(max_hp);
}

int cfifo_kfmlp_lock(struct litmus_lock* l)
{
	struct task_struct* t = current;
	struct kfmlp_semaphore *sem = kfmlp_from_lock(l);
	struct kfmlp_queue* my_queue;
	wait_queue_t wait;
	unsigned long flags;
	
	if (!is_realtime(t))
		return -EPERM;
	
	spin_lock_irqsave(&sem->lock, flags);
	
	my_queue = sem->shortest_queue;
	
	if (my_queue->owner) {
		/* resource is not free => must suspend and wait */
		TRACE_CUR("queue %d: Resource is not free => must suspend and wait.\n",
				  kfmlp_get_idx(sem, my_queue));
		
		init_waitqueue_entry(&wait, t);
		
		/* FIXME: interruptible would be nice some day */
		set_task_state(t, TASK_UNINTERRUPTIBLE);
		
		__add_wait_queue_tail_exclusive(&my_queue->wait, &wait);
		
		/* check if we need to activate priority inheritance */
		if (fifo_higher_prio(t, my_queue->hp_waiter))
		{
			my_queue->hp_waiter = t;
			if (fifo_higher_prio(t, my_queue->owner))
			{
				set_priority_inheritance(my_queue->owner, my_queue->hp_waiter);
			}
		}
		
		++(my_queue->count);
		sem->shortest_queue = kfmlp_find_shortest(sem, my_queue);
		
		/* release lock before sleeping */
		spin_unlock_irqrestore(&sem->lock, flags);
		
		/* We depend on the FIFO order.  Thus, we don't need to recheck
		 * when we wake up; we are guaranteed to have the lock since
		 * there is only one wake up per release (or steal).
		 */
		schedule();
		
		
		if(my_queue->owner == t)
		{
			TRACE_CUR("queue %d: acquired through waiting\n",
					  kfmlp_get_idx(sem, my_queue));
		}
		else
		{
			/* this case may happen if our wait entry was stolen
			 between queues.  record where we went.*/
			my_queue = kfmlp_get_queue(sem, t);
			BUG_ON(!my_queue);
			TRACE_CUR("queue %d: acquired through stealing\n",
					  kfmlp_get_idx(sem, my_queue));
		}
	}
	else
	{
		TRACE_CUR("queue %d: acquired immediately\n",
				  kfmlp_get_idx(sem, my_queue));
		
		my_queue->owner = t;
		
		++(my_queue->count);
		sem->shortest_queue = kfmlp_find_shortest(sem, my_queue);		
		
		spin_unlock_irqrestore(&sem->lock, flags);
	}
	
	return kfmlp_get_idx(sem, my_queue);
}

int cfifo_kfmlp_unlock(struct litmus_lock* l)
{
	struct task_struct *t = current, *next;
	struct kfmlp_semaphore *sem = kfmlp_from_lock(l);
	struct kfmlp_queue *my_queue;
	unsigned long flags;
	int err = 0;
	
	spin_lock_irqsave(&sem->lock, flags);
	
	my_queue = kfmlp_get_queue(sem, t);
	
	if (!my_queue) {
		err = -EINVAL;
		goto out;
	}
	
	/* check if there are jobs waiting for this resource */
	next = __waitqueue_remove_first(&my_queue->wait);
	if (next) {
		/*
		 TRACE_CUR("queue %d: ASSIGNING %s/%d as owner - next\n",
		 kfmlp_get_idx(sem, my_queue),
		 next->comm, next->pid);
		 */
		/* next becomes the resouce holder */
		my_queue->owner = next;
		
		--(my_queue->count);
		if(my_queue->count < sem->shortest_queue->count)
		{
			sem->shortest_queue = my_queue;
		}	
		
		TRACE_CUR("queue %d: lock ownership passed to %s/%d\n",
				  kfmlp_get_idx(sem, my_queue), next->comm, next->pid);
		
		/* determine new hp_waiter if necessary */
		if (next == my_queue->hp_waiter) {
			TRACE_TASK(next, "was highest-prio waiter\n");
			/* next has the highest priority --- it doesn't need to
			 * inherit.  However, we need to make sure that the
			 * next-highest priority in the queue is reflected in
			 * hp_waiter. */
			my_queue->hp_waiter = kfmlp_find_hp_waiter(my_queue, next);
			if (my_queue->hp_waiter)
				TRACE_TASK(my_queue->hp_waiter, "queue %d: is new highest-prio waiter\n", kfmlp_get_idx(sem, my_queue));
			else
				TRACE("queue %d: no further waiters\n", kfmlp_get_idx(sem, my_queue));
		} else {
			/* Well, if next is not the highest-priority waiter,
			 * then it ought to inherit the highest-priority
			 * waiter's priority. */
			set_priority_inheritance(next, my_queue->hp_waiter);
		}
		
		/* wake up next */
		wake_up_process(next);
	}
	else
	{
		TRACE_CUR("queue %d: looking to steal someone...\n", kfmlp_get_idx(sem, my_queue));
		
		next = kfmlp_remove_hp_waiter(sem); /* returns NULL if nothing to steal */
		
		/*
		 if(next)
		 TRACE_CUR("queue %d: ASSIGNING %s/%d as owner - steal\n",
		 kfmlp_get_idx(sem, my_queue),
		 next->comm, next->pid);
		 */
		
		my_queue->owner = next;
		
		if(next)
		{
			TRACE_CUR("queue %d: lock ownership passed to %s/%d (which was stolen)\n",
					  kfmlp_get_idx(sem, my_queue),
					  next->comm, next->pid);
			
			/* wake up next */
			wake_up_process(next);			
		}
		else
		{
			TRACE_CUR("queue %d: no one to steal.\n", kfmlp_get_idx(sem, my_queue));
			
			--(my_queue->count);
			if(my_queue->count < sem->shortest_queue->count)
			{
				sem->shortest_queue = my_queue;
			}
		}
	}
	
	/* we lose the benefit of priority inheritance (if any) */
	if (tsk_rt(t)->inh_task)
		clear_priority_inheritance(t);
	
out:
	spin_unlock_irqrestore(&sem->lock, flags);
	
	return err;
}

int cfifo_kfmlp_close(struct litmus_lock* l)
{
	struct task_struct *t = current;
	struct kfmlp_semaphore *sem = kfmlp_from_lock(l);
	struct kfmlp_queue *my_queue;
	unsigned long flags;
	
	int owner;
	
	spin_lock_irqsave(&sem->lock, flags);
	
	my_queue = kfmlp_get_queue(sem, t);	
	owner = (my_queue) ? (my_queue->owner == t) : 0;
	
	spin_unlock_irqrestore(&sem->lock, flags);
	
	if (owner)
		cfifo_kfmlp_unlock(l);
	
	return 0;
}

void cfifo_kfmlp_free(struct litmus_lock* l)
{
	struct kfmlp_semaphore *sem = kfmlp_from_lock(l);
	kfree(sem->queues);
	kfree(sem);
}

static struct litmus_lock_ops cfifo_kfmlp_lock_ops = {
	.close  = cfifo_kfmlp_close,
	.lock   = cfifo_kfmlp_lock,
	.unlock = cfifo_kfmlp_unlock,
	.deallocate = cfifo_kfmlp_free,
};

static struct litmus_lock* cfifo_new_kfmlp(void* __user arg, int* ret_code)
{
	struct kfmlp_semaphore* sem;
	int num_resources = 0;
	int i;
	
	if(!access_ok(VERIFY_READ, arg, sizeof(num_resources)))
	{
		*ret_code = -EINVAL;
		return(NULL);
	}
	if(__copy_from_user(&num_resources, arg, sizeof(num_resources)))
	{
		*ret_code = -EINVAL;
		return(NULL);
	}
	if(num_resources < 1)
	{
		*ret_code = -EINVAL;
		return(NULL);		
	}
	
	sem = kmalloc(sizeof(*sem), GFP_KERNEL);
	if(!sem)
	{
		*ret_code = -ENOMEM;
		return NULL;
	}
	
	sem->queues = kmalloc(sizeof(struct kfmlp_queue)*num_resources, GFP_KERNEL);
	if(!sem->queues)
	{
		kfree(sem);
		*ret_code = -ENOMEM;
		return NULL;		
	}
	
	sem->litmus_lock.ops = &cfifo_kfmlp_lock_ops;
	spin_lock_init(&sem->lock);
	sem->num_resources = num_resources;
	
	for(i = 0; i < num_resources; ++i)
	{
		sem->queues[i].owner = NULL;
		sem->queues[i].hp_waiter = NULL;
		init_waitqueue_head(&sem->queues[i].wait);
		sem->queues[i].count = 0;
	}
	
	sem->shortest_queue = &sem->queues[0];
	
	*ret_code = 0;
	return &sem->litmus_lock;
}


/* **** lock constructor **** */

static long cfifo_allocate_lock(struct litmus_lock **lock, int type,
								 void* __user arg)
{
	int err = -ENXIO;
	
	/* C-FIFO currently only supports the FMLP for global resources
		WITHIN a given cluster.  DO NOT USE CROSS-CLUSTER! */
	switch (type) {
		case KFMLP_SEM:
			*lock = cfifo_new_kfmlp(arg, &err);
			break;
	};
	
	return err;
}

#endif  // CONFIG_LITMUS_LOCKING






/* total number of cluster */
static int num_clusters;
/* we do not support cluster of different sizes */
static unsigned int cluster_size;

#ifdef VERBOSE_INIT
static void print_cluster_topology(cpumask_var_t mask, int cpu)
{
	int chk;
	char buf[255];

	chk = cpulist_scnprintf(buf, 254, mask);
	buf[chk] = '\0';
	printk(KERN_INFO "CPU = %d, shared cpu(s) = %s\n", cpu, buf);

}
#endif

static int clusters_allocated = 0;

static void cleanup_cfifo(void)
{
	int i;

	if (clusters_allocated) {
		for (i = 0; i < num_clusters; i++) {
			kfree(cfifo[i].cpus);
			kfree(cfifo[i].heap_node);
			free_cpumask_var(cfifo[i].cpu_map);
		}

		kfree(cfifo);
	}
}

static long cfifo_activate_plugin(void)
{
	int i, j, cpu, ccpu, cpu_count;
	cpu_entry_t *entry;

	cpumask_var_t mask;
	int chk = 0;

	/* de-allocate old clusters, if any */
	cleanup_cfifo();

	printk(KERN_INFO "C-FIFO: Activate Plugin, cluster configuration = %d\n",
			cluster_config);

	/* need to get cluster_size first */
	if(!zalloc_cpumask_var(&mask, GFP_ATOMIC))
		return -ENOMEM;

	if (unlikely(cluster_config == GLOBAL_CLUSTER)) {
		cluster_size = num_online_cpus();
	} else {
		chk = get_shared_cpu_map(mask, 0, cluster_config);
		if (chk) {
			/* if chk != 0 then it is the max allowed index */
			printk(KERN_INFO "C-FIFO: Cluster configuration = %d "
			       "is not supported on this hardware.\n",
			       cluster_config);
			/* User should notice that the configuration failed, so
			 * let's bail out. */
			return -EINVAL;
		}

		cluster_size = cpumask_weight(mask);
	}

	if ((num_online_cpus() % cluster_size) != 0) {
		/* this can't be right, some cpus are left out */
		printk(KERN_ERR "C-FIFO: Trying to group %d cpus in %d!\n",
				num_online_cpus(), cluster_size);
		return -1;
	}

	num_clusters = num_online_cpus() / cluster_size;
	printk(KERN_INFO "C-FIFO: %d cluster(s) of size = %d\n",
			num_clusters, cluster_size);

	/* initialize clusters */
	cfifo = kmalloc(num_clusters * sizeof(cfifo_domain_t), GFP_ATOMIC);
	for (i = 0; i < num_clusters; i++) {

		cfifo[i].cpus = kmalloc(cluster_size * sizeof(cpu_entry_t),
				GFP_ATOMIC);
		cfifo[i].heap_node = kmalloc(
				cluster_size * sizeof(struct bheap_node),
				GFP_ATOMIC);
		bheap_init(&(cfifo[i].cpu_heap));
		fifo_domain_init(&(cfifo[i].domain), NULL, cfifo_release_jobs);

		
#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
		cfifo[i].pending_tasklets.head = NULL;
		cfifo[i].pending_tasklets.tail = &(cfifo[i].pending_tasklets.head);
#endif		
		
		if(!zalloc_cpumask_var(&cfifo[i].cpu_map, GFP_ATOMIC))
			return -ENOMEM;
	}

	/* cycle through cluster and add cpus to them */
	for (i = 0; i < num_clusters; i++) {

		for_each_online_cpu(cpu) {
			/* check if the cpu is already in a cluster */
			for (j = 0; j < num_clusters; j++)
				if (cpumask_test_cpu(cpu, cfifo[j].cpu_map))
					break;
			/* if it is in a cluster go to next cpu */
			if (j < num_clusters &&
					cpumask_test_cpu(cpu, cfifo[j].cpu_map))
				continue;

			/* this cpu isn't in any cluster */
			/* get the shared cpus */
			if (unlikely(cluster_config == GLOBAL_CLUSTER))
				cpumask_copy(mask, cpu_online_mask);
			else
				get_shared_cpu_map(mask, cpu, cluster_config);

			cpumask_copy(cfifo[i].cpu_map, mask);
#ifdef VERBOSE_INIT
			print_cluster_topology(mask, cpu);
#endif
			/* add cpus to current cluster and init cpu_entry_t */
			cpu_count = 0;
			for_each_cpu(ccpu, cfifo[i].cpu_map) {

				entry = &per_cpu(cfifo_cpu_entries, ccpu);
				cfifo[i].cpus[cpu_count] = entry;
				atomic_set(&entry->will_schedule, 0);
				entry->cpu = ccpu;
				entry->cluster = &cfifo[i];
				entry->hn = &(cfifo[i].heap_node[cpu_count]);
				bheap_node_init(&entry->hn, entry);

				cpu_count++;

				entry->linked = NULL;
				entry->scheduled = NULL;
				update_cpu_position(entry);
			}
			/* done with this cluster */
			break;
		}
	}
	
#ifdef CONFIG_LITMUS_SOFTIRQD
	{
		/* distribute the daemons evenly across the clusters. */
		int* affinity = kmalloc(NR_LITMUS_SOFTIRQD * sizeof(int), GFP_ATOMIC);
		int num_daemons_per_cluster = NR_LITMUS_SOFTIRQD / num_clusters;
		int left_over = NR_LITMUS_SOFTIRQD % num_clusters;
		
		int daemon = 0;
		for(i = 0; i < num_clusters; ++i)
		{
			int num_on_this_cluster = num_daemons_per_cluster;
			if(left_over)
			{
				++num_on_this_cluster;
				--left_over;
			}
			
			for(j = 0; j < num_on_this_cluster; ++j)
			{
				// first CPU of this cluster
				affinity[daemon++] = i*cluster_size;
			}
		}
	
		spawn_klitirqd(affinity);
		
		kfree(affinity);
	}
#endif
	
#ifdef CONFIG_LITMUS_NVIDIA
	init_nvidia_info();
#endif	

	free_cpumask_var(mask);
	clusters_allocated = 1;
	return 0;
}

/*	Plugin object	*/
static struct sched_plugin cfifo_plugin __cacheline_aligned_in_smp = {
	.plugin_name		= "C-FIFO",
	.finish_switch		= cfifo_finish_switch,
	.tick			= cfifo_tick,
	.task_new		= cfifo_task_new,
	.complete_job		= complete_job,
	.task_exit		= cfifo_task_exit,
	.schedule		= cfifo_schedule,
	.task_wake_up		= cfifo_task_wake_up,
	.task_block		= cfifo_task_block,
	.admit_task		= cfifo_admit_task,
	.activate_plugin	= cfifo_activate_plugin,
#ifdef CONFIG_LITMUS_LOCKING
	.allocate_lock	= cfifo_allocate_lock,
    .set_prio_inh   = set_priority_inheritance,
    .clear_prio_inh = clear_priority_inheritance,	
#endif
#ifdef CONFIG_LITMUS_SOFTIRQD
	.set_prio_inh_klitirqd = set_priority_inheritance_klitirqd,
	.clear_prio_inh_klitirqd = clear_priority_inheritance_klitirqd,
#endif
#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
	.enqueue_pai_tasklet = enqueue_pai_tasklet,
	.run_tasklets = run_tasklets,
#endif	
};

static struct proc_dir_entry *cluster_file = NULL, *cfifo_dir = NULL;

static int __init init_cfifo(void)
{
	int err, fs;

	err = register_sched_plugin(&cfifo_plugin);
	if (!err) {
		fs = make_plugin_proc_dir(&cfifo_plugin, &cfifo_dir);
		if (!fs)
			cluster_file = create_cluster_file(cfifo_dir, &cluster_config);
		else
			printk(KERN_ERR "Could not allocate C-FIFO procfs dir.\n");
	}
	return err;
}

static void clean_cfifo(void)
{
	cleanup_cfifo();
	if (cluster_file)
		remove_proc_entry("cluster", cfifo_dir);
	if (cfifo_dir)
		remove_plugin_proc_dir(&cfifo_plugin);
}

module_init(init_cfifo);
module_exit(clean_cfifo);