/*
* litmus/sched_cedf.c
*
* Implementation of the C-EDF scheduling algorithm.
*
* This implementation is based on G-EDF:
* - CPUs are clustered around L2 or L3 caches.
* - Clusters topology is automatically detected (this is arch dependent
* and is working only on x86 at the moment --- and only with modern
* cpus that exports cpuid4 information)
* - The plugins _does not_ attempt to put tasks in the right cluster i.e.
* the programmer needs to be aware of the topology to place tasks
* in the desired cluster
* - default clustering is around L2 cache (cache index = 2)
* supported clusters are: L1 (private cache: pedf), L2, L3, ALL (all
* online_cpus are placed in a single cluster).
*
* For details on functions, take a look at sched_gsn_edf.c
*
* Currently, we do not support changes in the number of online cpus.
* If the num_online_cpus() dynamically changes, the plugin is broken.
*
* This version uses the simple approach and serializes all scheduling
* decisions by the use of a queue lock. This is probably not the
* best way to do it, but it should suffice for now.
*/
#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/module.h>
#include <litmus/litmus.h>
#include <litmus/jobs.h>
#include <litmus/preempt.h>
#include <litmus/sched_plugin.h>
#include <litmus/edf_common.h>
#include <litmus/sched_trace.h>
#include <litmus/clustered.h>
#include <litmus/bheap.h>
#include <litmus/binheap.h>
#ifdef CONFIG_LITMUS_LOCKING
#include <litmus/kfmlp_lock.h>
#endif
#ifdef CONFIG_LITMUS_NESTED_LOCKING
#include <litmus/rsm_lock.h>
#include <litmus/ikglp_lock.h>
#endif
#ifdef CONFIG_SCHED_CPU_AFFINITY
#include <litmus/affinity.h>
#endif
/* to configure the cluster size */
#include <litmus/litmus_proc.h>
#ifdef CONFIG_SCHED_CPU_AFFINITY
#include <litmus/affinity.h>
#endif
#ifdef CONFIG_LITMUS_SOFTIRQD
#include <litmus/litmus_softirq.h>
#endif
#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
#include <linux/interrupt.h>
#include <litmus/trace.h>
#endif
#ifdef CONFIG_LITMUS_NVIDIA
#include <litmus/nvidia_info.h>
#endif
#if defined(CONFIG_LITMUS_AFFINITY_LOCKING) && defined(CONFIG_LITMUS_NVIDIA)
#include <litmus/gpu_affinity.h>
#endif
/* Reference configuration variable. Determines which cache level is used to
* group CPUs into clusters. GLOBAL_CLUSTER, which is the default, means that
* all CPUs form a single cluster (just like GSN-EDF).
*/
static enum cache_level cluster_config = GLOBAL_CLUSTER;
struct clusterdomain;
/* cpu_entry_t - maintain the linked and scheduled state
*
* A cpu also contains a pointer to the cedf_domain_t cluster
* that owns it (struct clusterdomain*)
*/
typedef struct {
int cpu;
struct clusterdomain* cluster; /* owning cluster */
struct task_struct* linked; /* only RT tasks */
struct task_struct* scheduled; /* only RT tasks */
atomic_t will_schedule; /* prevent unneeded IPIs */
struct binheap_node hn;
} cpu_entry_t;
/* one cpu_entry_t per CPU */
DEFINE_PER_CPU(cpu_entry_t, cedf_cpu_entries);
#define set_will_schedule() \
(atomic_set(&__get_cpu_var(cedf_cpu_entries).will_schedule, 1))
#define clear_will_schedule() \
(atomic_set(&__get_cpu_var(cedf_cpu_entries).will_schedule, 0))
#define test_will_schedule(cpu) \
(atomic_read(&per_cpu(cedf_cpu_entries, cpu).will_schedule))
#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
struct tasklet_head
{
struct tasklet_struct *head;
struct tasklet_struct **tail;
};
#endif
/*
* In C-EDF there is a cedf domain _per_ cluster
* The number of clusters is dynamically determined accordingly to the
* total cpu number and the cluster size
*/
typedef struct clusterdomain {
/* rt_domain for this cluster */
rt_domain_t domain;
/* cpus in this cluster */
cpu_entry_t* *cpus;
/* map of this cluster cpus */
cpumask_var_t cpu_map;
/* the cpus queue themselves according to priority in here */
struct binheap_handle cpu_heap;
/* lock for this cluster */
#define cluster_lock domain.ready_lock
#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
struct tasklet_head pending_tasklets;
#endif
#ifdef CONFIG_LITMUS_DGL_SUPPORT
raw_spinlock_t dgl_lock;
#endif
} cedf_domain_t;
/* a cedf_domain per cluster; allocation is done at init/activation time */
cedf_domain_t *cedf;
#define remote_cluster(cpu) ((cedf_domain_t *) per_cpu(cedf_cpu_entries, cpu).cluster)
#define task_cpu_cluster(task) remote_cluster(get_partition(task))
/* total number of cluster */
static int num_clusters;
/* we do not support cluster of different sizes */
static unsigned int cluster_size;
static int clusters_allocated = 0;
#ifdef CONFIG_LITMUS_DGL_SUPPORT
static raw_spinlock_t* cedf_get_dgl_spinlock(struct task_struct *t)
{
cedf_domain_t *cluster = task_cpu_cluster(t);
return(&cluster->dgl_lock);
}
#endif
/* Uncomment WANT_ALL_SCHED_EVENTS if you want to see all scheduling
* decisions in the TRACE() log; uncomment VERBOSE_INIT for verbose
* information during the initialization of the plugin (e.g., topology)
#define WANT_ALL_SCHED_EVENTS
*/
#define VERBOSE_INIT
static int cpu_lower_prio(struct binheap_node *_a, struct binheap_node *_b)
{
cpu_entry_t *a = binheap_entry(_a, cpu_entry_t, hn);
cpu_entry_t *b = binheap_entry(_b, cpu_entry_t, hn);
/* Note that a and b are inverted: we want the lowest-priority CPU at
* the top of the heap.
*/
return edf_higher_prio(b->linked, a->linked);
}
/* update_cpu_position - Move the cpu entry to the correct place to maintain
* order in the cpu queue. Caller must hold cedf lock.
*/
static void update_cpu_position(cpu_entry_t *entry)
{
cedf_domain_t *cluster = entry->cluster;
if (likely(binheap_is_in_heap(&entry->hn))) {
binheap_delete(&entry->hn, &cluster->cpu_heap);
}
binheap_add(&entry->hn, &cluster->cpu_heap, cpu_entry_t, hn);
}
/* caller must hold cedf lock */
static cpu_entry_t* lowest_prio_cpu(cedf_domain_t *cluster)
{
return binheap_top_entry(&cluster->cpu_heap, cpu_entry_t, hn);
}
/* link_task_to_cpu - Update the link of a CPU.
* Handles the case where the to-be-linked task is already
* scheduled on a different CPU.
*/
static noinline void link_task_to_cpu(struct task_struct* linked,
cpu_entry_t *entry)
{
cpu_entry_t *sched;
struct task_struct* tmp;
int on_cpu;
BUG_ON(linked && !is_realtime(linked));
/* Currently linked task is set to be unlinked. */
if (entry->linked) {
entry->linked->rt_param.linked_on = NO_CPU;
}
/* Link new task to CPU. */
if (linked) {
set_rt_flags(linked, RT_F_RUNNING);
/* handle task is already scheduled somewhere! */
on_cpu = linked->rt_param.scheduled_on;
if (on_cpu != NO_CPU) {
sched = &per_cpu(cedf_cpu_entries, on_cpu);
/* this should only happen if not linked already */
BUG_ON(sched->linked == linked);
/* If we are already scheduled on the CPU to which we
* wanted to link, we don't need to do the swap --
* we just link ourselves to the CPU and depend on
* the caller to get things right.
*/
if (entry != sched) {
TRACE_TASK(linked,
"already scheduled on %d, updating link.\n",
sched->cpu);
tmp = sched->linked;
linked->rt_param.linked_on = sched->cpu;
sched->linked = linked;
update_cpu_position(sched);
linked = tmp;
}
}
if (linked) /* might be NULL due to swap */
linked->rt_param.linked_on = entry->cpu;
}
entry->linked = linked;
#ifdef WANT_ALL_SCHED_EVENTS
if (linked)
TRACE_TASK(linked, "linked to %d.\n", entry->cpu);
else
TRACE("NULL linked to %d.\n", entry->cpu);
#endif
update_cpu_position(entry);
}
/* unlink - Make sure a task is not linked any longer to an entry
* where it was linked before. Must hold cluster_lock.
*/
static noinline void unlink(struct task_struct* t)
{
cpu_entry_t *entry;
if (t->rt_param.linked_on != NO_CPU) {
/* unlink */
entry = &per_cpu(cedf_cpu_entries, t->rt_param.linked_on);
t->rt_param.linked_on = NO_CPU;
link_task_to_cpu(NULL, entry);
} else if (is_queued(t)) {
/* This is an interesting situation: t is scheduled,
* but was just recently unlinked. It cannot be
* linked anywhere else (because then it would have
* been relinked to this CPU), thus it must be in some
* queue. We must remove it from the list in this
* case.
*
* in C-EDF case is should be somewhere in the queue for
* its domain, therefore and we can get the domain using
* task_cpu_cluster
*/
remove(&(task_cpu_cluster(t))->domain, t);
}
}
/* preempt - force a CPU to reschedule
*/
static void preempt(cpu_entry_t *entry)
{
preempt_if_preemptable(entry->scheduled, entry->cpu);
}
/* requeue - Put an unlinked task into gsn-edf domain.
* Caller must hold cluster_lock.
*/
static noinline void requeue(struct task_struct* task)
{
cedf_domain_t *cluster = task_cpu_cluster(task);
BUG_ON(!task);
/* sanity check before insertion */
BUG_ON(is_queued(task));
if (is_released(task, litmus_clock()))
__add_ready(&cluster->domain, task);
else {
/* it has got to wait */
add_release(&cluster->domain, task);
}
}
#ifdef CONFIG_SCHED_CPU_AFFINITY
static cpu_entry_t* cedf_get_nearest_available_cpu(
cedf_domain_t *cluster, cpu_entry_t *start)
{
cpu_entry_t *affinity;
get_nearest_available_cpu(affinity, start, cedf_cpu_entries,
#ifdef CONFIG_RELEASE_MASTER
cluster->domain.release_master
#else
NO_CPU
#endif
);
/* make sure CPU is in our cluster */
if (affinity && cpu_isset(affinity->cpu, *cluster->cpu_map))
return(affinity);
else
return(NULL);
}
#endif
/* check for any necessary preemptions */
static void check_for_preemptions(cedf_domain_t *cluster)
{
struct task_struct *task;
cpu_entry_t *last;
for(last = lowest_prio_cpu(cluster);
edf_preemption_needed(&cluster->domain, last->linked);
last = lowest_prio_cpu(cluster)) {
/* preemption necessary */
task = __take_ready(&cluster->domain);
TRACE("check_for_preemptions: attempting to link task %d to %d\n",
task->pid, last->cpu);
#ifdef CONFIG_SCHED_CPU_AFFINITY
{
cpu_entry_t *affinity =
cedf_get_nearest_available_cpu(cluster,
&per_cpu(cedf_cpu_entries, task_cpu(task)));
if(affinity)
last = affinity;
else if(last->linked)
requeue(last->linked);
}
#else
if (last->linked)
requeue(last->linked);
#endif
link_task_to_cpu(task, last);
preempt(last);
}
}
/* cedf_job_arrival: task is either resumed or released */
static noinline void cedf_job_arrival(struct task_struct* task)
{
cedf_domain_t *cluster = task_cpu_cluster(task);
BUG_ON(!task);
requeue(task);
check_for_preemptions(cluster);
}
static void cedf_release_jobs(rt_domain_t* rt, struct bheap* tasks)
{
cedf_domain_t* cluster = container_of(rt, cedf_domain_t, domain);
unsigned long flags;
raw_spin_lock_irqsave(&cluster->cluster_lock, flags);
__merge_ready(&cluster->domain, tasks);
check_for_preemptions(cluster);
raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags);
}
/* caller holds cluster_lock */
static noinline void job_completion(struct task_struct *t, int forced)
{
BUG_ON(!t);
sched_trace_task_completion(t, forced);
#ifdef CONFIG_LITMUS_NVIDIA
atomic_set(&tsk_rt(t)->nv_int_count, 0);
#endif
TRACE_TASK(t, "job_completion().\n");
/* set flags */
set_rt_flags(t, RT_F_SLEEP);
/* prepare for next period */
prepare_for_next_period(t);
if (is_released(t, litmus_clock()))
sched_trace_task_release(t);
/* unlink */
unlink(t);
/* requeue
* But don't requeue a blocking task. */
if (is_running(t))
cedf_job_arrival(t);
}
/* cedf_tick - this function is called for every local timer
* interrupt.
*
* checks whether the current task has expired and checks
* whether we need to preempt it if it has not expired
*/
static void cedf_tick(struct task_struct* t)
{
if (is_realtime(t) && budget_enforced(t) && budget_exhausted(t)) {
if (!is_np(t)) {
/* np tasks will be preempted when they become
* preemptable again
*/
litmus_reschedule_local();
set_will_schedule();
TRACE("cedf_scheduler_tick: "
"%d is preemptable "
" => FORCE_RESCHED\n", t->pid);
} else if (is_user_np(t)) {
TRACE("cedf_scheduler_tick: "
"%d is non-preemptable, "
"preemption delayed.\n", t->pid);
request_exit_np(t);
}
}
}
#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
static void __do_lit_tasklet(struct tasklet_struct* tasklet, unsigned long flushed)
{
if (!atomic_read(&tasklet->count)) {
if(tasklet->owner) {
sched_trace_tasklet_begin(tasklet->owner);
}
if (!test_and_clear_bit(TASKLET_STATE_SCHED, &tasklet->state))
{
BUG();
}
TRACE("%s: Invoking tasklet with owner pid = %d (flushed = %d).\n",
__FUNCTION__,
(tasklet->owner) ? tasklet->owner->pid : -1,
(tasklet->owner) ? 0 : 1);
tasklet->func(tasklet->data);
tasklet_unlock(tasklet);
if(tasklet->owner) {
sched_trace_tasklet_end(tasklet->owner, flushed);
}
}
else {
BUG();
}
}
static void do_lit_tasklets(cedf_domain_t* cluster, struct task_struct* sched_task)
{
int work_to_do = 1;
struct tasklet_struct *tasklet = NULL;
unsigned long flags;
while(work_to_do) {
TS_NV_SCHED_BOTISR_START;
raw_spin_lock_irqsave(&cluster->cluster_lock, flags);
if(cluster->pending_tasklets.head != NULL) {
// remove tasklet at head.
struct tasklet_struct *prev = NULL;
tasklet = cluster->pending_tasklets.head;
// find a tasklet with prio to execute; skip ones where
// sched_task has a higher priority.
// We use the '!edf' test instead of swaping function arguments since
// both sched_task and owner could be NULL. In this case, we want to
// still execute the tasklet.
while(tasklet && !edf_higher_prio(tasklet->owner, sched_task)) {
prev = tasklet;
tasklet = tasklet->next;
}
if(tasklet) { // found something to execuite
// remove the tasklet from the queue
if(prev) {
prev->next = tasklet->next;
if(prev->next == NULL) {
TRACE("%s: Tasklet for %d is the last element in tasklet queue.\n", __FUNCTION__, tasklet->owner->pid);
cluster->pending_tasklets.tail = &(prev);
}
}
else {
cluster->pending_tasklets.head = tasklet->next;
if(tasklet->next == NULL) {
TRACE("%s: Tasklet for %d is the last element in tasklet queue.\n", __FUNCTION__, tasklet->owner->pid);
cluster->pending_tasklets.tail = &(cluster->pending_tasklets.head);
}
}
}
else {
TRACE("%s: No tasklets with eligible priority.\n", __FUNCTION__);
}
}
else {
TRACE("%s: Tasklet queue is empty.\n", __FUNCTION__);
}
raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags);
if(tasklet) {
__do_lit_tasklet(tasklet, 0ul);
tasklet = NULL;
}
else {
work_to_do = 0;
}
TS_NV_SCHED_BOTISR_END;
}
}
static void __add_pai_tasklet(struct tasklet_struct* tasklet, cedf_domain_t* cluster)
{
struct tasklet_struct* step;
tasklet->next = NULL; // make sure there are no old values floating around
step = cluster->pending_tasklets.head;
if(step == NULL) {
TRACE("%s: tasklet queue empty. inserting tasklet for %d at head.\n", __FUNCTION__, tasklet->owner->pid);
// insert at tail.
*(cluster->pending_tasklets.tail) = tasklet;
cluster->pending_tasklets.tail = &(tasklet->next);
}
else if((*(cluster->pending_tasklets.tail) != NULL) &&
edf_higher_prio((*(cluster->pending_tasklets.tail))->owner, tasklet->owner)) {
// insert at tail.
TRACE("%s: tasklet belongs at end. inserting tasklet for %d at tail.\n", __FUNCTION__, tasklet->owner->pid);
*(cluster->pending_tasklets.tail) = tasklet;
cluster->pending_tasklets.tail = &(tasklet->next);
}
else {
// insert the tasklet somewhere in the middle.
TRACE("%s: tasklet belongs somewhere in the middle.\n", __FUNCTION__);
while(step->next && edf_higher_prio(step->next->owner, tasklet->owner)) {
step = step->next;
}
// insert tasklet right before step->next.
TRACE("%s: inserting tasklet for %d between %d and %d.\n", __FUNCTION__,
tasklet->owner->pid,
(step->owner) ?
step->owner->pid :
-1,
(step->next) ?
((step->next->owner) ?
step->next->owner->pid :
-1) :
-1);
tasklet->next = step->next;
step->next = tasklet;
// patch up the head if needed.
if(cluster->pending_tasklets.head == step)
{
TRACE("%s: %d is the new tasklet queue head.\n", __FUNCTION__, tasklet->owner->pid);
cluster->pending_tasklets.head = tasklet;
}
}
}
static void cedf_run_tasklets(struct task_struct* sched_task)
{
cedf_domain_t* cluster;
preempt_disable();
cluster = (is_realtime(sched_task)) ?
task_cpu_cluster(sched_task) :
remote_cluster(smp_processor_id());
if(cluster && cluster->pending_tasklets.head != NULL) {
TRACE("%s: There are tasklets to process.\n", __FUNCTION__);
do_lit_tasklets(cluster, sched_task);
}
preempt_enable_no_resched();
}
static int cedf_enqueue_pai_tasklet(struct tasklet_struct* tasklet)
{
#if 0
cedf_domain_t *cluster = NULL;
cpu_entry_t *targetCPU = NULL;
int thisCPU;
int runLocal = 0;
int runNow = 0;
unsigned long flags;
if(unlikely((tasklet->owner == NULL) || !is_realtime(tasklet->owner)))
{
TRACE("%s: No owner associated with this tasklet!\n", __FUNCTION__);
return 0;
}
cluster = task_cpu_cluster(tasklet->owner);
raw_spin_lock_irqsave(&cluster->cluster_lock, flags);
thisCPU = smp_processor_id();
#ifdef CONFIG_SCHED_CPU_AFFINITY
{
cpu_entry_t* affinity = NULL;
// use this CPU if it is in our cluster and isn't running any RT work.
if(cpu_isset(thisCPU, *cluster->cpu_map) && (__get_cpu_var(cedf_cpu_entries).linked == NULL)) {
affinity = &(__get_cpu_var(cedf_cpu_entries));
}
else {
// this CPU is busy or shouldn't run tasklet in this cluster.
// look for available near by CPUs.
// NOTE: Affinity towards owner and not this CPU. Is this right?
affinity =
cedf_get_nearest_available_cpu(cluster,
&per_cpu(cedf_cpu_entries, task_cpu(tasklet->owner)));
}
targetCPU = affinity;
}
#endif
if (targetCPU == NULL) {
targetCPU = lowest_prio_cpu(cluster);
}
if (edf_higher_prio(tasklet->owner, targetCPU->linked)) {
if (thisCPU == targetCPU->cpu) {
TRACE("%s: Run tasklet locally (and now).\n", __FUNCTION__);
runLocal = 1;
runNow = 1;
}
else {
TRACE("%s: Run tasklet remotely (and now).\n", __FUNCTION__);
runLocal = 0;
runNow = 1;
}
}
else {
runLocal = 0;
runNow = 0;
}
if(!runLocal) {
// enqueue the tasklet
__add_pai_tasklet(tasklet, cluster);
}
raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags);
if (runLocal /*&& runNow */) { // runNow == 1 is implied
TRACE("%s: Running tasklet on CPU where it was received.\n", __FUNCTION__);
__do_lit_tasklet(tasklet, 0ul);
}
else if (runNow /*&& !runLocal */) { // runLocal == 0 is implied
TRACE("%s: Triggering CPU %d to run tasklet.\n", __FUNCTION__, targetCPU->cpu);
preempt(targetCPU); // need to be protected by cluster_lock?
}
else {
TRACE("%s: Scheduling of tasklet was deferred.\n", __FUNCTION__);
}
#else
TRACE("%s: Running tasklet on CPU where it was received.\n", __FUNCTION__);
__do_lit_tasklet(tasklet, 0ul);
#endif
return(1); // success
}
static void cedf_change_prio_pai_tasklet(struct task_struct *old_prio,
struct task_struct *new_prio)
{
struct tasklet_struct* step;
unsigned long flags;
cedf_domain_t *cluster;
struct task_struct *probe;
// identify the cluster by the assignment of these tasks. one should
// be non-NULL.
probe = (old_prio) ? old_prio : new_prio;
if(probe) {
cluster = task_cpu_cluster(probe);
if(cluster->pending_tasklets.head != NULL) {
raw_spin_lock_irqsave(&cluster->cluster_lock, flags);
for(step = cluster->pending_tasklets.head; step != NULL; step = step->next) {
if(step->owner == old_prio) {
TRACE("%s: Found tasklet to change: %d\n", __FUNCTION__, step->owner->pid);
step->owner = new_prio;
}
}
raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags);
}
}
else {
TRACE("%s: Both priorities were NULL\n");
}
}
#endif // PAI
/* Getting schedule() right is a bit tricky. schedule() may not make any
* assumptions on the state of the current task since it may be called for a
* number of reasons. The reasons include a scheduler_tick() determined that it
* was necessary, because sys_exit_np() was called, because some Linux
* subsystem determined so, or even (in the worst case) because there is a bug
* hidden somewhere. Thus, we must take extreme care to determine what the
* current state is.
*
* The CPU could currently be scheduling a task (or not), be linked (or not).
*
* The following assertions for the scheduled task could hold:
*
* - !is_running(scheduled) // the job blocks
* - scheduled->timeslice == 0 // the job completed (forcefully)
* - get_rt_flag() == RT_F_SLEEP // the job completed (by syscall)
* - linked != scheduled // we need to reschedule (for any reason)
* - is_np(scheduled) // rescheduling must be delayed,
* sys_exit_np must be requested
*
* Any of these can occur together.
*/
static struct task_struct* cedf_schedule(struct task_struct * prev)
{
cpu_entry_t* entry = &__get_cpu_var(cedf_cpu_entries);
cedf_domain_t *cluster = entry->cluster;
int out_of_time, sleep, preempt, np, exists, blocks;
struct task_struct* next = NULL;
#ifdef CONFIG_RELEASE_MASTER
/* Bail out early if we are the release master.
* The release master never schedules any real-time tasks.
*/
if (unlikely(cluster->domain.release_master == entry->cpu)) {
sched_state_task_picked();
return NULL;
}
#endif
raw_spin_lock(&cluster->cluster_lock);
clear_will_schedule();
/* sanity checking */
BUG_ON(entry->scheduled && entry->scheduled != prev);
BUG_ON(entry->scheduled && !is_realtime(prev));
BUG_ON(is_realtime(prev) && !entry->scheduled);
/* (0) Determine state */
exists = entry->scheduled != NULL;
blocks = exists && !is_running(entry->scheduled);
out_of_time = exists &&
budget_enforced(entry->scheduled) &&
budget_exhausted(entry->scheduled);
np = exists && is_np(entry->scheduled);
sleep = exists && get_rt_flags(entry->scheduled) == RT_F_SLEEP;
preempt = entry->scheduled != entry->linked;
#ifdef WANT_ALL_SCHED_EVENTS
TRACE_TASK(prev, "invoked cedf_schedule.\n");
#endif
if (exists)
TRACE_TASK(prev,
"blocks:%d out_of_time:%d np:%d sleep:%d preempt:%d "
"state:%d sig:%d\n",
blocks, out_of_time, np, sleep, preempt,
prev->state, signal_pending(prev));
if (entry->linked && preempt)
TRACE_TASK(prev, "will be preempted by %s/%d\n",
entry->linked->comm, entry->linked->pid);
/* If a task blocks we have no choice but to reschedule.
*/
if (blocks)
unlink(entry->scheduled);
#if defined(CONFIG_LITMUS_NVIDIA) && defined(CONFIG_LITMUS_AFFINITY_LOCKING)
if(exists && is_realtime(entry->scheduled) && tsk_rt(entry->scheduled)->held_gpus) {
if(!blocks || tsk_rt(entry->scheduled)->suspend_gpu_tracker_on_block) {
// don't track preemptions or locking protocol suspensions.
TRACE_TASK(entry->scheduled, "stopping GPU tracker.\n");
stop_gpu_tracker(entry->scheduled);
}
else if(blocks && !tsk_rt(entry->scheduled)->suspend_gpu_tracker_on_block) {
TRACE_TASK(entry->scheduled, "GPU tracker remains on during suspension.\n");
}
}
#endif
/* Request a sys_exit_np() call if we would like to preempt but cannot.
* We need to make sure to update the link structure anyway in case
* that we are still linked. Multiple calls to request_exit_np() don't
* hurt.
*/
if (np && (out_of_time || preempt || sleep)) {
unlink(entry->scheduled);
request_exit_np(entry->scheduled);
}
/* Any task that is preemptable and either exhausts its execution
* budget or wants to sleep completes. We may have to reschedule after
* this. Don't do a job completion if we block (can't have timers running
* for blocked jobs). Preemption go first for the same reason.
*/
if (!np && (out_of_time || sleep) && !blocks && !preempt)
job_completion(entry->scheduled, !sleep);
/* Link pending task if we became unlinked.
*/
if (!entry->linked)
link_task_to_cpu(__take_ready(&cluster->domain), entry);
/* The final scheduling decision. Do we need to switch for some reason?
* If linked is different from scheduled, then select linked as next.
*/
if ((!np || blocks) &&
entry->linked != entry->scheduled) {
/* Schedule a linked job? */
if (entry->linked) {
entry->linked->rt_param.scheduled_on = entry->cpu;
next = entry->linked;
}
if (entry->scheduled) {
/* not gonna be scheduled soon */
entry->scheduled->rt_param.scheduled_on = NO_CPU;
TRACE_TASK(entry->scheduled, "scheduled_on = NO_CPU\n");
}
} else
/* Only override Linux scheduler if we have a real-time task
* scheduled that needs to continue.
*/
if (exists)
next = prev;
sched_state_task_picked();
raw_spin_unlock(&cluster->cluster_lock);
#ifdef WANT_ALL_SCHED_EVENTS
TRACE("cluster_lock released, next=0x%p\n", next);
if (next)
TRACE_TASK(next, "scheduled at %llu\n", litmus_clock());
else if (exists && !next)
TRACE("becomes idle at %llu.\n", litmus_clock());
#endif
return next;
}
/* _finish_switch - we just finished the switch away from prev
*/
static void cedf_finish_switch(struct task_struct *prev)
{
cpu_entry_t* entry = &__get_cpu_var(cedf_cpu_entries);
entry->scheduled = is_realtime(current) ? current : NULL;
#ifdef WANT_ALL_SCHED_EVENTS
TRACE_TASK(prev, "switched away from\n");
#endif
}
/* Prepare a task for running in RT mode
*/
static void cedf_task_new(struct task_struct * t, int on_rq, int running)
{
unsigned long flags;
cpu_entry_t* entry;
cedf_domain_t* cluster;
TRACE("c-edf: task new %d\n", t->pid);
/* the cluster doesn't change even if t is running */
cluster = task_cpu_cluster(t);
raw_spin_lock_irqsave(&cluster->cluster_lock, flags);
/* setup job params */
release_at(t, litmus_clock());
if (running) {
entry = &per_cpu(cedf_cpu_entries, task_cpu(t));
BUG_ON(entry->scheduled);
#ifdef CONFIG_RELEASE_MASTER
if (entry->cpu != cluster->domain.release_master) {
#endif
entry->scheduled = t;
tsk_rt(t)->scheduled_on = task_cpu(t);
#ifdef CONFIG_RELEASE_MASTER
} else {
/* do not schedule on release master */
preempt(entry); /* force resched */
tsk_rt(t)->scheduled_on = NO_CPU;
}
#endif
} else {
t->rt_param.scheduled_on = NO_CPU;
}
t->rt_param.linked_on = NO_CPU;
cedf_job_arrival(t);
raw_spin_unlock_irqrestore(&(cluster->cluster_lock), flags);
}
static void cedf_task_wake_up(struct task_struct *task)
{
unsigned long flags;
//lt_t now;
cedf_domain_t *cluster;
TRACE_TASK(task, "wake_up at %llu\n", litmus_clock());
cluster = task_cpu_cluster(task);
raw_spin_lock_irqsave(&cluster->cluster_lock, flags);
#if 0 // sproadic task model
/* We need to take suspensions because of semaphores into
* account! If a job resumes after being suspended due to acquiring
* a semaphore, it should never be treated as a new job release.
*/
if (get_rt_flags(task) == RT_F_EXIT_SEM) {
set_rt_flags(task, RT_F_RUNNING);
} else {
now = litmus_clock();
if (is_tardy(task, now)) {
/* new sporadic release */
release_at(task, now);
sched_trace_task_release(task);
}
else {
if (task->rt.time_slice) {
/* came back in time before deadline
*/
set_rt_flags(task, RT_F_RUNNING);
}
}
}
#else
set_rt_flags(task, RT_F_RUNNING); // periodic model
#endif
if(tsk_rt(task)->linked_on == NO_CPU)
cedf_job_arrival(task);
raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags);
}
static void cedf_task_block(struct task_struct *t)
{
unsigned long flags;
cedf_domain_t *cluster;
TRACE_TASK(t, "block at %llu\n", litmus_clock());
cluster = task_cpu_cluster(t);
/* unlink if necessary */
raw_spin_lock_irqsave(&cluster->cluster_lock, flags);
unlink(t);
raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags);
BUG_ON(!is_realtime(t));
}
static void cedf_task_exit(struct task_struct * t)
{
unsigned long flags;
cedf_domain_t *cluster = task_cpu_cluster(t);
#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
cedf_change_prio_pai_tasklet(t, NULL);
#endif
/* unlink if necessary */
raw_spin_lock_irqsave(&cluster->cluster_lock, flags);
unlink(t);
if (tsk_rt(t)->scheduled_on != NO_CPU) {
cpu_entry_t *cpu;
cpu = &per_cpu(cedf_cpu_entries, tsk_rt(t)->scheduled_on);
cpu->scheduled = NULL;
tsk_rt(t)->scheduled_on = NO_CPU;
}
raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags);
BUG_ON(!is_realtime(t));
TRACE_TASK(t, "RIP\n");
}
static long cedf_admit_task(struct task_struct* tsk)
{
#ifdef CONFIG_LITMUS_NESTED_LOCKING
INIT_BINHEAP_HANDLE(&tsk_rt(tsk)->hp_blocked_tasks,
edf_max_heap_base_priority_order);
#endif
return task_cpu(tsk) == tsk->rt_param.task_params.cpu ? 0 : -EINVAL;
}
#ifdef CONFIG_LITMUS_LOCKING
#include <litmus/fdso.h>
/* called with IRQs off */
static void __increase_priority_inheritance(struct task_struct* t,
struct task_struct* prio_inh)
{
int linked_on;
int check_preempt = 0;
cedf_domain_t* cluster = task_cpu_cluster(t);
#ifdef CONFIG_LITMUS_NESTED_LOCKING
/* this sanity check allows for weaker locking in protocols */
/* TODO (klitirqd): Skip this check if 't' is a proxy thread (???) */
if(__edf_higher_prio(prio_inh, BASE, t, EFFECTIVE)) {
#endif
TRACE_TASK(t, "inherits priority from %s/%d\n",
prio_inh->comm, prio_inh->pid);
tsk_rt(t)->inh_task = prio_inh;
linked_on = tsk_rt(t)->linked_on;
/* If it is scheduled, then we need to reorder the CPU heap. */
if (linked_on != NO_CPU) {
TRACE_TASK(t, "%s: linked on %d\n",
__FUNCTION__, linked_on);
/* Holder is scheduled; need to re-order CPUs.
* We can't use heap_decrease() here since
* the cpu_heap is ordered in reverse direction, so
* it is actually an increase. */
binheap_delete(&per_cpu(cedf_cpu_entries, linked_on).hn,
&cluster->cpu_heap);
binheap_add(&per_cpu(cedf_cpu_entries, linked_on).hn,
&cluster->cpu_heap, cpu_entry_t, hn);
} else {
/* holder may be queued: first stop queue changes */
raw_spin_lock(&cluster->domain.release_lock);
if (is_queued(t)) {
TRACE_TASK(t, "%s: is queued\n",
__FUNCTION__);
/* We need to update the position of holder in some
* heap. Note that this could be a release heap if we
* budget enforcement is used and this job overran. */
check_preempt =
!bheap_decrease(edf_ready_order, tsk_rt(t)->heap_node);
} else {
/* Nothing to do: if it is not queued and not linked
* then it is either sleeping or currently being moved
* by other code (e.g., a timer interrupt handler) that
* will use the correct priority when enqueuing the
* task. */
TRACE_TASK(t, "%s: is NOT queued => Done.\n",
__FUNCTION__);
}
raw_spin_unlock(&cluster->domain.release_lock);
/* If holder was enqueued in a release heap, then the following
* preemption check is pointless, but we can't easily detect
* that case. If you want to fix this, then consider that
* simply adding a state flag requires O(n) time to update when
* releasing n tasks, which conflicts with the goal to have
* O(log n) merges. */
if (check_preempt) {
/* heap_decrease() hit the top level of the heap: make
* sure preemption checks get the right task, not the
* potentially stale cache. */
bheap_uncache_min(edf_ready_order,
&cluster->domain.ready_queue);
check_for_preemptions(cluster);
}
}
#ifdef CONFIG_LITMUS_NESTED_LOCKING
}
else {
TRACE_TASK(t, "Spurious invalid priority increase. "
"Inheritance request: %s/%d [eff_prio = %s/%d] to inherit from %s/%d\n"
"Occurance is likely okay: probably due to (hopefully safe) concurrent priority updates.\n",
t->comm, t->pid,
effective_priority(t)->comm, effective_priority(t)->pid,
(prio_inh) ? prio_inh->comm : "nil",
(prio_inh) ? prio_inh->pid : -1);
WARN_ON(!prio_inh);
}
#endif
}
/* called with IRQs off */
static void increase_priority_inheritance(struct task_struct* t, struct task_struct* prio_inh)
{
cedf_domain_t* cluster = task_cpu_cluster(t);
raw_spin_lock(&cluster->cluster_lock);
__increase_priority_inheritance(t, prio_inh);
#ifdef CONFIG_LITMUS_SOFTIRQD
if(tsk_rt(t)->cur_klitirqd != NULL)
{
TRACE_TASK(t, "%s/%d inherits a new priority!\n",
tsk_rt(t)->cur_klitirqd->comm, tsk_rt(t)->cur_klitirqd->pid);
__increase_priority_inheritance(tsk_rt(t)->cur_klitirqd, prio_inh);
}
#endif
raw_spin_unlock(&cluster->cluster_lock);
#if defined(CONFIG_LITMUS_PAI_SOFTIRQD) && defined(CONFIG_LITMUS_NVIDIA)
if(tsk_rt(t)->held_gpus) {
int i;
for(i = find_first_bit(&tsk_rt(t)->held_gpus, sizeof(tsk_rt(t)->held_gpus));
i < NV_DEVICE_NUM;
i = find_next_bit(&tsk_rt(t)->held_gpus, sizeof(tsk_rt(t)->held_gpus), i+1)) {
pai_check_priority_increase(t, i);
}
}
#endif
}
/* called with IRQs off */
static void __decrease_priority_inheritance(struct task_struct* t,
struct task_struct* prio_inh)
{
#ifdef CONFIG_LITMUS_NESTED_LOCKING
if(__edf_higher_prio(t, EFFECTIVE, prio_inh, BASE)) {
#endif
/* A job only stops inheriting a priority when it releases a
* resource. Thus we can make the following assumption.*/
if(prio_inh)
TRACE_TASK(t, "EFFECTIVE priority decreased to %s/%d\n",
prio_inh->comm, prio_inh->pid);
else
TRACE_TASK(t, "base priority restored.\n");
tsk_rt(t)->inh_task = prio_inh;
if(tsk_rt(t)->scheduled_on != NO_CPU) {
TRACE_TASK(t, "is scheduled.\n");
/* Check if rescheduling is necessary. We can't use heap_decrease()
* since the priority was effectively lowered. */
unlink(t);
cedf_job_arrival(t);
}
else {
cedf_domain_t* cluster = task_cpu_cluster(t);
/* task is queued */
raw_spin_lock(&cluster->domain.release_lock);
if (is_queued(t)) {
TRACE_TASK(t, "is queued.\n");
/* decrease in priority, so we have to re-add to binomial heap */
unlink(t);
cedf_job_arrival(t);
}
else {
TRACE_TASK(t, "is not in scheduler. Probably on wait queue somewhere.\n");
}
raw_spin_unlock(&cluster->domain.release_lock);
}
#ifdef CONFIG_LITMUS_NESTED_LOCKING
}
else {
TRACE_TASK(t, "Spurious invalid priority decrease. "
"Inheritance request: %s/%d [eff_prio = %s/%d] to inherit from %s/%d\n"
"Occurance is likely okay: probably due to (hopefully safe) concurrent priority updates.\n",
t->comm, t->pid,
effective_priority(t)->comm, effective_priority(t)->pid,
(prio_inh) ? prio_inh->comm : "nil",
(prio_inh) ? prio_inh->pid : -1);
}
#endif
}
static void decrease_priority_inheritance(struct task_struct* t,
struct task_struct* prio_inh)
{
cedf_domain_t* cluster = task_cpu_cluster(t);
raw_spin_lock(&cluster->cluster_lock);
__decrease_priority_inheritance(t, prio_inh);
#ifdef CONFIG_LITMUS_SOFTIRQD
if(tsk_rt(t)->cur_klitirqd != NULL)
{
TRACE_TASK(t, "%s/%d decreases in priority!\n",
tsk_rt(t)->cur_klitirqd->comm, tsk_rt(t)->cur_klitirqd->pid);
__decrease_priority_inheritance(tsk_rt(t)->cur_klitirqd, prio_inh);
}
#endif
raw_spin_unlock(&cluster->cluster_lock);
#if defined(CONFIG_LITMUS_PAI_SOFTIRQD) && defined(CONFIG_LITMUS_NVIDIA)
if(tsk_rt(t)->held_gpus) {
int i;
for(i = find_first_bit(&tsk_rt(t)->held_gpus, sizeof(tsk_rt(t)->held_gpus));
i < NV_DEVICE_NUM;
i = find_next_bit(&tsk_rt(t)->held_gpus, sizeof(tsk_rt(t)->held_gpus), i+1)) {
pai_check_priority_decrease(t, i);
}
}
#endif
}
#ifdef CONFIG_LITMUS_SOFTIRQD
/* called with IRQs off */
static void increase_priority_inheritance_klitirqd(struct task_struct* klitirqd,
struct task_struct* old_owner,
struct task_struct* new_owner)
{
cedf_domain_t* cluster = task_cpu_cluster(klitirqd);
BUG_ON(!(tsk_rt(klitirqd)->is_proxy_thread));
raw_spin_lock(&cluster->cluster_lock);
if(old_owner != new_owner)
{
if(old_owner)
{
// unreachable?
tsk_rt(old_owner)->cur_klitirqd = NULL;
}
TRACE_TASK(klitirqd, "giving ownership to %s/%d.\n",
new_owner->comm, new_owner->pid);
tsk_rt(new_owner)->cur_klitirqd = klitirqd;
}
__decrease_priority_inheritance(klitirqd, NULL); // kludge to clear out cur prio.
__increase_priority_inheritance(klitirqd,
(tsk_rt(new_owner)->inh_task == NULL) ?
new_owner :
tsk_rt(new_owner)->inh_task);
raw_spin_unlock(&cluster->cluster_lock);
}
/* called with IRQs off */
static void decrease_priority_inheritance_klitirqd(struct task_struct* klitirqd,
struct task_struct* old_owner,
struct task_struct* new_owner)
{
cedf_domain_t* cluster = task_cpu_cluster(klitirqd);
BUG_ON(!(tsk_rt(klitirqd)->is_proxy_thread));
raw_spin_lock(&cluster->cluster_lock);
TRACE_TASK(klitirqd, "priority restored\n");
__decrease_priority_inheritance(klitirqd, new_owner);
tsk_rt(old_owner)->cur_klitirqd = NULL;
raw_spin_unlock(&cluster->cluster_lock);
}
#endif // CONFIG_LITMUS_SOFTIRQD
#ifdef CONFIG_LITMUS_NESTED_LOCKING
/* called with IRQs off */
/* preconditions:
(1) The 'hp_blocked_tasks_lock' of task 't' is held.
(2) The lock 'to_unlock' is held.
*/
static void nested_increase_priority_inheritance(struct task_struct* t,
struct task_struct* prio_inh,
raw_spinlock_t *to_unlock,
unsigned long irqflags)
{
struct litmus_lock *blocked_lock = tsk_rt(t)->blocked_lock;
if(tsk_rt(t)->inh_task != prio_inh) { // shield redundent calls.
increase_priority_inheritance(t, prio_inh); // increase our prio.
}
raw_spin_unlock(&tsk_rt(t)->hp_blocked_tasks_lock); // unlock the t's heap.
if(blocked_lock) {
if(blocked_lock->ops->propagate_increase_inheritance) {
TRACE_TASK(t, "Inheritor is blocked (...perhaps). Checking lock %d.\n",
blocked_lock->ident);
// beware: recursion
blocked_lock->ops->propagate_increase_inheritance(blocked_lock,
t, to_unlock,
irqflags);
}
else {
TRACE_TASK(t, "Inheritor is blocked on lock (%d) that does not support nesting!\n",
blocked_lock->ident);
unlock_fine_irqrestore(to_unlock, irqflags);
}
}
else {
TRACE_TASK(t, "is not blocked. No propagation.\n");
unlock_fine_irqrestore(to_unlock, irqflags);
}
}
/* called with IRQs off */
/* preconditions:
(1) The 'hp_blocked_tasks_lock' of task 't' is held.
(2) The lock 'to_unlock' is held.
*/
static void nested_decrease_priority_inheritance(struct task_struct* t,
struct task_struct* prio_inh,
raw_spinlock_t *to_unlock,
unsigned long irqflags)
{
struct litmus_lock *blocked_lock = tsk_rt(t)->blocked_lock;
decrease_priority_inheritance(t, prio_inh);
raw_spin_unlock(&tsk_rt(t)->hp_blocked_tasks_lock); // unlock the t's heap.
if(blocked_lock) {
if(blocked_lock->ops->propagate_decrease_inheritance) {
TRACE_TASK(t, "Inheritor is blocked (...perhaps). Checking lock %d.\n",
blocked_lock->ident);
// beware: recursion
blocked_lock->ops->propagate_decrease_inheritance(blocked_lock, t,
to_unlock,
irqflags);
}
else {
TRACE_TASK(t, "Inheritor is blocked on lock (%p) that does not support nesting!\n",
blocked_lock);
unlock_fine_irqrestore(to_unlock, irqflags);
}
}
else {
TRACE_TASK(t, "is not blocked. No propagation.\n");
unlock_fine_irqrestore(to_unlock, irqflags);
}
}
/* ******************** RSM MUTEX ********************** */
static struct litmus_lock_ops cedf_rsm_mutex_lock_ops = {
.lock = rsm_mutex_lock,
.unlock = rsm_mutex_unlock,
.close = rsm_mutex_close,
.deallocate = rsm_mutex_free,
.propagate_increase_inheritance = rsm_mutex_propagate_increase_inheritance,
.propagate_decrease_inheritance = rsm_mutex_propagate_decrease_inheritance,
#ifdef CONFIG_LITMUS_DGL_SUPPORT
.dgl_lock = rsm_mutex_dgl_lock,
.is_owner = rsm_mutex_is_owner,
.enable_priority = rsm_mutex_enable_priority,
#endif
};
static struct litmus_lock* cedf_new_rsm_mutex(void)
{
return rsm_mutex_new(&cedf_rsm_mutex_lock_ops);
}
/* ******************** IKGLP ********************** */
static struct litmus_lock_ops cedf_ikglp_lock_ops = {
.lock = ikglp_lock,
.unlock = ikglp_unlock,
.close = ikglp_close,
.deallocate = ikglp_free,
// ikglp can only be an outer-most lock.
.propagate_increase_inheritance = NULL,
.propagate_decrease_inheritance = NULL,
};
static struct litmus_lock* cedf_new_ikglp(void* __user arg)
{
// assumes clusters of uniform size.
return ikglp_new(cluster_size/num_clusters, &cedf_ikglp_lock_ops, arg);
}
#endif /* CONFIG_LITMUS_NESTED_LOCKING */
/* ******************** KFMLP support ********************** */
static struct litmus_lock_ops cedf_kfmlp_lock_ops = {
.lock = kfmlp_lock,
.unlock = kfmlp_unlock,
.close = kfmlp_close,
.deallocate = kfmlp_free,
// kfmlp can only be an outer-most lock.
.propagate_increase_inheritance = NULL,
.propagate_decrease_inheritance = NULL,
};
static struct litmus_lock* cedf_new_kfmlp(void* __user arg)
{
return kfmlp_new(&cedf_kfmlp_lock_ops, arg);
}
/* **** lock constructor **** */
static long cedf_allocate_lock(struct litmus_lock **lock, int type,
void* __user args)
{
int err;
switch (type) {
#ifdef CONFIG_LITMUS_NESTED_LOCKING
case RSM_MUTEX:
*lock = cedf_new_rsm_mutex();
break;
case IKGLP_SEM:
*lock = cedf_new_ikglp(args);
break;
#endif
case KFMLP_SEM:
*lock = cedf_new_kfmlp(args);
break;
default:
err = -ENXIO;
goto UNSUPPORTED_LOCK;
};
if (*lock)
err = 0;
else
err = -ENOMEM;
UNSUPPORTED_LOCK:
return err;
}
#endif // CONFIG_LITMUS_LOCKING
#ifdef CONFIG_LITMUS_AFFINITY_LOCKING
static struct affinity_observer_ops cedf_kfmlp_affinity_ops = {
.close = kfmlp_aff_obs_close,
.deallocate = kfmlp_aff_obs_free,
};
#ifdef CONFIG_LITMUS_NESTED_LOCKING
static struct affinity_observer_ops cedf_ikglp_affinity_ops = {
.close = ikglp_aff_obs_close,
.deallocate = ikglp_aff_obs_free,
};
#endif
static long cedf_allocate_affinity_observer(struct affinity_observer **aff_obs,
int type,
void* __user args)
{
int err;
switch (type) {
case KFMLP_SIMPLE_GPU_AFF_OBS:
*aff_obs = kfmlp_simple_gpu_aff_obs_new(&cedf_kfmlp_affinity_ops, args);
break;
case KFMLP_GPU_AFF_OBS:
*aff_obs = kfmlp_gpu_aff_obs_new(&cedf_kfmlp_affinity_ops, args);
break;
#ifdef CONFIG_LITMUS_NESTED_LOCKING
case IKGLP_SIMPLE_GPU_AFF_OBS:
*aff_obs = ikglp_simple_gpu_aff_obs_new(&cedf_ikglp_affinity_ops, args);
break;
case IKGLP_GPU_AFF_OBS:
*aff_obs = ikglp_gpu_aff_obs_new(&cedf_ikglp_affinity_ops, args);
break;
#endif
default:
err = -ENXIO;
goto UNSUPPORTED_AFF_OBS;
};
if (*aff_obs)
err = 0;
else
err = -ENOMEM;
UNSUPPORTED_AFF_OBS:
return err;
}
#endif
#ifdef VERBOSE_INIT
static void print_cluster_topology(cpumask_var_t mask, int cpu)
{
int chk;
char buf[255];
chk = cpulist_scnprintf(buf, 254, mask);
buf[chk] = '\0';
printk(KERN_INFO "CPU = %d, shared cpu(s) = %s\n", cpu, buf);
}
#endif
static void cleanup_cedf(void)
{
int i;
#ifdef CONFIG_LITMUS_NVIDIA
shutdown_nvidia_info();
#endif
if (clusters_allocated) {
for (i = 0; i < num_clusters; i++) {
kfree(cedf[i].cpus);
free_cpumask_var(cedf[i].cpu_map);
}
kfree(cedf);
}
}
static long cedf_activate_plugin(void)
{
int i, j, cpu, ccpu, cpu_count;
cpu_entry_t *entry;
cpumask_var_t mask;
int chk = 0;
/* de-allocate old clusters, if any */
cleanup_cedf();
printk(KERN_INFO "C-EDF: Activate Plugin, cluster configuration = %d\n",
cluster_config);
/* need to get cluster_size first */
if(!zalloc_cpumask_var(&mask, GFP_ATOMIC))
return -ENOMEM;
if (unlikely(cluster_config == GLOBAL_CLUSTER)) {
cluster_size = num_online_cpus();
} else {
chk = get_shared_cpu_map(mask, 0, cluster_config);
if (chk) {
/* if chk != 0 then it is the max allowed index */
printk(KERN_INFO "C-EDF: Cluster configuration = %d "
"is not supported on this hardware.\n",
cluster_config);
/* User should notice that the configuration failed, so
* let's bail out. */
return -EINVAL;
}
cluster_size = cpumask_weight(mask);
}
if ((num_online_cpus() % cluster_size) != 0) {
/* this can't be right, some cpus are left out */
printk(KERN_ERR "C-EDF: Trying to group %d cpus in %d!\n",
num_online_cpus(), cluster_size);
return -1;
}
num_clusters = num_online_cpus() / cluster_size;
printk(KERN_INFO "C-EDF: %d cluster(s) of size = %d\n",
num_clusters, cluster_size);
/* initialize clusters */
cedf = kmalloc(num_clusters * sizeof(cedf_domain_t), GFP_ATOMIC);
for (i = 0; i < num_clusters; i++) {
cedf[i].cpus = kmalloc(cluster_size * sizeof(cpu_entry_t),
GFP_ATOMIC);
INIT_BINHEAP_HANDLE(&(cedf[i].cpu_heap), cpu_lower_prio);
edf_domain_init(&(cedf[i].domain), NULL, cedf_release_jobs);
#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
cedf[i].pending_tasklets.head = NULL;
cedf[i].pending_tasklets.tail = &(cedf[i].pending_tasklets.head);
#endif
if(!zalloc_cpumask_var(&cedf[i].cpu_map, GFP_ATOMIC))
return -ENOMEM;
#ifdef CONFIG_RELEASE_MASTER
cedf[i].domain.release_master = atomic_read(&release_master_cpu);
#endif
}
/* cycle through cluster and add cpus to them */
for (i = 0; i < num_clusters; i++) {
#ifdef CONFIG_LITMUS_DGL_SUPPORT
raw_spin_lock_init(&cedf[i].dgl_lock);
#endif
for_each_online_cpu(cpu) {
/* check if the cpu is already in a cluster */
for (j = 0; j < num_clusters; j++)
if (cpumask_test_cpu(cpu, cedf[j].cpu_map))
break;
/* if it is in a cluster go to next cpu */
if (j < num_clusters &&
cpumask_test_cpu(cpu, cedf[j].cpu_map))
continue;
/* this cpu isn't in any cluster */
/* get the shared cpus */
if (unlikely(cluster_config == GLOBAL_CLUSTER))
cpumask_copy(mask, cpu_online_mask);
else
get_shared_cpu_map(mask, cpu, cluster_config);
cpumask_copy(cedf[i].cpu_map, mask);
#ifdef VERBOSE_INIT
print_cluster_topology(mask, cpu);
#endif
/* add cpus to current cluster and init cpu_entry_t */
cpu_count = 0;
for_each_cpu(ccpu, cedf[i].cpu_map) {
entry = &per_cpu(cedf_cpu_entries, ccpu);
cedf[i].cpus[cpu_count] = entry;
atomic_set(&entry->will_schedule, 0);
entry->cpu = ccpu;
entry->cluster = &cedf[i];
INIT_BINHEAP_NODE(&entry->hn);
cpu_count++;
entry->linked = NULL;
entry->scheduled = NULL;
#ifdef CONFIG_RELEASE_MASTER
/* only add CPUs that should schedule jobs */
if (entry->cpu != entry->cluster->domain.release_master)
#endif
update_cpu_position(entry);
}
/* done with this cluster */
break;
}
}
#ifdef CONFIG_LITMUS_SOFTIRQD
{
/* distribute the daemons evenly across the clusters. */
int* affinity = kmalloc(NR_LITMUS_SOFTIRQD * sizeof(int), GFP_ATOMIC);
int num_daemons_per_cluster = NR_LITMUS_SOFTIRQD / num_clusters;
int left_over = NR_LITMUS_SOFTIRQD % num_clusters;
int daemon = 0;
for(i = 0; i < num_clusters; ++i)
{
int num_on_this_cluster = num_daemons_per_cluster;
if(left_over)
{
++num_on_this_cluster;
--left_over;
}
for(j = 0; j < num_on_this_cluster; ++j)
{
// first CPU of this cluster
affinity[daemon++] = i*cluster_size;
}
}
spawn_klitirqd(affinity);
kfree(affinity);
}
#endif
#ifdef CONFIG_LITMUS_NVIDIA
init_nvidia_info();
#endif
free_cpumask_var(mask);
clusters_allocated = 1;
return 0;
}
/* Plugin object */
static struct sched_plugin cedf_plugin __cacheline_aligned_in_smp = {
.plugin_name = "C-EDF",
.finish_switch = cedf_finish_switch,
.tick = cedf_tick,
.task_new = cedf_task_new,
.complete_job = complete_job,
.task_exit = cedf_task_exit,
.schedule = cedf_schedule,
.task_wake_up = cedf_task_wake_up,
.task_block = cedf_task_block,
.admit_task = cedf_admit_task,
.activate_plugin = cedf_activate_plugin,
.compare = edf_higher_prio,
#ifdef CONFIG_LITMUS_LOCKING
.allocate_lock = cedf_allocate_lock,
.increase_prio = increase_priority_inheritance,
.decrease_prio = decrease_priority_inheritance,
#endif
#ifdef CONFIG_LITMUS_NESTED_LOCKING
.nested_increase_prio = nested_increase_priority_inheritance,
.nested_decrease_prio = nested_decrease_priority_inheritance,
.__compare = __edf_higher_prio,
#endif
#ifdef CONFIG_LITMUS_DGL_SUPPORT
.get_dgl_spinlock = cedf_get_dgl_spinlock,
#endif
#ifdef CONFIG_LITMUS_AFFINITY_LOCKING
.allocate_aff_obs = cedf_allocate_affinity_observer,
#endif
#ifdef CONFIG_LITMUS_SOFTIRQD
.increase_prio_klitirqd = increase_priority_inheritance_klitirqd,
.decrease_prio_klitirqd = decrease_priority_inheritance_klitirqd,
#endif
#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
.enqueue_pai_tasklet = cedf_enqueue_pai_tasklet,
.change_prio_pai_tasklet = cedf_change_prio_pai_tasklet,
.run_tasklets = cedf_run_tasklets,
#endif
};
static struct proc_dir_entry *cluster_file = NULL, *cedf_dir = NULL;
static int __init init_cedf(void)
{
int err, fs;
err = register_sched_plugin(&cedf_plugin);
if (!err) {
fs = make_plugin_proc_dir(&cedf_plugin, &cedf_dir);
if (!fs)
cluster_file = create_cluster_file(cedf_dir, &cluster_config);
else
printk(KERN_ERR "Could not allocate C-EDF procfs dir.\n");
}
return err;
}
static void clean_cedf(void)
{
cleanup_cedf();
if (cluster_file)
remove_proc_entry("cluster", cedf_dir);
if (cedf_dir)
remove_plugin_proc_dir(&cedf_plugin);
}
module_init(init_cedf);
module_exit(clean_cedf);