/*
* Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
*
* Scatterlist handling helpers.
*
* This source code is licensed under the GNU General Public License,
* Version 2. See the file COPYING for more details.
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/scatterlist.h>
#include <linux/highmem.h>
#include <linux/kmemleak.h>
/**
* sg_next - return the next scatterlist entry in a list
* @sg: The current sg entry
*
* Description:
* Usually the next entry will be @sg@ + 1, but if this sg element is part
* of a chained scatterlist, it could jump to the start of a new
* scatterlist array.
*
**/
struct scatterlist *sg_next(struct scatterlist *sg)
{
#ifdef CONFIG_DEBUG_SG
BUG_ON(sg->sg_magic != SG_MAGIC);
#endif
if (sg_is_last(sg))
return NULL;
sg++;
if (unlikely(sg_is_chain(sg)))
sg = sg_chain_ptr(sg);
return sg;
}
EXPORT_SYMBOL(sg_next);
/**
* sg_last - return the last scatterlist entry in a list
* @sgl: First entry in the scatterlist
* @nents: Number of entries in the scatterlist
*
* Description:
* Should only be used casually, it (currently) scans the entire list
* to get the last entry.
*
* Note that the @sgl@ pointer passed in need not be the first one,
* the important bit is that @nents@ denotes the number of entries that
* exist from @sgl@.
*
**/
struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
{
#ifndef ARCH_HAS_SG_CHAIN
struct scatterlist *ret = &sgl[nents - 1];
#else
struct scatterlist *sg, *ret = NULL;
unsigned int i;
for_each_sg(sgl, sg, nents, i)
ret = sg;
#endif
#ifdef CONFIG_DEBUG_SG
BUG_ON(sgl[0].sg_magic != SG_MAGIC);
BUG_ON(!sg_is_last(ret));
#endif
return ret;
}
EXPORT_SYMBOL(sg_last);
/**
* sg_init_table - Initialize SG table
* @sgl: The SG table
* @nents: Number of entries in table
*
* Notes:
* If this is part of a chained sg table, sg_mark_end() should be
* used only on the last table part.
*
**/
void sg_init_table(struct scatterlist *sgl, unsigned int nents)
{
memset(sgl, 0, sizeof(*sgl) * nents);
#ifdef CONFIG_DEBUG_SG
{
unsigned int i;
for (i = 0; i < nents; i++)
sgl[i].sg_magic = SG_MAGIC;
}
#endif
sg_mark_end(&sgl[nents - 1]);
}
EXPORT_SYMBOL(sg_init_table);
/**
* sg_init_one - Initialize a single entry sg list
* @sg: SG entry
* @buf: Virtual address for IO
* @buflen: IO length
*
**/
void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
{
sg_init_table(sg, 1);
sg_set_buf(sg, buf, buflen);
}
EXPORT_SYMBOL(sg_init_one);
/*
* The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
* helpers.
*/
static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
{
if (nents == SG_MAX_SINGLE_ALLOC) {
/*
* Kmemleak doesn't track page allocations as they are not
* commonly used (in a raw form) for kernel data structures.
* As we chain together a list of pages and then a normal
* kmalloc (tracked by kmemleak), in order to for that last
* allocation not to become decoupled (and thus a
* false-positive) we need to inform kmemleak of all the
* intermediate allocations.
*/
void *ptr = (void *) __get_free_page(gfp_mask);
kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
return ptr;
} else
return kmalloc(nents * sizeof(struct scatterlist), gfp_mask);
}
static void sg_kfree(struct scatterlist *sg, unsigned int nents)
{
if (nents == SG_MAX_SINGLE_ALLOC) {
kmemleak_free(sg);
free_page((unsigned long) sg);
} else
kfree(sg);
}
/**
* __sg_free_table - Free a previously mapped sg table
* @table: The sg table header to use
* @max_ents: The maximum number of entries per single scatterlist
* @free_fn: Free function
*
* Description:
* Free an sg table previously allocated and setup with
* __sg_alloc_table(). The @max_ents value must be identical to
* that previously used with __sg_alloc_table().
*
**/
void __sg_free_table(struct sg_table *table, unsigned int max_ents,
sg_free_fn *free_fn)
{
struct scatterlist *sgl, *next;
if (unlikely(!table->sgl))
return;
sgl = table->sgl;
while (table->orig_nents) {
unsigned int alloc_size = table->orig_nents;
unsigned int sg_size;
/*
* If we have more than max_ents segments left,
* then assign 'next' to the sg table after the current one.
* sg_size is then one less than alloc size, since the last
* element is the chain pointer.
*/
if (alloc_size > max_ents) {
next = sg_chain_ptr(&sgl[max_ents - 1]);
alloc_size = max_ents;
sg_size = alloc_size - 1;
} else {
sg_size = alloc_size;
next = NULL;
}
table->orig_nents -= sg_size;
free_fn(sgl, alloc_size);
sgl = next;
}
table->sgl = NULL;
}
EXPORT_SYMBOL(__sg_free_table);
/**
* sg_free_table - Free a previously allocated sg table
* @table: The mapped sg table header
*
**/
void sg_free_table(struct sg_table *table)
{
__sg_free_table(table, SG_MAX_SINGLE_ALLOC, sg_kfree);
}
EXPORT_SYMBOL(sg_free_table);
/**
* __sg_alloc_table - Allocate and initialize an sg table with given allocator
* @table: The sg table header to use
* @nents: Number of entries in sg list
* @max_ents: The maximum number of entries the allocator returns per call
* @gfp_mask: GFP allocation mask
* @alloc_fn: Allocator to use
*
* Description:
* This function returns a @table @nents long. The allocator is
* defined to return scatterlist chunks of maximum size @max_ents.
* Thus if @nents is bigger than @max_ents, the scatterlists will be
* chained in units of @max_ents.
*
* Notes:
* If this function returns non-0 (eg failure), the caller must call
* __sg_free_table() to cleanup any leftover allocations.
*
**/
int __sg_alloc_table(struct sg_table *table, unsigned int nents,
unsigned int max_ents, gfp_t gfp_mask,
sg_alloc_fn *alloc_fn)
{
struct scatterlist *sg, *prv;
unsigned int left;
#ifndef ARCH_HAS_SG_CHAIN
BUG_ON(nents > max_ents);
#endif
memset(table, 0, sizeof(*table));
left = nents;
prv = NULL;
do {
unsigned int sg_size, alloc_size = left;
if (alloc_size > max_ents) {
alloc_size = max_ents;
sg_size = alloc_size - 1;
} else
sg_size = alloc_size;
left -= sg_size;
sg = alloc_fn(alloc_size, gfp_mask);
if (unlikely(!sg))
return -ENOMEM;
sg_init_table(sg, alloc_size);
table->nents = table->orig_nents += sg_size;
/*
* If this is the first mapping, assign the sg table header.
* If this is not the first mapping, chain previous part.
*/
if (prv)
sg_chain(prv, max_ents, sg);
else
table->sgl = sg;
/*
* If no more entries after this one, mark the end
*/
if (!left)
sg_mark_end(&sg[sg_size - 1]);
/*
* only really needed for mempool backed sg allocations (like
* SCSI), a possible improvement here would be to pass the
* table pointer into the allocator and let that clear these
* flags
*/
gfp_mask &= ~__GFP_WAIT;
gfp_mask |= __GFP_HIGH;
prv = sg;
} while (left);
return 0;
}
EXPORT_SYMBOL(__sg_alloc_table);
/**
* sg_alloc_table - Allocate and initialize an sg table
* @table: The sg table header to use
* @nents: Number of entries in sg list
* @gfp_mask: GFP allocation mask
*
* Description:
* Allocate and initialize an sg table. If @nents@ is larger than
* SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
*
**/
int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
{
int ret;
ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
gfp_mask, sg_kmalloc);
if (unlikely(ret))
__sg_free_table(table, SG_MAX_SINGLE_ALLOC, sg_kfree);
return ret;
}
EXPORT_SYMBOL(sg_alloc_table);
/**
* sg_miter_start - start mapping iteration over a sg list
* @miter: sg mapping iter to be started
* @sgl: sg list to iterate over
* @nents: number of sg entries
*
* Description:
* Starts mapping iterator @miter.
*
* Context:
* Don't care.
*/
void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
unsigned int nents, unsigned int flags)
{
memset(miter, 0, sizeof(struct sg_mapping_iter));
miter->__sg = sgl;
miter->__nents = nents;
miter->__offset = 0;
WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
miter->__flags = flags;
}
EXPORT_SYMBOL(sg_miter_start);
/**
* sg_miter_next - proceed mapping iterator to the next mapping
* @miter: sg mapping iter to proceed
*
* Description:
* Proceeds @miter@ to the next mapping. @miter@ should have been
* started using sg_miter_start(). On successful return,
* @miter@->page, @miter@->addr and @miter@->length point to the
* current mapping.
*
* Context:
* IRQ disabled if SG_MITER_ATOMIC. IRQ must stay disabled till
* @miter@ is stopped. May sleep if !SG_MITER_ATOMIC.
*
* Returns:
* true if @miter contains the next mapping. false if end of sg
* list is reached.
*/
bool sg_miter_next(struct sg_mapping_iter *miter)
{
unsigned int off, len;
/* check for end and drop resources from the last iteration */
if (!miter->__nents)
return false;
sg_miter_stop(miter);
/* get to the next sg if necessary. __offset is adjusted by stop */
while (miter->__offset == miter->__sg->length) {
if (--miter->__nents) {
miter->__sg = sg_next(miter->__sg);
miter->__offset = 0;
} else
return false;
}
/* map the next page */
off = miter->__sg->offset + miter->__offset;
len = miter->__sg->length - miter->__offset;
miter->page = nth_page(sg_page(miter->__sg), off >> PAGE_SHIFT);
off &= ~PAGE_MASK;
miter->length = min_t(unsigned int, len, PAGE_SIZE - off);
miter->consumed = miter->length;
if (miter->__flags & SG_MITER_ATOMIC)
miter->addr = kmap_atomic(miter->page, KM_BIO_SRC_IRQ) + off;
else
miter->addr = kmap(miter->page) + off;
return true;
}
EXPORT_SYMBOL(sg_miter_next);
/**
* sg_miter_stop - stop mapping iteration
* @miter: sg mapping iter to be stopped
*
* Description:
* Stops mapping iterator @miter. @miter should have been started
* started using sg_miter_start(). A stopped iteration can be
* resumed by calling sg_miter_next() on it. This is useful when
* resources (kmap) need to be released during iteration.
*
* Context:
* IRQ disabled if the SG_MITER_ATOMIC is set. Don't care otherwise.
*/
void sg_miter_stop(struct sg_mapping_iter *miter)
{
WARN_ON(miter->consumed > miter->length);
/* drop resources from the last iteration */
if (miter->addr) {
miter->__offset += miter->consumed;
if (miter->__flags & SG_MITER_TO_SG)
flush_kernel_dcache_page(miter->page);
if (miter->__flags & SG_MITER_ATOMIC) {
WARN_ON(!irqs_disabled());
kunmap_atomic(miter->addr, KM_BIO_SRC_IRQ);
} else
kunmap(miter->page);
miter->page = NULL;
miter->addr = NULL;
miter->length = 0;
miter->consumed = 0;
}
}
EXPORT_SYMBOL(sg_miter_stop);
/**
* sg_copy_buffer - Copy data between a linear buffer and an SG list
* @sgl: The SG list
* @nents: Number of SG entries
* @buf: Where to copy from
* @buflen: The number of bytes to copy
* @to_buffer: transfer direction (non zero == from an sg list to a
* buffer, 0 == from a buffer to an sg list
*
* Returns the number of copied bytes.
*
**/
static size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents,
void *buf, size_t buflen, int to_buffer)
{
unsigned int offset = 0;
struct sg_mapping_iter miter;
unsigned long flags;
unsigned int sg_flags = SG_MITER_ATOMIC;
if (to_buffer)
sg_flags |= SG_MITER_FROM_SG;
else
sg_flags |= SG_MITER_TO_SG;
sg_miter_start(&miter, sgl, nents, sg_flags);
local_irq_save(flags);
while (sg_miter_next(&miter) && offset < buflen) {
unsigned int len;
len = min(miter.length, buflen - offset);
if (to_buffer)
memcpy(buf + offset, miter.addr, len);
else
memcpy(miter.addr, buf + offset, len);
offset += len;
}
sg_miter_stop(&miter);
local_irq_restore(flags);
return offset;
}
/**
* sg_copy_from_buffer - Copy from a linear buffer to an SG list
* @sgl: The SG list
* @nents: Number of SG entries
* @buf: Where to copy from
* @buflen: The number of bytes to copy
*
* Returns the number of copied bytes.
*
**/
size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
void *buf, size_t buflen)
{
return sg_copy_buffer(sgl, nents, buf, buflen, 0);
}
EXPORT_SYMBOL(sg_copy_from_buffer);
/**
* sg_copy_to_buffer - Copy from an SG list to a linear buffer
* @sgl: The SG list
* @nents: Number of SG entries
* @buf: Where to copy to
* @buflen: The number of bytes to copy
*
* Returns the number of copied bytes.
*
**/
size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
void *buf, size_t buflen)
{
return sg_copy_buffer(sgl, nents, buf, buflen, 1);
}
EXPORT_SYMBOL(sg_copy_to_buffer);