/*
* Implement the default iomap interfaces
*
* (C) Copyright 2004 Linus Torvalds
*/
#include <linux/pci.h>
#include <linux/io.h>
#ifdef CONFIG_GENERIC_IOMAP
#include <linux/module.h>
/*
* Read/write from/to an (offsettable) iomem cookie. It might be a PIO
* access or a MMIO access, these functions don't care. The info is
* encoded in the hardware mapping set up by the mapping functions
* (or the cookie itself, depending on implementation and hw).
*
* The generic routines don't assume any hardware mappings, and just
* encode the PIO/MMIO as part of the cookie. They coldly assume that
* the MMIO IO mappings are not in the low address range.
*
* Architectures for which this is not true can't use this generic
* implementation and should do their own copy.
*/
#ifndef HAVE_ARCH_PIO_SIZE
/*
* We encode the physical PIO addresses (0-0xffff) into the
* pointer by offsetting them with a constant (0x10000) and
* assuming that all the low addresses are always PIO. That means
* we can do some sanity checks on the low bits, and don't
* need to just take things for granted.
*/
#define PIO_OFFSET 0x10000UL
#define PIO_MASK 0x0ffffUL
#define PIO_RESERVED 0x40000UL
#endif
/*
* Ugly macros are a way of life.
*/
#define VERIFY_PIO(port) BUG_ON((port & ~PIO_MASK) != PIO_OFFSET)
#define IO_COND(addr, is_pio, is_mmio) do { \
unsigned long port = (unsigned long __force)addr; \
if (port < PIO_RESERVED) { \
VERIFY_PIO(port); \
port &= PIO_MASK; \
is_pio; \
} else { \
is_mmio; \
} \
} while (0)
#ifndef pio_read16be
#define pio_read16be(port) swab16(inw(port))
#define pio_read32be(port) swab32(inl(port))
#endif
#ifndef mmio_read16be
#define mmio_read16be(addr) be16_to_cpu(__raw_readw(addr))
#define mmio_read32be(addr) be32_to_cpu(__raw_readl(addr))
#endif
unsigned int fastcall ioread8(void __iomem *addr)
{
IO_COND(addr, return inb(port), return readb(addr));
}
unsigned int fastcall ioread16(void __iomem *addr)
{
IO_COND(addr, return inw(port), return readw(addr));
}
unsigned int fastcall ioread16be(void __iomem *addr)
{
IO_COND(addr, return pio_read16be(port), return mmio_read16be(addr));
}
unsigned int fastcall ioread32(void __iomem *addr)
{
IO_COND(addr, return inl(port), return readl(addr));
}
unsigned int fastcall ioread32be(void __iomem *addr)
{
IO_COND(addr, return pio_read32be(port), return mmio_read32be(addr));
}
EXPORT_SYMBOL(ioread8);
EXPORT_SYMBOL(ioread16);
EXPORT_SYMBOL(ioread16be);
EXPORT_SYMBOL(ioread32);
EXPORT_SYMBOL(ioread32be);
#ifndef pio_write16be
#define pio_write16be(val,port) outw(swab16(val),port)
#define pio_write32be(val,port) outl(swab32(val),port)
#endif
#ifndef mmio_write16be
#define mmio_write16be(val,port) __raw_writew(be16_to_cpu(val),port)
#define mmio_write32be(val,port) __raw_writel(be32_to_cpu(val),port)
#endif
void fastcall iowrite8(u8 val, void __iomem *addr)
{
IO_COND(addr, outb(val,port), writeb(val, addr));
}
void fastcall iowrite16(u16 val, void __iomem *addr)
{
IO_COND(addr, outw(val,port), writew(val, addr));
}
void fastcall iowrite16be(u16 val, void __iomem *addr)
{
IO_COND(addr, pio_write16be(val,port), mmio_write16be(val, addr));
}
void fastcall iowrite32(u32 val, void __iomem *addr)
{
IO_COND(addr, outl(val,port), writel(val, addr));
}
void fastcall iowrite32be(u32 val, void __iomem *addr)
{
IO_COND(addr, pio_write32be(val,port), mmio_write32be(val, addr));
}
EXPORT_SYMBOL(iowrite8);
EXPORT_SYMBOL(iowrite16);
EXPORT_SYMBOL(iowrite16be);
EXPORT_SYMBOL(iowrite32);
EXPORT_SYMBOL(iowrite32be);
/*
* These are the "repeat MMIO read/write" functions.
* Note the "__raw" accesses, since we don't want to
* convert to CPU byte order. We write in "IO byte
* order" (we also don't have IO barriers).
*/
#ifndef mmio_insb
static inline void mmio_insb(void __iomem *addr, u8 *dst, int count)
{
while (--count >= 0) {
u8 data = __raw_readb(addr);
*dst = data;
dst++;
}
}
static inline void mmio_insw(void __iomem *addr, u16 *dst, int count)
{
while (--count >= 0) {
u16 data = __raw_readw(addr);
*dst = data;
dst++;
}
}
static inline void mmio_insl(void __iomem *addr, u32 *dst, int count)
{
while (--count >= 0) {
u32 data = __raw_readl(addr);
*dst = data;
dst++;
}
}
#endif
#ifndef mmio_outsb
static inline void mmio_outsb(void __iomem *addr, const u8 *src, int count)
{
while (--count >= 0) {
__raw_writeb(*src, addr);
src++;
}
}
static inline void mmio_outsw(void __iomem *addr, const u16 *src, int count)
{
while (--count >= 0) {
__raw_writew(*src, addr);
src++;
}
}
static inline void mmio_outsl(void __iomem *addr, const u32 *src, int count)
{
while (--count >= 0) {
__raw_writel(*src, addr);
src++;
}
}
#endif
void fastcall ioread8_rep(void __iomem *addr, void *dst, unsigned long count)
{
IO_COND(addr, insb(port,dst,count), mmio_insb(addr, dst, count));
}
void fastcall ioread16_rep(void __iomem *addr, void *dst, unsigned long count)
{
IO_COND(addr, insw(port,dst,count), mmio_insw(addr, dst, count));
}
void fastcall ioread32_rep(void __iomem *addr, void *dst, unsigned long count)
{
IO_COND(addr, insl(port,dst,count), mmio_insl(addr, dst, count));
}
EXPORT_SYMBOL(ioread8_rep);
EXPORT_SYMBOL(ioread16_rep);
EXPORT_SYMBOL(ioread32_rep);
void fastcall iowrite8_rep(void __iomem *addr, const void *src, unsigned long count)
{
IO_COND(addr, outsb(port, src, count), mmio_outsb(addr, src, count));
}
void fastcall iowrite16_rep(void __iomem *addr, const void *src, unsigned long count)
{
IO_COND(addr, outsw(port, src, count), mmio_outsw(addr, src, count));
}
void fastcall iowrite32_rep(void __iomem *addr, const void *src, unsigned long count)
{
IO_COND(addr, outsl(port, src,count), mmio_outsl(addr, src, count));
}
EXPORT_SYMBOL(iowrite8_rep);
EXPORT_SYMBOL(iowrite16_rep);
EXPORT_SYMBOL(iowrite32_rep);
/* Create a virtual mapping cookie for an IO port range */
void __iomem *ioport_map(unsigned long port, unsigned int nr)
{
if (port > PIO_MASK)
return NULL;
return (void __iomem *) (unsigned long) (port + PIO_OFFSET);
}
void ioport_unmap(void __iomem *addr)
{
/* Nothing to do */
}
EXPORT_SYMBOL(ioport_map);
EXPORT_SYMBOL(ioport_unmap);
/* Create a virtual mapping cookie for a PCI BAR (memory or IO) */
void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen)
{
unsigned long start = pci_resource_start(dev, bar);
unsigned long len = pci_resource_len(dev, bar);
unsigned long flags = pci_resource_flags(dev, bar);
if (!len || !start)
return NULL;
if (maxlen && len > maxlen)
len = maxlen;
if (flags & IORESOURCE_IO)
return ioport_map(start, len);
if (flags & IORESOURCE_MEM) {
if (flags & IORESOURCE_CACHEABLE)
return ioremap(start, len);
return ioremap_nocache(start, len);
}
/* What? */
return NULL;
}
void pci_iounmap(struct pci_dev *dev, void __iomem * addr)
{
IO_COND(addr, /* nothing */, iounmap(addr));
}
EXPORT_SYMBOL(pci_iomap);
EXPORT_SYMBOL(pci_iounmap);
#endif /* CONFIG_GENERIC_IOMAP */
/*
* Generic iomap devres
*/
static void devm_ioport_map_release(struct device *dev, void *res)
{
ioport_unmap(*(void __iomem **)res);
}
static int devm_ioport_map_match(struct device *dev, void *res,
void *match_data)
{
return *(void **)res == match_data;
}
/**
* devm_ioport_map - Managed ioport_map()
* @dev: Generic device to map ioport for
* @port: Port to map
* @nr: Number of ports to map
*
* Managed ioport_map(). Map is automatically unmapped on driver
* detach.
*/
void __iomem * devm_ioport_map(struct device *dev, unsigned long port,
unsigned int nr)
{
void __iomem **ptr, *addr;
ptr = devres_alloc(devm_ioport_map_release, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return NULL;
addr = ioport_map(port, nr);
if (addr) {
*ptr = addr;
devres_add(dev, ptr);
} else
devres_free(ptr);
return addr;
}
EXPORT_SYMBOL(devm_ioport_map);
/**
* devm_ioport_unmap - Managed ioport_unmap()
* @dev: Generic device to unmap for
* @addr: Address to unmap
*
* Managed ioport_unmap(). @addr must have been mapped using
* devm_ioport_map().
*/
void devm_ioport_unmap(struct device *dev, void __iomem *addr)
{
ioport_unmap(addr);
WARN_ON(devres_destroy(dev, devm_ioport_map_release,
devm_ioport_map_match, (void *)addr));
}
EXPORT_SYMBOL(devm_ioport_unmap);
static void devm_ioremap_release(struct device *dev, void *res)
{
iounmap(*(void __iomem **)res);
}
static int devm_ioremap_match(struct device *dev, void *res, void *match_data)
{
return *(void **)res == match_data;
}
/**
* devm_ioremap - Managed ioremap()
* @dev: Generic device to remap IO address for
* @offset: BUS offset to map
* @size: Size of map
*
* Managed ioremap(). Map is automatically unmapped on driver detach.
*/
void __iomem *devm_ioremap(struct device *dev, unsigned long offset,
unsigned long size)
{
void __iomem **ptr, *addr;
ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return NULL;
addr = ioremap(offset, size);
if (addr) {
*ptr = addr;
devres_add(dev, ptr);
} else
devres_free(ptr);
return addr;
}
EXPORT_SYMBOL(devm_ioremap);
/**
* devm_ioremap_nocache - Managed ioremap_nocache()
* @dev: Generic device to remap IO address for
* @offset: BUS offset to map
* @size: Size of map
*
* Managed ioremap_nocache(). Map is automatically unmapped on driver
* detach.
*/
void __iomem *devm_ioremap_nocache(struct device *dev, unsigned long offset,
unsigned long size)
{
void __iomem **ptr, *addr;
ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return NULL;
addr = ioremap_nocache(offset, size);
if (addr) {
*ptr = addr;
devres_add(dev, ptr);
} else
devres_free(ptr);
return addr;
}
EXPORT_SYMBOL(devm_ioremap_nocache);
/**
* devm_iounmap - Managed iounmap()
* @dev: Generic device to unmap for
* @addr: Address to unmap
*
* Managed iounmap(). @addr must have been mapped using devm_ioremap*().
*/
void devm_iounmap(struct device *dev, void __iomem *addr)
{
iounmap(addr);
WARN_ON(devres_destroy(dev, devm_ioremap_release, devm_ioremap_match,
(void *)addr));
}
EXPORT_SYMBOL(devm_iounmap);
/*
* PCI iomap devres
*/
#define PCIM_IOMAP_MAX PCI_ROM_RESOURCE
struct pcim_iomap_devres {
void __iomem *table[PCIM_IOMAP_MAX];
};
static void pcim_iomap_release(struct device *gendev, void *res)
{
struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
struct pcim_iomap_devres *this = res;
int i;
for (i = 0; i < PCIM_IOMAP_MAX; i++)
if (this->table[i])
pci_iounmap(dev, this->table[i]);
}
/**
* pcim_iomap_table - access iomap allocation table
* @pdev: PCI device to access iomap table for
*
* Access iomap allocation table for @dev. If iomap table doesn't
* exist and @pdev is managed, it will be allocated. All iomaps
* recorded in the iomap table are automatically unmapped on driver
* detach.
*
* This function might sleep when the table is first allocated but can
* be safely called without context and guaranteed to succed once
* allocated.
*/
void __iomem * const * pcim_iomap_table(struct pci_dev *pdev)
{
struct pcim_iomap_devres *dr, *new_dr;
dr = devres_find(&pdev->dev, pcim_iomap_release, NULL, NULL);
if (dr)
return dr->table;
new_dr = devres_alloc(pcim_iomap_release, sizeof(*new_dr), GFP_KERNEL);
if (!new_dr)
return NULL;
dr = devres_get(&pdev->dev, new_dr, NULL, NULL);
return dr->table;
}
EXPORT_SYMBOL(pcim_iomap_table);
/**
* pcim_iomap - Managed pcim_iomap()
* @pdev: PCI device to iomap for
* @bar: BAR to iomap
* @maxlen: Maximum length of iomap
*
* Managed pci_iomap(). Map is automatically unmapped on driver
* detach.
*/
void __iomem * pcim_iomap(struct pci_dev *pdev, int bar, unsigned long maxlen)
{
void __iomem **tbl;
BUG_ON(bar >= PCIM_IOMAP_MAX);
tbl = (void __iomem **)pcim_iomap_table(pdev);
if (!tbl || tbl[bar]) /* duplicate mappings not allowed */
return NULL;
tbl[bar] = pci_iomap(pdev, bar, maxlen);
return tbl[bar];
}
EXPORT_SYMBOL(pcim_iomap);
/**
* pcim_iounmap - Managed pci_iounmap()
* @pdev: PCI device to iounmap for
* @addr: Address to unmap
*
* Managed pci_iounmap(). @addr must have been mapped using pcim_iomap().
*/
void pcim_iounmap(struct pci_dev *pdev, void __iomem *addr)
{
void __iomem **tbl;
int i;
pci_iounmap(pdev, addr);
tbl = (void __iomem **)pcim_iomap_table(pdev);
BUG_ON(!tbl);
for (i = 0; i < PCIM_IOMAP_MAX; i++)
if (tbl[i] == addr) {
tbl[i] = NULL;
return;
}
WARN_ON(1);
}
EXPORT_SYMBOL(pcim_iounmap);