/*
* Constant definitions related to
* scheduling policy.
*/
#ifndef _LINUX_LITMUS_H_
#define _LINUX_LITMUS_H_
#include <linux/jiffies.h>
#include <litmus/sched_trace.h>
extern atomic_t release_master_cpu;
extern atomic_t __log_seq_no;
#define TRACE(fmt, args...) \
sched_trace_log_message("%d P%d: " fmt, atomic_add_return(1, &__log_seq_no), \
raw_smp_processor_id(), ## args)
#define TRACE_TASK(t, fmt, args...) \
TRACE("(%s/%d) " fmt, (t)->comm, (t)->pid, ##args)
#define TRACE_CUR(fmt, args...) \
TRACE_TASK(current, fmt, ## args)
#define TRACE_BUG_ON(cond) \
do { if (cond) TRACE("BUG_ON(%s) at %s:%d " \
"called from %p current=%s/%d state=%d " \
"flags=%x partition=%d cpu=%d rtflags=%d"\
" job=%u knp=%d timeslice=%u\n", \
#cond, __FILE__, __LINE__, __builtin_return_address(0), current->comm, \
current->pid, current->state, current->flags, \
get_partition(current), smp_processor_id(), get_rt_flags(current), \
current->rt_param.job_params.job_no, current->rt_param.kernel_np, \
current->time_slice\
); } while(0);
/* in_list - is a given list_head queued on some list?
*/
static inline int in_list(struct list_head* list)
{
return !( /* case 1: deleted */
(list->next == LIST_POISON1 &&
list->prev == LIST_POISON2)
||
/* case 2: initialized */
(list->next == list &&
list->prev == list)
);
}
#define NO_CPU 0xffffffff
void litmus_fork(struct task_struct *tsk);
void litmus_exec(void);
/* clean up real-time state of a task */
void exit_litmus(struct task_struct *dead_tsk);
long litmus_admit_task(struct task_struct *tsk);
void litmus_exit_task(struct task_struct *tsk);
#define is_realtime(t) ((t)->policy == SCHED_LITMUS)
#define rt_transition_pending(t) \
((t)->rt_param.transition_pending)
#define tsk_rt(t) (&(t)->rt_param)
/* Realtime utility macros */
#define get_rt_flags(t) (tsk_rt(t)->flags)
#define set_rt_flags(t,f) (tsk_rt(t)->flags=(f))
#define get_exec_cost(t) (tsk_rt(t)->task_params.exec_cost)
#define get_exec_time(t) (tsk_rt(t)->job_params.exec_time)
#define get_rt_period(t) (tsk_rt(t)->task_params.period)
#define get_rt_phase(t) (tsk_rt(t)->task_params.phase)
#define get_partition(t) (tsk_rt(t)->task_params.cpu)
#define get_deadline(t) (tsk_rt(t)->job_params.deadline)
#define get_release(t) (tsk_rt(t)->job_params.release)
#define get_class(t) (tsk_rt(t)->task_params.cls)
inline static int budget_exhausted(struct task_struct* t)
{
return get_exec_time(t) >= get_exec_cost(t);
}
#define is_hrt(t) \
(tsk_rt(t)->task_params.class == RT_CLASS_HARD)
#define is_srt(t) \
(tsk_rt(t)->task_params.class == RT_CLASS_SOFT)
#define is_be(t) \
(tsk_rt(t)->task_params.class == RT_CLASS_BEST_EFFORT)
/* Our notion of time within LITMUS: kernel monotonic time. */
static inline lt_t litmus_clock(void)
{
return ktime_to_ns(ktime_get());
}
/* A macro to convert from nanoseconds to ktime_t. */
#define ns_to_ktime(t) ktime_add_ns(ktime_set(0, 0), t)
#define get_domain(t) (tsk_rt(t)->domain)
/* Honor the flag in the preempt_count variable that is set
* when scheduling is in progress.
*/
#define is_running(t) \
((t)->state == TASK_RUNNING || \
task_thread_info(t)->preempt_count & PREEMPT_ACTIVE)
#define is_blocked(t) \
(!is_running(t))
#define is_released(t, now) \
(lt_before_eq(get_release(t), now))
#define is_tardy(t, now) \
(lt_before_eq(tsk_rt(t)->job_params.deadline, now))
/* real-time comparison macros */
#define earlier_deadline(a, b) (lt_before(\
(a)->rt_param.job_params.deadline,\
(b)->rt_param.job_params.deadline))
#define earlier_release(a, b) (lt_before(\
(a)->rt_param.job_params.release,\
(b)->rt_param.job_params.release))
#define make_np(t) do {t->rt_param.kernel_np++;} while(0);
#define take_np(t) do {t->rt_param.kernel_np--;} while(0);
#ifdef CONFIG_SRP
void srp_ceiling_block(void);
#else
#define srp_ceiling_block() /* nothing */
#endif
#define heap2task(hn) ((struct task_struct*) hn->value)
static inline int is_np(struct task_struct *t)
{
return tsk_rt(t)->kernel_np;
}
#define request_exit_np(t)
static inline int is_present(struct task_struct* t)
{
return t && tsk_rt(t)->present;
}
/* make the unit explicit */
typedef unsigned long quanta_t;
enum round {
FLOOR,
CEIL
};
/* Tick period is used to convert ns-specified execution
* costs and periods into tick-based equivalents.
*/
extern ktime_t tick_period;
static inline quanta_t time2quanta(lt_t time, enum round round)
{
s64 quantum_length = ktime_to_ns(tick_period);
if (do_div(time, quantum_length) && round == CEIL)
time++;
return (quanta_t) time;
}
/* By how much is cpu staggered behind CPU 0? */
u64 cpu_stagger_offset(int cpu);
#endif