|
|
/*
* driver.h -- SoC Regulator driver support.
*
* Copyright (C) 2007, 2008 Wolfson Microelectronics PLC.
*
* Author: Liam Girdwood <lg@opensource.wolfsonmicro.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Regulator Driver Interface.
*/
#ifndef __LINUX_REGULATOR_DRIVER_H_
#define __LINUX_REGULATOR_DRIVER_H_
#include <linux/device.h>
#include <linux/regulator/consumer.h>
struct regulator_dev;
struct regulator_init_data;
enum regulator_status {
REGULATOR_STATUS_OFF,
REGULATOR_STATUS_ON,
REGULATOR_STATUS_ERROR,
/* fast/normal/idle/standby are flavors of "on" */
REGULATOR_STATUS_FAST,
REGULATOR_STATUS_NORMAL,
REGULATOR_STATUS_IDLE,
REGULATOR_STATUS_STANDBY,
};
/**
* struct regulator_ops - regulator operations.
*
* This struct describes regulator operations which can be implemented by
* regulator chip drivers.
*
* @enable: Enable the regulator.
* @disable: Disable the regulator.
* @is_enabled: Return 1 if the regulator is enabled, 0 otherwise.
*
* @set_voltage: Set the voltage for the regulator within the range specified.
* The driver should select the voltage closest to min_uV.
* @get_voltage: Return the currently configured voltage for the regulator.
*
* @set_current_limit: Configure a limit for a current-limited regulator.
* @get_current_limit: Get the limit for a current-limited regulator.
*
* @set_mode: Set the operating mode for the regulator.
* @get_mode: Get the current operating mode for the regulator.
* @get_optimum_mode: Get the most efficient operating mode for the regulator
* when running with the specified parameters.
*
* @set_suspend_voltage: Set the voltage for the regulator when the system
* is suspended.
* @set_suspend_enable: Mark the regulator as enabled when the system is
* suspended.
* @set_suspend_disable: Mark the regulator as disabled when the system is
* suspended.
* @set_suspend_mode: Set the operating mode for the regulator when the
* system is suspended.
*/
struct regulator_ops {
/* get/set regulator voltage */
int (*set_voltage) (struct regulator_dev *, int min_uV, int max_uV);
int (*get_voltage) (struct regulator_dev *);
/* get/set regulator current */
int (*set_current_limit) (struct regulator_dev *,
int min_uA, int max_uA);
int (*get_current_limit) (struct regulator_dev *);
/* enable/disable regulator */
int (*enable) (struct regulator_dev *);
int (*disable) (struct regulator_dev *);
int (*is_enabled) (struct regulator_dev *);
/* get/set regulator operating mode (defined in regulator.h) */
int (*set_mode) (struct regulator_dev *, unsigned int mode);
unsigned int (*get_mode) (struct regulator_dev *);
/* report regulator status ... most other accessors report
* control inputs, this reports results of combining inputs
* from Linux (and other sources) with the actual load.
*/
int (*get_status)(struct regulator_dev *);
/* get most efficient regulator operating mode for load */
unsigned int (*get_optimum_mode) (struct regulator_dev *, int input_uV,
int output_uV, int load_uA);
/* the operations below are for configuration of regulator state when
* its parent PMIC enters a global STANDBY/HIBERNATE state */
/* set regulator suspend voltage */
int (*set_suspend_voltage) (struct regulator_dev *, int uV);
/* enable/disable regulator in suspend state */
int (*set_suspend_enable) (struct regulator_dev *);
int (*set_suspend_disable) (struct regulator_dev *);
/* set regulator suspend operating mode (defined in regulator.h) */
int (*set_suspend_mode) (struct regulator_dev *, unsigned int mode);
};
/*
* Regulators can either control voltage or current.
*/
enum regulator_type {
REGULATOR_VOLTAGE,
REGULATOR_CURRENT,
};
/**
* struct regulator_desc - Regulator descriptor
*
* Each regulator registered with the core is described with a structure of
* this type.
*
* @name: Identifying name for the regulator.
* @id: Numerical identifier for the regulator.
* @ops: Regulator operations table.
* @irq: Interrupt number for the regulator.
* @type: Indicates if the regulator is a voltage or current regulator.
* @owner: Module providing the regulator, used for refcounting.
*/
struct regulator_desc {
const char *name;
int id;
struct regulator_ops *ops;
int irq;
enum regulator_type type;
struct module *owner;
};
/*
* struct regulator_dev
*
* Voltage / Current regulator class device. One for each
* regulator.
*
* This should *not* be used directly by anything except the regulator
* core and notification injection (which should take the mutex and do
* no other direct access).
*/
struct regulator_dev {
struct regulator_desc *desc;
int use_count;
/* lists we belong to */
struct list_head list; /* list of all regulators */
struct list_head slist; /* list of supplied regulators */
/* lists we own */
struct list_head consumer_list; /* consumers we supply */
struct list_head supply_list; /* regulators we supply */
struct blocking_notifier_head notifier;
struct mutex mutex; /* consumer lock */
struct module *owner;
struct device dev;
struct regulation_constraints *constraints;
struct regulator_dev *supply; /* for tree */
void *reg_data; /* regulator_dev data */
};
struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
struct device *dev, struct regulator_init_data *init_data,
void *driver_data);
void regulator_unregister(struct regulator_dev *rdev);
int regulator_notifier_call_chain(struct regulator_dev *rdev,
unsigned long event, void *data);
void *rdev_get_drvdata(struct regulator_dev *rdev);
struct device *rdev_get_dev(struct regulator_dev *rdev);
int rdev_get_id(struct regulator_dev *rdev);
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data);
#endif
|