#ifndef _LINUX_MM_H
#define _LINUX_MM_H
#include <linux/sched.h>
#include <linux/errno.h>
#ifdef __KERNEL__
#include <linux/config.h>
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/mmzone.h>
#include <linux/rbtree.h>
#include <linux/prio_tree.h>
#include <linux/fs.h>
struct mempolicy;
struct anon_vma;
#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
extern unsigned long max_mapnr;
#endif
extern unsigned long num_physpages;
extern void * high_memory;
extern unsigned long vmalloc_earlyreserve;
extern int page_cluster;
#ifdef CONFIG_SYSCTL
extern int sysctl_legacy_va_layout;
#else
#define sysctl_legacy_va_layout 0
#endif
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/atomic.h>
#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
/*
* Linux kernel virtual memory manager primitives.
* The idea being to have a "virtual" mm in the same way
* we have a virtual fs - giving a cleaner interface to the
* mm details, and allowing different kinds of memory mappings
* (from shared memory to executable loading to arbitrary
* mmap() functions).
*/
/*
* This struct defines a memory VMM memory area. There is one of these
* per VM-area/task. A VM area is any part of the process virtual memory
* space that has a special rule for the page-fault handlers (ie a shared
* library, the executable area etc).
*/
struct vm_area_struct {
struct mm_struct * vm_mm; /* The address space we belong to. */
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address
within vm_mm. */
/* linked list of VM areas per task, sorted by address */
struct vm_area_struct *vm_next;
pgprot_t vm_page_prot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, listed below. */
struct rb_node vm_rb;
/*
* For areas with an address space and backing store,
* linkage into the address_space->i_mmap prio tree, or
* linkage to the list of like vmas hanging off its node, or
* linkage of vma in the address_space->i_mmap_nonlinear list.
*/
union {
struct {
struct list_head list;
void *parent; /* aligns with prio_tree_node parent */
struct vm_area_struct *head;
} vm_set;
struct raw_prio_tree_node prio_tree_node;
} shared;
/*
* A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
* list, after a COW of one of the file pages. A MAP_SHARED vma
* can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
* or brk vma (with NULL file) can only be in an anon_vma list.
*/
struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
struct anon_vma *anon_vma; /* Serialized by page_table_lock */
/* Function pointers to deal with this struct. */
struct vm_operations_struct * vm_ops;
/* Information about our backing store: */
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
units, *not* PAGE_CACHE_SIZE */
struct file * vm_file; /* File we map to (can be NULL). */
void * vm_private_data; /* was vm_pte (shared mem) */
unsigned long vm_truncate_count;/* truncate_count or restart_addr */
#ifndef CONFIG_MMU
atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
#endif
#ifdef CONFIG_NUMA
struct mempolicy *vm_policy; /* NUMA policy for the VMA */
#endif
};
/*
* This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
* disabled, then there's a single shared list of VMAs maintained by the
* system, and mm's subscribe to these individually
*/
struct vm_list_struct {
struct vm_list_struct *next;
struct vm_area_struct *vma;
};
#ifndef CONFIG_MMU
extern struct rb_root nommu_vma_tree;
extern struct rw_semaphore nommu_vma_sem;
extern unsigned int kobjsize(const void *objp);
#endif
/*
* vm_flags..
*/
#define VM_READ 0x00000001 /* currently active flags */
#define VM_WRITE 0x00000002
#define VM_EXEC 0x00000004
#define VM_SHARED 0x00000008
/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
#define VM_MAYWRITE 0x00000020
#define VM_MAYEXEC 0x00000040
#define VM_MAYSHARE 0x00000080
#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
#define VM_GROWSUP 0x00000200
#define VM_SHM 0x00000400 /* shared memory area, don't swap out */
#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
#define VM_EXECUTABLE 0x00001000
#define VM_LOCKED 0x00002000
#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
/* Used by sys_madvise() */
#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
#define VM_RESERVED 0x00080000 /* Don't unmap it from swap_out */
#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
#endif
#ifdef CONFIG_STACK_GROWSUP
#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
#else
#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
#endif
#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
/*
* mapping from the currently active vm_flags protection bits (the
* low four bits) to a page protection mask..
*/
extern pgprot_t protection_map[16];
/*
* These are the virtual MM functions - opening of an area, closing and
* unmapping it (needed to keep files on disk up-to-date etc), pointer
* to the functions called when a no-page or a wp-page exception occurs.
*/
struct vm_operations_struct {
void (*open)(struct vm_area_struct * area);
void (*close)(struct vm_area_struct * area);
struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
#ifdef CONFIG_NUMA
int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
unsigned long addr);
#endif
};
struct mmu_gather;
struct inode;
#ifdef ARCH_HAS_ATOMIC_UNSIGNED
typedef unsigned page_flags_t;
#else
typedef unsigned long page_flags_t;
#endif
/*
* Each physical page in the system has a struct page associated with
* it to keep track of whatever it is we are using the page for at the
* moment. Note that we have no way to track which tasks are using
* a page.
*/
struct page {
page_flags_t flags; /* Atomic flags, some possibly
* updated asynchronously */
atomic_t _count; /* Usage count, see below. */
atomic_t _mapcount; /* Count of ptes mapped in mms,
* to show when page is mapped
* & limit reverse map searches.
*/
unsigned long private; /* Mapping-private opaque data:
* usually used for buffer_heads
* if PagePrivate set; used for
* swp_entry_t if PageSwapCache
* When page is free, this indicates
* order in the buddy system.
*/
struct address_space *mapping; /* If low bit clear, points to
* inode address_space, or NULL.
* If page mapped as anonymous
* memory, low bit is set, and
* it points to anon_vma object:
* see PAGE_MAPPING_ANON below.
*/
pgoff_t index; /* Our offset within mapping. */
struct list_head lru; /* Pageout list, eg. active_list
* protected by zone->lru_lock !
*/
/*
* On machines where all RAM is mapped into kernel address space,
* we can simply calculate the virtual address. On machines with
* highmem some memory is mapped into kernel virtual memory
* dynamically, so we need a place to store that address.
* Note that this field could be 16 bits on x86 ... ;)
*
* Architectures with slow multiplication can define
* WANT_PAGE_VIRTUAL in asm/page.h
*/
#if defined(WANT_PAGE_VIRTUAL)
void *virtual; /* Kernel virtual address (NULL if
not kmapped, ie. highmem) */
#endif /* WANT_PAGE_VIRTUAL */
};
/*
* FIXME: take this include out, include page-flags.h in
* files which need it (119 of them)
*/
#include <linux/page-flags.h>
/*
* Methods to modify the page usage count.
*
* What counts for a page usage:
* - cache mapping (page->mapping)
* - private data (page->private)
* - page mapped in a task's page tables, each mapping
* is counted separately
*
* Also, many kernel routines increase the page count before a critical
* routine so they can be sure the page doesn't go away from under them.
*
* Since 2.6.6 (approx), a free page has ->_count = -1. This is so that we
* can use atomic_add_negative(-1, page->_count) to detect when the page
* becomes free and so that we can also use atomic_inc_and_test to atomically
* detect when we just tried to grab a ref on a page which some other CPU has
* already deemed to be freeable.
*
* NO code should make assumptions about this internal detail! Use the provided
* macros which retain the old rules: page_count(page) == 0 is a free page.
*/
/*
* Drop a ref, return true if the logical refcount fell to zero (the page has
* no users)
*/
#define put_page_testzero(p) \
({ \
BUG_ON(page_count(p) == 0); \
atomic_add_negative(-1, &(p)->_count); \
})
/*
* Grab a ref, return true if the page previously had a logical refcount of
* zero. ie: returns true if we just grabbed an already-deemed-to-be-free page
*/
#define get_page_testone(p) atomic_inc_and_test(&(p)->_count)
#define set_page_count(p,v) atomic_set(&(p)->_count, v - 1)
#define __put_page(p) atomic_dec(&(p)->_count)
extern void FASTCALL(__page_cache_release(struct page *));
#ifdef CONFIG_HUGETLB_PAGE
static inline int page_count(struct page *p)
{
if (PageCompound(p))
p = (struct page *)p->private;
return atomic_read(&(p)->_count) + 1;
}
static inline void get_page(struct page *page)
{
if (unlikely(PageCompound(page)))
page = (struct page *)page->private;
atomic_inc(&page->_count);
}
void put_page(struct page *page);
#else /* CONFIG_HUGETLB_PAGE */
#define page_count(p) (atomic_read(&(p)->_count) + 1)
static inline void get_page(struct page *page)
{
atomic_inc(&page->_count);
}
static inline void put_page(struct page *page)
{
if (!PageReserved(page) && put_page_testzero(page))
__page_cache_release(page);
}
#endif /* CONFIG_HUGETLB_PAGE */
/*
* Multiple processes may "see" the same page. E.g. for untouched
* mappings of /dev/null, all processes see the same page full of
* zeroes, and text pages of executables and shared libraries have
* only one copy in memory, at most, normally.
*
* For the non-reserved pages, page_count(page) denotes a reference count.
* page_count() == 0 means the page is free. page->lru is then used for
* freelist management in the buddy allocator.
* page_count() == 1 means the page is used for exactly one purpose
* (e.g. a private data page of one process).
*
* A page may be used for kmalloc() or anyone else who does a
* __get_free_page(). In this case the page_count() is at least 1, and
* all other fields are unused but should be 0 or NULL. The
* management of this page is the responsibility of the one who uses
* it.
*
* The other pages (we may call them "process pages") are completely
* managed by the Linux memory manager: I/O, buffers, swapping etc.
* The following discussion applies only to them.
*
* A page may belong to an inode's memory mapping. In this case,
* page->mapping is the pointer to the inode, and page->index is the
* file offset of the page, in units of PAGE_CACHE_SIZE.
*
* A page contains an opaque `private' member, which belongs to the
* page's address_space. Usually, this is the address of a circular
* list of the page's disk buffers.
*
* For pages belonging to inodes, the page_count() is the number of
* attaches, plus 1 if `private' contains something, plus one for
* the page cache itself.
*
* Instead of keeping dirty/clean pages in per address-space lists, we instead
* now tag pages as dirty/under writeback in the radix tree.
*
* There is also a per-mapping radix tree mapping index to the page
* in memory if present. The tree is rooted at mapping->root.
*
* All process pages can do I/O:
* - inode pages may need to be read from disk,
* - inode pages which have been modified and are MAP_SHARED may need
* to be written to disk,
* - private pages which have been modified may need to be swapped out
* to swap space and (later) to be read back into memory.
*/
/*
* The zone field is never updated after free_area_init_core()
* sets it, so none of the operations on it need to be atomic.
*/
/*
* page->flags layout:
*
* There are three possibilities for how page->flags get
* laid out. The first is for the normal case, without
* sparsemem. The second is for sparsemem when there is
* plenty of space for node and section. The last is when
* we have run out of space and have to fall back to an
* alternate (slower) way of determining the node.
*
* No sparsemem: | NODE | ZONE | ... | FLAGS |
* with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
* no space for node: | SECTION | ZONE | ... | FLAGS |
*/
#ifdef CONFIG_SPARSEMEM
#define SECTIONS_WIDTH SECTIONS_SHIFT
#else
#define SECTIONS_WIDTH 0
#endif
#define ZONES_WIDTH ZONES_SHIFT
#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
#define NODES_WIDTH NODES_SHIFT
#else
#define NODES_WIDTH 0
#endif
/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
#define SECTIONS_PGOFF ((sizeof(page_flags_t)*8) - SECTIONS_WIDTH)
#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
/*
* We are going to use the flags for the page to node mapping if its in
* there. This includes the case where there is no node, so it is implicit.
*/
#define FLAGS_HAS_NODE (NODES_WIDTH > 0 || NODES_SHIFT == 0)
#ifndef PFN_SECTION_SHIFT
#define PFN_SECTION_SHIFT 0
#endif
/*
* Define the bit shifts to access each section. For non-existant
* sections we define the shift as 0; that plus a 0 mask ensures
* the compiler will optimise away reference to them.
*/
#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
/* NODE:ZONE or SECTION:ZONE is used to lookup the zone from a page. */
#if FLAGS_HAS_NODE
#define ZONETABLE_SHIFT (NODES_SHIFT + ZONES_SHIFT)
#else
#define ZONETABLE_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
#endif
#define ZONETABLE_PGSHIFT ZONES_PGSHIFT
#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
#endif
#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
#define ZONETABLE_MASK ((1UL << ZONETABLE_SHIFT) - 1)
static inline unsigned long page_zonenum(struct page *page)
{
return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
}
struct zone;
extern struct zone *zone_table[];
static inline struct zone *page_zone(struct page *page)
{
return zone_table[(page->flags >> ZONETABLE_PGSHIFT) &
ZONETABLE_MASK];
}
static inline unsigned long page_to_nid(struct page *page)
{
if (FLAGS_HAS_NODE)
return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
else
return page_zone(page)->zone_pgdat->node_id;
}
static inline unsigned long page_to_section(struct page *page)
{
return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
}
static inline void set_page_zone(struct page *page, unsigned long zone)
{
page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
}
static inline void set_page_node(struct page *page, unsigned long node)
{
page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
}
static inline void set_page_section(struct page *page, unsigned long section)
{
page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
}
static inline void set_page_links(struct page *page, unsigned long zone,
unsigned long node, unsigned long pfn)
{
set_page_zone(page, zone);
set_page_node(page, node);
set_page_section(page, pfn_to_section_nr(pfn));
}
#ifndef CONFIG_DISCONTIGMEM
/* The array of struct pages - for discontigmem use pgdat->lmem_map */
extern struct page *mem_map;
#endif
static inline void *lowmem_page_address(struct page *page)
{
return __va(page_to_pfn(page) << PAGE_SHIFT);
}
#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
#define HASHED_PAGE_VIRTUAL
#endif
#if defined(WANT_PAGE_VIRTUAL)
#define page_address(page) ((page)->virtual)
#define set_page_address(page, address) \
do { \
(page)->virtual = (address); \
} while(0)
#define page_address_init() do { } while(0)
#endif
#if defined(HASHED_PAGE_VIRTUAL)
void *page_address(struct page *page);
void set_page_address(struct page *page, void *virtual);
void page_address_init(void);
#endif
#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
#define page_address(page) lowmem_page_address(page)
#define set_page_address(page, address) do { } while(0)
#define page_address_init() do { } while(0)
#endif
/*
* On an anonymous page mapped into a user virtual memory area,
* page->mapping points to its anon_vma, not to a struct address_space;
* with the PAGE_MAPPING_ANON bit set to distinguish it.
*
* Please note that, confusingly, "page_mapping" refers to the inode
* address_space which maps the page from disk; whereas "page_mapped"
* refers to user virtual address space into which the page is mapped.
*/
#define PAGE_MAPPING_ANON 1
extern struct address_space swapper_space;
static inline struct address_space *page_mapping(struct page *page)
{
struct address_space *mapping = page->mapping;
if (unlikely(PageSwapCache(page)))
mapping = &swapper_space;
else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
mapping = NULL;
return mapping;
}
static inline int PageAnon(struct page *page)
{
return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
}
/*
* Return the pagecache index of the passed page. Regular pagecache pages
* use ->index whereas swapcache pages use ->private
*/
static inline pgoff_t page_index(struct page *page)
{
if (unlikely(PageSwapCache(page)))
return page->private;
return page->index;
}
/*
* The atomic page->_mapcount, like _count, starts from -1:
* so that transitions both from it and to it can be tracked,
* using atomic_inc_and_test and atomic_add_negative(-1).
*/
static inline void reset_page_mapcount(struct page *page)
{
atomic_set(&(page)->_mapcount, -1);
}
static inline int page_mapcount(struct page *page)
{
return atomic_read(&(page)->_mapcount) + 1;
}
/*
* Return true if this page is mapped into pagetables.
*/
static inline int page_mapped(struct page *page)
{
return atomic_read(&(page)->_mapcount) >= 0;
}
/*
* Error return values for the *_nopage functions
*/
#define NOPAGE_SIGBUS (NULL)
#define NOPAGE_OOM ((struct page *) (-1))
/*
* Different kinds of faults, as returned by handle_mm_fault().
* Used to decide whether a process gets delivered SIGBUS or
* just gets major/minor fault counters bumped up.
*/
#define VM_FAULT_OOM 0x00
#define VM_FAULT_SIGBUS 0x01
#define VM_FAULT_MINOR 0x02
#define VM_FAULT_MAJOR 0x03
/*
* Special case for get_user_pages.
* Must be in a distinct bit from the above VM_FAULT_ flags.
*/
#define VM_FAULT_WRITE 0x10
#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
extern void show_free_areas(void);
#ifdef CONFIG_SHMEM
struct page *shmem_nopage(struct vm_area_struct *vma,
unsigned long address, int *type);
int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
unsigned long addr);
int shmem_lock(struct file *file, int lock, struct user_struct *user);
#else
#define shmem_nopage filemap_nopage
#define shmem_lock(a, b, c) ({0;}) /* always in memory, no need to lock */
#define shmem_set_policy(a, b) (0)
#define shmem_get_policy(a, b) (NULL)
#endif
struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
int shmem_zero_setup(struct vm_area_struct *);
static inline int can_do_mlock(void)
{
if (capable(CAP_IPC_LOCK))
return 1;
if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
return 1;
return 0;
}
extern int user_shm_lock(size_t, struct user_struct *);
extern void user_shm_unlock(size_t, struct user_struct *);
/*
* Parameter block passed down to zap_pte_range in exceptional cases.
*/
struct zap_details {
struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
struct address_space *check_mapping; /* Check page->mapping if set */
pgoff_t first_index; /* Lowest page->index to unmap */
pgoff_t last_index; /* Highest page->index to unmap */
spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
unsigned long truncate_count; /* Compare vm_truncate_count */
};
unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
unsigned long size, struct zap_details *);
unsigned long unmap_vmas(struct mmu_gather **tlb, struct mm_struct *mm,
struct vm_area_struct *start_vma, unsigned long start_addr,
unsigned long end_addr, unsigned long *nr_accounted,
struct zap_details *);
void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
unsigned long end, unsigned long floor, unsigned long ceiling);
void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
unsigned long floor, unsigned long ceiling);
int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
struct vm_area_struct *vma);
int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
unsigned long size, pgprot_t prot);
void unmap_mapping_range(struct address_space *mapping,
loff_t const holebegin, loff_t const holelen, int even_cows);
static inline void unmap_shared_mapping_range(struct address_space *mapping,
loff_t const holebegin, loff_t const holelen)
{
unmap_mapping_range(mapping, holebegin, holelen, 0);
}
extern int vmtruncate(struct inode * inode, loff_t offset);
extern pud_t *FASTCALL(__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address));
extern pmd_t *FASTCALL(__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address));
extern pte_t *FASTCALL(pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address));
extern pte_t *FASTCALL(pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, unsigned long address));
extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma, unsigned long address, int write_access);
static inline int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, int write_access)
{
return __handle_mm_fault(mm, vma, address, write_access) & (~VM_FAULT_WRITE);
}
extern int make_pages_present(unsigned long addr, unsigned long end);
extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
int __set_page_dirty_buffers(struct page *page);
int __set_page_dirty_nobuffers(struct page *page);
int redirty_page_for_writepage(struct writeback_control *wbc,
struct page *page);
int FASTCALL(set_page_dirty(struct page *page));
int set_page_dirty_lock(struct page *page);
int clear_page_dirty_for_io(struct page *page);
extern unsigned long do_mremap(unsigned long addr,
unsigned long old_len, unsigned long new_len,
unsigned long flags, unsigned long new_addr);
/*
* Prototype to add a shrinker callback for ageable caches.
*
* These functions are passed a count `nr_to_scan' and a gfpmask. They should
* scan `nr_to_scan' objects, attempting to free them.
*
* The callback must return the number of objects which remain in the cache.
*
* The callback will be passed nr_to_scan == 0 when the VM is querying the
* cache size, so a fastpath for that case is appropriate.
*/
typedef int (*shrinker_t)(int nr_to_scan, unsigned int gfp_mask);
/*
* Add an aging callback. The int is the number of 'seeks' it takes
* to recreate one of the objects that these functions age.
*/
#define DEFAULT_SEEKS 2
struct shrinker;
extern struct shrinker *set_shrinker(int, shrinker_t);
extern void remove_shrinker(struct shrinker *shrinker);
/*
* On a two-level or three-level page table, this ends up being trivial. Thus
* the inlining and the symmetry break with pte_alloc_map() that does all
* of this out-of-line.
*/
/*
* The following ifdef needed to get the 4level-fixup.h header to work.
* Remove it when 4level-fixup.h has been removed.
*/
#ifdef CONFIG_MMU
#ifndef __ARCH_HAS_4LEVEL_HACK
static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
{
if (pgd_none(*pgd))
return __pud_alloc(mm, pgd, address);
return pud_offset(pgd, address);
}
static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
{
if (pud_none(*pud))
return __pmd_alloc(mm, pud, address);
return pmd_offset(pud, address);
}
#endif
#endif /* CONFIG_MMU */
extern void free_area_init(unsigned long * zones_size);
extern void free_area_init_node(int nid, pg_data_t *pgdat,
unsigned long * zones_size, unsigned long zone_start_pfn,
unsigned long *zholes_size);
extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long);
extern void mem_init(void);
extern void show_mem(void);
extern void si_meminfo(struct sysinfo * val);
extern void si_meminfo_node(struct sysinfo *val, int nid);
#ifdef CONFIG_NUMA
extern void setup_per_cpu_pageset(void);
#else
static inline void setup_per_cpu_pageset(void) {}
#endif
/* prio_tree.c */
void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
struct prio_tree_iter *iter);
#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
(vma = vma_prio_tree_next(vma, iter)); )
static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
struct list_head *list)
{
vma->shared.vm_set.parent = NULL;
list_add_tail(&vma->shared.vm_set.list, list);
}
/* mmap.c */
extern int __vm_enough_memory(long pages, int cap_sys_admin);
extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
extern struct vm_area_struct *vma_merge(struct mm_struct *,
struct vm_area_struct *prev, unsigned long addr, unsigned long end,
unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
struct mempolicy *);
extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
extern int split_vma(struct mm_struct *,
struct vm_area_struct *, unsigned long addr, int new_below);
extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
struct rb_node **, struct rb_node *);
extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
unsigned long addr, unsigned long len, pgoff_t pgoff);
extern void exit_mmap(struct mm_struct *);
extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
unsigned long len, unsigned long prot,
unsigned long flag, unsigned long pgoff);
static inline unsigned long do_mmap(struct file *file, unsigned long addr,
unsigned long len, unsigned long prot,
unsigned long flag, unsigned long offset)
{
unsigned long ret = -EINVAL;
if ((offset + PAGE_ALIGN(len)) < offset)
goto out;
if (!(offset & ~PAGE_MASK))
ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
out:
return ret;
}
extern int do_munmap(struct mm_struct *, unsigned long, size_t);
extern unsigned long do_brk(unsigned long, unsigned long);
/* filemap.c */
extern unsigned long page_unuse(struct page *);
extern void truncate_inode_pages(struct address_space *, loff_t);
/* generic vm_area_ops exported for stackable file systems */
extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
extern int filemap_populate(struct vm_area_struct *, unsigned long,
unsigned long, pgprot_t, unsigned long, int);
/* mm/page-writeback.c */
int write_one_page(struct page *page, int wait);
/* readahead.c */
#define VM_MAX_READAHEAD 128 /* kbytes */
#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
#define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
* turning readahead off */
int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
unsigned long offset, unsigned long nr_to_read);
int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
unsigned long offset, unsigned long nr_to_read);
unsigned long page_cache_readahead(struct address_space *mapping,
struct file_ra_state *ra,
struct file *filp,
unsigned long offset,
unsigned long size);
void handle_ra_miss(struct address_space *mapping,
struct file_ra_state *ra, pgoff_t offset);
unsigned long max_sane_readahead(unsigned long nr);
/* Do stack extension */
extern int expand_stack(struct vm_area_struct * vma, unsigned long address);
/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
struct vm_area_struct **pprev);
/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
NULL if none. Assume start_addr < end_addr. */
static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
{
struct vm_area_struct * vma = find_vma(mm,start_addr);
if (vma && end_addr <= vma->vm_start)
vma = NULL;
return vma;
}
static inline unsigned long vma_pages(struct vm_area_struct *vma)
{
return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
}
extern struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr);
extern struct page * vmalloc_to_page(void *addr);
extern unsigned long vmalloc_to_pfn(void *addr);
extern struct page * follow_page(struct mm_struct *mm, unsigned long address,
int write);
extern int check_user_page_readable(struct mm_struct *mm, unsigned long address);
int remap_pfn_range(struct vm_area_struct *, unsigned long,
unsigned long, unsigned long, pgprot_t);
#ifdef CONFIG_PROC_FS
void __vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
#else
static inline void __vm_stat_account(struct mm_struct *mm,
unsigned long flags, struct file *file, long pages)
{
}
#endif /* CONFIG_PROC_FS */
static inline void vm_stat_account(struct vm_area_struct *vma)
{
__vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
vma_pages(vma));
}
static inline void vm_stat_unaccount(struct vm_area_struct *vma)
{
__vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
-vma_pages(vma));
}
/* update per process rss and vm hiwater data */
extern void update_mem_hiwater(struct task_struct *tsk);
#ifndef CONFIG_DEBUG_PAGEALLOC
static inline void
kernel_map_pages(struct page *page, int numpages, int enable)
{
}
#endif
extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
#ifdef __HAVE_ARCH_GATE_AREA
int in_gate_area_no_task(unsigned long addr);
int in_gate_area(struct task_struct *task, unsigned long addr);
#else
int in_gate_area_no_task(unsigned long addr);
#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
#endif /* __HAVE_ARCH_GATE_AREA */
/* /proc/<pid>/oom_adj set to -17 protects from the oom-killer */
#define OOM_DISABLE -17
#endif /* __KERNEL__ */
#endif /* _LINUX_MM_H */