aboutsummaryrefslogblamecommitdiffstats
path: root/include/asm-x86_64/bitops.h
blob: 3638ffff87fd7abf6b7938058a25dd65f0a1b773 (plain) (tree)






























                                                                      
                            















                                                                         
                            
















                                                                              
                            






                                                                
                            


















                                                                         
                            















                                                                      
                            
















                                                                    
                                          


















                                                                      
                                          

















                                                                      
                                          


















                                                                        
                                          










                                                                         
                                          

















                                                                       
                                          

























































































































                                                                                             













                                                                        







                                                              
                                 




















                                                        












                                           







































                                                                              


                             
#ifndef _X86_64_BITOPS_H
#define _X86_64_BITOPS_H

/*
 * Copyright 1992, Linus Torvalds.
 */

#include <linux/config.h>

#ifdef CONFIG_SMP
#define LOCK_PREFIX "lock ; "
#else
#define LOCK_PREFIX ""
#endif

#define ADDR (*(volatile long *) addr)

/**
 * set_bit - Atomically set a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * This function is atomic and may not be reordered.  See __set_bit()
 * if you do not require the atomic guarantees.
 * Note that @nr may be almost arbitrarily large; this function is not
 * restricted to acting on a single-word quantity.
 */
static __inline__ void set_bit(int nr, volatile void * addr)
{
	__asm__ __volatile__( LOCK_PREFIX
		"btsl %1,%0"
		:"+m" (ADDR)
		:"dIr" (nr) : "memory");
}

/**
 * __set_bit - Set a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * Unlike set_bit(), this function is non-atomic and may be reordered.
 * If it's called on the same region of memory simultaneously, the effect
 * may be that only one operation succeeds.
 */
static __inline__ void __set_bit(int nr, volatile void * addr)
{
	__asm__ volatile(
		"btsl %1,%0"
		:"+m" (ADDR)
		:"dIr" (nr) : "memory");
}

/**
 * clear_bit - Clears a bit in memory
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * clear_bit() is atomic and may not be reordered.  However, it does
 * not contain a memory barrier, so if it is used for locking purposes,
 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
 * in order to ensure changes are visible on other processors.
 */
static __inline__ void clear_bit(int nr, volatile void * addr)
{
	__asm__ __volatile__( LOCK_PREFIX
		"btrl %1,%0"
		:"+m" (ADDR)
		:"dIr" (nr));
}

static __inline__ void __clear_bit(int nr, volatile void * addr)
{
	__asm__ __volatile__(
		"btrl %1,%0"
		:"+m" (ADDR)
		:"dIr" (nr));
}

#define smp_mb__before_clear_bit()	barrier()
#define smp_mb__after_clear_bit()	barrier()

/**
 * __change_bit - Toggle a bit in memory
 * @nr: the bit to change
 * @addr: the address to start counting from
 *
 * Unlike change_bit(), this function is non-atomic and may be reordered.
 * If it's called on the same region of memory simultaneously, the effect
 * may be that only one operation succeeds.
 */
static __inline__ void __change_bit(int nr, volatile void * addr)
{
	__asm__ __volatile__(
		"btcl %1,%0"
		:"+m" (ADDR)
		:"dIr" (nr));
}

/**
 * change_bit - Toggle a bit in memory
 * @nr: Bit to change
 * @addr: Address to start counting from
 *
 * change_bit() is atomic and may not be reordered.
 * Note that @nr may be almost arbitrarily large; this function is not
 * restricted to acting on a single-word quantity.
 */
static __inline__ void change_bit(int nr, volatile void * addr)
{
	__asm__ __volatile__( LOCK_PREFIX
		"btcl %1,%0"
		:"+m" (ADDR)
		:"dIr" (nr));
}

/**
 * test_and_set_bit - Set a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.  
 * It also implies a memory barrier.
 */
static __inline__ int test_and_set_bit(int nr, volatile void * addr)
{
	int oldbit;

	__asm__ __volatile__( LOCK_PREFIX
		"btsl %2,%1\n\tsbbl %0,%0"
		:"=r" (oldbit),"+m" (ADDR)
		:"dIr" (nr) : "memory");
	return oldbit;
}

/**
 * __test_and_set_bit - Set a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.  
 * If two examples of this operation race, one can appear to succeed
 * but actually fail.  You must protect multiple accesses with a lock.
 */
static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
{
	int oldbit;

	__asm__(
		"btsl %2,%1\n\tsbbl %0,%0"
		:"=r" (oldbit),"+m" (ADDR)
		:"dIr" (nr));
	return oldbit;
}

/**
 * test_and_clear_bit - Clear a bit and return its old value
 * @nr: Bit to clear
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.  
 * It also implies a memory barrier.
 */
static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
{
	int oldbit;

	__asm__ __volatile__( LOCK_PREFIX
		"btrl %2,%1\n\tsbbl %0,%0"
		:"=r" (oldbit),"+m" (ADDR)
		:"dIr" (nr) : "memory");
	return oldbit;
}

/**
 * __test_and_clear_bit - Clear a bit and return its old value
 * @nr: Bit to clear
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.  
 * If two examples of this operation race, one can appear to succeed
 * but actually fail.  You must protect multiple accesses with a lock.
 */
static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
{
	int oldbit;

	__asm__(
		"btrl %2,%1\n\tsbbl %0,%0"
		:"=r" (oldbit),"+m" (ADDR)
		:"dIr" (nr));
	return oldbit;
}

/* WARNING: non atomic and it can be reordered! */
static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
{
	int oldbit;

	__asm__ __volatile__(
		"btcl %2,%1\n\tsbbl %0,%0"
		:"=r" (oldbit),"+m" (ADDR)
		:"dIr" (nr) : "memory");
	return oldbit;
}

/**
 * test_and_change_bit - Change a bit and return its old value
 * @nr: Bit to change
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.  
 * It also implies a memory barrier.
 */
static __inline__ int test_and_change_bit(int nr, volatile void * addr)
{
	int oldbit;

	__asm__ __volatile__( LOCK_PREFIX
		"btcl %2,%1\n\tsbbl %0,%0"
		:"=r" (oldbit),"+m" (ADDR)
		:"dIr" (nr) : "memory");
	return oldbit;
}

#if 0 /* Fool kernel-doc since it doesn't do macros yet */
/**
 * test_bit - Determine whether a bit is set
 * @nr: bit number to test
 * @addr: Address to start counting from
 */
static int test_bit(int nr, const volatile void * addr);
#endif

static __inline__ int constant_test_bit(int nr, const volatile void * addr)
{
	return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
}

static __inline__ int variable_test_bit(int nr, volatile const void * addr)
{
	int oldbit;

	__asm__ __volatile__(
		"btl %2,%1\n\tsbbl %0,%0"
		:"=r" (oldbit)
		:"m" (ADDR),"dIr" (nr));
	return oldbit;
}

#define test_bit(nr,addr) \
(__builtin_constant_p(nr) ? \
 constant_test_bit((nr),(addr)) : \
 variable_test_bit((nr),(addr)))

#undef ADDR

extern long find_first_zero_bit(const unsigned long * addr, unsigned long size);
extern long find_next_zero_bit (const unsigned long * addr, long size, long offset);
extern long find_first_bit(const unsigned long * addr, unsigned long size);
extern long find_next_bit(const unsigned long * addr, long size, long offset);

/* return index of first bet set in val or max when no bit is set */
static inline unsigned long __scanbit(unsigned long val, unsigned long max)
{
	asm("bsfq %1,%0 ; cmovz %2,%0" : "=&r" (val) : "r" (val), "r" (max));
	return val;
}

#define find_first_bit(addr,size) \
((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
  (__scanbit(*(unsigned long *)addr,(size))) : \
  find_first_bit(addr,size)))

#define find_next_bit(addr,size,off) \
((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? 	  \
  ((off) + (__scanbit((*(unsigned long *)addr) >> (off),(size)-(off)))) : \
	find_next_bit(addr,size,off)))

#define find_first_zero_bit(addr,size) \
((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
  (__scanbit(~*(unsigned long *)addr,(size))) : \
  	find_first_zero_bit(addr,size)))
	
#define find_next_zero_bit(addr,size,off) \
((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? 	  \
  ((off)+(__scanbit(~(((*(unsigned long *)addr)) >> (off)),(size)-(off)))) : \
	find_next_zero_bit(addr,size,off)))

/* 
 * Find string of zero bits in a bitmap. -1 when not found.
 */ 
extern unsigned long 
find_next_zero_string(unsigned long *bitmap, long start, long nbits, int len);

static inline void set_bit_string(unsigned long *bitmap, unsigned long i, 
				  int len) 
{ 
	unsigned long end = i + len; 
	while (i < end) {
		__set_bit(i, bitmap); 
		i++;
	}
} 

static inline void __clear_bit_string(unsigned long *bitmap, unsigned long i, 
				    int len) 
{ 
	unsigned long end = i + len; 
	while (i < end) {
		__clear_bit(i, bitmap); 
		i++;
	}
} 

/**
 * ffz - find first zero in word.
 * @word: The word to search
 *
 * Undefined if no zero exists, so code should check against ~0UL first.
 */
static __inline__ unsigned long ffz(unsigned long word)
{
	__asm__("bsfq %1,%0"
		:"=r" (word)
		:"r" (~word));
	return word;
}

/**
 * __ffs - find first bit in word.
 * @word: The word to search
 *
 * Undefined if no bit exists, so code should check against 0 first.
 */
static __inline__ unsigned long __ffs(unsigned long word)
{
	__asm__("bsfq %1,%0"
		:"=r" (word)
		:"rm" (word));
	return word;
}

/*
 * __fls: find last bit set.
 * @word: The word to search
 *
 * Undefined if no zero exists, so code should check against ~0UL first.
 */
static __inline__ unsigned long __fls(unsigned long word)
{
	__asm__("bsrq %1,%0"
		:"=r" (word)
		:"rm" (word));
	return word;
}

#ifdef __KERNEL__

static inline int sched_find_first_bit(const unsigned long *b)
{
	if (b[0])
		return __ffs(b[0]);
	if (b[1])
		return __ffs(b[1]) + 64;
	return __ffs(b[2]) + 128;
}

/**
 * ffs - find first bit set
 * @x: the word to search
 *
 * This is defined the same way as
 * the libc and compiler builtin ffs routines, therefore
 * differs in spirit from the above ffz (man ffs).
 */
static __inline__ int ffs(int x)
{
	int r;

	__asm__("bsfl %1,%0\n\t"
		"cmovzl %2,%0" 
		: "=r" (r) : "rm" (x), "r" (-1));
	return r+1;
}

/**
 * fls64 - find last bit set in 64 bit word
 * @x: the word to search
 *
 * This is defined the same way as fls.
 */
static __inline__ int fls64(__u64 x)
{
	if (x == 0)
		return 0;
	return __fls(x) + 1;
}

/**
 * hweightN - returns the hamming weight of a N-bit word
 * @x: the word to weigh
 *
 * The Hamming Weight of a number is the total number of bits set in it.
 */

#define hweight64(x) generic_hweight64(x)
#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x) generic_hweight8(x)

#endif /* __KERNEL__ */

#ifdef __KERNEL__

#define ext2_set_bit(nr,addr) \
	__test_and_set_bit((nr),(unsigned long*)addr)
#define ext2_set_bit_atomic(lock,nr,addr) \
	        test_and_set_bit((nr),(unsigned long*)addr)
#define ext2_clear_bit(nr, addr) \
	__test_and_clear_bit((nr),(unsigned long*)addr)
#define ext2_clear_bit_atomic(lock,nr,addr) \
	        test_and_clear_bit((nr),(unsigned long*)addr)
#define ext2_test_bit(nr, addr)      test_bit((nr),(unsigned long*)addr)
#define ext2_find_first_zero_bit(addr, size) \
	find_first_zero_bit((unsigned long*)addr, size)
#define ext2_find_next_zero_bit(addr, size, off) \
	find_next_zero_bit((unsigned long*)addr, size, off)

/* Bitmap functions for the minix filesystem.  */
#define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,(void*)addr)
#define minix_set_bit(nr,addr) __set_bit(nr,(void*)addr)
#define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,(void*)addr)
#define minix_test_bit(nr,addr) test_bit(nr,(void*)addr)
#define minix_find_first_zero_bit(addr,size) \
	find_first_zero_bit((void*)addr,size)

/* find last set bit */
#define fls(x) generic_fls(x)

#endif /* __KERNEL__ */

#endif /* _X86_64_BITOPS_H */