/*
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir2.h"
#include "xfs_alloc.h"
#include "xfs_dmapi.h"
#include "xfs_quota.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_btree.h"
#include "xfs_btree_trace.h"
#include "xfs_ialloc.h"
#include "xfs_bmap.h"
#include "xfs_rtalloc.h"
#include "xfs_error.h"
#include "xfs_itable.h"
#include "xfs_fsops.h"
#include "xfs_rw.h"
#include "xfs_attr.h"
#include "xfs_buf_item.h"
#include "xfs_utils.h"
#include "xfs_vnodeops.h"
#include "xfs_version.h"
#include "xfs_log_priv.h"
#include "xfs_trans_priv.h"
#include "xfs_filestream.h"
#include "xfs_da_btree.h"
#include "xfs_dir2_trace.h"
#include "xfs_extfree_item.h"
#include "xfs_mru_cache.h"
#include "xfs_inode_item.h"
#include "xfs_sync.h"
#include <linux/namei.h>
#include <linux/init.h>
#include <linux/mount.h>
#include <linux/mempool.h>
#include <linux/writeback.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/parser.h>
static const struct super_operations xfs_super_operations;
static kmem_zone_t *xfs_ioend_zone;
mempool_t *xfs_ioend_pool;
#define MNTOPT_LOGBUFS "logbufs" /* number of XFS log buffers */
#define MNTOPT_LOGBSIZE "logbsize" /* size of XFS log buffers */
#define MNTOPT_LOGDEV "logdev" /* log device */
#define MNTOPT_RTDEV "rtdev" /* realtime I/O device */
#define MNTOPT_BIOSIZE "biosize" /* log2 of preferred buffered io size */
#define MNTOPT_WSYNC "wsync" /* safe-mode nfs compatible mount */
#define MNTOPT_NOALIGN "noalign" /* turn off stripe alignment */
#define MNTOPT_SWALLOC "swalloc" /* turn on stripe width allocation */
#define MNTOPT_SUNIT "sunit" /* data volume stripe unit */
#define MNTOPT_SWIDTH "swidth" /* data volume stripe width */
#define MNTOPT_NOUUID "nouuid" /* ignore filesystem UUID */
#define MNTOPT_MTPT "mtpt" /* filesystem mount point */
#define MNTOPT_GRPID "grpid" /* group-ID from parent directory */
#define MNTOPT_NOGRPID "nogrpid" /* group-ID from current process */
#define MNTOPT_BSDGROUPS "bsdgroups" /* group-ID from parent directory */
#define MNTOPT_SYSVGROUPS "sysvgroups" /* group-ID from current process */
#define MNTOPT_ALLOCSIZE "allocsize" /* preferred allocation size */
#define MNTOPT_NORECOVERY "norecovery" /* don't run XFS recovery */
#define MNTOPT_BARRIER "barrier" /* use writer barriers for log write and
* unwritten extent conversion */
#define MNTOPT_NOBARRIER "nobarrier" /* .. disable */
#define MNTOPT_OSYNCISOSYNC "osyncisosync" /* o_sync is REALLY o_sync */
#define MNTOPT_64BITINODE "inode64" /* inodes can be allocated anywhere */
#define MNTOPT_IKEEP "ikeep" /* do not free empty inode clusters */
#define MNTOPT_NOIKEEP "noikeep" /* free empty inode clusters */
#define MNTOPT_LARGEIO "largeio" /* report large I/O sizes in stat() */
#define MNTOPT_NOLARGEIO "nolargeio" /* do not report large I/O sizes
* in stat(). */
#define MNTOPT_ATTR2 "attr2" /* do use attr2 attribute format */
#define MNTOPT_NOATTR2 "noattr2" /* do not use attr2 attribute format */
#define MNTOPT_FILESTREAM "filestreams" /* use filestreams allocator */
#define MNTOPT_QUOTA "quota" /* disk quotas (user) */
#define MNTOPT_NOQUOTA "noquota" /* no quotas */
#define MNTOPT_USRQUOTA "usrquota" /* user quota enabled */
#define MNTOPT_GRPQUOTA "grpquota" /* group quota enabled */
#define MNTOPT_PRJQUOTA "prjquota" /* project quota enabled */
#define MNTOPT_UQUOTA "uquota" /* user quota (IRIX variant) */
#define MNTOPT_GQUOTA "gquota" /* group quota (IRIX variant) */
#define MNTOPT_PQUOTA "pquota" /* project quota (IRIX variant) */
#define MNTOPT_UQUOTANOENF "uqnoenforce"/* user quota limit enforcement */
#define MNTOPT_GQUOTANOENF "gqnoenforce"/* group quota limit enforcement */
#define MNTOPT_PQUOTANOENF "pqnoenforce"/* project quota limit enforcement */
#define MNTOPT_QUOTANOENF "qnoenforce" /* same as uqnoenforce */
#define MNTOPT_DMAPI "dmapi" /* DMI enabled (DMAPI / XDSM) */
#define MNTOPT_XDSM "xdsm" /* DMI enabled (DMAPI / XDSM) */
#define MNTOPT_DMI "dmi" /* DMI enabled (DMAPI / XDSM) */
/*
* Table driven mount option parser.
*
* Currently only used for remount, but it will be used for mount
* in the future, too.
*/
enum {
Opt_barrier, Opt_nobarrier, Opt_err
};
static const match_table_t tokens = {
{Opt_barrier, "barrier"},
{Opt_nobarrier, "nobarrier"},
{Opt_err, NULL}
};
STATIC unsigned long
suffix_strtoul(char *s, char **endp, unsigned int base)
{
int last, shift_left_factor = 0;
char *value = s;
last = strlen(value) - 1;
if (value[last] == 'K' || value[last] == 'k') {
shift_left_factor = 10;
value[last] = '\0';
}
if (value[last] == 'M' || value[last] == 'm') {
shift_left_factor = 20;
value[last] = '\0';
}
if (value[last] == 'G' || value[last] == 'g') {
shift_left_factor = 30;
value[last] = '\0';
}
return simple_strtoul((const char *)s, endp, base) << shift_left_factor;
}
/*
* This function fills in xfs_mount_t fields based on mount args.
* Note: the superblock has _not_ yet been read in.
*
* Note that this function leaks the various device name allocations on
* failure. The caller takes care of them.
*/
STATIC int
xfs_parseargs(
struct xfs_mount *mp,
char *options,
char **mtpt)
{
struct super_block *sb = mp->m_super;
char *this_char, *value, *eov;
int dsunit = 0;
int dswidth = 0;
int iosize = 0;
int dmapi_implies_ikeep = 1;
__uint8_t iosizelog = 0;
/*
* Copy binary VFS mount flags we are interested in.
*/
if (sb->s_flags & MS_RDONLY)
mp->m_flags |= XFS_MOUNT_RDONLY;
if (sb->s_flags & MS_DIRSYNC)
mp->m_flags |= XFS_MOUNT_DIRSYNC;
if (sb->s_flags & MS_SYNCHRONOUS)
mp->m_flags |= XFS_MOUNT_WSYNC;
/*
* Set some default flags that could be cleared by the mount option
* parsing.
*/
mp->m_flags |= XFS_MOUNT_BARRIER;
mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
mp->m_flags |= XFS_MOUNT_SMALL_INUMS;
/*
* These can be overridden by the mount option parsing.
*/
mp->m_logbufs = -1;
mp->m_logbsize = -1;
if (!options)
goto done;
while ((this_char = strsep(&options, ",")) != NULL) {
if (!*this_char)
continue;
if ((value = strchr(this_char, '=')) != NULL)
*value++ = 0;
if (!strcmp(this_char, MNTOPT_LOGBUFS)) {
if (!value || !*value) {
cmn_err(CE_WARN,
"XFS: %s option requires an argument",
this_char);
return EINVAL;
}
mp->m_logbufs = simple_strtoul(value, &eov, 10);
} else if (!strcmp(this_char, MNTOPT_LOGBSIZE)) {
if (!value || !*value) {
cmn_err(CE_WARN,
"XFS: %s option requires an argument",
this_char);
return EINVAL;
}
mp->m_logbsize = suffix_strtoul(value, &eov, 10);
} else if (!strcmp(this_char, MNTOPT_LOGDEV)) {
if (!value || !*value) {
cmn_err(CE_WARN,
"XFS: %s option requires an argument",
this_char);
return EINVAL;
}
mp->m_logname = kstrndup(value, MAXNAMELEN, GFP_KERNEL);
if (!mp->m_logname)
return ENOMEM;
} else if (!strcmp(this_char, MNTOPT_MTPT)) {
if (!value || !*value) {
cmn_err(CE_WARN,
"XFS: %s option requires an argument",
this_char);
return EINVAL;
}
*mtpt = kstrndup(value, MAXNAMELEN, GFP_KERNEL);
if (!*mtpt)
return ENOMEM;
} else if (!strcmp(this_char, MNTOPT_RTDEV)) {
if (!value || !*value) {
cmn_err(CE_WARN,
"XFS: %s option requires an argument",
this_char);
return EINVAL;
}
mp->m_rtname = kstrndup(value, MAXNAMELEN, GFP_KERNEL);
if (!mp->m_rtname)
return ENOMEM;
} else if (!strcmp(this_char, MNTOPT_BIOSIZE)) {
if (!value || !*value) {
cmn_err(CE_WARN,
"XFS: %s option requires an argument",
this_char);
return EINVAL;
}
iosize = simple_strtoul(value, &eov, 10);
iosizelog = ffs(iosize) - 1;
} else if (!strcmp(this_char, MNTOPT_ALLOCSIZE)) {
if (!value || !*value) {
cmn_err(CE_WARN,
"XFS: %s option requires an argument",
this_char);
return EINVAL;
}
iosize = suffix_strtoul(value, &eov, 10);
iosizelog = ffs(iosize) - 1;
} else if (!strcmp(this_char, MNTOPT_GRPID) ||
!strcmp(this_char, MNTOPT_BSDGROUPS)) {
mp->m_flags |= XFS_MOUNT_GRPID;
} else if (!strcmp(this_char, MNTOPT_NOGRPID) ||
!strcmp(this_char, MNTOPT_SYSVGROUPS)) {
mp->m_flags &= ~XFS_MOUNT_GRPID;
} else if (!strcmp(this_char, MNTOPT_WSYNC)) {
mp->m_flags |= XFS_MOUNT_WSYNC;
} else if (!strcmp(this_char, MNTOPT_OSYNCISOSYNC)) {
mp->m_flags |= XFS_MOUNT_OSYNCISOSYNC;
} else if (!strcmp(this_char, MNTOPT_NORECOVERY)) {
mp->m_flags |= XFS_MOUNT_NORECOVERY;
} else if (!strcmp(this_char, MNTOPT_NOALIGN)) {
mp->m_flags |= XFS_MOUNT_NOALIGN;
} else if (!strcmp(this_char, MNTOPT_SWALLOC)) {
mp->m_flags |= XFS_MOUNT_SWALLOC;
} else if (!strcmp(this_char, MNTOPT_SUNIT)) {
if (!value || !*value) {
cmn_err(CE_WARN,
"XFS: %s option requires an argument",
this_char);
return EINVAL;
}
dsunit = simple_strtoul(value, &eov, 10);
} else if (!strcmp(this_char, MNTOPT_SWIDTH)) {
if (!value || !*value) {
cmn_err(CE_WARN,
"XFS: %s option requires an argument",
this_char);
return EINVAL;
}
dswidth = simple_strtoul(value, &eov, 10);
} else if (!strcmp(this_char, MNTOPT_64BITINODE)) {
mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS;
#if !XFS_BIG_INUMS
cmn_err(CE_WARN,
"XFS: %s option not allowed on this system",
this_char);
return EINVAL;
#endif
} else if (!strcmp(this_char, MNTOPT_NOUUID)) {
mp->m_flags |= XFS_MOUNT_NOUUID;
} else if (!strcmp(this_char, MNTOPT_BARRIER)) {
mp->m_flags |= XFS_MOUNT_BARRIER;
} else if (!strcmp(this_char, MNTOPT_NOBARRIER)) {
mp->m_flags &= ~XFS_MOUNT_BARRIER;
} else if (!strcmp(this_char, MNTOPT_IKEEP)) {
mp->m_flags |= XFS_MOUNT_IKEEP;
} else if (!strcmp(this_char, MNTOPT_NOIKEEP)) {
dmapi_implies_ikeep = 0;
mp->m_flags &= ~XFS_MOUNT_IKEEP;
} else if (!strcmp(this_char, MNTOPT_LARGEIO)) {
mp->m_flags &= ~XFS_MOUNT_COMPAT_IOSIZE;
} else if (!strcmp(this_char, MNTOPT_NOLARGEIO)) {
mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
} else if (!strcmp(this_char, MNTOPT_ATTR2)) {
mp->m_flags |= XFS_MOUNT_ATTR2;
} else if (!strcmp(this_char, MNTOPT_NOATTR2)) {
mp->m_flags &= ~XFS_MOUNT_ATTR2;
mp->m_flags |= XFS_MOUNT_NOATTR2;
} else if (!strcmp(this_char, MNTOPT_FILESTREAM)) {
mp->m_flags |= XFS_MOUNT_FILESTREAMS;
} else if (!strcmp(this_char, MNTOPT_NOQUOTA)) {
mp->m_qflags &= ~(XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE |
XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE |
XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE |
XFS_UQUOTA_ENFD | XFS_OQUOTA_ENFD);
} else if (!strcmp(this_char, MNTOPT_QUOTA) ||
!strcmp(this_char, MNTOPT_UQUOTA) ||
!strcmp(this_char, MNTOPT_USRQUOTA)) {
mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE |
XFS_UQUOTA_ENFD);
} else if (!strcmp(this_char, MNTOPT_QUOTANOENF) ||
!strcmp(this_char, MNTOPT_UQUOTANOENF)) {
mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE);
mp->m_qflags &= ~XFS_UQUOTA_ENFD;
} else if (!strcmp(this_char, MNTOPT_PQUOTA) ||
!strcmp(this_char, MNTOPT_PRJQUOTA)) {
mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE |
XFS_OQUOTA_ENFD);
} else if (!strcmp(this_char, MNTOPT_PQUOTANOENF)) {
mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE);
mp->m_qflags &= ~XFS_OQUOTA_ENFD;
} else if (!strcmp(this_char, MNTOPT_GQUOTA) ||
!strcmp(this_char, MNTOPT_GRPQUOTA)) {
mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE |
XFS_OQUOTA_ENFD);
} else if (!strcmp(this_char, MNTOPT_GQUOTANOENF)) {
mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE);
mp->m_qflags &= ~XFS_OQUOTA_ENFD;
} else if (!strcmp(this_char, MNTOPT_DMAPI)) {
mp->m_flags |= XFS_MOUNT_DMAPI;
} else if (!strcmp(this_char, MNTOPT_XDSM)) {
mp->m_flags |= XFS_MOUNT_DMAPI;
} else if (!strcmp(this_char, MNTOPT_DMI)) {
mp->m_flags |= XFS_MOUNT_DMAPI;
} else if (!strcmp(this_char, "ihashsize")) {
cmn_err(CE_WARN,
"XFS: ihashsize no longer used, option is deprecated.");
} else if (!strcmp(this_char, "osyncisdsync")) {
/* no-op, this is now the default */
cmn_err(CE_WARN,
"XFS: osyncisdsync is now the default, option is deprecated.");
} else if (!strcmp(this_char, "irixsgid")) {
cmn_err(CE_WARN,
"XFS: irixsgid is now a sysctl(2) variable, option is deprecated.");
} else {
cmn_err(CE_WARN,
"XFS: unknown mount option [%s].", this_char);
return EINVAL;
}
}
/*
* no recovery flag requires a read-only mount
*/
if ((mp->m_flags & XFS_MOUNT_NORECOVERY) &&
!(mp->m_flags & XFS_MOUNT_RDONLY)) {
cmn_err(CE_WARN, "XFS: no-recovery mounts must be read-only.");
return EINVAL;
}
if ((mp->m_flags & XFS_MOUNT_NOALIGN) && (dsunit || dswidth)) {
cmn_err(CE_WARN,
"XFS: sunit and swidth options incompatible with the noalign option");
return EINVAL;
}
#ifndef CONFIG_XFS_QUOTA
if (XFS_IS_QUOTA_RUNNING(mp)) {
cmn_err(CE_WARN,
"XFS: quota support not available in this kernel.");
return EINVAL;
}
#endif
if ((mp->m_qflags & (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE)) &&
(mp->m_qflags & (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE))) {
cmn_err(CE_WARN,
"XFS: cannot mount with both project and group quota");
return EINVAL;
}
if ((mp->m_flags & XFS_MOUNT_DMAPI) && (!*mtpt || *mtpt[0] == '\0')) {
printk("XFS: %s option needs the mount point option as well\n",
MNTOPT_DMAPI);
return EINVAL;
}
if ((dsunit && !dswidth) || (!dsunit && dswidth)) {
cmn_err(CE_WARN,
"XFS: sunit and swidth must be specified together");
return EINVAL;
}
if (dsunit && (dswidth % dsunit != 0)) {
cmn_err(CE_WARN,
"XFS: stripe width (%d) must be a multiple of the stripe unit (%d)",
dswidth, dsunit);
return EINVAL;
}
/*
* Applications using DMI filesystems often expect the
* inode generation number to be monotonically increasing.
* If we delete inode chunks we break this assumption, so
* keep unused inode chunks on disk for DMI filesystems
* until we come up with a better solution.
* Note that if "ikeep" or "noikeep" mount options are
* supplied, then they are honored.
*/
if ((mp->m_flags & XFS_MOUNT_DMAPI) && dmapi_implies_ikeep)
mp->m_flags |= XFS_MOUNT_IKEEP;
done:
if (!(mp->m_flags & XFS_MOUNT_NOALIGN)) {
/*
* At this point the superblock has not been read
* in, therefore we do not know the block size.
* Before the mount call ends we will convert
* these to FSBs.
*/
if (dsunit) {
mp->m_dalign = dsunit;
mp->m_flags |= XFS_MOUNT_RETERR;
}
if (dswidth)
mp->m_swidth = dswidth;
}
if (mp->m_logbufs != -1 &&
mp->m_logbufs != 0 &&
(mp->m_logbufs < XLOG_MIN_ICLOGS ||
mp->m_logbufs > XLOG_MAX_ICLOGS)) {
cmn_err(CE_WARN,
"XFS: invalid logbufs value: %d [not %d-%d]",
mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS);
return XFS_ERROR(EINVAL);
}
if (mp->m_logbsize != -1 &&
mp->m_logbsize != 0 &&
(mp->m_logbsize < XLOG_MIN_RECORD_BSIZE ||
mp->m_logbsize > XLOG_MAX_RECORD_BSIZE ||
!is_power_of_2(mp->m_logbsize))) {
cmn_err(CE_WARN,
"XFS: invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]",
mp->m_logbsize);
return XFS_ERROR(EINVAL);
}
mp->m_fsname = kstrndup(sb->s_id, MAXNAMELEN, GFP_KERNEL);
if (!mp->m_fsname)
return ENOMEM;
mp->m_fsname_len = strlen(mp->m_fsname) + 1;
if (iosizelog) {
if (iosizelog > XFS_MAX_IO_LOG ||
iosizelog < XFS_MIN_IO_LOG) {
cmn_err(CE_WARN,
"XFS: invalid log iosize: %d [not %d-%d]",
iosizelog, XFS_MIN_IO_LOG,
XFS_MAX_IO_LOG);
return XFS_ERROR(EINVAL);
}
mp->m_flags |= XFS_MOUNT_DFLT_IOSIZE;
mp->m_readio_log = iosizelog;
mp->m_writeio_log = iosizelog;
}
return 0;
}
struct proc_xfs_info {
int flag;
char *str;
};
STATIC int
xfs_showargs(
struct xfs_mount *mp,
struct seq_file *m)
{
static struct proc_xfs_info xfs_info_set[] = {
/* the few simple ones we can get from the mount struct */
{ XFS_MOUNT_IKEEP, "," MNTOPT_IKEEP },
{ XFS_MOUNT_WSYNC, "," MNTOPT_WSYNC },
{ XFS_MOUNT_NOALIGN, "," MNTOPT_NOALIGN },
{ XFS_MOUNT_SWALLOC, "," MNTOPT_SWALLOC },
{ XFS_MOUNT_NOUUID, "," MNTOPT_NOUUID },
{ XFS_MOUNT_NORECOVERY, "," MNTOPT_NORECOVERY },
{ XFS_MOUNT_OSYNCISOSYNC, "," MNTOPT_OSYNCISOSYNC },
{ XFS_MOUNT_ATTR2, "," MNTOPT_ATTR2 },
{ XFS_MOUNT_FILESTREAMS, "," MNTOPT_FILESTREAM },
{ XFS_MOUNT_DMAPI, "," MNTOPT_DMAPI },
{ XFS_MOUNT_GRPID, "," MNTOPT_GRPID },
{ 0, NULL }
};
static struct proc_xfs_info xfs_info_unset[] = {
/* the few simple ones we can get from the mount struct */
{ XFS_MOUNT_COMPAT_IOSIZE, "," MNTOPT_LARGEIO },
{ XFS_MOUNT_BARRIER, "," MNTOPT_NOBARRIER },
{ XFS_MOUNT_SMALL_INUMS, "," MNTOPT_64BITINODE },
{ 0, NULL }
};
struct proc_xfs_info *xfs_infop;
for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) {
if (mp->m_flags & xfs_infop->flag)
seq_puts(m, xfs_infop->str);
}
for (xfs_infop = xfs_info_unset; xfs_infop->flag; xfs_infop++) {
if (!(mp->m_flags & xfs_infop->flag))
seq_puts(m, xfs_infop->str);
}
if (mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)
seq_printf(m, "," MNTOPT_ALLOCSIZE "=%dk",
(int)(1 << mp->m_writeio_log) >> 10);
if (mp->m_logbufs > 0)
seq_printf(m, "," MNTOPT_LOGBUFS "=%d", mp->m_logbufs);
if (mp->m_logbsize > 0)
seq_printf(m, "," MNTOPT_LOGBSIZE "=%dk", mp->m_logbsize >> 10);
if (mp->m_logname)
seq_printf(m, "," MNTOPT_LOGDEV "=%s", mp->m_logname);
if (mp->m_rtname)
seq_printf(m, "," MNTOPT_RTDEV "=%s", mp->m_rtname);
if (mp->m_dalign > 0)
seq_printf(m, "," MNTOPT_SUNIT "=%d",
(int)XFS_FSB_TO_BB(mp, mp->m_dalign));
if (mp->m_swidth > 0)
seq_printf(m, "," MNTOPT_SWIDTH "=%d",
(int)XFS_FSB_TO_BB(mp, mp->m_swidth));
if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD))
seq_puts(m, "," MNTOPT_USRQUOTA);
else if (mp->m_qflags & XFS_UQUOTA_ACCT)
seq_puts(m, "," MNTOPT_UQUOTANOENF);
/* Either project or group quotas can be active, not both */
if (mp->m_qflags & XFS_PQUOTA_ACCT) {
if (mp->m_qflags & XFS_OQUOTA_ENFD)
seq_puts(m, "," MNTOPT_PRJQUOTA);
else
seq_puts(m, "," MNTOPT_PQUOTANOENF);
} else if (mp->m_qflags & XFS_GQUOTA_ACCT) {
if (mp->m_qflags & XFS_OQUOTA_ENFD)
seq_puts(m, "," MNTOPT_GRPQUOTA);
else
seq_puts(m, "," MNTOPT_GQUOTANOENF);
}
if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT))
seq_puts(m, "," MNTOPT_NOQUOTA);
return 0;
}
__uint64_t
xfs_max_file_offset(
unsigned int blockshift)
{
unsigned int pagefactor = 1;
unsigned int bitshift = BITS_PER_LONG - 1;
/* Figure out maximum filesize, on Linux this can depend on
* the filesystem blocksize (on 32 bit platforms).
* __block_prepare_write does this in an [unsigned] long...
* page->index << (PAGE_CACHE_SHIFT - bbits)
* So, for page sized blocks (4K on 32 bit platforms),
* this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
* (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
* but for smaller blocksizes it is less (bbits = log2 bsize).
* Note1: get_block_t takes a long (implicit cast from above)
* Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
* can optionally convert the [unsigned] long from above into
* an [unsigned] long long.
*/
#if BITS_PER_LONG == 32
# if defined(CONFIG_LBDAF)
ASSERT(sizeof(sector_t) == 8);
pagefactor = PAGE_CACHE_SIZE;
bitshift = BITS_PER_LONG;
# else
pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
# endif
#endif
return (((__uint64_t)pagefactor) << bitshift) - 1;
}
STATIC int
xfs_blkdev_get(
xfs_mount_t *mp,
const char *name,
struct block_device **bdevp)
{
int error = 0;
*bdevp = open_bdev_exclusive(name, FMODE_READ|FMODE_WRITE, mp);
if (IS_ERR(*bdevp)) {
error = PTR_ERR(*bdevp);
printk("XFS: Invalid device [%s], error=%d\n", name, error);
}
return -error;
}
STATIC void
xfs_blkdev_put(
struct block_device *bdev)
{
if (bdev)
close_bdev_exclusive(bdev, FMODE_READ|FMODE_WRITE);
}
/*
* Try to write out the superblock using barriers.
*/
STATIC int
xfs_barrier_test(
xfs_mount_t *mp)
{
xfs_buf_t *sbp = xfs_getsb(mp, 0);
int error;
XFS_BUF_UNDONE(sbp);
XFS_BUF_UNREAD(sbp);
XFS_BUF_UNDELAYWRITE(sbp);
XFS_BUF_WRITE(sbp);
XFS_BUF_UNASYNC(sbp);
XFS_BUF_ORDERED(sbp);
xfsbdstrat(mp, sbp);
error = xfs_iowait(sbp);
/*
* Clear all the flags we set and possible error state in the
* buffer. We only did the write to try out whether barriers
* worked and shouldn't leave any traces in the superblock
* buffer.
*/
XFS_BUF_DONE(sbp);
XFS_BUF_ERROR(sbp, 0);
XFS_BUF_UNORDERED(sbp);
xfs_buf_relse(sbp);
return error;
}
STATIC void
xfs_mountfs_check_barriers(xfs_mount_t *mp)
{
int error;
if (mp->m_logdev_targp != mp->m_ddev_targp) {
xfs_fs_cmn_err(CE_NOTE, mp,
"Disabling barriers, not supported with external log device");
mp->m_flags &= ~XFS_MOUNT_BARRIER;
return;
}
if (xfs_readonly_buftarg(mp->m_ddev_targp)) {
xfs_fs_cmn_err(CE_NOTE, mp,
"Disabling barriers, underlying device is readonly");
mp->m_flags &= ~XFS_MOUNT_BARRIER;
return;
}
error = xfs_barrier_test(mp);
if (error) {
xfs_fs_cmn_err(CE_NOTE, mp,
"Disabling barriers, trial barrier write failed");
mp->m_flags &= ~XFS_MOUNT_BARRIER;
return;
}
}
void
xfs_blkdev_issue_flush(
xfs_buftarg_t *buftarg)
{
blkdev_issue_flush(buftarg->bt_bdev, NULL);
}
STATIC void
xfs_close_devices(
struct xfs_mount *mp)
{
if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
struct block_device *logdev = mp->m_logdev_targp->bt_bdev;
xfs_free_buftarg(mp, mp->m_logdev_targp);
xfs_blkdev_put(logdev);
}
if (mp->m_rtdev_targp) {
struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev;
xfs_free_buftarg(mp, mp->m_rtdev_targp);
xfs_blkdev_put(rtdev);
}
xfs_free_buftarg(mp, mp->m_ddev_targp);
}
/*
* The file system configurations are:
* (1) device (partition) with data and internal log
* (2) logical volume with data and log subvolumes.
* (3) logical volume with data, log, and realtime subvolumes.
*
* We only have to handle opening the log and realtime volumes here if
* they are present. The data subvolume has already been opened by
* get_sb_bdev() and is stored in sb->s_bdev.
*/
STATIC int
xfs_open_devices(
struct xfs_mount *mp)
{
struct block_device *ddev = mp->m_super->s_bdev;
struct block_device *logdev = NULL, *rtdev = NULL;
int error;
/*
* Open real time and log devices - order is important.
*/
if (mp->m_logname) {
error = xfs_blkdev_get(mp, mp->m_logname, &logdev);
if (error)
goto out;
}
if (mp->m_rtname) {
error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev);
if (error)
goto out_close_logdev;
if (rtdev == ddev || rtdev == logdev) {
cmn_err(CE_WARN,
"XFS: Cannot mount filesystem with identical rtdev and ddev/logdev.");
error = EINVAL;
goto out_close_rtdev;
}
}
/*
* Setup xfs_mount buffer target pointers
*/
error = ENOMEM;
mp->m_ddev_targp = xfs_alloc_buftarg(ddev, 0);
if (!mp->m_ddev_targp)
goto out_close_rtdev;
if (rtdev) {
mp->m_rtdev_targp = xfs_alloc_buftarg(rtdev, 1);
if (!mp->m_rtdev_targp)
goto out_free_ddev_targ;
}
if (logdev && logdev != ddev) {
mp->m_logdev_targp = xfs_alloc_buftarg(logdev, 1);
if (!mp->m_logdev_targp)
goto out_free_rtdev_targ;
} else {
mp->m_logdev_targp = mp->m_ddev_targp;
}
return 0;
out_free_rtdev_targ:
if (mp->m_rtdev_targp)
xfs_free_buftarg(mp, mp->m_rtdev_targp);
out_free_ddev_targ:
xfs_free_buftarg(mp, mp->m_ddev_targp);
out_close_rtdev:
if (rtdev)
xfs_blkdev_put(rtdev);
out_close_logdev:
if (logdev && logdev != ddev)
xfs_blkdev_put(logdev);
out:
return error;
}
/*
* Setup xfs_mount buffer target pointers based on superblock
*/
STATIC int
xfs_setup_devices(
struct xfs_mount *mp)
{
int error;
error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_blocksize,
mp->m_sb.sb_sectsize);
if (error)
return error;
if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
unsigned int log_sector_size = BBSIZE;
if (xfs_sb_version_hassector(&mp->m_sb))
log_sector_size = mp->m_sb.sb_logsectsize;
error = xfs_setsize_buftarg(mp->m_logdev_targp,
mp->m_sb.sb_blocksize,
log_sector_size);
if (error)
return error;
}
if (mp->m_rtdev_targp) {
error = xfs_setsize_buftarg(mp->m_rtdev_targp,
mp->m_sb.sb_blocksize,
mp->m_sb.sb_sectsize);
if (error)
return error;
}
return 0;
}
/*
* XFS AIL push thread support
*/
void
xfsaild_wakeup(
struct xfs_ail *ailp,
xfs_lsn_t threshold_lsn)
{
ailp->xa_target = threshold_lsn;
wake_up_process(ailp->xa_task);
}
STATIC int
xfsaild(
void *data)
{
struct xfs_ail *ailp = data;
xfs_lsn_t last_pushed_lsn = 0;
long tout = 0;
while (!kthread_should_stop()) {
if (tout)
schedule_timeout_interruptible(msecs_to_jiffies(tout));
tout = 1000;
/* swsusp */
try_to_freeze();
ASSERT(ailp->xa_mount->m_log);
if (XFS_FORCED_SHUTDOWN(ailp->xa_mount))
continue;
tout = xfsaild_push(ailp, &last_pushed_lsn);
}
return 0;
} /* xfsaild */
int
xfsaild_start(
struct xfs_ail *ailp)
{
ailp->xa_target = 0;
ailp->xa_task = kthread_run(xfsaild, ailp, "xfsaild");
if (IS_ERR(ailp->xa_task))
return -PTR_ERR(ailp->xa_task);
return 0;
}
void
xfsaild_stop(
struct xfs_ail *ailp)
{
kthread_stop(ailp->xa_task);
}
/* Catch misguided souls that try to use this interface on XFS */
STATIC struct inode *
xfs_fs_alloc_inode(
struct super_block *sb)
{
BUG();
return NULL;
}
/*
* Now that the generic code is guaranteed not to be accessing
* the linux inode, we can reclaim the inode.
*/
STATIC void
xfs_fs_destroy_inode(
struct inode *inode)
{
struct xfs_inode *ip = XFS_I(inode);
xfs_itrace_entry(ip);
XFS_STATS_INC(vn_reclaim);
/* bad inode, get out here ASAP */
if (is_bad_inode(inode))
goto out_reclaim;
xfs_ioend_wait(ip);
ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0);
/*
* We should never get here with one of the reclaim flags already set.
*/
ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIMABLE));
ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM));
/*
* If we have nothing to flush with this inode then complete the
* teardown now, otherwise delay the flush operation.
*/
if (!xfs_inode_clean(ip)) {
xfs_inode_set_reclaim_tag(ip);
return;
}
out_reclaim:
xfs_ireclaim(ip);
}
/*
* Slab object creation initialisation for the XFS inode.
* This covers only the idempotent fields in the XFS inode;
* all other fields need to be initialised on allocation
* from the slab. This avoids the need to repeatedly intialise
* fields in the xfs inode that left in the initialise state
* when freeing the inode.
*/
STATIC void
xfs_fs_inode_init_once(
void *inode)
{
struct xfs_inode *ip = inode;
memset(ip, 0, sizeof(struct xfs_inode));
/* vfs inode */
inode_init_once(VFS_I(ip));
/* xfs inode */
atomic_set(&ip->i_iocount, 0);
atomic_set(&ip->i_pincount, 0);
spin_lock_init(&ip->i_flags_lock);
init_waitqueue_head(&ip->i_ipin_wait);
/*
* Because we want to use a counting completion, complete
* the flush completion once to allow a single access to
* the flush completion without blocking.
*/
init_completion(&ip->i_flush);
complete(&ip->i_flush);
mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
"xfsino", ip->i_ino);
}
/*
* Dirty the XFS inode when mark_inode_dirty_sync() is called so that
* we catch unlogged VFS level updates to the inode. Care must be taken
* here - the transaction code calls mark_inode_dirty_sync() to mark the
* VFS inode dirty in a transaction and clears the i_update_core field;
* it must clear the field after calling mark_inode_dirty_sync() to
* correctly indicate that the dirty state has been propagated into the
* inode log item.
*
* We need the barrier() to maintain correct ordering between unlogged
* updates and the transaction commit code that clears the i_update_core
* field. This requires all updates to be completed before marking the
* inode dirty.
*/
STATIC void
xfs_fs_dirty_inode(
struct inode *inode)
{
barrier();
XFS_I(inode)->i_update_core = 1;
}
/*
* Attempt to flush the inode, this will actually fail
* if the inode is pinned, but we dirty the inode again
* at the point when it is unpinned after a log write,
* since this is when the inode itself becomes flushable.
*/
STATIC int
xfs_fs_write_inode(
struct inode *inode,
int sync)
{
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
int error = 0;
xfs_itrace_entry(ip);
if (XFS_FORCED_SHUTDOWN(mp))
return XFS_ERROR(EIO);
if (sync) {
error = xfs_wait_on_pages(ip, 0, -1);
if (error)
goto out;
}
/*
* Bypass inodes which have already been cleaned by
* the inode flush clustering code inside xfs_iflush
*/
if (xfs_inode_clean(ip))
goto out;
/*
* We make this non-blocking if the inode is contended, return
* EAGAIN to indicate to the caller that they did not succeed.
* This prevents the flush path from blocking on inodes inside
* another operation right now, they get caught later by xfs_sync.
*/
if (sync) {
xfs_ilock(ip, XFS_ILOCK_SHARED);
xfs_iflock(ip);
error = xfs_iflush(ip, XFS_IFLUSH_SYNC);
} else {
error = EAGAIN;
if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
goto out;
if (xfs_ipincount(ip) || !xfs_iflock_nowait(ip))
goto out_unlock;
error = xfs_iflush(ip, XFS_IFLUSH_ASYNC_NOBLOCK);
}
out_unlock:
xfs_iunlock(ip, XFS_ILOCK_SHARED);
out:
/*
* if we failed to write out the inode then mark
* it dirty again so we'll try again later.
*/
if (error)
xfs_mark_inode_dirty_sync(ip);
return -error;
}
STATIC void
xfs_fs_clear_inode(
struct inode *inode)
{
xfs_inode_t *ip = XFS_I(inode);
xfs_itrace_entry(ip);
XFS_STATS_INC(vn_rele);
XFS_STATS_INC(vn_remove);
XFS_STATS_DEC(vn_active);
/*
* The iolock is used by the file system to coordinate reads,
* writes, and block truncates. Up to this point the lock
* protected concurrent accesses by users of the inode. But
* from here forward we're doing some final processing of the
* inode because we're done with it, and although we reuse the
* iolock for protection it is really a distinct lock class
* (in the lockdep sense) from before. To keep lockdep happy
* (and basically indicate what we are doing), we explicitly
* re-init the iolock here.
*/
ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
xfs_inactive(ip);
}
STATIC void
xfs_free_fsname(
struct xfs_mount *mp)
{
kfree(mp->m_fsname);
kfree(mp->m_rtname);
kfree(mp->m_logname);
}
STATIC void
xfs_fs_put_super(
struct super_block *sb)
{
struct xfs_mount *mp = XFS_M(sb);
xfs_syncd_stop(mp);
if (!(sb->s_flags & MS_RDONLY)) {
/*
* XXX(hch): this should be SYNC_WAIT.
*
* Or more likely not needed at all because the VFS is already
* calling ->sync_fs after shutting down all filestem
* operations and just before calling ->put_super.
*/
xfs_sync_data(mp, 0);
xfs_sync_attr(mp, 0);
}
XFS_SEND_PREUNMOUNT(mp);
/*
* Blow away any referenced inode in the filestreams cache.
* This can and will cause log traffic as inodes go inactive
* here.
*/
xfs_filestream_unmount(mp);
XFS_bflush(mp->m_ddev_targp);
XFS_SEND_UNMOUNT(mp);
xfs_unmountfs(mp);
xfs_freesb(mp);
xfs_icsb_destroy_counters(mp);
xfs_close_devices(mp);
xfs_dmops_put(mp);
xfs_free_fsname(mp);
kfree(mp);
}
STATIC int
xfs_fs_sync_fs(
struct super_block *sb,
int wait)
{
struct xfs_mount *mp = XFS_M(sb);
int error;
/*
* Not much we can do for the first async pass. Writing out the
* superblock would be counter-productive as we are going to redirty
* when writing out other data and metadata (and writing out a single
* block is quite fast anyway).
*
* Try to asynchronously kick off quota syncing at least.
*/
if (!wait) {
xfs_qm_sync(mp, SYNC_TRYLOCK);
return 0;
}
error = xfs_quiesce_data(mp);
if (error)
return -error;
if (laptop_mode) {
int prev_sync_seq = mp->m_sync_seq;
/*
* The disk must be active because we're syncing.
* We schedule xfssyncd now (now that the disk is
* active) instead of later (when it might not be).
*/
wake_up_process(mp->m_sync_task);
/*
* We have to wait for the sync iteration to complete.
* If we don't, the disk activity caused by the sync
* will come after the sync is completed, and that
* triggers another sync from laptop mode.
*/
wait_event(mp->m_wait_single_sync_task,
mp->m_sync_seq != prev_sync_seq);
}
return 0;
}
STATIC int
xfs_fs_statfs(
struct dentry *dentry,
struct kstatfs *statp)
{
struct xfs_mount *mp = XFS_M(dentry->d_sb);
xfs_sb_t *sbp = &mp->m_sb;
struct xfs_inode *ip = XFS_I(dentry->d_inode);
__uint64_t fakeinos, id;
xfs_extlen_t lsize;
statp->f_type = XFS_SB_MAGIC;
statp->f_namelen = MAXNAMELEN - 1;
id = huge_encode_dev(mp->m_ddev_targp->bt_dev);
statp->f_fsid.val[0] = (u32)id;
statp->f_fsid.val[1] = (u32)(id >> 32);
xfs_icsb_sync_counters(mp, XFS_ICSB_LAZY_COUNT);
spin_lock(&mp->m_sb_lock);
statp->f_bsize = sbp->sb_blocksize;
lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0;
statp->f_blocks = sbp->sb_dblocks - lsize;
statp->f_bfree = statp->f_bavail =
sbp->sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
fakeinos = statp->f_bfree << sbp->sb_inopblog;
statp->f_files =
MIN(sbp->sb_icount + fakeinos, (__uint64_t)XFS_MAXINUMBER);
if (mp->m_maxicount)
statp->f_files = min_t(typeof(statp->f_files),
statp->f_files,
mp->m_maxicount);
statp->f_ffree = statp->f_files - (sbp->sb_icount - sbp->sb_ifree);
spin_unlock(&mp->m_sb_lock);
if ((ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) ||
((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_OQUOTA_ENFD))) ==
(XFS_PQUOTA_ACCT|XFS_OQUOTA_ENFD))
xfs_qm_statvfs(ip, statp);
return 0;
}
STATIC int
xfs_fs_remount(
struct super_block *sb,
int *flags,
char *options)
{
struct xfs_mount *mp = XFS_M(sb);
substring_t args[MAX_OPT_ARGS];
char *p;
int error;
while ((p = strsep(&options, ",")) != NULL) {
int token;
if (!*p)
continue;
token = match_token(p, tokens, args);
switch (token) {
case Opt_barrier:
mp->m_flags |= XFS_MOUNT_BARRIER;
/*
* Test if barriers are actually working if we can,
* else delay this check until the filesystem is
* marked writeable.
*/
if (!(mp->m_flags & XFS_MOUNT_RDONLY))
xfs_mountfs_check_barriers(mp);
break;
case Opt_nobarrier:
mp->m_flags &= ~XFS_MOUNT_BARRIER;
break;
default:
/*
* Logically we would return an error here to prevent
* users from believing they might have changed
* mount options using remount which can't be changed.
*
* But unfortunately mount(8) adds all options from
* mtab and fstab to the mount arguments in some cases
* so we can't blindly reject options, but have to
* check for each specified option if it actually
* differs from the currently set option and only
* reject it if that's the case.
*
* Until that is implemented we return success for
* every remount request, and silently ignore all
* options that we can't actually change.
*/
#if 0
printk(KERN_INFO
"XFS: mount option \"%s\" not supported for remount\n", p);
return -EINVAL;
#else
break;
#endif
}
}
/* ro -> rw */
if ((mp->m_flags & XFS_MOUNT_RDONLY) && !(*flags & MS_RDONLY)) {
mp->m_flags &= ~XFS_MOUNT_RDONLY;
if (mp->m_flags & XFS_MOUNT_BARRIER)
xfs_mountfs_check_barriers(mp);
/*
* If this is the first remount to writeable state we
* might have some superblock changes to update.
*/
if (mp->m_update_flags) {
error = xfs_mount_log_sb(mp, mp->m_update_flags);
if (error) {
cmn_err(CE_WARN,
"XFS: failed to write sb changes");
return error;
}
mp->m_update_flags = 0;
}
}
/* rw -> ro */
if (!(mp->m_flags & XFS_MOUNT_RDONLY) && (*flags & MS_RDONLY)) {
xfs_quiesce_data(mp);
xfs_quiesce_attr(mp);
mp->m_flags |= XFS_MOUNT_RDONLY;
}
return 0;
}
/*
* Second stage of a freeze. The data is already frozen so we only
* need to take care of the metadata. Once that's done write a dummy
* record to dirty the log in case of a crash while frozen.
*/
STATIC int
xfs_fs_freeze(
struct super_block *sb)
{
struct xfs_mount *mp = XFS_M(sb);
xfs_quiesce_attr(mp);
return -xfs_fs_log_dummy(mp);
}
STATIC int
xfs_fs_show_options(
struct seq_file *m,
struct vfsmount *mnt)
{
return -xfs_showargs(XFS_M(mnt->mnt_sb), m);
}
/*
* This function fills in xfs_mount_t fields based on mount args.
* Note: the superblock _has_ now been read in.
*/
STATIC int
xfs_finish_flags(
struct xfs_mount *mp)
{
int ronly = (mp->m_flags & XFS_MOUNT_RDONLY);
/* Fail a mount where the logbuf is smaller than the log stripe */
if (xfs_sb_version_haslogv2(&mp->m_sb)) {
if (mp->m_logbsize <= 0 &&
mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) {
mp->m_logbsize = mp->m_sb.sb_logsunit;
} else if (mp->m_logbsize > 0 &&
mp->m_logbsize < mp->m_sb.sb_logsunit) {
cmn_err(CE_WARN,
"XFS: logbuf size must be greater than or equal to log stripe size");
return XFS_ERROR(EINVAL);
}
} else {
/* Fail a mount if the logbuf is larger than 32K */
if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) {
cmn_err(CE_WARN,
"XFS: logbuf size for version 1 logs must be 16K or 32K");
return XFS_ERROR(EINVAL);
}
}
/*
* mkfs'ed attr2 will turn on attr2 mount unless explicitly
* told by noattr2 to turn it off
*/
if (xfs_sb_version_hasattr2(&mp->m_sb) &&
!(mp->m_flags & XFS_MOUNT_NOATTR2))
mp->m_flags |= XFS_MOUNT_ATTR2;
/*
* prohibit r/w mounts of read-only filesystems
*/
if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) {
cmn_err(CE_WARN,
"XFS: cannot mount a read-only filesystem as read-write");
return XFS_ERROR(EROFS);
}
return 0;
}
STATIC int
xfs_fs_fill_super(
struct super_block *sb,
void *data,
int silent)
{
struct inode *root;
struct xfs_mount *mp = NULL;
int flags = 0, error = ENOMEM;
char *mtpt = NULL;
mp = kzalloc(sizeof(struct xfs_mount), GFP_KERNEL);
if (!mp)
goto out;
spin_lock_init(&mp->m_sb_lock);
mutex_init(&mp->m_growlock);
atomic_set(&mp->m_active_trans, 0);
INIT_LIST_HEAD(&mp->m_sync_list);
spin_lock_init(&mp->m_sync_lock);
init_waitqueue_head(&mp->m_wait_single_sync_task);
mp->m_super = sb;
sb->s_fs_info = mp;
error = xfs_parseargs(mp, (char *)data, &mtpt);
if (error)
goto out_free_fsname;
sb_min_blocksize(sb, BBSIZE);
sb->s_xattr = xfs_xattr_handlers;
sb->s_export_op = &xfs_export_operations;
#ifdef CONFIG_XFS_QUOTA
sb->s_qcop = &xfs_quotactl_operations;
#endif
sb->s_op = &xfs_super_operations;
error = xfs_dmops_get(mp);
if (error)
goto out_free_fsname;
if (silent)
flags |= XFS_MFSI_QUIET;
error = xfs_open_devices(mp);
if (error)
goto out_put_dmops;
if (xfs_icsb_init_counters(mp))
mp->m_flags |= XFS_MOUNT_NO_PERCPU_SB;
error = xfs_readsb(mp, flags);
if (error)
goto out_destroy_counters;
error = xfs_finish_flags(mp);
if (error)
goto out_free_sb;
error = xfs_setup_devices(mp);
if (error)
goto out_free_sb;
if (mp->m_flags & XFS_MOUNT_BARRIER)
xfs_mountfs_check_barriers(mp);
error = xfs_filestream_mount(mp);
if (error)
goto out_free_sb;
error = xfs_mountfs(mp);
if (error)
goto out_filestream_unmount;
XFS_SEND_MOUNT(mp, DM_RIGHT_NULL, mtpt, mp->m_fsname);
sb->s_magic = XFS_SB_MAGIC;
sb->s_blocksize = mp->m_sb.sb_blocksize;
sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1;
sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
sb->s_time_gran = 1;
set_posix_acl_flag(sb);
root = igrab(VFS_I(mp->m_rootip));
if (!root) {
error = ENOENT;
goto fail_unmount;
}
if (is_bad_inode(root)) {
error = EINVAL;
goto fail_vnrele;
}
sb->s_root = d_alloc_root(root);
if (!sb->s_root) {
error = ENOMEM;
goto fail_vnrele;
}
error = xfs_syncd_init(mp);
if (error)
goto fail_vnrele;
kfree(mtpt);
xfs_itrace_exit(XFS_I(sb->s_root->d_inode));
return 0;
out_filestream_unmount:
xfs_filestream_unmount(mp);
out_free_sb:
xfs_freesb(mp);
out_destroy_counters:
xfs_icsb_destroy_counters(mp);
xfs_close_devices(mp);
out_put_dmops:
xfs_dmops_put(mp);
out_free_fsname:
xfs_free_fsname(mp);
kfree(mtpt);
kfree(mp);
out:
return -error;
fail_vnrele:
if (sb->s_root) {
dput(sb->s_root);
sb->s_root = NULL;
} else {
iput(root);
}
fail_unmount:
/*
* Blow away any referenced inode in the filestreams cache.
* This can and will cause log traffic as inodes go inactive
* here.
*/
xfs_filestream_unmount(mp);
XFS_bflush(mp->m_ddev_targp);
xfs_unmountfs(mp);
goto out_free_sb;
}
STATIC int
xfs_fs_get_sb(
struct file_system_type *fs_type,
int flags,
const char *dev_name,
void *data,
struct vfsmount *mnt)
{
return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
mnt);
}
static const struct super_operations xfs_super_operations = {
.alloc_inode = xfs_fs_alloc_inode,
.destroy_inode = xfs_fs_destroy_inode,
.dirty_inode = xfs_fs_dirty_inode,
.write_inode = xfs_fs_write_inode,
.clear_inode = xfs_fs_clear_inode,
.put_super = xfs_fs_put_super,
.sync_fs = xfs_fs_sync_fs,
.freeze_fs = xfs_fs_freeze,
.statfs = xfs_fs_statfs,
.remount_fs = xfs_fs_remount,
.show_options = xfs_fs_show_options,
};
static struct file_system_type xfs_fs_type = {
.owner = THIS_MODULE,
.name = "xfs",
.get_sb = xfs_fs_get_sb,
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV,
};
STATIC int __init
xfs_alloc_trace_bufs(void)
{
#ifdef XFS_ALLOC_TRACE
xfs_alloc_trace_buf = ktrace_alloc(XFS_ALLOC_TRACE_SIZE, KM_MAYFAIL);
if (!xfs_alloc_trace_buf)
goto out;
#endif
#ifdef XFS_BMAP_TRACE
xfs_bmap_trace_buf = ktrace_alloc(XFS_BMAP_TRACE_SIZE, KM_MAYFAIL);
if (!xfs_bmap_trace_buf)
goto out_free_alloc_trace;
#endif
#ifdef XFS_BTREE_TRACE
xfs_allocbt_trace_buf = ktrace_alloc(XFS_ALLOCBT_TRACE_SIZE,
KM_MAYFAIL);
if (!xfs_allocbt_trace_buf)
goto out_free_bmap_trace;
xfs_inobt_trace_buf = ktrace_alloc(XFS_INOBT_TRACE_SIZE, KM_MAYFAIL);
if (!xfs_inobt_trace_buf)
goto out_free_allocbt_trace;
xfs_bmbt_trace_buf = ktrace_alloc(XFS_BMBT_TRACE_SIZE, KM_MAYFAIL);
if (!xfs_bmbt_trace_buf)
goto out_free_inobt_trace;
#endif
#ifdef XFS_ATTR_TRACE
xfs_attr_trace_buf = ktrace_alloc(XFS_ATTR_TRACE_SIZE, KM_MAYFAIL);
if (!xfs_attr_trace_buf)
goto out_free_bmbt_trace;
#endif
#ifdef XFS_DIR2_TRACE
xfs_dir2_trace_buf = ktrace_alloc(XFS_DIR2_GTRACE_SIZE, KM_MAYFAIL);
if (!xfs_dir2_trace_buf)
goto out_free_attr_trace;
#endif
return 0;
#ifdef XFS_DIR2_TRACE
out_free_attr_trace:
#endif
#ifdef XFS_ATTR_TRACE
ktrace_free(xfs_attr_trace_buf);
out_free_bmbt_trace:
#endif
#ifdef XFS_BTREE_TRACE
ktrace_free(xfs_bmbt_trace_buf);
out_free_inobt_trace:
ktrace_free(xfs_inobt_trace_buf);
out_free_allocbt_trace:
ktrace_free(xfs_allocbt_trace_buf);
out_free_bmap_trace:
#endif
#ifdef XFS_BMAP_TRACE
ktrace_free(xfs_bmap_trace_buf);
out_free_alloc_trace:
#endif
#ifdef XFS_ALLOC_TRACE
ktrace_free(xfs_alloc_trace_buf);
out:
#endif
return -ENOMEM;
}
STATIC void
xfs_free_trace_bufs(void)
{
#ifdef XFS_DIR2_TRACE
ktrace_free(xfs_dir2_trace_buf);
#endif
#ifdef XFS_ATTR_TRACE
ktrace_free(xfs_attr_trace_buf);
#endif
#ifdef XFS_BTREE_TRACE
ktrace_free(xfs_bmbt_trace_buf);
ktrace_free(xfs_inobt_trace_buf);
ktrace_free(xfs_allocbt_trace_buf);
#endif
#ifdef XFS_BMAP_TRACE
ktrace_free(xfs_bmap_trace_buf);
#endif
#ifdef XFS_ALLOC_TRACE
ktrace_free(xfs_alloc_trace_buf);
#endif
}
STATIC int __init
xfs_init_zones(void)
{
xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
if (!xfs_ioend_zone)
goto out;
xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
xfs_ioend_zone);
if (!xfs_ioend_pool)
goto out_destroy_ioend_zone;
xfs_log_ticket_zone = kmem_zone_init(sizeof(xlog_ticket_t),
"xfs_log_ticket");
if (!xfs_log_ticket_zone)
goto out_destroy_ioend_pool;
xfs_bmap_free_item_zone = kmem_zone_init(sizeof(xfs_bmap_free_item_t),
"xfs_bmap_free_item");
if (!xfs_bmap_free_item_zone)
goto out_destroy_log_ticket_zone;
xfs_btree_cur_zone = kmem_zone_init(sizeof(xfs_btree_cur_t),
"xfs_btree_cur");
if (!xfs_btree_cur_zone)
goto out_destroy_bmap_free_item_zone;
xfs_da_state_zone = kmem_zone_init(sizeof(xfs_da_state_t),
"xfs_da_state");
if (!xfs_da_state_zone)
goto out_destroy_btree_cur_zone;
xfs_dabuf_zone = kmem_zone_init(sizeof(xfs_dabuf_t), "xfs_dabuf");
if (!xfs_dabuf_zone)
goto out_destroy_da_state_zone;
xfs_ifork_zone = kmem_zone_init(sizeof(xfs_ifork_t), "xfs_ifork");
if (!xfs_ifork_zone)
goto out_destroy_dabuf_zone;
xfs_trans_zone = kmem_zone_init(sizeof(xfs_trans_t), "xfs_trans");
if (!xfs_trans_zone)
goto out_destroy_ifork_zone;
/*
* The size of the zone allocated buf log item is the maximum
* size possible under XFS. This wastes a little bit of memory,
* but it is much faster.
*/
xfs_buf_item_zone = kmem_zone_init((sizeof(xfs_buf_log_item_t) +
(((XFS_MAX_BLOCKSIZE / XFS_BLI_CHUNK) /
NBWORD) * sizeof(int))), "xfs_buf_item");
if (!xfs_buf_item_zone)
goto out_destroy_trans_zone;
xfs_efd_zone = kmem_zone_init((sizeof(xfs_efd_log_item_t) +
((XFS_EFD_MAX_FAST_EXTENTS - 1) *
sizeof(xfs_extent_t))), "xfs_efd_item");
if (!xfs_efd_zone)
goto out_destroy_buf_item_zone;
xfs_efi_zone = kmem_zone_init((sizeof(xfs_efi_log_item_t) +
((XFS_EFI_MAX_FAST_EXTENTS - 1) *
sizeof(xfs_extent_t))), "xfs_efi_item");
if (!xfs_efi_zone)
goto out_destroy_efd_zone;
xfs_inode_zone =
kmem_zone_init_flags(sizeof(xfs_inode_t), "xfs_inode",
KM_ZONE_HWALIGN | KM_ZONE_RECLAIM | KM_ZONE_SPREAD,
xfs_fs_inode_init_once);
if (!xfs_inode_zone)
goto out_destroy_efi_zone;
xfs_ili_zone =
kmem_zone_init_flags(sizeof(xfs_inode_log_item_t), "xfs_ili",
KM_ZONE_SPREAD, NULL);
if (!xfs_ili_zone)
goto out_destroy_inode_zone;
return 0;
out_destroy_inode_zone:
kmem_zone_destroy(xfs_inode_zone);
out_destroy_efi_zone:
kmem_zone_destroy(xfs_efi_zone);
out_destroy_efd_zone:
kmem_zone_destroy(xfs_efd_zone);
out_destroy_buf_item_zone:
kmem_zone_destroy(xfs_buf_item_zone);
out_destroy_trans_zone:
kmem_zone_destroy(xfs_trans_zone);
out_destroy_ifork_zone:
kmem_zone_destroy(xfs_ifork_zone);
out_destroy_dabuf_zone:
kmem_zone_destroy(xfs_dabuf_zone);
out_destroy_da_state_zone:
kmem_zone_destroy(xfs_da_state_zone);
out_destroy_btree_cur_zone:
kmem_zone_destroy(xfs_btree_cur_zone);
out_destroy_bmap_free_item_zone:
kmem_zone_destroy(xfs_bmap_free_item_zone);
out_destroy_log_ticket_zone:
kmem_zone_destroy(xfs_log_ticket_zone);
out_destroy_ioend_pool:
mempool_destroy(xfs_ioend_pool);
out_destroy_ioend_zone:
kmem_zone_destroy(xfs_ioend_zone);
out:
return -ENOMEM;
}
STATIC void
xfs_destroy_zones(void)
{
kmem_zone_destroy(xfs_ili_zone);
kmem_zone_destroy(xfs_inode_zone);
kmem_zone_destroy(xfs_efi_zone);
kmem_zone_destroy(xfs_efd_zone);
kmem_zone_destroy(xfs_buf_item_zone);
kmem_zone_destroy(xfs_trans_zone);
kmem_zone_destroy(xfs_ifork_zone);
kmem_zone_destroy(xfs_dabuf_zone);
kmem_zone_destroy(xfs_da_state_zone);
kmem_zone_destroy(xfs_btree_cur_zone);
kmem_zone_destroy(xfs_bmap_free_item_zone);
kmem_zone_destroy(xfs_log_ticket_zone);
mempool_destroy(xfs_ioend_pool);
kmem_zone_destroy(xfs_ioend_zone);
}
STATIC int __init
init_xfs_fs(void)
{
int error;
printk(KERN_INFO XFS_VERSION_STRING " with "
XFS_BUILD_OPTIONS " enabled\n");
ktrace_init(64);
xfs_ioend_init();
xfs_dir_startup();
error = xfs_init_zones();
if (error)
goto out;
error = xfs_alloc_trace_bufs();
if (error)
goto out_destroy_zones;
error = xfs_mru_cache_init();
if (error)
goto out_free_trace_buffers;
error = xfs_filestream_init();
if (error)
goto out_mru_cache_uninit;
error = xfs_buf_init();
if (error)
goto out_filestream_uninit;
error = xfs_init_procfs();
if (error)
goto out_buf_terminate;
error = xfs_sysctl_register();
if (error)
goto out_cleanup_procfs;
vfs_initquota();
error = register_filesystem(&xfs_fs_type);
if (error)
goto out_sysctl_unregister;
return 0;
out_sysctl_unregister:
xfs_sysctl_unregister();
out_cleanup_procfs:
xfs_cleanup_procfs();
out_buf_terminate:
xfs_buf_terminate();
out_filestream_uninit:
xfs_filestream_uninit();
out_mru_cache_uninit:
xfs_mru_cache_uninit();
out_free_trace_buffers:
xfs_free_trace_bufs();
out_destroy_zones:
xfs_destroy_zones();
out:
return error;
}
STATIC void __exit
exit_xfs_fs(void)
{
vfs_exitquota();
unregister_filesystem(&xfs_fs_type);
xfs_sysctl_unregister();
xfs_cleanup_procfs();
xfs_buf_terminate();
xfs_filestream_uninit();
xfs_mru_cache_uninit();
xfs_free_trace_bufs();
xfs_destroy_zones();
ktrace_uninit();
}
module_init(init_xfs_fs);
module_exit(exit_xfs_fs);
MODULE_AUTHOR("Silicon Graphics, Inc.");
MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
MODULE_LICENSE("GPL");