/*
* linux/fs/ufs/super.c
*
* Copyright (C) 1998
* Daniel Pirkl <daniel.pirkl@email.cz>
* Charles University, Faculty of Mathematics and Physics
*/
/* Derived from
*
* linux/fs/ext2/super.c
*
* Copyright (C) 1992, 1993, 1994, 1995
* Remy Card (card@masi.ibp.fr)
* Laboratoire MASI - Institut Blaise Pascal
* Universite Pierre et Marie Curie (Paris VI)
*
* from
*
* linux/fs/minix/inode.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* Big-endian to little-endian byte-swapping/bitmaps by
* David S. Miller (davem@caip.rutgers.edu), 1995
*/
/*
* Inspired by
*
* linux/fs/ufs/super.c
*
* Copyright (C) 1996
* Adrian Rodriguez (adrian@franklins-tower.rutgers.edu)
* Laboratory for Computer Science Research Computing Facility
* Rutgers, The State University of New Jersey
*
* Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
*
* Kernel module support added on 96/04/26 by
* Stefan Reinauer <stepan@home.culture.mipt.ru>
*
* Module usage counts added on 96/04/29 by
* Gertjan van Wingerde <gwingerde@gmail.com>
*
* Clean swab support on 19970406 by
* Francois-Rene Rideau <fare@tunes.org>
*
* 4.4BSD (FreeBSD) support added on February 1st 1998 by
* Niels Kristian Bech Jensen <nkbj@image.dk> partially based
* on code by Martin von Loewis <martin@mira.isdn.cs.tu-berlin.de>.
*
* NeXTstep support added on February 5th 1998 by
* Niels Kristian Bech Jensen <nkbj@image.dk>.
*
* write support Daniel Pirkl <daniel.pirkl@email.cz> 1998
*
* HP/UX hfs filesystem support added by
* Martin K. Petersen <mkp@mkp.net>, August 1999
*
* UFS2 (of FreeBSD 5.x) support added by
* Niraj Kumar <niraj17@iitbombay.org>, Jan 2004
*
* UFS2 write support added by
* Evgeniy Dushistov <dushistov@mail.ru>, 2007
*/
#include <linux/exportfs.h>
#include <linux/module.h>
#include <linux/bitops.h>
#include <stdarg.h>
#include <asm/uaccess.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/blkdev.h>
#include <linux/init.h>
#include <linux/parser.h>
#include <linux/buffer_head.h>
#include <linux/vfs.h>
#include <linux/log2.h>
#include <linux/mount.h>
#include <linux/seq_file.h>
#include "ufs_fs.h"
#include "ufs.h"
#include "swab.h"
#include "util.h"
void lock_ufs(struct super_block *sb)
{
struct ufs_sb_info *sbi = UFS_SB(sb);
mutex_lock(&sbi->mutex);
sbi->mutex_owner = current;
}
void unlock_ufs(struct super_block *sb)
{
struct ufs_sb_info *sbi = UFS_SB(sb);
sbi->mutex_owner = NULL;
mutex_unlock(&sbi->mutex);
}
static struct inode *ufs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
{
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
struct inode *inode;
if (ino < UFS_ROOTINO || ino > uspi->s_ncg * uspi->s_ipg)
return ERR_PTR(-ESTALE);
inode = ufs_iget(sb, ino);
if (IS_ERR(inode))
return ERR_CAST(inode);
if (generation && inode->i_generation != generation) {
iput(inode);
return ERR_PTR(-ESTALE);
}
return inode;
}
static struct dentry *ufs_fh_to_dentry(struct super_block *sb, struct fid *fid,
int fh_len, int fh_type)
{
return generic_fh_to_dentry(sb, fid, fh_len, fh_type, ufs_nfs_get_inode);
}
static struct dentry *ufs_fh_to_parent(struct super_block *sb, struct fid *fid,
int fh_len, int fh_type)
{
return generic_fh_to_parent(sb, fid, fh_len, fh_type, ufs_nfs_get_inode);
}
static struct dentry *ufs_get_parent(struct dentry *child)
{
struct qstr dot_dot = QSTR_INIT("..", 2);
ino_t ino;
ino = ufs_inode_by_name(child->d_inode, &dot_dot);
if (!ino)
return ERR_PTR(-ENOENT);
return d_obtain_alias(ufs_iget(child->d_inode->i_sb, ino));
}
static const struct export_operations ufs_export_ops = {
.fh_to_dentry = ufs_fh_to_dentry,
.fh_to_parent = ufs_fh_to_parent,
.get_parent = ufs_get_parent,
};
#ifdef CONFIG_UFS_DEBUG
/*
* Print contents of ufs_super_block, useful for debugging
*/
static void ufs_print_super_stuff(struct super_block *sb,
struct ufs_super_block_first *usb1,
struct ufs_super_block_second *usb2,
struct ufs_super_block_third *usb3)
{
u32 magic = fs32_to_cpu(sb, usb3->fs_magic);
pr_debug("ufs_print_super_stuff\n");
pr_debug(" magic: 0x%x\n", magic);
if (fs32_to_cpu(sb, usb3->fs_magic) == UFS2_MAGIC) {
pr_debug(" fs_size: %llu\n", (unsigned long long)
fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_size));
pr_debug(" fs_dsize: %llu\n", (unsigned long long)
fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize));
pr_debug(" bsize: %u\n",
fs32_to_cpu(sb, usb1->fs_bsize));
pr_debug(" fsize: %u\n",
fs32_to_cpu(sb, usb1->fs_fsize));
pr_debug(" fs_volname: %s\n", usb2->fs_un.fs_u2.fs_volname);
pr_debug(" fs_sblockloc: %llu\n", (unsigned long long)
fs64_to_cpu(sb, usb2->fs_un.fs_u2.fs_sblockloc));
pr_debug(" cs_ndir(No of dirs): %llu\n", (unsigned long long)
fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_ndir));
pr_debug(" cs_nbfree(No of free blocks): %llu\n",
(unsigned long long)
fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_nbfree));
pr_info(" cs_nifree(Num of free inodes): %llu\n",
(unsigned long long)
fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nifree));
pr_info(" cs_nffree(Num of free frags): %llu\n",
(unsigned long long)
fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nffree));
pr_info(" fs_maxsymlinklen: %u\n",
fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_maxsymlinklen));
} else {
pr_debug(" sblkno: %u\n", fs32_to_cpu(sb, usb1->fs_sblkno));
pr_debug(" cblkno: %u\n", fs32_to_cpu(sb, usb1->fs_cblkno));
pr_debug(" iblkno: %u\n", fs32_to_cpu(sb, usb1->fs_iblkno));
pr_debug(" dblkno: %u\n", fs32_to_cpu(sb, usb1->fs_dblkno));
pr_debug(" cgoffset: %u\n",
fs32_to_cpu(sb, usb1->fs_cgoffset));
pr_debug(" ~cgmask: 0x%x\n",
~fs32_to_cpu(sb, usb1->fs_cgmask));
pr_debug(" size: %u\n", fs32_to_cpu(sb, usb1->fs_size));
pr_debug(" dsize: %u\n", fs32_to_cpu(sb, usb1->fs_dsize));
pr_debug(" ncg: %u\n", fs32_to_cpu(sb, usb1->fs_ncg));
pr_debug(" bsize: %u\n", fs32_to_cpu(sb, usb1->fs_bsize));
pr_debug(" fsize: %u\n", fs32_to_cpu(sb, usb1->fs_fsize));
pr_debug(" frag: %u\n", fs32_to_cpu(sb, usb1->fs_frag));
pr_debug(" fragshift: %u\n",
fs32_to_cpu(sb, usb1->fs_fragshift));
pr_debug(" ~fmask: %u\n", ~fs32_to_cpu(sb, usb1->fs_fmask));
pr_debug(" fshift: %u\n", fs32_to_cpu(sb, usb1->fs_fshift));
pr_debug(" sbsize: %u\n", fs32_to_cpu(sb, usb1->fs_sbsize));
pr_debug(" spc: %u\n", fs32_to_cpu(sb, usb1->fs_spc));
pr_debug(" cpg: %u\n", fs32_to_cpu(sb, usb1->fs_cpg));
pr_debug(" ipg: %u\n", fs32_to_cpu(sb, usb1->fs_ipg));
pr_debug(" fpg: %u\n", fs32_to_cpu(sb, usb1->fs_fpg));
pr_debug(" csaddr: %u\n", fs32_to_cpu(sb, usb1->fs_csaddr));
pr_debug(" cssize: %u\n", fs32_to_cpu(sb, usb1->fs_cssize));
pr_debug(" cgsize: %u\n", fs32_to_cpu(sb, usb1->fs_cgsize));
pr_debug(" fstodb: %u\n",
fs32_to_cpu(sb, usb1->fs_fsbtodb));
pr_debug(" nrpos: %u\n", fs32_to_cpu(sb, usb3->fs_nrpos));
pr_debug(" ndir %u\n",
fs32_to_cpu(sb, usb1->fs_cstotal.cs_ndir));
pr_debug(" nifree %u\n",
fs32_to_cpu(sb, usb1->fs_cstotal.cs_nifree));
pr_debug(" nbfree %u\n",
fs32_to_cpu(sb, usb1->fs_cstotal.cs_nbfree));
pr_debug(" nffree %u\n",
fs32_to_cpu(sb, usb1->fs_cstotal.cs_nffree));
}
pr_debug("\n");
}
/*
* Print contents of ufs_cylinder_group, useful for debugging
*/
static void ufs_print_cylinder_stuff(struct super_block *sb,
struct ufs_cylinder_group *cg)
{
pr_debug("\nufs_print_cylinder_stuff\n");
pr_debug("size of ucg: %zu\n", sizeof(struct ufs_cylinder_group));
pr_debug(" magic: %x\n", fs32_to_cpu(sb, cg->cg_magic));
pr_debug(" time: %u\n", fs32_to_cpu(sb, cg->cg_time));
pr_debug(" cgx: %u\n", fs32_to_cpu(sb, cg->cg_cgx));
pr_debug(" ncyl: %u\n", fs16_to_cpu(sb, cg->cg_ncyl));
pr_debug(" niblk: %u\n", fs16_to_cpu(sb, cg->cg_niblk));
pr_debug(" ndblk: %u\n", fs32_to_cpu(sb, cg->cg_ndblk));
pr_debug(" cs_ndir: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_ndir));
pr_debug(" cs_nbfree: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_nbfree));
pr_debug(" cs_nifree: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_nifree));
pr_debug(" cs_nffree: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_nffree));
pr_debug(" rotor: %u\n", fs32_to_cpu(sb, cg->cg_rotor));
pr_debug(" frotor: %u\n", fs32_to_cpu(sb, cg->cg_frotor));
pr_debug(" irotor: %u\n", fs32_to_cpu(sb, cg->cg_irotor));
pr_debug(" frsum: %u, %u, %u, %u, %u, %u, %u, %u\n",
fs32_to_cpu(sb, cg->cg_frsum[0]), fs32_to_cpu(sb, cg->cg_frsum[1]),
fs32_to_cpu(sb, cg->cg_frsum[2]), fs32_to_cpu(sb, cg->cg_frsum[3]),
fs32_to_cpu(sb, cg->cg_frsum[4]), fs32_to_cpu(sb, cg->cg_frsum[5]),
fs32_to_cpu(sb, cg->cg_frsum[6]), fs32_to_cpu(sb, cg->cg_frsum[7]));
pr_debug(" btotoff: %u\n", fs32_to_cpu(sb, cg->cg_btotoff));
pr_debug(" boff: %u\n", fs32_to_cpu(sb, cg->cg_boff));
pr_debug(" iuseoff: %u\n", fs32_to_cpu(sb, cg->cg_iusedoff));
pr_debug(" freeoff: %u\n", fs32_to_cpu(sb, cg->cg_freeoff));
pr_debug(" nextfreeoff: %u\n", fs32_to_cpu(sb, cg->cg_nextfreeoff));
pr_debug(" clustersumoff %u\n",
fs32_to_cpu(sb, cg->cg_u.cg_44.cg_clustersumoff));
pr_debug(" clusteroff %u\n",
fs32_to_cpu(sb, cg->cg_u.cg_44.cg_clusteroff));
pr_debug(" nclusterblks %u\n",
fs32_to_cpu(sb, cg->cg_u.cg_44.cg_nclusterblks));
pr_debug("\n");
}
#else
# define ufs_print_super_stuff(sb, usb1, usb2, usb3) /**/
# define ufs_print_cylinder_stuff(sb, cg) /**/
#endif /* CONFIG_UFS_DEBUG */
static const struct super_operations ufs_super_ops;
void ufs_error (struct super_block * sb, const char * function,
const char * fmt, ...)
{
struct ufs_sb_private_info * uspi;
struct ufs_super_block_first * usb1;
struct va_format vaf;
va_list args;
uspi = UFS_SB(sb)->s_uspi;
usb1 = ubh_get_usb_first(uspi);
if (!(sb->s_flags & MS_RDONLY)) {
usb1->fs_clean = UFS_FSBAD;
ubh_mark_buffer_dirty(USPI_UBH(uspi));
ufs_mark_sb_dirty(sb);
sb->s_flags |= MS_RDONLY;
}
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
switch (UFS_SB(sb)->s_mount_opt & UFS_MOUNT_ONERROR) {
case UFS_MOUNT_ONERROR_PANIC:
panic("panic (device %s): %s: %pV\n",
sb->s_id, function, &vaf);
case UFS_MOUNT_ONERROR_LOCK:
case UFS_MOUNT_ONERROR_UMOUNT:
case UFS_MOUNT_ONERROR_REPAIR:
pr_crit("error (device %s): %s: %pV\n",
sb->s_id, function, &vaf);
}
va_end(args);
}
void ufs_panic (struct super_block * sb, const char * function,
const char * fmt, ...)
{
struct ufs_sb_private_info * uspi;
struct ufs_super_block_first * usb1;
struct va_format vaf;
va_list args;
uspi = UFS_SB(sb)->s_uspi;
usb1 = ubh_get_usb_first(uspi);
if (!(sb->s_flags & MS_RDONLY)) {
usb1->fs_clean = UFS_FSBAD;
ubh_mark_buffer_dirty(USPI_UBH(uspi));
ufs_mark_sb_dirty(sb);
}
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
sb->s_flags |= MS_RDONLY;
pr_crit("panic (device %s): %s: %pV\n",
sb->s_id, function, &vaf);
va_end(args);
}
void ufs_warning (struct super_block * sb, const char * function,
const char * fmt, ...)
{
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
pr_warn("(device %s): %s: %pV\n",
sb->s_id, function, &vaf);
va_end(args);
}
enum {
Opt_type_old = UFS_MOUNT_UFSTYPE_OLD,
Opt_type_sunx86 = UFS_MOUNT_UFSTYPE_SUNx86,
Opt_type_sun = UFS_MOUNT_UFSTYPE_SUN,
Opt_type_sunos = UFS_MOUNT_UFSTYPE_SUNOS,
Opt_type_44bsd = UFS_MOUNT_UFSTYPE_44BSD,
Opt_type_ufs2 = UFS_MOUNT_UFSTYPE_UFS2,
Opt_type_hp = UFS_MOUNT_UFSTYPE_HP,
Opt_type_nextstepcd = UFS_MOUNT_UFSTYPE_NEXTSTEP_CD,
Opt_type_nextstep = UFS_MOUNT_UFSTYPE_NEXTSTEP,
Opt_type_openstep = UFS_MOUNT_UFSTYPE_OPENSTEP,
Opt_onerror_panic = UFS_MOUNT_ONERROR_PANIC,
Opt_onerror_lock = UFS_MOUNT_ONERROR_LOCK,
Opt_onerror_umount = UFS_MOUNT_ONERROR_UMOUNT,
Opt_onerror_repair = UFS_MOUNT_ONERROR_REPAIR,
Opt_err
};
static const match_table_t tokens = {
{Opt_type_old, "ufstype=old"},
{Opt_type_sunx86, "ufstype=sunx86"},
{Opt_type_sun, "ufstype=sun"},
{Opt_type_sunos, "ufstype=sunos"},
{Opt_type_44bsd, "ufstype=44bsd"},
{Opt_type_ufs2, "ufstype=ufs2"},
{Opt_type_ufs2, "ufstype=5xbsd"},
{Opt_type_hp, "ufstype=hp"},
{Opt_type_nextstepcd, "ufstype=nextstep-cd"},
{Opt_type_nextstep, "ufstype=nextstep"},
{Opt_type_openstep, "ufstype=openstep"},
/*end of possible ufs types */
{Opt_onerror_panic, "onerror=panic"},
{Opt_onerror_lock, "onerror=lock"},
{Opt_onerror_umount, "onerror=umount"},
{Opt_onerror_repair, "onerror=repair"},
{Opt_err, NULL}
};
static int ufs_parse_options (char * options, unsigned * mount_options)
{
char * p;
UFSD("ENTER\n");
if (!options)
return 1;
while ((p = strsep(&options, ",")) != NULL) {
substring_t args[MAX_OPT_ARGS];
int token;
if (!*p)
continue;
token = match_token(p, tokens, args);
switch (token) {
case Opt_type_old:
ufs_clear_opt (*mount_options, UFSTYPE);
ufs_set_opt (*mount_options, UFSTYPE_OLD);
break;
case Opt_type_sunx86:
ufs_clear_opt (*mount_options, UFSTYPE);
ufs_set_opt (*mount_options, UFSTYPE_SUNx86);
break;
case Opt_type_sun:
ufs_clear_opt (*mount_options, UFSTYPE);
ufs_set_opt (*mount_options, UFSTYPE_SUN);
break;
case Opt_type_sunos:
ufs_clear_opt(*mount_options, UFSTYPE);
ufs_set_opt(*mount_options, UFSTYPE_SUNOS);
break;
case Opt_type_44bsd:
ufs_clear_opt (*mount_options, UFSTYPE);
ufs_set_opt (*mount_options, UFSTYPE_44BSD);
break;
case Opt_type_ufs2:
ufs_clear_opt(*mount_options, UFSTYPE);
ufs_set_opt(*mount_options, UFSTYPE_UFS2);
break;
case Opt_type_hp:
ufs_clear_opt (*mount_options, UFSTYPE);
ufs_set_opt (*mount_options, UFSTYPE_HP);
break;
case Opt_type_nextstepcd:
ufs_clear_opt (*mount_options, UFSTYPE);
ufs_set_opt (*mount_options, UFSTYPE_NEXTSTEP_CD);
break;
case Opt_type_nextstep:
ufs_clear_opt (*mount_options, UFSTYPE);
ufs_set_opt (*mount_options, UFSTYPE_NEXTSTEP);
break;
case Opt_type_openstep:
ufs_clear_opt (*mount_options, UFSTYPE);
ufs_set_opt (*mount_options, UFSTYPE_OPENSTEP);
break;
case Opt_onerror_panic:
ufs_clear_opt (*mount_options, ONERROR);
ufs_set_opt (*mount_options, ONERROR_PANIC);
break;
case Opt_onerror_lock:
ufs_clear_opt (*mount_options, ONERROR);
ufs_set_opt (*mount_options, ONERROR_LOCK);
break;
case Opt_onerror_umount:
ufs_clear_opt (*mount_options, ONERROR);
ufs_set_opt (*mount_options, ONERROR_UMOUNT);
break;
case Opt_onerror_repair:
pr_err("Unable to do repair on error, will lock lock instead\n");
ufs_clear_opt (*mount_options, ONERROR);
ufs_set_opt (*mount_options, ONERROR_REPAIR);
break;
default:
pr_err("Invalid option: \"%s\" or missing value\n", p);
return 0;
}
}
return 1;
}
/*
* Different types of UFS hold fs_cstotal in different
* places, and use different data structure for it.
* To make things simpler we just copy fs_cstotal to ufs_sb_private_info
*/
static void ufs_setup_cstotal(struct super_block *sb)
{
struct ufs_sb_info *sbi = UFS_SB(sb);
struct ufs_sb_private_info *uspi = sbi->s_uspi;
struct ufs_super_block_first *usb1;
struct ufs_super_block_second *usb2;
struct ufs_super_block_third *usb3;
unsigned mtype = sbi->s_mount_opt & UFS_MOUNT_UFSTYPE;
UFSD("ENTER, mtype=%u\n", mtype);
usb1 = ubh_get_usb_first(uspi);
usb2 = ubh_get_usb_second(uspi);
usb3 = ubh_get_usb_third(uspi);
if ((mtype == UFS_MOUNT_UFSTYPE_44BSD &&
(usb1->fs_flags & UFS_FLAGS_UPDATED)) ||
mtype == UFS_MOUNT_UFSTYPE_UFS2) {
/*we have statistic in different place, then usual*/
uspi->cs_total.cs_ndir = fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_ndir);
uspi->cs_total.cs_nbfree = fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_nbfree);
uspi->cs_total.cs_nifree = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nifree);
uspi->cs_total.cs_nffree = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nffree);
} else {
uspi->cs_total.cs_ndir = fs32_to_cpu(sb, usb1->fs_cstotal.cs_ndir);
uspi->cs_total.cs_nbfree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nbfree);
uspi->cs_total.cs_nifree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nifree);
uspi->cs_total.cs_nffree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nffree);
}
UFSD("EXIT\n");
}
/*
* Read on-disk structures associated with cylinder groups
*/
static int ufs_read_cylinder_structures(struct super_block *sb)
{
struct ufs_sb_info *sbi = UFS_SB(sb);
struct ufs_sb_private_info *uspi = sbi->s_uspi;
struct ufs_buffer_head * ubh;
unsigned char * base, * space;
unsigned size, blks, i;
UFSD("ENTER\n");
/*
* Read cs structures from (usually) first data block
* on the device.
*/
size = uspi->s_cssize;
blks = (size + uspi->s_fsize - 1) >> uspi->s_fshift;
base = space = kmalloc(size, GFP_NOFS);
if (!base)
goto failed;
sbi->s_csp = (struct ufs_csum *)space;
for (i = 0; i < blks; i += uspi->s_fpb) {
size = uspi->s_bsize;
if (i + uspi->s_fpb > blks)
size = (blks - i) * uspi->s_fsize;
ubh = ubh_bread(sb, uspi->s_csaddr + i, size);
if (!ubh)
goto failed;
ubh_ubhcpymem (space, ubh, size);
space += size;
ubh_brelse (ubh);
ubh = NULL;
}
/*
* Read cylinder group (we read only first fragment from block
* at this time) and prepare internal data structures for cg caching.
*/
if (!(sbi->s_ucg = kmalloc (sizeof(struct buffer_head *) * uspi->s_ncg, GFP_NOFS)))
goto failed;
for (i = 0; i < uspi->s_ncg; i++)
sbi->s_ucg[i] = NULL;
for (i = 0; i < UFS_MAX_GROUP_LOADED; i++) {
sbi->s_ucpi[i] = NULL;
sbi->s_cgno[i] = UFS_CGNO_EMPTY;
}
for (i = 0; i < uspi->s_ncg; i++) {
UFSD("read cg %u\n", i);
if (!(sbi->s_ucg[i] = sb_bread(sb, ufs_cgcmin(i))))
goto failed;
if (!ufs_cg_chkmagic (sb, (struct ufs_cylinder_group *) sbi->s_ucg[i]->b_data))
goto failed;
ufs_print_cylinder_stuff(sb, (struct ufs_cylinder_group *) sbi->s_ucg[i]->b_data);
}
for (i = 0; i < UFS_MAX_GROUP_LOADED; i++) {
if (!(sbi->s_ucpi[i] = kmalloc (sizeof(struct ufs_cg_private_info), GFP_NOFS)))
goto failed;
sbi->s_cgno[i] = UFS_CGNO_EMPTY;
}
sbi->s_cg_loaded = 0;
UFSD("EXIT\n");
return 1;
failed:
kfree (base);
if (sbi->s_ucg) {
for (i = 0; i < uspi->s_ncg; i++)
if (sbi->s_ucg[i])
brelse (sbi->s_ucg[i]);
kfree (sbi->s_ucg);
for (i = 0; i < UFS_MAX_GROUP_LOADED; i++)
kfree (sbi->s_ucpi[i]);
}
UFSD("EXIT (FAILED)\n");
return 0;
}
/*
* Sync our internal copy of fs_cstotal with disk
*/
static void ufs_put_cstotal(struct super_block *sb)
{
unsigned mtype = UFS_SB(sb)->s_mount_opt & UFS_MOUNT_UFSTYPE;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
struct ufs_super_block_first *usb1;
struct ufs_super_block_second *usb2;
struct ufs_super_block_third *usb3;
UFSD("ENTER\n");
usb1 = ubh_get_usb_first(uspi);
usb2 = ubh_get_usb_second(uspi);
usb3 = ubh_get_usb_third(uspi);
if ((mtype == UFS_MOUNT_UFSTYPE_44BSD &&
(usb1->fs_flags & UFS_FLAGS_UPDATED)) ||
mtype == UFS_MOUNT_UFSTYPE_UFS2) {
/*we have statistic in different place, then usual*/
usb2->fs_un.fs_u2.cs_ndir =
cpu_to_fs64(sb, uspi->cs_total.cs_ndir);
usb2->fs_un.fs_u2.cs_nbfree =
cpu_to_fs64(sb, uspi->cs_total.cs_nbfree);
usb3->fs_un1.fs_u2.cs_nifree =
cpu_to_fs64(sb, uspi->cs_total.cs_nifree);
usb3->fs_un1.fs_u2.cs_nffree =
cpu_to_fs64(sb, uspi->cs_total.cs_nffree);
} else {
usb1->fs_cstotal.cs_ndir =
cpu_to_fs32(sb, uspi->cs_total.cs_ndir);
usb1->fs_cstotal.cs_nbfree =
cpu_to_fs32(sb, uspi->cs_total.cs_nbfree);
usb1->fs_cstotal.cs_nifree =
cpu_to_fs32(sb, uspi->cs_total.cs_nifree);
usb1->fs_cstotal.cs_nffree =
cpu_to_fs32(sb, uspi->cs_total.cs_nffree);
}
ubh_mark_buffer_dirty(USPI_UBH(uspi));
ufs_print_super_stuff(sb, usb1, usb2, usb3);
UFSD("EXIT\n");
}
/**
* ufs_put_super_internal() - put on-disk intrenal structures
* @sb: pointer to super_block structure
* Put on-disk structures associated with cylinder groups
* and write them back to disk, also update cs_total on disk
*/
static void ufs_put_super_internal(struct super_block *sb)
{
struct ufs_sb_info *sbi = UFS_SB(sb);
struct ufs_sb_private_info *uspi = sbi->s_uspi;
struct ufs_buffer_head * ubh;
unsigned char * base, * space;
unsigned blks, size, i;
UFSD("ENTER\n");
ufs_put_cstotal(sb);
size = uspi->s_cssize;
blks = (size + uspi->s_fsize - 1) >> uspi->s_fshift;
base = space = (char*) sbi->s_csp;
for (i = 0; i < blks; i += uspi->s_fpb) {
size = uspi->s_bsize;
if (i + uspi->s_fpb > blks)
size = (blks - i) * uspi->s_fsize;
ubh = ubh_bread(sb, uspi->s_csaddr + i, size);
ubh_memcpyubh (ubh, space, size);
space += size;
ubh_mark_buffer_uptodate (ubh, 1);
ubh_mark_buffer_dirty (ubh);
ubh_brelse (ubh);
}
for (i = 0; i < sbi->s_cg_loaded; i++) {
ufs_put_cylinder (sb, i);
kfree (sbi->s_ucpi[i]);
}
for (; i < UFS_MAX_GROUP_LOADED; i++)
kfree (sbi->s_ucpi[i]);
for (i = 0; i < uspi->s_ncg; i++)
brelse (sbi->s_ucg[i]);
kfree (sbi->s_ucg);
kfree (base);
UFSD("EXIT\n");
}
static int ufs_sync_fs(struct super_block *sb, int wait)
{
struct ufs_sb_private_info * uspi;
struct ufs_super_block_first * usb1;
struct ufs_super_block_third * usb3;
unsigned flags;
lock_ufs(sb);
UFSD("ENTER\n");
flags = UFS_SB(sb)->s_flags;
uspi = UFS_SB(sb)->s_uspi;
usb1 = ubh_get_usb_first(uspi);
usb3 = ubh_get_usb_third(uspi);
usb1->fs_time = cpu_to_fs32(sb, get_seconds());
if ((flags & UFS_ST_MASK) == UFS_ST_SUN ||
(flags & UFS_ST_MASK) == UFS_ST_SUNOS ||
(flags & UFS_ST_MASK) == UFS_ST_SUNx86)
ufs_set_fs_state(sb, usb1, usb3,
UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time));
ufs_put_cstotal(sb);
UFSD("EXIT\n");
unlock_ufs(sb);
return 0;
}
static void delayed_sync_fs(struct work_struct *work)
{
struct ufs_sb_info *sbi;
sbi = container_of(work, struct ufs_sb_info, sync_work.work);
spin_lock(&sbi->work_lock);
sbi->work_queued = 0;
spin_unlock(&sbi->work_lock);
ufs_sync_fs(sbi->sb, 1);
}
void ufs_mark_sb_dirty(struct super_block *sb)
{
struct ufs_sb_info *sbi = UFS_SB(sb);
unsigned long delay;
spin_lock(&sbi->work_lock);
if (!sbi->work_queued) {
delay = msecs_to_jiffies(dirty_writeback_interval * 10);
queue_delayed_work(system_long_wq, &sbi->sync_work, delay);
sbi->work_queued = 1;
}
spin_unlock(&sbi->work_lock);
}
static void ufs_put_super(struct super_block *sb)
{
struct ufs_sb_info * sbi = UFS_SB(sb);
UFSD("ENTER\n");
if (!(sb->s_flags & MS_RDONLY))
ufs_put_super_internal(sb);
cancel_delayed_work_sync(&sbi->sync_work);
ubh_brelse_uspi (sbi->s_uspi);
kfree (sbi->s_uspi);
mutex_destroy(&sbi->mutex);
kfree (sbi);
sb->s_fs_info = NULL;
UFSD("EXIT\n");
return;
}
static int ufs_fill_super(struct super_block *sb, void *data, int silent)
{
struct ufs_sb_info * sbi;
struct ufs_sb_private_info * uspi;
struct ufs_super_block_first * usb1;
struct ufs_super_block_second * usb2;
struct ufs_super_block_third * usb3;
struct ufs_buffer_head * ubh;
struct inode *inode;
unsigned block_size, super_block_size;
unsigned flags;
unsigned super_block_offset;
unsigned maxsymlen;
int ret = -EINVAL;
uspi = NULL;
ubh = NULL;
flags = 0;
UFSD("ENTER\n");
#ifndef CONFIG_UFS_FS_WRITE
if (!(sb->s_flags & MS_RDONLY)) {
pr_err("ufs was compiled with read-only support, can't be mounted as read-write\n");
return -EROFS;
}
#endif
sbi = kzalloc(sizeof(struct ufs_sb_info), GFP_KERNEL);
if (!sbi)
goto failed_nomem;
sb->s_fs_info = sbi;
sbi->sb = sb;
UFSD("flag %u\n", (int)(sb->s_flags & MS_RDONLY));
mutex_init(&sbi->mutex);
spin_lock_init(&sbi->work_lock);
INIT_DELAYED_WORK(&sbi->sync_work, delayed_sync_fs);
/*
* Set default mount options
* Parse mount options
*/
sbi->s_mount_opt = 0;
ufs_set_opt (sbi->s_mount_opt, ONERROR_LOCK);
if (!ufs_parse_options ((char *) data, &sbi->s_mount_opt)) {
pr_err("wrong mount options\n");
goto failed;
}
if (!(sbi->s_mount_opt & UFS_MOUNT_UFSTYPE)) {
if (!silent)
pr_err("You didn't specify the type of your ufs filesystem\n\n"
"mount -t ufs -o ufstype="
"sun|sunx86|44bsd|ufs2|5xbsd|old|hp|nextstep|nextstep-cd|openstep ...\n\n"
">>>WARNING<<< Wrong ufstype may corrupt your filesystem, "
"default is ufstype=old\n");
ufs_set_opt (sbi->s_mount_opt, UFSTYPE_OLD);
}
uspi = kzalloc(sizeof(struct ufs_sb_private_info), GFP_KERNEL);
sbi->s_uspi = uspi;
if (!uspi)
goto failed;
uspi->s_dirblksize = UFS_SECTOR_SIZE;
super_block_offset=UFS_SBLOCK;
/* Keep 2Gig file limit. Some UFS variants need to override
this but as I don't know which I'll let those in the know loosen
the rules */
switch (sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) {
case UFS_MOUNT_UFSTYPE_44BSD:
UFSD("ufstype=44bsd\n");
uspi->s_fsize = block_size = 512;
uspi->s_fmask = ~(512 - 1);
uspi->s_fshift = 9;
uspi->s_sbsize = super_block_size = 1536;
uspi->s_sbbase = 0;
flags |= UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD;
break;
case UFS_MOUNT_UFSTYPE_UFS2:
UFSD("ufstype=ufs2\n");
super_block_offset=SBLOCK_UFS2;
uspi->s_fsize = block_size = 512;
uspi->s_fmask = ~(512 - 1);
uspi->s_fshift = 9;
uspi->s_sbsize = super_block_size = 1536;
uspi->s_sbbase = 0;
flags |= UFS_TYPE_UFS2 | UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD;
break;
case UFS_MOUNT_UFSTYPE_SUN:
UFSD("ufstype=sun\n");
uspi->s_fsize = block_size = 1024;
uspi->s_fmask = ~(1024 - 1);
uspi->s_fshift = 10;
uspi->s_sbsize = super_block_size = 2048;
uspi->s_sbbase = 0;
uspi->s_maxsymlinklen = 0; /* Not supported on disk */
flags |= UFS_DE_OLD | UFS_UID_EFT | UFS_ST_SUN | UFS_CG_SUN;
break;
case UFS_MOUNT_UFSTYPE_SUNOS:
UFSD("ufstype=sunos\n");
uspi->s_fsize = block_size = 1024;
uspi->s_fmask = ~(1024 - 1);
uspi->s_fshift = 10;
uspi->s_sbsize = 2048;
super_block_size = 2048;
uspi->s_sbbase = 0;
uspi->s_maxsymlinklen = 0; /* Not supported on disk */
flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_SUNOS | UFS_CG_SUN;
break;
case UFS_MOUNT_UFSTYPE_SUNx86:
UFSD("ufstype=sunx86\n");
uspi->s_fsize = block_size = 1024;
uspi->s_fmask = ~(1024 - 1);
uspi->s_fshift = 10;
uspi->s_sbsize = super_block_size = 2048;
uspi->s_sbbase = 0;
uspi->s_maxsymlinklen = 0; /* Not supported on disk */
flags |= UFS_DE_OLD | UFS_UID_EFT | UFS_ST_SUNx86 | UFS_CG_SUN;
break;
case UFS_MOUNT_UFSTYPE_OLD:
UFSD("ufstype=old\n");
uspi->s_fsize = block_size = 1024;
uspi->s_fmask = ~(1024 - 1);
uspi->s_fshift = 10;
uspi->s_sbsize = super_block_size = 2048;
uspi->s_sbbase = 0;
flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
if (!(sb->s_flags & MS_RDONLY)) {
if (!silent)
pr_info("ufstype=old is supported read-only\n");
sb->s_flags |= MS_RDONLY;
}
break;
case UFS_MOUNT_UFSTYPE_NEXTSTEP:
UFSD("ufstype=nextstep\n");
uspi->s_fsize = block_size = 1024;
uspi->s_fmask = ~(1024 - 1);
uspi->s_fshift = 10;
uspi->s_sbsize = super_block_size = 2048;
uspi->s_sbbase = 0;
uspi->s_dirblksize = 1024;
flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
if (!(sb->s_flags & MS_RDONLY)) {
if (!silent)
pr_info("ufstype=nextstep is supported read-only\n");
sb->s_flags |= MS_RDONLY;
}
break;
case UFS_MOUNT_UFSTYPE_NEXTSTEP_CD:
UFSD("ufstype=nextstep-cd\n");
uspi->s_fsize = block_size = 2048;
uspi->s_fmask = ~(2048 - 1);
uspi->s_fshift = 11;
uspi->s_sbsize = super_block_size = 2048;
uspi->s_sbbase = 0;
uspi->s_dirblksize = 1024;
flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
if (!(sb->s_flags & MS_RDONLY)) {
if (!silent)
pr_info("ufstype=nextstep-cd is supported read-only\n");
sb->s_flags |= MS_RDONLY;
}
break;
case UFS_MOUNT_UFSTYPE_OPENSTEP:
UFSD("ufstype=openstep\n");
uspi->s_fsize = block_size = 1024;
uspi->s_fmask = ~(1024 - 1);
uspi->s_fshift = 10;
uspi->s_sbsize = super_block_size = 2048;
uspi->s_sbbase = 0;
uspi->s_dirblksize = 1024;
flags |= UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD;
if (!(sb->s_flags & MS_RDONLY)) {
if (!silent)
pr_info("ufstype=openstep is supported read-only\n");
sb->s_flags |= MS_RDONLY;
}
break;
case UFS_MOUNT_UFSTYPE_HP:
UFSD("ufstype=hp\n");
uspi->s_fsize = block_size = 1024;
uspi->s_fmask = ~(1024 - 1);
uspi->s_fshift = 10;
uspi->s_sbsize = super_block_size = 2048;
uspi->s_sbbase = 0;
flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
if (!(sb->s_flags & MS_RDONLY)) {
if (!silent)
pr_info("ufstype=hp is supported read-only\n");
sb->s_flags |= MS_RDONLY;
}
break;
default:
if (!silent)
pr_err("unknown ufstype\n");
goto failed;
}
again:
if (!sb_set_blocksize(sb, block_size)) {
pr_err("failed to set blocksize\n");
goto failed;
}
/*
* read ufs super block from device
*/
ubh = ubh_bread_uspi(uspi, sb, uspi->s_sbbase + super_block_offset/block_size, super_block_size);
if (!ubh)
goto failed;
usb1 = ubh_get_usb_first(uspi);
usb2 = ubh_get_usb_second(uspi);
usb3 = ubh_get_usb_third(uspi);
/* Sort out mod used on SunOS 4.1.3 for fs_state */
uspi->s_postblformat = fs32_to_cpu(sb, usb3->fs_postblformat);
if (((flags & UFS_ST_MASK) == UFS_ST_SUNOS) &&
(uspi->s_postblformat != UFS_42POSTBLFMT)) {
flags &= ~UFS_ST_MASK;
flags |= UFS_ST_SUN;
}
/*
* Check ufs magic number
*/
sbi->s_bytesex = BYTESEX_LE;
switch ((uspi->fs_magic = fs32_to_cpu(sb, usb3->fs_magic))) {
case UFS_MAGIC:
case UFS_MAGIC_BW:
case UFS2_MAGIC:
case UFS_MAGIC_LFN:
case UFS_MAGIC_FEA:
case UFS_MAGIC_4GB:
goto magic_found;
}
sbi->s_bytesex = BYTESEX_BE;
switch ((uspi->fs_magic = fs32_to_cpu(sb, usb3->fs_magic))) {
case UFS_MAGIC:
case UFS_MAGIC_BW:
case UFS2_MAGIC:
case UFS_MAGIC_LFN:
case UFS_MAGIC_FEA:
case UFS_MAGIC_4GB:
goto magic_found;
}
if ((((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_NEXTSTEP)
|| ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_NEXTSTEP_CD)
|| ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_OPENSTEP))
&& uspi->s_sbbase < 256) {
ubh_brelse_uspi(uspi);
ubh = NULL;
uspi->s_sbbase += 8;
goto again;
}
if (!silent)
pr_err("%s(): bad magic number\n", __func__);
goto failed;
magic_found:
/*
* Check block and fragment sizes
*/
uspi->s_bsize = fs32_to_cpu(sb, usb1->fs_bsize);
uspi->s_fsize = fs32_to_cpu(sb, usb1->fs_fsize);
uspi->s_sbsize = fs32_to_cpu(sb, usb1->fs_sbsize);
uspi->s_fmask = fs32_to_cpu(sb, usb1->fs_fmask);
uspi->s_fshift = fs32_to_cpu(sb, usb1->fs_fshift);
if (!is_power_of_2(uspi->s_fsize)) {
pr_err("%s(): fragment size %u is not a power of 2\n",
__func__, uspi->s_fsize);
goto failed;
}
if (uspi->s_fsize < 512) {
pr_err("%s(): fragment size %u is too small\n",
__func__, uspi->s_fsize);
goto failed;
}
if (uspi->s_fsize > 4096) {
pr_err("%s(): fragment size %u is too large\n",
__func__, uspi->s_fsize);
goto failed;
}
if (!is_power_of_2(uspi->s_bsize)) {
pr_err("%s(): block size %u is not a power of 2\n",
__func__, uspi->s_bsize);
goto failed;
}
if (uspi->s_bsize < 4096) {
pr_err("%s(): block size %u is too small\n",
__func__, uspi->s_bsize);
goto failed;
}
if (uspi->s_bsize / uspi->s_fsize > 8) {
pr_err("%s(): too many fragments per block (%u)\n",
__func__, uspi->s_bsize / uspi->s_fsize);
goto failed;
}
if (uspi->s_fsize != block_size || uspi->s_sbsize != super_block_size) {
ubh_brelse_uspi(uspi);
ubh = NULL;
block_size = uspi->s_fsize;
super_block_size = uspi->s_sbsize;
UFSD("another value of block_size or super_block_size %u, %u\n", block_size, super_block_size);
goto again;
}
sbi->s_flags = flags;/*after that line some functions use s_flags*/
ufs_print_super_stuff(sb, usb1, usb2, usb3);
/*
* Check, if file system was correctly unmounted.
* If not, make it read only.
*/
if (((flags & UFS_ST_MASK) == UFS_ST_44BSD) ||
((flags & UFS_ST_MASK) == UFS_ST_OLD) ||
(((flags & UFS_ST_MASK) == UFS_ST_SUN ||
(flags & UFS_ST_MASK) == UFS_ST_SUNOS ||
(flags & UFS_ST_MASK) == UFS_ST_SUNx86) &&
(ufs_get_fs_state(sb, usb1, usb3) == (UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time))))) {
switch(usb1->fs_clean) {
case UFS_FSCLEAN:
UFSD("fs is clean\n");
break;
case UFS_FSSTABLE:
UFSD("fs is stable\n");
break;
case UFS_FSLOG:
UFSD("fs is logging fs\n");
break;
case UFS_FSOSF1:
UFSD("fs is DEC OSF/1\n");
break;
case UFS_FSACTIVE:
pr_err("%s(): fs is active\n", __func__);
sb->s_flags |= MS_RDONLY;
break;
case UFS_FSBAD:
pr_err("%s(): fs is bad\n", __func__);
sb->s_flags |= MS_RDONLY;
break;
default:
pr_err("%s(): can't grok fs_clean 0x%x\n",
__func__, usb1->fs_clean);
sb->s_flags |= MS_RDONLY;
break;
}
} else {
pr_err("%s(): fs needs fsck\n", __func__);
sb->s_flags |= MS_RDONLY;
}
/*
* Read ufs_super_block into internal data structures
*/
sb->s_op = &ufs_super_ops;
sb->s_export_op = &ufs_export_ops;
sb->s_magic = fs32_to_cpu(sb, usb3->fs_magic);
uspi->s_sblkno = fs32_to_cpu(sb, usb1->fs_sblkno);
uspi->s_cblkno = fs32_to_cpu(sb, usb1->fs_cblkno);
uspi->s_iblkno = fs32_to_cpu(sb, usb1->fs_iblkno);
uspi->s_dblkno = fs32_to_cpu(sb, usb1->fs_dblkno);
uspi->s_cgoffset = fs32_to_cpu(sb, usb1->fs_cgoffset);
uspi->s_cgmask = fs32_to_cpu(sb, usb1->fs_cgmask);
if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
uspi->s_u2_size = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_size);
uspi->s_u2_dsize = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize);
} else {
uspi->s_size = fs32_to_cpu(sb, usb1->fs_size);
uspi->s_dsize = fs32_to_cpu(sb, usb1->fs_dsize);
}
uspi->s_ncg = fs32_to_cpu(sb, usb1->fs_ncg);
/* s_bsize already set */
/* s_fsize already set */
uspi->s_fpb = fs32_to_cpu(sb, usb1->fs_frag);
uspi->s_minfree = fs32_to_cpu(sb, usb1->fs_minfree);
uspi->s_bmask = fs32_to_cpu(sb, usb1->fs_bmask);
uspi->s_fmask = fs32_to_cpu(sb, usb1->fs_fmask);
uspi->s_bshift = fs32_to_cpu(sb, usb1->fs_bshift);
uspi->s_fshift = fs32_to_cpu(sb, usb1->fs_fshift);
UFSD("uspi->s_bshift = %d,uspi->s_fshift = %d", uspi->s_bshift,
uspi->s_fshift);
uspi->s_fpbshift = fs32_to_cpu(sb, usb1->fs_fragshift);
uspi->s_fsbtodb = fs32_to_cpu(sb, usb1->fs_fsbtodb);
/* s_sbsize already set */
uspi->s_csmask = fs32_to_cpu(sb, usb1->fs_csmask);
uspi->s_csshift = fs32_to_cpu(sb, usb1->fs_csshift);
uspi->s_nindir = fs32_to_cpu(sb, usb1->fs_nindir);
uspi->s_inopb = fs32_to_cpu(sb, usb1->fs_inopb);
uspi->s_nspf = fs32_to_cpu(sb, usb1->fs_nspf);
uspi->s_npsect = ufs_get_fs_npsect(sb, usb1, usb3);
uspi->s_interleave = fs32_to_cpu(sb, usb1->fs_interleave);
uspi->s_trackskew = fs32_to_cpu(sb, usb1->fs_trackskew);
if (uspi->fs_magic == UFS2_MAGIC)
uspi->s_csaddr = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_csaddr);
else
uspi->s_csaddr = fs32_to_cpu(sb, usb1->fs_csaddr);
uspi->s_cssize = fs32_to_cpu(sb, usb1->fs_cssize);
uspi->s_cgsize = fs32_to_cpu(sb, usb1->fs_cgsize);
uspi->s_ntrak = fs32_to_cpu(sb, usb1->fs_ntrak);
uspi->s_nsect = fs32_to_cpu(sb, usb1->fs_nsect);
uspi->s_spc = fs32_to_cpu(sb, usb1->fs_spc);
uspi->s_ipg = fs32_to_cpu(sb, usb1->fs_ipg);
uspi->s_fpg = fs32_to_cpu(sb, usb1->fs_fpg);
uspi->s_cpc = fs32_to_cpu(sb, usb2->fs_un.fs_u1.fs_cpc);
uspi->s_contigsumsize = fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_contigsumsize);
uspi->s_qbmask = ufs_get_fs_qbmask(sb, usb3);
uspi->s_qfmask = ufs_get_fs_qfmask(sb, usb3);
uspi->s_nrpos = fs32_to_cpu(sb, usb3->fs_nrpos);
uspi->s_postbloff = fs32_to_cpu(sb, usb3->fs_postbloff);
uspi->s_rotbloff = fs32_to_cpu(sb, usb3->fs_rotbloff);
/*
* Compute another frequently used values
*/
uspi->s_fpbmask = uspi->s_fpb - 1;
if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
uspi->s_apbshift = uspi->s_bshift - 3;
else
uspi->s_apbshift = uspi->s_bshift - 2;
uspi->s_2apbshift = uspi->s_apbshift * 2;
uspi->s_3apbshift = uspi->s_apbshift * 3;
uspi->s_apb = 1 << uspi->s_apbshift;
uspi->s_2apb = 1 << uspi->s_2apbshift;
uspi->s_3apb = 1 << uspi->s_3apbshift;
uspi->s_apbmask = uspi->s_apb - 1;
uspi->s_nspfshift = uspi->s_fshift - UFS_SECTOR_BITS;
uspi->s_nspb = uspi->s_nspf << uspi->s_fpbshift;
uspi->s_inopf = uspi->s_inopb >> uspi->s_fpbshift;
uspi->s_bpf = uspi->s_fsize << 3;
uspi->s_bpfshift = uspi->s_fshift + 3;
uspi->s_bpfmask = uspi->s_bpf - 1;
if ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_44BSD ||
(sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_UFS2)
uspi->s_maxsymlinklen =
fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_maxsymlinklen);
if (uspi->fs_magic == UFS2_MAGIC)
maxsymlen = 2 * 4 * (UFS_NDADDR + UFS_NINDIR);
else
maxsymlen = 4 * (UFS_NDADDR + UFS_NINDIR);
if (uspi->s_maxsymlinklen > maxsymlen) {
ufs_warning(sb, __func__, "ufs_read_super: excessive maximum "
"fast symlink size (%u)\n", uspi->s_maxsymlinklen);
uspi->s_maxsymlinklen = maxsymlen;
}
sb->s_max_links = UFS_LINK_MAX;
inode = ufs_iget(sb, UFS_ROOTINO);
if (IS_ERR(inode)) {
ret = PTR_ERR(inode);
goto failed;
}
sb->s_root = d_make_root(inode);
if (!sb->s_root) {
ret = -ENOMEM;
goto failed;
}
ufs_setup_cstotal(sb);
/*
* Read cylinder group structures
*/
if (!(sb->s_flags & MS_RDONLY))
if (!ufs_read_cylinder_structures(sb))
goto failed;
UFSD("EXIT\n");
return 0;
failed:
mutex_destroy(&sbi->mutex);
if (ubh)
ubh_brelse_uspi (uspi);
kfree (uspi);
kfree(sbi);
sb->s_fs_info = NULL;
UFSD("EXIT (FAILED)\n");
return ret;
failed_nomem:
UFSD("EXIT (NOMEM)\n");
return -ENOMEM;
}
static int ufs_remount (struct super_block *sb, int *mount_flags, char *data)
{
struct ufs_sb_private_info * uspi;
struct ufs_super_block_first * usb1;
struct ufs_super_block_third * usb3;
unsigned new_mount_opt, ufstype;
unsigned flags;
sync_filesystem(sb);
lock_ufs(sb);
uspi = UFS_SB(sb)->s_uspi;
flags = UFS_SB(sb)->s_flags;
usb1 = ubh_get_usb_first(uspi);
usb3 = ubh_get_usb_third(uspi);
/*
* Allow the "check" option to be passed as a remount option.
* It is not possible to change ufstype option during remount
*/
ufstype = UFS_SB(sb)->s_mount_opt & UFS_MOUNT_UFSTYPE;
new_mount_opt = 0;
ufs_set_opt (new_mount_opt, ONERROR_LOCK);
if (!ufs_parse_options (data, &new_mount_opt)) {
unlock_ufs(sb);
return -EINVAL;
}
if (!(new_mount_opt & UFS_MOUNT_UFSTYPE)) {
new_mount_opt |= ufstype;
} else if ((new_mount_opt & UFS_MOUNT_UFSTYPE) != ufstype) {
pr_err("ufstype can't be changed during remount\n");
unlock_ufs(sb);
return -EINVAL;
}
if ((*mount_flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) {
UFS_SB(sb)->s_mount_opt = new_mount_opt;
unlock_ufs(sb);
return 0;
}
/*
* fs was mouted as rw, remounting ro
*/
if (*mount_flags & MS_RDONLY) {
ufs_put_super_internal(sb);
usb1->fs_time = cpu_to_fs32(sb, get_seconds());
if ((flags & UFS_ST_MASK) == UFS_ST_SUN
|| (flags & UFS_ST_MASK) == UFS_ST_SUNOS
|| (flags & UFS_ST_MASK) == UFS_ST_SUNx86)
ufs_set_fs_state(sb, usb1, usb3,
UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time));
ubh_mark_buffer_dirty (USPI_UBH(uspi));
sb->s_flags |= MS_RDONLY;
} else {
/*
* fs was mounted as ro, remounting rw
*/
#ifndef CONFIG_UFS_FS_WRITE
pr_err("ufs was compiled with read-only support, can't be mounted as read-write\n");
unlock_ufs(sb);
return -EINVAL;
#else
if (ufstype != UFS_MOUNT_UFSTYPE_SUN &&
ufstype != UFS_MOUNT_UFSTYPE_SUNOS &&
ufstype != UFS_MOUNT_UFSTYPE_44BSD &&
ufstype != UFS_MOUNT_UFSTYPE_SUNx86 &&
ufstype != UFS_MOUNT_UFSTYPE_UFS2) {
pr_err("this ufstype is read-only supported\n");
unlock_ufs(sb);
return -EINVAL;
}
if (!ufs_read_cylinder_structures(sb)) {
pr_err("failed during remounting\n");
unlock_ufs(sb);
return -EPERM;
}
sb->s_flags &= ~MS_RDONLY;
#endif
}
UFS_SB(sb)->s_mount_opt = new_mount_opt;
unlock_ufs(sb);
return 0;
}
static int ufs_show_options(struct seq_file *seq, struct dentry *root)
{
struct ufs_sb_info *sbi = UFS_SB(root->d_sb);
unsigned mval = sbi->s_mount_opt & UFS_MOUNT_UFSTYPE;
const struct match_token *tp = tokens;
while (tp->token != Opt_onerror_panic && tp->token != mval)
++tp;
BUG_ON(tp->token == Opt_onerror_panic);
seq_printf(seq, ",%s", tp->pattern);
mval = sbi->s_mount_opt & UFS_MOUNT_ONERROR;
while (tp->token != Opt_err && tp->token != mval)
++tp;
BUG_ON(tp->token == Opt_err);
seq_printf(seq, ",%s", tp->pattern);
return 0;
}
static int ufs_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct super_block *sb = dentry->d_sb;
struct ufs_sb_private_info *uspi= UFS_SB(sb)->s_uspi;
unsigned flags = UFS_SB(sb)->s_flags;
struct ufs_super_block_third *usb3;
u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
lock_ufs(sb);
usb3 = ubh_get_usb_third(uspi);
if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
buf->f_type = UFS2_MAGIC;
buf->f_blocks = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize);
} else {
buf->f_type = UFS_MAGIC;
buf->f_blocks = uspi->s_dsize;
}
buf->f_bfree = ufs_blkstofrags(uspi->cs_total.cs_nbfree) +
uspi->cs_total.cs_nffree;
buf->f_ffree = uspi->cs_total.cs_nifree;
buf->f_bsize = sb->s_blocksize;
buf->f_bavail = (buf->f_bfree > (((long)buf->f_blocks / 100) * uspi->s_minfree))
? (buf->f_bfree - (((long)buf->f_blocks / 100) * uspi->s_minfree)) : 0;
buf->f_files = uspi->s_ncg * uspi->s_ipg;
buf->f_namelen = UFS_MAXNAMLEN;
buf->f_fsid.val[0] = (u32)id;
buf->f_fsid.val[1] = (u32)(id >> 32);
unlock_ufs(sb);
return 0;
}
static struct kmem_cache * ufs_inode_cachep;
static struct inode *ufs_alloc_inode(struct super_block *sb)
{
struct ufs_inode_info *ei;
ei = kmem_cache_alloc(ufs_inode_cachep, GFP_NOFS);
if (!ei)
return NULL;
ei->vfs_inode.i_version = 1;
return &ei->vfs_inode;
}
static void ufs_i_callback(struct rcu_head *head)
{
struct inode *inode = container_of(head, struct inode, i_rcu);
kmem_cache_free(ufs_inode_cachep, UFS_I(inode));
}
static void ufs_destroy_inode(struct inode *inode)
{
call_rcu(&inode->i_rcu, ufs_i_callback);
}
static void init_once(void *foo)
{
struct ufs_inode_info *ei = (struct ufs_inode_info *) foo;
inode_init_once(&ei->vfs_inode);
}
static int __init init_inodecache(void)
{
ufs_inode_cachep = kmem_cache_create("ufs_inode_cache",
sizeof(struct ufs_inode_info),
0, (SLAB_RECLAIM_ACCOUNT|
SLAB_MEM_SPREAD),
init_once);
if (ufs_inode_cachep == NULL)
return -ENOMEM;
return 0;
}
static void destroy_inodecache(void)
{
/*
* Make sure all delayed rcu free inodes are flushed before we
* destroy cache.
*/
rcu_barrier();
kmem_cache_destroy(ufs_inode_cachep);
}
static const struct super_operations ufs_super_ops = {
.alloc_inode = ufs_alloc_inode,
.destroy_inode = ufs_destroy_inode,
.write_inode = ufs_write_inode,
.evict_inode = ufs_evict_inode,
.put_super = ufs_put_super,
.sync_fs = ufs_sync_fs,
.statfs = ufs_statfs,
.remount_fs = ufs_remount,
.show_options = ufs_show_options,
};
static struct dentry *ufs_mount(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
{
return mount_bdev(fs_type, flags, dev_name, data, ufs_fill_super);
}
static struct file_system_type ufs_fs_type = {
.owner = THIS_MODULE,
.name = "ufs",
.mount = ufs_mount,
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV,
};
MODULE_ALIAS_FS("ufs");
static int __init init_ufs_fs(void)
{
int err = init_inodecache();
if (err)
goto out1;
err = register_filesystem(&ufs_fs_type);
if (err)
goto out;
return 0;
out:
destroy_inodecache();
out1:
return err;
}
static void __exit exit_ufs_fs(void)
{
unregister_filesystem(&ufs_fs_type);
destroy_inodecache();
}
module_init(init_ufs_fs)
module_exit(exit_ufs_fs)
MODULE_LICENSE("GPL");