aboutsummaryrefslogblamecommitdiffstats
path: root/fs/ufs/cylinder.c
blob: b4676322ddb65830d69b74a014c78668eb24a90f (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11










                                                         






                          
                   
                


                 












                                                                           
                                                                



                                                                    

                                                                       


                                                                               


                                                                                          

















                                                                                  
                       




















                                                                                        
                                                 


                                                       
                               


                                      
                                          











                                                                                  


                                                     


                                                
                       















                                                                
                                       









                                                                                         
                               








                                                                                                                   
                                                        


                                            
                                               



                                                           
                                       

































                                                                              
                       

                              
/*
 *  linux/fs/ufs/cylinder.c
 *
 * Copyright (C) 1998
 * Daniel Pirkl <daniel.pirkl@email.cz>
 * Charles University, Faculty of Mathematics and Physics
 *
 *  ext2 - inode (block) bitmap caching inspired
 */

#include <linux/fs.h>
#include <linux/time.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/bitops.h>

#include <asm/byteorder.h>

#include "ufs_fs.h"
#include "ufs.h"
#include "swab.h"
#include "util.h"

/*
 * Read cylinder group into cache. The memory space for ufs_cg_private_info
 * structure is already allocated during ufs_read_super.
 */
static void ufs_read_cylinder (struct super_block * sb,
	unsigned cgno, unsigned bitmap_nr)
{
	struct ufs_sb_info * sbi = UFS_SB(sb);
	struct ufs_sb_private_info * uspi;
	struct ufs_cg_private_info * ucpi;
	struct ufs_cylinder_group * ucg;
	unsigned i, j;

	UFSD("ENTER, cgno %u, bitmap_nr %u\n", cgno, bitmap_nr);
	uspi = sbi->s_uspi;
	ucpi = sbi->s_ucpi[bitmap_nr];
	ucg = (struct ufs_cylinder_group *)sbi->s_ucg[cgno]->b_data;

	UCPI_UBH(ucpi)->fragment = ufs_cgcmin(cgno);
	UCPI_UBH(ucpi)->count = uspi->s_cgsize >> sb->s_blocksize_bits;
	/*
	 * We have already the first fragment of cylinder group block in buffer
	 */
	UCPI_UBH(ucpi)->bh[0] = sbi->s_ucg[cgno];
	for (i = 1; i < UCPI_UBH(ucpi)->count; i++)
		if (!(UCPI_UBH(ucpi)->bh[i] = sb_bread(sb, UCPI_UBH(ucpi)->fragment + i)))
			goto failed;
	sbi->s_cgno[bitmap_nr] = cgno;
			
	ucpi->c_cgx	= fs32_to_cpu(sb, ucg->cg_cgx);
	ucpi->c_ncyl	= fs16_to_cpu(sb, ucg->cg_ncyl);
	ucpi->c_niblk	= fs16_to_cpu(sb, ucg->cg_niblk);
	ucpi->c_ndblk	= fs32_to_cpu(sb, ucg->cg_ndblk);
	ucpi->c_rotor	= fs32_to_cpu(sb, ucg->cg_rotor);
	ucpi->c_frotor	= fs32_to_cpu(sb, ucg->cg_frotor);
	ucpi->c_irotor	= fs32_to_cpu(sb, ucg->cg_irotor);
	ucpi->c_btotoff	= fs32_to_cpu(sb, ucg->cg_btotoff);
	ucpi->c_boff	= fs32_to_cpu(sb, ucg->cg_boff);
	ucpi->c_iusedoff = fs32_to_cpu(sb, ucg->cg_iusedoff);
	ucpi->c_freeoff	= fs32_to_cpu(sb, ucg->cg_freeoff);
	ucpi->c_nextfreeoff = fs32_to_cpu(sb, ucg->cg_nextfreeoff);
	ucpi->c_clustersumoff = fs32_to_cpu(sb, ucg->cg_u.cg_44.cg_clustersumoff);
	ucpi->c_clusteroff = fs32_to_cpu(sb, ucg->cg_u.cg_44.cg_clusteroff);
	ucpi->c_nclusterblks = fs32_to_cpu(sb, ucg->cg_u.cg_44.cg_nclusterblks);
	UFSD("EXIT\n");
	return;	
	
failed:
	for (j = 1; j < i; j++)
		brelse (sbi->s_ucg[j]);
	sbi->s_cgno[bitmap_nr] = UFS_CGNO_EMPTY;
	ufs_error (sb, "ufs_read_cylinder", "can't read cylinder group block %u", cgno);
}

/*
 * Remove cylinder group from cache, doesn't release memory
 * allocated for cylinder group (this is done at ufs_put_super only).
 */
void ufs_put_cylinder (struct super_block * sb, unsigned bitmap_nr)
{
	struct ufs_sb_info * sbi = UFS_SB(sb);
	struct ufs_sb_private_info * uspi; 
	struct ufs_cg_private_info * ucpi;
	struct ufs_cylinder_group * ucg;
	unsigned i;

	UFSD("ENTER, bitmap_nr %u\n", bitmap_nr);

	uspi = sbi->s_uspi;
	if (sbi->s_cgno[bitmap_nr] == UFS_CGNO_EMPTY) {
		UFSD("EXIT\n");
		return;
	}
	ucpi = sbi->s_ucpi[bitmap_nr];
	ucg = ubh_get_ucg(UCPI_UBH(ucpi));

	if (uspi->s_ncg > UFS_MAX_GROUP_LOADED && bitmap_nr >= sbi->s_cg_loaded) {
		ufs_panic (sb, "ufs_put_cylinder", "internal error");
		return;
	}
	/*
	 * rotor is not so important data, so we put it to disk 
	 * at the end of working with cylinder
	 */
	ucg->cg_rotor = cpu_to_fs32(sb, ucpi->c_rotor);
	ucg->cg_frotor = cpu_to_fs32(sb, ucpi->c_frotor);
	ucg->cg_irotor = cpu_to_fs32(sb, ucpi->c_irotor);
	ubh_mark_buffer_dirty (UCPI_UBH(ucpi));
	for (i = 1; i < UCPI_UBH(ucpi)->count; i++) {
		brelse (UCPI_UBH(ucpi)->bh[i]);
	}

	sbi->s_cgno[bitmap_nr] = UFS_CGNO_EMPTY;
	UFSD("EXIT\n");
}

/*
 * Find cylinder group in cache and return it as pointer.
 * If cylinder group is not in cache, we will load it from disk.
 *
 * The cache is managed by LRU algorithm. 
 */
struct ufs_cg_private_info * ufs_load_cylinder (
	struct super_block * sb, unsigned cgno)
{
	struct ufs_sb_info * sbi = UFS_SB(sb);
	struct ufs_sb_private_info * uspi;
	struct ufs_cg_private_info * ucpi;
	unsigned cg, i, j;

	UFSD("ENTER, cgno %u\n", cgno);

	uspi = sbi->s_uspi;
	if (cgno >= uspi->s_ncg) {
		ufs_panic (sb, "ufs_load_cylinder", "internal error, high number of cg");
		return NULL;
	}
	/*
	 * Cylinder group number cg it in cache and it was last used
	 */
	if (sbi->s_cgno[0] == cgno) {
		UFSD("EXIT\n");
		return sbi->s_ucpi[0];
	}
	/*
	 * Number of cylinder groups is not higher than UFS_MAX_GROUP_LOADED
	 */
	if (uspi->s_ncg <= UFS_MAX_GROUP_LOADED) {
		if (sbi->s_cgno[cgno] != UFS_CGNO_EMPTY) {
			if (sbi->s_cgno[cgno] != cgno) {
				ufs_panic (sb, "ufs_load_cylinder", "internal error, wrong number of cg in cache");
				UFSD("EXIT (FAILED)\n");
				return NULL;
			}
			else {
				UFSD("EXIT\n");
				return sbi->s_ucpi[cgno];
			}
		} else {
			ufs_read_cylinder (sb, cgno, cgno);
			UFSD("EXIT\n");
			return sbi->s_ucpi[cgno];
		}
	}
	/*
	 * Cylinder group number cg is in cache but it was not last used, 
	 * we will move to the first position
	 */
	for (i = 0; i < sbi->s_cg_loaded && sbi->s_cgno[i] != cgno; i++);
	if (i < sbi->s_cg_loaded && sbi->s_cgno[i] == cgno) {
		cg = sbi->s_cgno[i];
		ucpi = sbi->s_ucpi[i];
		for (j = i; j > 0; j--) {
			sbi->s_cgno[j] = sbi->s_cgno[j-1];
			sbi->s_ucpi[j] = sbi->s_ucpi[j-1];
		}
		sbi->s_cgno[0] = cg;
		sbi->s_ucpi[0] = ucpi;
	/*
	 * Cylinder group number cg is not in cache, we will read it from disk
	 * and put it to the first position
	 */
	} else {
		if (sbi->s_cg_loaded < UFS_MAX_GROUP_LOADED)
			sbi->s_cg_loaded++;
		else
			ufs_put_cylinder (sb, UFS_MAX_GROUP_LOADED-1);
		ucpi = sbi->s_ucpi[sbi->s_cg_loaded - 1];
		for (j = sbi->s_cg_loaded - 1; j > 0; j--) {
			sbi->s_cgno[j] = sbi->s_cgno[j-1];
			sbi->s_ucpi[j] = sbi->s_ucpi[j-1];
		}
		sbi->s_ucpi[0] = ucpi;
		ufs_read_cylinder (sb, cgno, 0);
	}
	UFSD("EXIT\n");
	return sbi->s_ucpi[0];
}
ur->right; iter->mask >>= 1; iter->value = value; if (iter->mask) { if (iter->size_level) iter->size_level++; } else { if (iter->size_level) { BUG_ON(!prio_tree_left_empty(iter->cur)); BUG_ON(!prio_tree_right_empty(iter->cur)); iter->size_level++; iter->mask = ULONG_MAX; } else { iter->size_level = 1; iter->mask = 1UL << (BITS_PER_LONG - 1); } } return iter->cur; } return NULL; } static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter) { iter->cur = iter->cur->parent; if (iter->mask == ULONG_MAX) iter->mask = 1UL; else if (iter->size_level == 1) iter->mask = 1UL; else iter->mask <<= 1; if (iter->size_level) iter->size_level--; if (!iter->size_level && (iter->value & iter->mask)) iter->value ^= iter->mask; return iter->cur; } static inline int overlap(struct prio_tree_iter *iter, unsigned long r_index, unsigned long h_index) { return iter->h_index >= r_index && iter->r_index <= h_index; } /* * prio_tree_first: * * Get the first prio_tree_node that overlaps with the interval [radix_index, * heap_index]. Note that always radix_index <= heap_index. We do a pre-order * traversal of the tree. */ static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter) { struct prio_tree_root *root; unsigned long r_index, h_index; INIT_PRIO_TREE_ITER(iter); root = iter->root; if (prio_tree_empty(root)) return NULL; get_index(root, root->prio_tree_node, &r_index, &h_index); if (iter->r_index > h_index) return NULL; iter->mask = 1UL << (root->index_bits - 1); iter->cur = root->prio_tree_node; while (1) { if (overlap(iter, r_index, h_index)) return iter->cur; if (prio_tree_left(iter, &r_index, &h_index)) continue; if (prio_tree_right(iter, &r_index, &h_index)) continue; break; } return NULL; } /* * prio_tree_next: * * Get the next prio_tree_node that overlaps with the input interval in iter */ struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter) { unsigned long r_index, h_index; if (iter->cur == NULL) return prio_tree_first(iter); repeat: while (prio_tree_left(iter, &r_index, &h_index)) if (overlap(iter, r_index, h_index)) return iter->cur; while (!prio_tree_right(iter, &r_index, &h_index)) { while (!prio_tree_root(iter->cur) && iter->cur->parent->right == iter->cur) prio_tree_parent(iter); if (prio_tree_root(iter->cur)) return NULL; prio_tree_parent(iter); } if (overlap(iter, r_index, h_index)) return iter->cur; goto repeat; }