aboutsummaryrefslogblamecommitdiffstats
path: root/fs/quota.c
blob: b9dae76a0b6e2212083efa9ca0281e31661c0375 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
















                                                                   
                             
                           






































































































                                                                                              



                                                    









                                                                     
                                                               



















                                                                                    













                                                                              
                                                                           
                                                                          

                                                                          
                                                 







                                                               
                                                   

                                               
                                                           
                                                                       
                                                             






                                                  

                       


                                                
                       
         



















                                                                                        
         
                              







































































































                                                                                              

                                                                







                                                                         



























                                                                            








                                                                                                       





                                        


                                             









                                                            
/*
 * Quota code necessary even when VFS quota support is not compiled
 * into the kernel.  The interesting stuff is over in dquot.c, here
 * we have symbols for initial quotactl(2) handling, the sysctl(2)
 * variables, etc - things needed even when quota support disabled.
 */

#include <linux/fs.h>
#include <linux/namei.h>
#include <linux/slab.h>
#include <asm/current.h>
#include <asm/uaccess.h>
#include <linux/kernel.h>
#include <linux/smp_lock.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/buffer_head.h>
#include <linux/capability.h>
#include <linux/quotaops.h>

/* Check validity of generic quotactl commands */
static int generic_quotactl_valid(struct super_block *sb, int type, int cmd, qid_t id)
{
	if (type >= MAXQUOTAS)
		return -EINVAL;
	if (!sb && cmd != Q_SYNC)
		return -ENODEV;
	/* Is operation supported? */
	if (sb && !sb->s_qcop)
		return -ENOSYS;

	switch (cmd) {
		case Q_GETFMT:
			break;
		case Q_QUOTAON:
			if (!sb->s_qcop->quota_on)
				return -ENOSYS;
			break;
		case Q_QUOTAOFF:
			if (!sb->s_qcop->quota_off)
				return -ENOSYS;
			break;
		case Q_SETINFO:
			if (!sb->s_qcop->set_info)
				return -ENOSYS;
			break;
		case Q_GETINFO:
			if (!sb->s_qcop->get_info)
				return -ENOSYS;
			break;
		case Q_SETQUOTA:
			if (!sb->s_qcop->set_dqblk)
				return -ENOSYS;
			break;
		case Q_GETQUOTA:
			if (!sb->s_qcop->get_dqblk)
				return -ENOSYS;
			break;
		case Q_SYNC:
			if (sb && !sb->s_qcop->quota_sync)
				return -ENOSYS;
			break;
		default:
			return -EINVAL;
	}

	/* Is quota turned on for commands which need it? */
	switch (cmd) {
		case Q_GETFMT:
		case Q_GETINFO:
		case Q_QUOTAOFF:
		case Q_SETINFO:
		case Q_SETQUOTA:
		case Q_GETQUOTA:
			/* This is just informative test so we are satisfied without a lock */
			if (!sb_has_quota_enabled(sb, type))
				return -ESRCH;
	}

	/* Check privileges */
	if (cmd == Q_GETQUOTA) {
		if (((type == USRQUOTA && current->euid != id) ||
		     (type == GRPQUOTA && !in_egroup_p(id))) &&
		    !capable(CAP_SYS_ADMIN))
			return -EPERM;
	}
	else if (cmd != Q_GETFMT && cmd != Q_SYNC && cmd != Q_GETINFO)
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;

	return 0;
}

/* Check validity of XFS Quota Manager commands */
static int xqm_quotactl_valid(struct super_block *sb, int type, int cmd, qid_t id)
{
	if (type >= XQM_MAXQUOTAS)
		return -EINVAL;
	if (!sb)
		return -ENODEV;
	if (!sb->s_qcop)
		return -ENOSYS;

	switch (cmd) {
		case Q_XQUOTAON:
		case Q_XQUOTAOFF:
		case Q_XQUOTARM:
			if (!sb->s_qcop->set_xstate)
				return -ENOSYS;
			break;
		case Q_XGETQSTAT:
			if (!sb->s_qcop->get_xstate)
				return -ENOSYS;
			break;
		case Q_XSETQLIM:
			if (!sb->s_qcop->set_xquota)
				return -ENOSYS;
			break;
		case Q_XGETQUOTA:
			if (!sb->s_qcop->get_xquota)
				return -ENOSYS;
			break;
		case Q_XQUOTASYNC:
			if (!sb->s_qcop->quota_sync)
				return -ENOSYS;
			break;
		default:
			return -EINVAL;
	}

	/* Check privileges */
	if (cmd == Q_XGETQUOTA) {
		if (((type == XQM_USRQUOTA && current->euid != id) ||
		     (type == XQM_GRPQUOTA && !in_egroup_p(id))) &&
		     !capable(CAP_SYS_ADMIN))
			return -EPERM;
	} else if (cmd != Q_XGETQSTAT && cmd != Q_XQUOTASYNC) {
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
	}

	return 0;
}

static int check_quotactl_valid(struct super_block *sb, int type, int cmd, qid_t id)
{
	int error;

	if (XQM_COMMAND(cmd))
		error = xqm_quotactl_valid(sb, type, cmd, id);
	else
		error = generic_quotactl_valid(sb, type, cmd, id);
	if (!error)
		error = security_quotactl(cmd, type, id, sb);
	return error;
}

static void quota_sync_sb(struct super_block *sb, int type)
{
	int cnt;
	struct inode *discard[MAXQUOTAS];

	sb->s_qcop->quota_sync(sb, type);
	/* This is not very clever (and fast) but currently I don't know about
	 * any other simple way of getting quota data to disk and we must get
	 * them there for userspace to be visible... */
	if (sb->s_op->sync_fs)
		sb->s_op->sync_fs(sb, 1);
	sync_blockdev(sb->s_bdev);

	/* Now when everything is written we can discard the pagecache so
	 * that userspace sees the changes. We need i_mutex and so we could
	 * not do it inside dqonoff_mutex. Moreover we need to be carefull
	 * about races with quotaoff() (that is the reason why we have own
	 * reference to inode). */
	mutex_lock(&sb_dqopt(sb)->dqonoff_mutex);
	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
		discard[cnt] = NULL;
		if (type != -1 && cnt != type)
			continue;
		if (!sb_has_quota_enabled(sb, cnt))
			continue;
		discard[cnt] = igrab(sb_dqopt(sb)->files[cnt]);
	}
	mutex_unlock(&sb_dqopt(sb)->dqonoff_mutex);
	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
		if (discard[cnt]) {
			mutex_lock(&discard[cnt]->i_mutex);
			truncate_inode_pages(&discard[cnt]->i_data, 0);
			mutex_unlock(&discard[cnt]->i_mutex);
			iput(discard[cnt]);
		}
	}
}

void sync_dquots(struct super_block *sb, int type)
{
	int cnt, dirty;

	if (sb) {
		if (sb->s_qcop->quota_sync)
			quota_sync_sb(sb, type);
		return;
	}

	spin_lock(&sb_lock);
restart:
	list_for_each_entry(sb, &super_blocks, s_list) {
		/* This test just improves performance so it needn't be reliable... */
		for (cnt = 0, dirty = 0; cnt < MAXQUOTAS; cnt++)
			if ((type == cnt || type == -1) && sb_has_quota_enabled(sb, cnt)
			    && info_any_dirty(&sb_dqopt(sb)->info[cnt]))
				dirty = 1;
		if (!dirty)
			continue;
		sb->s_count++;
		spin_unlock(&sb_lock);
		down_read(&sb->s_umount);
		if (sb->s_root && sb->s_qcop->quota_sync)
			quota_sync_sb(sb, type);
		up_read(&sb->s_umount);
		spin_lock(&sb_lock);
		if (__put_super_and_need_restart(sb))
			goto restart;
	}
	spin_unlock(&sb_lock);
}

/* Copy parameters and call proper function */
static int do_quotactl(struct super_block *sb, int type, int cmd, qid_t id, void __user *addr)
{
	int ret;

	switch (cmd) {
		case Q_QUOTAON: {
			char *pathname;

			if (IS_ERR(pathname = getname(addr)))
				return PTR_ERR(pathname);
			ret = sb->s_qcop->quota_on(sb, type, id, pathname);
			putname(pathname);
			return ret;
		}
		case Q_QUOTAOFF:
			return sb->s_qcop->quota_off(sb, type);

		case Q_GETFMT: {
			__u32 fmt;

			down_read(&sb_dqopt(sb)->dqptr_sem);
			if (!sb_has_quota_enabled(sb, type)) {
				up_read(&sb_dqopt(sb)->dqptr_sem);
				return -ESRCH;
			}
			fmt = sb_dqopt(sb)->info[type].dqi_format->qf_fmt_id;
			up_read(&sb_dqopt(sb)->dqptr_sem);
			if (copy_to_user(addr, &fmt, sizeof(fmt)))
				return -EFAULT;
			return 0;
		}
		case Q_GETINFO: {
			struct if_dqinfo info;

			if ((ret = sb->s_qcop->get_info(sb, type, &info)))
				return ret;
			if (copy_to_user(addr, &info, sizeof(info)))
				return -EFAULT;
			return 0;
		}
		case Q_SETINFO: {
			struct if_dqinfo info;

			if (copy_from_user(&info, addr, sizeof(info)))
				return -EFAULT;
			return sb->s_qcop->set_info(sb, type, &info);
		}
		case Q_GETQUOTA: {
			struct if_dqblk idq;

			if ((ret = sb->s_qcop->get_dqblk(sb, type, id, &idq)))
				return ret;
			if (copy_to_user(addr, &idq, sizeof(idq)))
				return -EFAULT;
			return 0;
		}
		case Q_SETQUOTA: {
			struct if_dqblk idq;

			if (copy_from_user(&idq, addr, sizeof(idq)))
				return -EFAULT;
			return sb->s_qcop->set_dqblk(sb, type, id, &idq);
		}
		case Q_SYNC:
			sync_dquots(sb, type);
			return 0;

		case Q_XQUOTAON:
		case Q_XQUOTAOFF:
		case Q_XQUOTARM: {
			__u32 flags;

			if (copy_from_user(&flags, addr, sizeof(flags)))
				return -EFAULT;
			return sb->s_qcop->set_xstate(sb, flags, cmd);
		}
		case Q_XGETQSTAT: {
			struct fs_quota_stat fqs;
		
			if ((ret = sb->s_qcop->get_xstate(sb, &fqs)))
				return ret;
			if (copy_to_user(addr, &fqs, sizeof(fqs)))
				return -EFAULT;
			return 0;
		}
		case Q_XSETQLIM: {
			struct fs_disk_quota fdq;

			if (copy_from_user(&fdq, addr, sizeof(fdq)))
				return -EFAULT;
		       return sb->s_qcop->set_xquota(sb, type, id, &fdq);
		}
		case Q_XGETQUOTA: {
			struct fs_disk_quota fdq;

			if ((ret = sb->s_qcop->get_xquota(sb, type, id, &fdq)))
				return ret;
			if (copy_to_user(addr, &fdq, sizeof(fdq)))
				return -EFAULT;
			return 0;
		}
		case Q_XQUOTASYNC:
			return sb->s_qcop->quota_sync(sb, type);
		/* We never reach here unless validity check is broken */
		default:
			BUG();
	}
	return 0;
}

/*
 * look up a superblock on which quota ops will be performed
 * - use the name of a block device to find the superblock thereon
 */
static inline struct super_block *quotactl_block(const char __user *special)
{
#ifdef CONFIG_BLOCK
	struct block_device *bdev;
	struct super_block *sb;
	char *tmp = getname(special);

	if (IS_ERR(tmp))
		return ERR_PTR(PTR_ERR(tmp));
	bdev = lookup_bdev(tmp);
	putname(tmp);
	if (IS_ERR(bdev))
		return ERR_PTR(PTR_ERR(bdev));
	sb = get_super(bdev);
	bdput(bdev);
	if (!sb)
		return ERR_PTR(-ENODEV);

	return sb;
#else
	return ERR_PTR(-ENODEV);
#endif
}

/*
 * This is the system call interface. This communicates with
 * the user-level programs. Currently this only supports diskquota
 * calls. Maybe we need to add the process quotas etc. in the future,
 * but we probably should use rlimits for that.
 */
asmlinkage long sys_quotactl(unsigned int cmd, const char __user *special, qid_t id, void __user *addr)
{
	uint cmds, type;
	struct super_block *sb = NULL;
	int ret;

	cmds = cmd >> SUBCMDSHIFT;
	type = cmd & SUBCMDMASK;

	if (cmds != Q_SYNC || special) {
		sb = quotactl_block(special);
		if (IS_ERR(sb))
			return PTR_ERR(sb);
	}

	ret = check_quotactl_valid(sb, type, cmds, id);
	if (ret >= 0)
		ret = do_quotactl(sb, type, cmds, id, addr);
	if (sb)
		drop_super(sb);

	return ret;
}
> * 26 Jul 1998 Rev. 4.33 for linux 2.0.35 and 2.1.111 * Added command line option (et:[y|n]) to use the existing * translation (returned by scsicam_bios_param) as disk geometry. * The default is et:n, which uses the disk geometry jumpered * on the board. * The default value et:n is compatible with all previous revisions * of this driver. * * 28 May 1998 Rev. 4.32 for linux 2.0.33 and 2.1.104 * Increased busy timeout from 10 msec. to 200 msec. while * processing interrupts. * * 18 May 1998 Rev. 4.31 for linux 2.0.33 and 2.1.102 * Improved abort handling during the eh recovery process. * * 13 May 1998 Rev. 4.30 for linux 2.0.33 and 2.1.101 * The driver is now fully SMP safe, including the * abort and reset routines. * Added command line options (eh:[y|n]) to choose between * new_eh_code and the old scsi code. * If linux version >= 2.1.101 the default is eh:y, while the eh * option is ignored for previous releases and the old scsi code * is used. * * 18 Apr 1998 Rev. 4.20 for linux 2.0.33 and 2.1.97 * Reworked interrupt handler. * * 11 Apr 1998 rev. 4.05 for linux 2.0.33 and 2.1.95 * Major reliability improvement: when a batch with overlapping * requests is detected, requests are queued one at a time * eliminating any possible board or drive reordering. * * 10 Apr 1998 rev. 4.04 for linux 2.0.33 and 2.1.95 * Improved SMP support (if linux version >= 2.1.95). * * 9 Apr 1998 rev. 4.03 for linux 2.0.33 and 2.1.94 * Performance improvement: when sequential i/o is detected, * always use direct sort instead of reverse sort. * * 4 Apr 1998 rev. 4.02 for linux 2.0.33 and 2.1.92 * io_port is now unsigned long. * * 17 Mar 1998 rev. 4.01 for linux 2.0.33 and 2.1.88 * Use new scsi error handling code (if linux version >= 2.1.88). * Use new interrupt code. * * 12 Sep 1997 rev. 3.11 for linux 2.0.30 and 2.1.55 * Use of udelay inside the wait loops to avoid timeout * problems with fast cpus. * Removed check about useless calls to the interrupt service * routine (reported on SMP systems only). * At initialization time "sorted/unsorted" is displayed instead * of "linked/unlinked" to reinforce the fact that "linking" is * nothing but "elevator sorting" in the actual implementation. * * 17 May 1997 rev. 3.10 for linux 2.0.30 and 2.1.38 * Use of serial_number_at_timeout in abort and reset processing. * Use of the __initfunc and __initdata macro in setup code. * Minor cleanups in the list_statistics code. * * 24 Feb 1997 rev. 3.00 for linux 2.0.29 and 2.1.26 * When loading as a module, parameter passing is now supported * both in 2.0 and in 2.1 style. * Fixed data transfer direction for some SCSI opcodes. * Immediate acknowledge to request sense commands. * Linked commands to each disk device are now reordered by elevator * sorting. Rare cases in which reordering of write requests could * cause wrong results are managed. * * 18 Jan 1997 rev. 2.60 for linux 2.1.21 and 2.0.28 * Added command line options to enable/disable linked commands * (lc:[y|n]), old firmware support (of:[y|n]) and to set the max * queue depth (mq:xx). Default is "u14-34f=lc:n,of:n,mq:8". * Improved command linking. * * 8 Jan 1997 rev. 2.50 for linux 2.1.20 and 2.0.27 * Added linked command support. * * 3 Dec 1996 rev. 2.40 for linux 2.1.14 and 2.0.27 * Added queue depth adjustment. * * 22 Nov 1996 rev. 2.30 for linux 2.1.12 and 2.0.26 * The list of i/o ports to be probed can be overwritten by the * "u14-34f=port0,port1,...." boot command line option. * Scatter/gather lists are now allocated by a number of kmalloc * calls, in order to avoid the previous size limit of 64Kb. * * 16 Nov 1996 rev. 2.20 for linux 2.1.10 and 2.0.25 * Added multichannel support. * * 27 Sep 1996 rev. 2.12 for linux 2.1.0 * Portability cleanups (virtual/bus addressing, little/big endian * support). * * 09 Jul 1996 rev. 2.11 for linux 2.0.4 * "Data over/under-run" no longer implies a redo on all targets. * Number of internal retries is now limited. * * 16 Apr 1996 rev. 2.10 for linux 1.3.90 * New argument "reset_flags" to the reset routine. * * 21 Jul 1995 rev. 2.02 for linux 1.3.11 * Fixed Data Transfer Direction for some SCSI commands. * * 13 Jun 1995 rev. 2.01 for linux 1.2.10 * HAVE_OLD_UX4F_FIRMWARE should be defined for U34F boards when * the firmware prom is not the latest one (28008-006). * * 11 Mar 1995 rev. 2.00 for linux 1.2.0 * Fixed a bug which prevented media change detection for removable * disk drives. * * 23 Feb 1995 rev. 1.18 for linux 1.1.94 * Added a check for scsi_register returning NULL. * * 11 Feb 1995 rev. 1.17 for linux 1.1.91 * U14F qualified to run with 32 sglists. * Now DEBUG_RESET is disabled by default. * * 9 Feb 1995 rev. 1.16 for linux 1.1.90 * Use host->wish_block instead of host->block. * * 8 Feb 1995 rev. 1.15 for linux 1.1.89 * Cleared target_time_out counter while performing a reset. * * 28 Jan 1995 rev. 1.14 for linux 1.1.86 * Added module support. * Log and do a retry when a disk drive returns a target status * different from zero on a recovered error. * Auto detects if U14F boards have an old firmware revision. * Max number of scatter/gather lists set to 16 for all boards * (most installation run fine using 33 sglists, while other * has problems when using more than 16). * * 16 Jan 1995 rev. 1.13 for linux 1.1.81 * Display a message if check_region detects a port address * already in use. * * 15 Dec 1994 rev. 1.12 for linux 1.1.74 * The host->block flag is set for all the detected ISA boards. * * 30 Nov 1994 rev. 1.11 for linux 1.1.68 * Redo i/o on target status CHECK_CONDITION for TYPE_DISK only. * Added optional support for using a single board at a time. * * 14 Nov 1994 rev. 1.10 for linux 1.1.63 * * 28 Oct 1994 rev. 1.09 for linux 1.1.58 Final BETA release. * 16 Jul 1994 rev. 1.00 for linux 1.1.29 Initial ALPHA release. * * This driver is a total replacement of the original UltraStor * scsi driver, but it supports ONLY the 14F and 34F boards. * It can be configured in the same kernel in which the original * ultrastor driver is configured to allow the original U24F * support. * * Multiple U14F and/or U34F host adapters are supported. * * Copyright (C) 1994-2003 Dario Ballabio (ballabio_dario@emc.com) * * Alternate email: dario.ballabio@inwind.it, dario.ballabio@tiscalinet.it * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that redistributions of source * code retain the above copyright notice and this comment without * modification. * * WARNING: if your 14/34F board has an old firmware revision (see below) * you must change "#undef" into "#define" in the following * statement. */ #undef HAVE_OLD_UX4F_FIRMWARE /* * The UltraStor 14F, 24F, and 34F are a family of intelligent, high * performance SCSI-2 host adapters. * Here is the scoop on the various models: * * 14F - ISA first-party DMA HA with floppy support and WD1003 emulation. * 24F - EISA Bus Master HA with floppy support and WD1003 emulation. * 34F - VESA Local-Bus Bus Master HA (no WD1003 emulation). * * This code has been tested with up to two U14F boards, using both * firmware 28004-005/38004-004 (BIOS rev. 2.00) and the latest firmware * 28004-006/38004-005 (BIOS rev. 2.01). * * The latest firmware is required in order to get reliable operations when * clustering is enabled. ENABLE_CLUSTERING provides a performance increase * up to 50% on sequential access. * * Since the struct scsi_host_template structure is shared among all 14F and 34F, * the last setting of use_clustering is in effect for all of these boards. * * Here a sample configuration using two U14F boards: * U14F0: ISA 0x330, BIOS 0xc8000, IRQ 11, DMA 5, SG 32, MB 16, of:n, lc:y, mq:8. U14F1: ISA 0x340, BIOS 0x00000, IRQ 10, DMA 6, SG 32, MB 16, of:n, lc:y, mq:8. * * The boot controller must have its BIOS enabled, while other boards can * have their BIOS disabled, or enabled to an higher address. * Boards are named Ux4F0, Ux4F1..., according to the port address order in * the io_port[] array. * * The following facts are based on real testing results (not on * documentation) on the above U14F board. * * - The U14F board should be jumpered for bus on time less or equal to 7 * microseconds, while the default is 11 microseconds. This is order to * get acceptable performance while using floppy drive and hard disk * together. The jumpering for 7 microseconds is: JP13 pin 15-16, * JP14 pin 7-8 and pin 9-10. * The reduction has a little impact on scsi performance. * * - If scsi bus length exceeds 3m., the scsi bus speed needs to be reduced * from 10Mhz to 5Mhz (do this by inserting a jumper on JP13 pin 7-8). * * - If U14F on board firmware is older than 28004-006/38004-005, * the U14F board is unable to provide reliable operations if the scsi * request length exceeds 16Kbyte. When this length is exceeded the * behavior is: * - adapter_status equal 0x96 or 0xa3 or 0x93 or 0x94; * - adapter_status equal 0 and target_status equal 2 on for all targets * in the next operation following the reset. * This sequence takes a long time (>3 seconds), so in the meantime * the SD_TIMEOUT in sd.c could expire giving rise to scsi aborts * (SD_TIMEOUT has been increased from 3 to 6 seconds in 1.1.31). * Because of this I had to DISABLE_CLUSTERING and to work around the * bus reset in the interrupt service routine, returning DID_BUS_BUSY * so that the operations are retried without complains from the scsi.c * code. * Any reset of the scsi bus is going to kill tape operations, since * no retry is allowed for tapes. Bus resets are more likely when the * scsi bus is under heavy load. * Requests using scatter/gather have a maximum length of 16 x 1024 bytes * when DISABLE_CLUSTERING is in effect, but unscattered requests could be * larger than 16Kbyte. * * The new firmware has fixed all the above problems. * * For U34F boards the latest bios prom is 38008-002 (BIOS rev. 2.01), * the latest firmware prom is 28008-006. Older firmware 28008-005 has * problems when using more than 16 scatter/gather lists. * * The list of i/o ports to be probed can be totally replaced by the * boot command line option: "u14-34f=port0,port1,port2,...", where the * port0, port1... arguments are ISA/VESA addresses to be probed. * For example using "u14-34f=0x230,0x340", the driver probes only the two * addresses 0x230 and 0x340 in this order; "u14-34f=0" totally disables * this driver. * * After the optional list of detection probes, other possible command line * options are: * * et:y use disk geometry returned by scsicam_bios_param; * et:n use disk geometry jumpered on the board; * lc:y enables linked commands; * lc:n disables linked commands; * tm:0 disables tagged commands (same as tc:n); * tm:1 use simple queue tags (same as tc:y); * tm:2 use ordered queue tags (same as tc:2); * of:y enables old firmware support; * of:n disables old firmware support; * mq:xx set the max queue depth to the value xx (2 <= xx <= 8). * * The default value is: "u14-34f=lc:n,of:n,mq:8,tm:0,et:n". * An example using the list of detection probes could be: * "u14-34f=0x230,0x340,lc:y,tm:2,of:n,mq:4,et:n". * * When loading as a module, parameters can be specified as well. * The above example would be (use 1 in place of y and 0 in place of n): * * modprobe u14-34f io_port=0x230,0x340 linked_comm=1 have_old_firmware=0 \ * max_queue_depth=4 ext_tran=0 tag_mode=2 * * ---------------------------------------------------------------------------- * In this implementation, linked commands are designed to work with any DISK * or CD-ROM, since this linking has only the intent of clustering (time-wise) * and reordering by elevator sorting commands directed to each device, * without any relation with the actual SCSI protocol between the controller * and the device. * If Q is the queue depth reported at boot time for each device (also named * cmds/lun) and Q > 2, whenever there is already an active command to the * device all other commands to the same device (up to Q-1) are kept waiting * in the elevator sorting queue. When the active command completes, the * commands in this queue are sorted by sector address. The sort is chosen * between increasing or decreasing by minimizing the seek distance between * the sector of the commands just completed and the sector of the first * command in the list to be sorted. * Trivial math assures that the unsorted average seek distance when doing * random seeks over S sectors is S/3. * When (Q-1) requests are uniformly distributed over S sectors, the average * distance between two adjacent requests is S/((Q-1) + 1), so the sorted * average seek distance for (Q-1) random requests over S sectors is S/Q. * The elevator sorting hence divides the seek distance by a factor Q/3. * The above pure geometric remarks are valid in all cases and the * driver effectively reduces the seek distance by the predicted factor * when there are Q concurrent read i/o operations on the device, but this * does not necessarily results in a noticeable performance improvement: * your mileage may vary.... * * Note: command reordering inside a batch of queued commands could cause * wrong results only if there is at least one write request and the * intersection (sector-wise) of all requests is not empty. * When the driver detects a batch including overlapping requests * (a really rare event) strict serial (pid) order is enforced. * ---------------------------------------------------------------------------- * * The boards are named Ux4F0, Ux4F1,... according to the detection order. * * In order to support multiple ISA boards in a reliable way, * the driver sets host->wish_block = TRUE for all ISA boards. */ #include <linux/config.h> #include <linux/string.h> #include <linux/kernel.h> #include <linux/ioport.h> #include <linux/delay.h> #include <asm/io.h> #include <asm/system.h> #include <asm/byteorder.h> #include <linux/proc_fs.h> #include <linux/blkdev.h> #include <linux/interrupt.h> #include <linux/stat.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/ctype.h> #include <linux/spinlock.h> #include <asm/dma.h> #include <asm/irq.h> #include <scsi/scsi.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_device.h> #include <scsi/scsi_host.h> #include <scsi/scsi_tcq.h> #include <scsi/scsicam.h> static int u14_34f_detect(struct scsi_host_template *); static int u14_34f_release(struct Scsi_Host *); static int u14_34f_queuecommand(struct scsi_cmnd *, void (*done)(struct scsi_cmnd *)); static int u14_34f_eh_abort(struct scsi_cmnd *); static int u14_34f_eh_host_reset(struct scsi_cmnd *); static int u14_34f_bios_param(struct scsi_device *, struct block_device *, sector_t, int *); static int u14_34f_slave_configure(struct scsi_device *); static struct scsi_host_template driver_template = { .name = "UltraStor 14F/34F rev. 8.10.00 ", .detect = u14_34f_detect, .release = u14_34f_release, .queuecommand = u14_34f_queuecommand, .eh_abort_handler = u14_34f_eh_abort, .eh_host_reset_handler = u14_34f_eh_host_reset, .bios_param = u14_34f_bios_param, .slave_configure = u14_34f_slave_configure, .this_id = 7, .unchecked_isa_dma = 1, .use_clustering = ENABLE_CLUSTERING }; #if !defined(__BIG_ENDIAN_BITFIELD) && !defined(__LITTLE_ENDIAN_BITFIELD) #error "Adjust your <asm/byteorder.h> defines" #endif /* Values for the PRODUCT_ID ports for the 14/34F */ #define PRODUCT_ID1 0x56 #define PRODUCT_ID2 0x40 /* NOTE: Only upper nibble is used */ /* Subversion values */ #define ISA 0 #define ESA 1 #define OP_HOST_ADAPTER 0x1 #define OP_SCSI 0x2 #define OP_RESET 0x4 #define DTD_SCSI 0x0 #define DTD_IN 0x1 #define DTD_OUT 0x2 #define DTD_NONE 0x3 #define HA_CMD_INQUIRY 0x1 #define HA_CMD_SELF_DIAG 0x2 #define HA_CMD_READ_BUFF 0x3 #define HA_CMD_WRITE_BUFF 0x4 #undef DEBUG_LINKED_COMMANDS #undef DEBUG_DETECT #undef DEBUG_INTERRUPT #undef DEBUG_RESET #undef DEBUG_GENERATE_ERRORS #undef DEBUG_GENERATE_ABORTS #undef DEBUG_GEOMETRY #define MAX_ISA 3 #define MAX_VESA 1 #define MAX_EISA 0 #define MAX_PCI 0 #define MAX_BOARDS (MAX_ISA + MAX_VESA + MAX_EISA + MAX_PCI) #define MAX_CHANNEL 1 #define MAX_LUN 8 #define MAX_TARGET 8 #define MAX_MAILBOXES 16 #define MAX_SGLIST 32 #define MAX_SAFE_SGLIST 16 #define MAX_INTERNAL_RETRIES 64 #define MAX_CMD_PER_LUN 2 #define MAX_TAGGED_CMD_PER_LUN (MAX_MAILBOXES - MAX_CMD_PER_LUN) #define SKIP ULONG_MAX #define FALSE 0 #define TRUE 1 #define FREE 0 #define IN_USE 1 #define LOCKED 2 #define IN_RESET 3 #define IGNORE 4 #define READY 5 #define ABORTING 6 #define NO_DMA 0xff #define MAXLOOP 10000 #define TAG_DISABLED 0 #define TAG_SIMPLE 1 #define TAG_ORDERED 2 #define REG_LCL_MASK 0 #define REG_LCL_INTR 1 #define REG_SYS_MASK 2 #define REG_SYS_INTR 3 #define REG_PRODUCT_ID1 4 #define REG_PRODUCT_ID2 5 #define REG_CONFIG1 6 #define REG_CONFIG2 7 #define REG_OGM 8 #define REG_ICM 12 #define REGION_SIZE 13UL #define BSY_ASSERTED 0x01 #define IRQ_ASSERTED 0x01 #define CMD_RESET 0xc0 #define CMD_OGM_INTR 0x01 #define CMD_CLR_INTR 0x01 #define CMD_ENA_INTR 0x81 #define ASOK 0x00 #define ASST 0x91 #define YESNO(a) ((a) ? 'y' : 'n') #define TLDEV(type) ((type) == TYPE_DISK || (type) == TYPE_ROM) #define PACKED __attribute__((packed)) struct sg_list { unsigned int address; /* Segment Address */ unsigned int num_bytes; /* Segment Length */ }; /* MailBox SCSI Command Packet */ struct mscp { #if defined(__BIG_ENDIAN_BITFIELD) unsigned char sg:1, ca:1, dcn:1, xdir:2, opcode:3; unsigned char lun: 3, channel:2, target:3; #else unsigned char opcode: 3, /* type of command */ xdir: 2, /* data transfer direction */ dcn: 1, /* disable disconnect */ ca: 1, /* use cache (if available) */ sg: 1; /* scatter/gather operation */ unsigned char target: 3, /* SCSI target id */ channel: 2, /* SCSI channel number */ lun: 3; /* SCSI logical unit number */ #endif unsigned int data_address PACKED; /* transfer data pointer */ unsigned int data_len PACKED; /* length in bytes */ unsigned int link_address PACKED; /* for linking command chains */ unsigned char clink_id; /* identifies command in chain */ unsigned char use_sg; /* (if sg is set) 8 bytes per list */ unsigned char sense_len; unsigned char cdb_len; /* 6, 10, or 12 */ unsigned char cdb[12]; /* SCSI Command Descriptor Block */ unsigned char adapter_status; /* non-zero indicates HA error */ unsigned char target_status; /* non-zero indicates target error */ unsigned int sense_addr PACKED; /* Additional fields begin here. */ struct scsi_cmnd *SCpnt; unsigned int cpp_index; /* cp index */ /* All the cp structure is zero filled by queuecommand except the following CP_TAIL_SIZE bytes, initialized by detect */ dma_addr_t cp_dma_addr; /* dma handle for this cp structure */ struct sg_list *sglist; /* pointer to the allocated SG list */ }; #define CP_TAIL_SIZE (sizeof(struct sglist *) + sizeof(dma_addr_t)) struct hostdata { struct mscp cp[MAX_MAILBOXES]; /* Mailboxes for this board */ unsigned int cp_stat[MAX_MAILBOXES]; /* FREE, IN_USE, LOCKED, IN_RESET */ unsigned int last_cp_used; /* Index of last mailbox used */ unsigned int iocount; /* Total i/o done for this board */ int board_number; /* Number of this board */ char board_name[16]; /* Name of this board */ int in_reset; /* True if board is doing a reset */ int target_to[MAX_TARGET][MAX_CHANNEL]; /* N. of timeout errors on target */ int target_redo[MAX_TARGET][MAX_CHANNEL]; /* If TRUE redo i/o on target */ unsigned int retries; /* Number of internal retries */ unsigned long last_retried_pid; /* Pid of last retried command */ unsigned char subversion; /* Bus type, either ISA or ESA */ struct pci_dev *pdev; /* Always NULL */ unsigned char heads; unsigned char sectors; char board_id[256]; /* data from INQUIRY on this board */ }; static struct Scsi_Host *sh[MAX_BOARDS + 1]; static const char *driver_name = "Ux4F"; static char sha[MAX_BOARDS]; static DEFINE_SPINLOCK(driver_lock); /* Initialize num_boards so that ihdlr can work while detect is in progress */ static unsigned int num_boards = MAX_BOARDS; static unsigned long io_port[] = { /* Space for MAX_INT_PARAM ports usable while loading as a module */ SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, /* Possible ISA/VESA ports */ 0x330, 0x340, 0x230, 0x240, 0x210, 0x130, 0x140, /* End of list */ 0x0 }; #define HD(board) ((struct hostdata *) &sh[board]->hostdata) #define BN(board) (HD(board)->board_name) /* Device is Little Endian */ #define H2DEV(x) cpu_to_le32(x) #define DEV2H(x) le32_to_cpu(x) static irqreturn_t do_interrupt_handler(int, void *, struct pt_regs *); static void flush_dev(struct scsi_device *, unsigned long, unsigned int, unsigned int); static int do_trace = FALSE; static int setup_done = FALSE; static int link_statistics; static int ext_tran = FALSE; #if defined(HAVE_OLD_UX4F_FIRMWARE) static int have_old_firmware = TRUE; #else static int have_old_firmware = FALSE; #endif #if defined(CONFIG_SCSI_U14_34F_TAGGED_QUEUE) static int tag_mode = TAG_SIMPLE; #else static int tag_mode = TAG_DISABLED; #endif #if defined(CONFIG_SCSI_U14_34F_LINKED_COMMANDS) static int linked_comm = TRUE; #else static int linked_comm = FALSE; #endif #if defined(CONFIG_SCSI_U14_34F_MAX_TAGS) static int max_queue_depth = CONFIG_SCSI_U14_34F_MAX_TAGS; #else static int max_queue_depth = MAX_CMD_PER_LUN; #endif #define MAX_INT_PARAM 10 #define MAX_BOOT_OPTIONS_SIZE 256 static char boot_options[MAX_BOOT_OPTIONS_SIZE]; #if defined(MODULE) #include <linux/module.h> #include <linux/moduleparam.h> module_param_string(u14_34f, boot_options, MAX_BOOT_OPTIONS_SIZE, 0); MODULE_PARM_DESC(u14_34f, " equivalent to the \"u14-34f=...\" kernel boot " \ "option." \ " Example: modprobe u14-34f \"u14_34f=0x340,0x330,lc:y,tm:0,mq:4\""); MODULE_AUTHOR("Dario Ballabio"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("UltraStor 14F/34F SCSI Driver"); #endif static int u14_34f_slave_configure(struct scsi_device *dev) { int j, tqd, utqd; char *tag_suffix, *link_suffix; struct Scsi_Host *host = dev->host; j = ((struct hostdata *) host->hostdata)->board_number; utqd = MAX_CMD_PER_LUN; tqd = max_queue_depth; if (TLDEV(dev->type) && dev->tagged_supported) if (tag_mode == TAG_SIMPLE) { scsi_adjust_queue_depth(dev, MSG_SIMPLE_TAG, tqd); tag_suffix = ", simple tags"; } else if (tag_mode == TAG_ORDERED) { scsi_adjust_queue_depth(dev, MSG_ORDERED_TAG, tqd); tag_suffix = ", ordered tags"; } else { scsi_adjust_queue_depth(dev, 0, tqd); tag_suffix = ", no tags"; } else if (TLDEV(dev->type) && linked_comm) { scsi_adjust_queue_depth(dev, 0, tqd); tag_suffix = ", untagged"; } else { scsi_adjust_queue_depth(dev, 0, utqd); tag_suffix = ""; } if (TLDEV(dev->type) && linked_comm && dev->queue_depth > 2) link_suffix = ", sorted"; else if (TLDEV(dev->type)) link_suffix = ", unsorted"; else link_suffix = ""; sdev_printk(KERN_INFO, dev, "cmds/lun %d%s%s.\n", dev->queue_depth, link_suffix, tag_suffix); return FALSE; } static int wait_on_busy(unsigned long iobase, unsigned int loop) { while (inb(iobase + REG_LCL_INTR) & BSY_ASSERTED) { udelay(1L); if (--loop == 0) return TRUE; } return FALSE; } static int board_inquiry(unsigned int j) { struct mscp *cpp; dma_addr_t id_dma_addr; unsigned int time, limit = 0; id_dma_addr = pci_map_single(HD(j)->pdev, HD(j)->board_id, sizeof(HD(j)->board_id), PCI_DMA_BIDIRECTIONAL); cpp = &HD(j)->cp[0]; cpp->cp_dma_addr = pci_map_single(HD(j)->pdev, cpp, sizeof(struct mscp), PCI_DMA_BIDIRECTIONAL); memset(cpp, 0, sizeof(struct mscp) - CP_TAIL_SIZE); cpp->opcode = OP_HOST_ADAPTER; cpp->xdir = DTD_IN; cpp->data_address = H2DEV(id_dma_addr); cpp->data_len = H2DEV(sizeof(HD(j)->board_id)); cpp->cdb_len = 6; cpp->cdb[0] = HA_CMD_INQUIRY; if (wait_on_busy(sh[j]->io_port, MAXLOOP)) { printk("%s: board_inquiry, adapter busy.\n", BN(j)); return TRUE; } HD(j)->cp_stat[0] = IGNORE; /* Clear the interrupt indication */ outb(CMD_CLR_INTR, sh[j]->io_port + REG_SYS_INTR); /* Store pointer in OGM address bytes */ outl(H2DEV(cpp->cp_dma_addr), sh[j]->io_port + REG_OGM); /* Issue OGM interrupt */ outb(CMD_OGM_INTR, sh[j]->io_port + REG_LCL_INTR); spin_unlock_irq(&driver_lock); time = jiffies; while ((jiffies - time) < HZ && limit++ < 20000) udelay(100L); spin_lock_irq(&driver_lock); if (cpp->adapter_status || HD(j)->cp_stat[0] != FREE) { HD(j)->cp_stat[0] = FREE; printk("%s: board_inquiry, err 0x%x.\n", BN(j), cpp->adapter_status); return TRUE; } pci_unmap_single(HD(j)->pdev, cpp->cp_dma_addr, sizeof(struct mscp), PCI_DMA_BIDIRECTIONAL); pci_unmap_single(HD(j)->pdev, id_dma_addr, sizeof(HD(j)->board_id), PCI_DMA_BIDIRECTIONAL); return FALSE; } static int port_detect \ (unsigned long port_base, unsigned int j, struct scsi_host_template *tpnt) { unsigned char irq, dma_channel, subversion, i; unsigned char in_byte; char *bus_type, dma_name[16]; /* Allowed BIOS base addresses (NULL indicates reserved) */ unsigned long bios_segment_table[8] = { 0, 0xc4000, 0xc8000, 0xcc000, 0xd0000, 0xd4000, 0xd8000, 0xdc000 }; /* Allowed IRQs */ unsigned char interrupt_table[4] = { 15, 14, 11, 10 }; /* Allowed DMA channels for ISA (0 indicates reserved) */ unsigned char dma_channel_table[4] = { 5, 6, 7, 0 }; /* Head/sector mappings */ struct { unsigned char heads; unsigned char sectors; } mapping_table[4] = { { 16, 63 }, { 64, 32 }, { 64, 63 }, { 64, 32 } }; struct config_1 { #if defined(__BIG_ENDIAN_BITFIELD) unsigned char dma_channel: 2, interrupt:2, removable_disks_as_fixed:1, bios_segment: 3; #else unsigned char bios_segment: 3, removable_disks_as_fixed: 1, interrupt: 2, dma_channel: 2; #endif } config_1; struct config_2 { #if defined(__BIG_ENDIAN_BITFIELD) unsigned char tfr_port: 2, bios_drive_number: 1, mapping_mode: 2, ha_scsi_id: 3; #else unsigned char ha_scsi_id: 3, mapping_mode: 2, bios_drive_number: 1, tfr_port: 2; #endif } config_2; char name[16]; sprintf(name, "%s%d", driver_name, j); if (!request_region(port_base, REGION_SIZE, driver_name)) { #if defined(DEBUG_DETECT) printk("%s: address 0x%03lx in use, skipping probe.\n", name, port_base); #endif goto fail; } spin_lock_irq(&driver_lock); if (inb(port_base + REG_PRODUCT_ID1) != PRODUCT_ID1) goto freelock; in_byte = inb(port_base + REG_PRODUCT_ID2); if ((in_byte & 0xf0) != PRODUCT_ID2) goto freelock; *(char *)&config_1 = inb(port_base + REG_CONFIG1); *(char *)&config_2 = inb(port_base + REG_CONFIG2); irq = interrupt_table[config_1.interrupt]; dma_channel = dma_channel_table[config_1.dma_channel]; subversion = (in_byte & 0x0f); /* Board detected, allocate its IRQ */ if (request_irq(irq, do_interrupt_handler, SA_INTERRUPT | ((subversion == ESA) ? SA_SHIRQ : 0), driver_name, (void *) &sha[j])) { printk("%s: unable to allocate IRQ %u, detaching.\n", name, irq); goto freelock; } if (subversion == ISA && request_dma(dma_channel, driver_name)) { printk("%s: unable to allocate DMA channel %u, detaching.\n", name, dma_channel); goto freeirq; } if (have_old_firmware) tpnt->use_clustering = DISABLE_CLUSTERING; spin_unlock_irq(&driver_lock); sh[j] = scsi_register(tpnt, sizeof(struct hostdata)); spin_lock_irq(&driver_lock); if (sh[j] == NULL) { printk("%s: unable to register host, detaching.\n", name); goto freedma; } sh[j]->io_port = port_base; sh[j]->unique_id = port_base; sh[j]->n_io_port = REGION_SIZE; sh[j]->base = bios_segment_table[config_1.bios_segment]; sh[j]->irq = irq; sh[j]->sg_tablesize = MAX_SGLIST; sh[j]->this_id = config_2.ha_scsi_id; sh[j]->can_queue = MAX_MAILBOXES; sh[j]->cmd_per_lun = MAX_CMD_PER_LUN; #if defined(DEBUG_DETECT) { unsigned char sys_mask, lcl_mask; sys_mask = inb(sh[j]->io_port + REG_SYS_MASK); lcl_mask = inb(sh[j]->io_port + REG_LCL_MASK); printk("SYS_MASK 0x%x, LCL_MASK 0x%x.\n", sys_mask, lcl_mask); } #endif /* Probably a bogus host scsi id, set it to the dummy value */ if (sh[j]->this_id == 0) sh[j]->this_id = -1; /* If BIOS is disabled, force enable interrupts */ if (sh[j]->base == 0) outb(CMD_ENA_INTR, sh[j]->io_port + REG_SYS_MASK); memset(HD(j), 0, sizeof(struct hostdata)); HD(j)->heads = mapping_table[config_2.mapping_mode].heads; HD(j)->sectors = mapping_table[config_2.mapping_mode].sectors; HD(j)->subversion = subversion; HD(j)->pdev = NULL; HD(j)->board_number = j; if (have_old_firmware) sh[j]->sg_tablesize = MAX_SAFE_SGLIST; if (HD(j)->subversion == ESA) { sh[j]->unchecked_isa_dma = FALSE; sh[j]->dma_channel = NO_DMA; sprintf(BN(j), "U34F%d", j); bus_type = "VESA"; } else { unsigned long flags; sh[j]->unchecked_isa_dma = TRUE; flags=claim_dma_lock(); disable_dma(dma_channel); clear_dma_ff(dma_channel); set_dma_mode(dma_channel, DMA_MODE_CASCADE); enable_dma(dma_channel); release_dma_lock(flags); sh[j]->dma_channel = dma_channel; sprintf(BN(j), "U14F%d", j); bus_type = "ISA"; } sh[j]->max_channel = MAX_CHANNEL - 1; sh[j]->max_id = MAX_TARGET; sh[j]->max_lun = MAX_LUN; if (HD(j)->subversion == ISA && !board_inquiry(j)) { HD(j)->board_id[40] = 0; if (strcmp(&HD(j)->board_id[32], "06000600")) { printk("%s: %s.\n", BN(j), &HD(j)->board_id[8]); printk("%s: firmware %s is outdated, FW PROM should be 28004-006.\n", BN(j), &HD(j)->board_id[32]); sh[j]->hostt->use_clustering = DISABLE_CLUSTERING; sh[j]->sg_tablesize = MAX_SAFE_SGLIST; } } if (dma_channel == NO_DMA) sprintf(dma_name, "%s", "BMST"); else sprintf(dma_name, "DMA %u", dma_channel); spin_unlock_irq(&driver_lock); for (i = 0; i < sh[j]->can_queue; i++) HD(j)->cp[i].cp_dma_addr = pci_map_single(HD(j)->pdev, &HD(j)->cp[i], sizeof(struct mscp), PCI_DMA_BIDIRECTIONAL); for (i = 0; i < sh[j]->can_queue; i++) if (! ((&HD(j)->cp[i])->sglist = kmalloc( sh[j]->sg_tablesize * sizeof(struct sg_list), (sh[j]->unchecked_isa_dma ? GFP_DMA : 0) | GFP_ATOMIC))) { printk("%s: kmalloc SGlist failed, mbox %d, detaching.\n", BN(j), i); goto release; } if (max_queue_depth > MAX_TAGGED_CMD_PER_LUN) max_queue_depth = MAX_TAGGED_CMD_PER_LUN; if (max_queue_depth < MAX_CMD_PER_LUN) max_queue_depth = MAX_CMD_PER_LUN; if (tag_mode != TAG_DISABLED && tag_mode != TAG_SIMPLE) tag_mode = TAG_ORDERED; if (j == 0) { printk("UltraStor 14F/34F: Copyright (C) 1994-2003 Dario Ballabio.\n"); printk("%s config options -> of:%c, tm:%d, lc:%c, mq:%d, et:%c.\n", driver_name, YESNO(have_old_firmware), tag_mode, YESNO(linked_comm), max_queue_depth, YESNO(ext_tran)); } printk("%s: %s 0x%03lx, BIOS 0x%05x, IRQ %u, %s, SG %d, MB %d.\n", BN(j), bus_type, (unsigned long)sh[j]->io_port, (int)sh[j]->base, sh[j]->irq, dma_name, sh[j]->sg_tablesize, sh[j]->can_queue); if (sh[j]->max_id > 8 || sh[j]->max_lun > 8) printk("%s: wide SCSI support enabled, max_id %u, max_lun %u.\n", BN(j), sh[j]->max_id, sh[j]->max_lun); for (i = 0; i <= sh[j]->max_channel; i++) printk("%s: SCSI channel %u enabled, host target ID %d.\n", BN(j), i, sh[j]->this_id); return TRUE; freedma: if (subversion == ISA) free_dma(dma_channel); freeirq: free_irq(irq, &sha[j]); freelock: spin_unlock_irq(&driver_lock); release_region(port_base, REGION_SIZE); fail: return FALSE; release: u14_34f_release(sh[j]); return FALSE; } static void internal_setup(char *str, int *ints) { int i, argc = ints[0]; char *cur = str, *pc; if (argc > 0) { if (argc > MAX_INT_PARAM) argc = MAX_INT_PARAM; for (i = 0; i < argc; i++) io_port[i] = ints[i + 1]; io_port[i] = 0; setup_done = TRUE; } while (cur && (pc = strchr(cur, ':'))) { int val = 0, c = *++pc; if (c == 'n' || c == 'N') val = FALSE; else if (c == 'y' || c == 'Y') val = TRUE; else val = (int) simple_strtoul(pc, NULL, 0); if (!strncmp(cur, "lc:", 3)) linked_comm = val; else if (!strncmp(cur, "of:", 3)) have_old_firmware = val; else if (!strncmp(cur, "tm:", 3)) tag_mode = val; else if (!strncmp(cur, "tc:", 3)) tag_mode = val; else if (!strncmp(cur, "mq:", 3)) max_queue_depth = val; else if (!strncmp(cur, "ls:", 3)) link_statistics = val; else if (!strncmp(cur, "et:", 3)) ext_tran = val; if ((cur = strchr(cur, ','))) ++cur; } return; } static int option_setup(char *str) { int ints[MAX_INT_PARAM]; char *cur = str; int i = 1; while (cur && isdigit(*cur) && i <= MAX_INT_PARAM) { ints[i++] = simple_strtoul(cur, NULL, 0); if ((cur = strchr(cur, ',')) != NULL) cur++; } ints[0] = i - 1; internal_setup(cur, ints); return 1; } static int u14_34f_detect(struct scsi_host_template *tpnt) { unsigned int j = 0, k; tpnt->proc_name = "u14-34f"; if(strlen(boot_options)) option_setup(boot_options); #if defined(MODULE) /* io_port could have been modified when loading as a module */ if(io_port[0] != SKIP) { setup_done = TRUE; io_port[MAX_INT_PARAM] = 0; } #endif for (k = 0; k < MAX_BOARDS + 1; k++) sh[k] = NULL; for (k = 0; io_port[k]; k++) { if (io_port[k] == SKIP) continue; if (j < MAX_BOARDS && port_detect(io_port[k], j, tpnt)) j++; } num_boards = j; return j; } static void map_dma(unsigned int i, unsigned int j) { unsigned int data_len = 0; unsigned int k, count, pci_dir; struct scatterlist *sgpnt; struct mscp *cpp; struct scsi_cmnd *SCpnt; cpp = &HD(j)->cp[i]; SCpnt = cpp->SCpnt; pci_dir = SCpnt->sc_data_direction; if (SCpnt->sense_buffer) cpp->sense_addr = H2DEV(pci_map_single(HD(j)->pdev, SCpnt->sense_buffer, sizeof SCpnt->sense_buffer, PCI_DMA_FROMDEVICE)); cpp->sense_len = sizeof SCpnt->sense_buffer; if (!SCpnt->use_sg) { /* If we get here with PCI_DMA_NONE, pci_map_single triggers a BUG() */ if (!SCpnt->request_bufflen) pci_dir = PCI_DMA_BIDIRECTIONAL; if (SCpnt->request_buffer) cpp->data_address = H2DEV(pci_map_single(HD(j)->pdev, SCpnt->request_buffer, SCpnt->request_bufflen, pci_dir)); cpp->data_len = H2DEV(SCpnt->request_bufflen); return; } sgpnt = (struct scatterlist *) SCpnt->request_buffer; count = pci_map_sg(HD(j)->pdev, sgpnt, SCpnt->use_sg, pci_dir); for (k = 0; k < count; k++) { cpp->sglist[k].address = H2DEV(sg_dma_address(&sgpnt[k])); cpp->sglist[k].num_bytes = H2DEV(sg_dma_len(&sgpnt[k])); data_len += sgpnt[k].length; } cpp->sg = TRUE; cpp->use_sg = SCpnt->use_sg; cpp->data_address = H2DEV(pci_map_single(HD(j)->pdev, cpp->sglist, SCpnt->use_sg * sizeof(struct sg_list), pci_dir)); cpp->data_len = H2DEV(data_len); } static void unmap_dma(unsigned int i, unsigned int j) { unsigned int pci_dir; struct mscp *cpp; struct scsi_cmnd *SCpnt; cpp = &HD(j)->cp[i]; SCpnt = cpp->SCpnt; pci_dir = SCpnt->sc_data_direction; if (DEV2H(cpp->sense_addr)) pci_unmap_single(HD(j)->pdev, DEV2H(cpp->sense_addr), DEV2H(cpp->sense_len), PCI_DMA_FROMDEVICE); if (SCpnt->use_sg) pci_unmap_sg(HD(j)->pdev, SCpnt->request_buffer, SCpnt->use_sg, pci_dir); if (!DEV2H(cpp->data_len)) pci_dir = PCI_DMA_BIDIRECTIONAL; if (DEV2H(cpp->data_address)) pci_unmap_single(HD(j)->pdev, DEV2H(cpp->data_address), DEV2H(cpp->data_len), pci_dir); } static void sync_dma(unsigned int i, unsigned int j) { unsigned int pci_dir; struct mscp *cpp; struct scsi_cmnd *SCpnt; cpp = &HD(j)->cp[i]; SCpnt = cpp->SCpnt; pci_dir = SCpnt->sc_data_direction; if (DEV2H(cpp->sense_addr)) pci_dma_sync_single_for_cpu(HD(j)->pdev, DEV2H(cpp->sense_addr), DEV2H(cpp->sense_len), PCI_DMA_FROMDEVICE); if (SCpnt->use_sg) pci_dma_sync_sg_for_cpu(HD(j)->pdev, SCpnt->request_buffer, SCpnt->use_sg, pci_dir); if (!DEV2H(cpp->data_len)) pci_dir = PCI_DMA_BIDIRECTIONAL; if (DEV2H(cpp->data_address)) pci_dma_sync_single_for_cpu(HD(j)->pdev, DEV2H(cpp->data_address), DEV2H(cpp->data_len), pci_dir); } static void scsi_to_dev_dir(unsigned int i, unsigned int j) { unsigned int k; static const unsigned char data_out_cmds[] = { 0x0a, 0x2a, 0x15, 0x55, 0x04, 0x07, 0x18, 0x1d, 0x24, 0x2e, 0x30, 0x31, 0x32, 0x38, 0x39, 0x3a, 0x3b, 0x3d, 0x3f, 0x40, 0x41, 0x4c, 0xaa, 0xae, 0xb0, 0xb1, 0xb2, 0xb6, 0xea, 0x1b, 0x5d }; static const unsigned char data_none_cmds[] = { 0x01, 0x0b, 0x10, 0x11, 0x13, 0x16, 0x17, 0x19, 0x2b, 0x1e, 0x2c, 0xac, 0x2f, 0xaf, 0x33, 0xb3, 0x35, 0x36, 0x45, 0x47, 0x48, 0x49, 0xa9, 0x4b, 0xa5, 0xa6, 0xb5, 0x00 }; struct mscp *cpp; struct scsi_cmnd *SCpnt; cpp = &HD(j)->cp[i]; SCpnt = cpp->SCpnt; if (SCpnt->sc_data_direction == DMA_FROM_DEVICE) { cpp->xdir = DTD_IN; return; } else if (SCpnt->sc_data_direction == DMA_FROM_DEVICE) { cpp->xdir = DTD_OUT; return; } else if (SCpnt->sc_data_direction == DMA_NONE) { cpp->xdir = DTD_NONE; return; } if (SCpnt->sc_data_direction != DMA_BIDIRECTIONAL) panic("%s: qcomm, invalid SCpnt->sc_data_direction.\n", BN(j)); cpp->xdir = DTD_IN; for (k = 0; k < ARRAY_SIZE(data_out_cmds); k++) if (SCpnt->cmnd[0] == data_out_cmds[k]) { cpp->xdir = DTD_OUT; break; } if (cpp->xdir == DTD_IN) for (k = 0; k < ARRAY_SIZE(data_none_cmds); k++) if (SCpnt->cmnd[0] == data_none_cmds[k]) { cpp->xdir = DTD_NONE; break; } } static int u14_34f_queuecommand(struct scsi_cmnd *SCpnt, void (*done)(struct scsi_cmnd *)) { unsigned int i, j, k; struct mscp *cpp; /* j is the board number */ j = ((struct hostdata *) SCpnt->device->host->hostdata)->board_number; if (SCpnt->host_scribble) panic("%s: qcomm, pid %ld, SCpnt %p already active.\n", BN(j), SCpnt->pid, SCpnt); /* i is the mailbox number, look for the first free mailbox starting from last_cp_used */ i = HD(j)->last_cp_used + 1; for (k = 0; k < sh[j]->can_queue; k++, i++) { if (i >= sh[j]->can_queue) i = 0; if (HD(j)->cp_stat[i] == FREE) { HD(j)->last_cp_used = i; break; } } if (k == sh[j]->can_queue) { printk("%s: qcomm, no free mailbox.\n", BN(j)); return 1; } /* Set pointer to control packet structure */ cpp = &HD(j)->cp[i]; memset(cpp, 0, sizeof(struct mscp) - CP_TAIL_SIZE); SCpnt->scsi_done = done; cpp->cpp_index = i; SCpnt->host_scribble = (unsigned char *) &cpp->cpp_index; if (do_trace) printk("%s: qcomm, mbox %d, target %d.%d:%d, pid %ld.\n", BN(j), i, SCpnt->device->channel, SCpnt->device->id, SCpnt->device->lun, SCpnt->pid); cpp->opcode = OP_SCSI; cpp->channel = SCpnt->device->channel; cpp->target = SCpnt->device->id; cpp->lun = SCpnt->device->lun; cpp->SCpnt = SCpnt; cpp->cdb_len = SCpnt->cmd_len; memcpy(cpp->cdb, SCpnt->cmnd, SCpnt->cmd_len); /* Use data transfer direction SCpnt->sc_data_direction */ scsi_to_dev_dir(i, j); /* Map DMA buffers and SG list */ map_dma(i, j); if (linked_comm && SCpnt->device->queue_depth > 2 && TLDEV(SCpnt->device->type)) { HD(j)->cp_stat[i] = READY; flush_dev(SCpnt->device, SCpnt->request->sector, j, FALSE); return 0; } if (wait_on_busy(sh[j]->io_port, MAXLOOP)) { unmap_dma(i, j); SCpnt->host_scribble = NULL; scmd_printk(KERN_INFO, SCpnt, "qcomm, pid %ld, adapter busy.\n", SCpnt->pid); return 1; } /* Store pointer in OGM address bytes */ outl(H2DEV(cpp->cp_dma_addr), sh[j]->io_port + REG_OGM); /* Issue OGM interrupt */ outb(CMD_OGM_INTR, sh[j]->io_port + REG_LCL_INTR); HD(j)->cp_stat[i] = IN_USE; return 0; } static int u14_34f_eh_abort(struct scsi_cmnd *SCarg) { unsigned int i, j; j = ((struct hostdata *) SCarg->device->host->hostdata)->board_number; if (SCarg->host_scribble == NULL) { scmd_printk(KERN_INFO, SCarg, "abort, pid %ld inactive.\n", SCarg->pid); return SUCCESS; } i = *(unsigned int *)SCarg->host_scribble; scmd_printk(KERN_INFO, SCarg, "abort, mbox %d, pid %ld.\n", i, SCarg->pid); if (i >= sh[j]->can_queue) panic("%s: abort, invalid SCarg->host_scribble.\n", BN(j)); if (wait_on_busy(sh[j]->io_port, MAXLOOP)) { printk("%s: abort, timeout error.\n", BN(j)); return FAILED; } if (HD(j)->cp_stat[i] == FREE) { printk("%s: abort, mbox %d is free.\n", BN(j), i); return SUCCESS; } if (HD(j)->cp_stat[i] == IN_USE) { printk("%s: abort, mbox %d is in use.\n", BN(j), i); if (SCarg != HD(j)->cp[i].SCpnt) panic("%s: abort, mbox %d, SCarg %p, cp SCpnt %p.\n", BN(j), i, SCarg, HD(j)->cp[i].SCpnt); if (inb(sh[j]->io_port + REG_SYS_INTR) & IRQ_ASSERTED) printk("%s: abort, mbox %d, interrupt pending.\n", BN(j), i); return FAILED; } if (HD(j)->cp_stat[i] == IN_RESET) { printk("%s: abort, mbox %d is in reset.\n", BN(j), i); return FAILED; } if (HD(j)->cp_stat[i] == LOCKED) { printk("%s: abort, mbox %d is locked.\n", BN(j), i); return SUCCESS; } if (HD(j)->cp_stat[i] == READY || HD(j)->cp_stat[i] == ABORTING) { unmap_dma(i, j); SCarg->result = DID_ABORT << 16; SCarg->host_scribble = NULL; HD(j)->cp_stat[i] = FREE; printk("%s, abort, mbox %d ready, DID_ABORT, pid %ld done.\n", BN(j), i, SCarg->pid); SCarg->scsi_done(SCarg); return SUCCESS; } panic("%s: abort, mbox %d, invalid cp_stat.\n", BN(j), i); } static int u14_34f_eh_host_reset(struct scsi_cmnd *SCarg) { unsigned int i, j, time, k, c, limit = 0; int arg_done = FALSE; struct scsi_cmnd *SCpnt; j = ((struct hostdata *) SCarg->device->host->hostdata)->board_number; scmd_printk(KERN_INFO, SCarg, "reset, enter, pid %ld.\n", SCarg->pid); spin_lock_irq(sh[j]->host_lock); if (SCarg->host_scribble == NULL) printk("%s: reset, pid %ld inactive.\n", BN(j), SCarg->pid); if (HD(j)->in_reset) { printk("%s: reset, exit, already in reset.\n", BN(j)); spin_unlock_irq(sh[j]->host_lock); return FAILED; } if (wait_on_busy(sh[j]->io_port, MAXLOOP)) { printk("%s: reset, exit, timeout error.\n", BN(j)); spin_unlock_irq(sh[j]->host_lock); return FAILED; } HD(j)->retries = 0; for (c = 0; c <= sh[j]->max_channel; c++) for (k = 0; k < sh[j]->max_id; k++) { HD(j)->target_redo[k][c] = TRUE; HD(j)->target_to[k][c] = 0; } for (i = 0; i < sh[j]->can_queue; i++) { if (HD(j)->cp_stat[i] == FREE) continue; if (HD(j)->cp_stat[i] == LOCKED) { HD(j)->cp_stat[i] = FREE; printk("%s: reset, locked mbox %d forced free.\n", BN(j), i); continue; } if (!(SCpnt = HD(j)->cp[i].SCpnt)) panic("%s: reset, mbox %d, SCpnt == NULL.\n", BN(j), i); if (HD(j)->cp_stat[i] == READY || HD(j)->cp_stat[i] == ABORTING) { HD(j)->cp_stat[i] = ABORTING; printk("%s: reset, mbox %d aborting, pid %ld.\n", BN(j), i, SCpnt->pid); } else { HD(j)->cp_stat[i] = IN_RESET; printk("%s: reset, mbox %d in reset, pid %ld.\n", BN(j), i, SCpnt->pid); } if (SCpnt->host_scribble == NULL) panic("%s: reset, mbox %d, garbled SCpnt.\n", BN(j), i); if (*(unsigned int *)SCpnt->host_scribble != i) panic("%s: reset, mbox %d, index mismatch.\n", BN(j), i); if (SCpnt->scsi_done == NULL) panic("%s: reset, mbox %d, SCpnt->scsi_done == NULL.\n", BN(j), i); if (SCpnt == SCarg) arg_done = TRUE; } if (wait_on_busy(sh[j]->io_port, MAXLOOP)) { printk("%s: reset, cannot reset, timeout error.\n", BN(j)); spin_unlock_irq(sh[j]->host_lock); return FAILED; } outb(CMD_RESET, sh[j]->io_port + REG_LCL_INTR); printk("%s: reset, board reset done, enabling interrupts.\n", BN(j)); #if defined(DEBUG_RESET) do_trace = TRUE; #endif HD(j)->in_reset = TRUE; spin_unlock_irq(sh[j]->host_lock); time = jiffies; while ((jiffies - time) < (10 * HZ) && limit++ < 200000) udelay(100L); spin_lock_irq(sh[j]->host_lock); printk("%s: reset, interrupts disabled, loops %d.\n", BN(j), limit); for (i = 0; i < sh[j]->can_queue; i++) { if (HD(j)->cp_stat[i] == IN_RESET) { SCpnt = HD(j)->cp[i].SCpnt; unmap_dma(i, j); SCpnt->result = DID_RESET << 16; SCpnt->host_scribble = NULL; /* This mailbox is still waiting for its interrupt */ HD(j)->cp_stat[i] = LOCKED; printk("%s, reset, mbox %d locked, DID_RESET, pid %ld done.\n", BN(j), i, SCpnt->pid); } else if (HD(j)->cp_stat[i] == ABORTING) { SCpnt = HD(j)->cp[i].SCpnt; unmap_dma(i, j); SCpnt->result = DID_RESET << 16; SCpnt->host_scribble = NULL; /* This mailbox was never queued to the adapter */ HD(j)->cp_stat[i] = FREE; printk("%s, reset, mbox %d aborting, DID_RESET, pid %ld done.\n", BN(j), i, SCpnt->pid); } else /* Any other mailbox has already been set free by interrupt */ continue; SCpnt->scsi_done(SCpnt); } HD(j)->in_reset = FALSE; do_trace = FALSE; if (arg_done) printk("%s: reset, exit, pid %ld done.\n", BN(j), SCarg->pid); else printk("%s: reset, exit.\n", BN(j)); spin_unlock_irq(sh[j]->host_lock); return SUCCESS; } static int u14_34f_bios_param(struct scsi_device *disk, struct block_device *bdev, sector_t capacity, int *dkinfo) { unsigned int j = 0; unsigned int size = capacity; dkinfo[0] = HD(j)->heads; dkinfo[1] = HD(j)->sectors; dkinfo[2] = size / (HD(j)->heads * HD(j)->sectors); if (ext_tran && (scsicam_bios_param(bdev, capacity, dkinfo) < 0)) { dkinfo[0] = 255; dkinfo[1] = 63; dkinfo[2] = size / (dkinfo[0] * dkinfo[1]); } #if defined (DEBUG_GEOMETRY) printk ("%s: bios_param, head=%d, sec=%d, cyl=%d.\n", driver_name, dkinfo[0], dkinfo[1], dkinfo[2]); #endif return FALSE; } static void sort(unsigned long sk[], unsigned int da[], unsigned int n, unsigned int rev) { unsigned int i, j, k, y; unsigned long x; for (i = 0; i < n - 1; i++) { k = i; for (j = k + 1; j < n; j++) if (rev) { if (sk[j] > sk[k]) k = j; } else { if (sk[j] < sk[k]) k = j; } if (k != i) { x = sk[k]; sk[k] = sk[i]; sk[i] = x; y = da[k]; da[k] = da[i]; da[i] = y; } } return; } static int reorder(unsigned int j, unsigned long cursec, unsigned int ihdlr, unsigned int il[], unsigned int n_ready) { struct scsi_cmnd *SCpnt; struct mscp *cpp; unsigned int k, n; unsigned int rev = FALSE, s = TRUE, r = TRUE; unsigned int input_only = TRUE, overlap = FALSE; unsigned long sl[n_ready], pl[n_ready], ll[n_ready]; unsigned long maxsec = 0, minsec = ULONG_MAX, seek = 0, iseek = 0; unsigned long ioseek = 0; static unsigned int flushcount = 0, batchcount = 0, sortcount = 0; static unsigned int readycount = 0, ovlcount = 0, inputcount = 0; static unsigned int readysorted = 0, revcount = 0; static unsigned long seeksorted = 0, seeknosort = 0; if (link_statistics && !(++flushcount % link_statistics)) printk("fc %d bc %d ic %d oc %d rc %d rs %d sc %d re %d"\ " av %ldK as %ldK.\n", flushcount, batchcount, inputcount, ovlcount, readycount, readysorted, sortcount, revcount, seeknosort / (readycount + 1), seeksorted / (readycount + 1)); if (n_ready <= 1) return FALSE; for (n = 0; n < n_ready; n++) { k = il[n]; cpp = &HD(j)->cp[k]; SCpnt = cpp->SCpnt; if (!(cpp->xdir == DTD_IN)) input_only = FALSE; if (SCpnt->request->sector < minsec) minsec = SCpnt->request->sector; if (SCpnt->request->sector > maxsec) maxsec = SCpnt->request->sector; sl[n] = SCpnt->request->sector; ioseek += SCpnt->request->nr_sectors; if (!n) continue; if (sl[n] < sl[n - 1]) s = FALSE; if (sl[n] > sl[n - 1]) r = FALSE; if (link_statistics) { if (sl[n] > sl[n - 1]) seek += sl[n] - sl[n - 1]; else seek += sl[n - 1] - sl[n]; } } if (link_statistics) { if (cursec > sl[0]) seek += cursec - sl[0]; else seek += sl[0] - cursec; } if (cursec > ((maxsec + minsec) / 2)) rev = TRUE; if (ioseek > ((maxsec - minsec) / 2)) rev = FALSE; if (!((rev && r) || (!rev && s))) sort(sl, il, n_ready, rev); if (!input_only) for (n = 0; n < n_ready; n++) { k = il[n]; cpp = &HD(j)->cp[k]; SCpnt = cpp->SCpnt; ll[n] = SCpnt->request->nr_sectors; pl[n] = SCpnt->pid; if (!n) continue; if ((sl[n] == sl[n - 1]) || (!rev && ((sl[n - 1] + ll[n - 1]) > sl[n])) || (rev && ((sl[n] + ll[n]) > sl[n - 1]))) overlap = TRUE; } if (overlap) sort(pl, il, n_ready, FALSE); if (link_statistics) { if (cursec > sl[0]) iseek = cursec - sl[0]; else iseek = sl[0] - cursec; batchcount++; readycount += n_ready; seeknosort += seek / 1024; if (input_only) inputcount++; if (overlap) { ovlcount++; seeksorted += iseek / 1024; } else seeksorted += (iseek + maxsec - minsec) / 1024; if (rev && !r) { revcount++; readysorted += n_ready; } if (!rev && !s) { sortcount++; readysorted += n_ready; } } #if defined(DEBUG_LINKED_COMMANDS) if (link_statistics && (overlap || !(flushcount % link_statistics))) for (n = 0; n < n_ready; n++) { k = il[n]; cpp = &HD(j)->cp[k]; SCpnt = cpp->SCpnt; printk("%s %d.%d:%d pid %ld mb %d fc %d nr %d sec %ld ns %ld"\ " cur %ld s:%c r:%c rev:%c in:%c ov:%c xd %d.\n", (ihdlr ? "ihdlr" : "qcomm"), SCpnt->channel, SCpnt->target, SCpnt->lun, SCpnt->pid, k, flushcount, n_ready, SCpnt->request->sector, SCpnt->request->nr_sectors, cursec, YESNO(s), YESNO(r), YESNO(rev), YESNO(input_only), YESNO(overlap), cpp->xdir); } #endif return overlap; } static void flush_dev(struct scsi_device *dev, unsigned long cursec, unsigned int j, unsigned int ihdlr) { struct scsi_cmnd *SCpnt; struct mscp *cpp; unsigned int k, n, n_ready = 0, il[MAX_MAILBOXES]; for (k = 0; k < sh[j]->can_queue; k++) { if (HD(j)->cp_stat[k] != READY && HD(j)->cp_stat[k] != IN_USE) continue; cpp = &HD(j)->cp[k]; SCpnt = cpp->SCpnt; if (SCpnt->device != dev) continue; if (HD(j)->cp_stat[k] == IN_USE) return; il[n_ready++] = k; } if (reorder(j, cursec, ihdlr, il, n_ready)) n_ready = 1; for (n = 0; n < n_ready; n++) { k = il[n]; cpp = &HD(j)->cp[k]; SCpnt = cpp->SCpnt; if (wait_on_busy(sh[j]->io_port, MAXLOOP)) { scmd_printk(KERN_INFO, SCpnt, "%s, pid %ld, mbox %d, adapter" " busy, will abort.\n", (ihdlr ? "ihdlr" : "qcomm"), SCpnt->pid, k); HD(j)->cp_stat[k] = ABORTING; continue; } outl(H2DEV(cpp->cp_dma_addr), sh[j]->io_port + REG_OGM); outb(CMD_OGM_INTR, sh[j]->io_port + REG_LCL_INTR); HD(j)->cp_stat[k] = IN_USE; } } static irqreturn_t ihdlr(int irq, unsigned int j) { struct scsi_cmnd *SCpnt; unsigned int i, k, c, status, tstatus, reg, ret; struct mscp *spp, *cpp; if (sh[j]->irq != irq) panic("%s: ihdlr, irq %d, sh[j]->irq %d.\n", BN(j), irq, sh[j]->irq); /* Check if this board need to be serviced */ if (!((reg = inb(sh[j]->io_port + REG_SYS_INTR)) & IRQ_ASSERTED)) goto none; HD(j)->iocount++; if (do_trace) printk("%s: ihdlr, enter, irq %d, count %d.\n", BN(j), irq, HD(j)->iocount); /* Check if this board is still busy */ if (wait_on_busy(sh[j]->io_port, 20 * MAXLOOP)) { outb(CMD_CLR_INTR, sh[j]->io_port + REG_SYS_INTR); printk("%s: ihdlr, busy timeout error, irq %d, reg 0x%x, count %d.\n", BN(j), irq, reg, HD(j)->iocount); goto none; } ret = inl(sh[j]->io_port + REG_ICM); /* Clear interrupt pending flag */ outb(CMD_CLR_INTR, sh[j]->io_port + REG_SYS_INTR); /* Find the mailbox to be serviced on this board */ for (i = 0; i < sh[j]->can_queue; i++) if (H2DEV(HD(j)->cp[i].cp_dma_addr) == ret) break; if (i >= sh[j]->can_queue) panic("%s: ihdlr, invalid mscp bus address %p, cp0 %p.\n", BN(j), (void *)ret, (void *)H2DEV(HD(j)->cp[0].cp_dma_addr)); cpp = &(HD(j)->cp[i]); spp = cpp; #if defined(DEBUG_GENERATE_ABORTS) if ((HD(j)->iocount > 500) && ((HD(j)->iocount % 500) < 3)) goto handled; #endif if (HD(j)->cp_stat[i] == IGNORE) { HD(j)->cp_stat[i] = FREE; goto handled; } else if (HD(j)->cp_stat[i] == LOCKED) { HD(j)->cp_stat[i] = FREE; printk("%s: ihdlr, mbox %d unlocked, count %d.\n", BN(j), i, HD(j)->iocount); goto handled; } else if (HD(j)->cp_stat[i] == FREE) { printk("%s: ihdlr, mbox %d is free, count %d.\n", BN(j), i, HD(j)->iocount); goto handled; } else if (HD(j)->cp_stat[i] == IN_RESET) printk("%s: ihdlr, mbox %d is in reset.\n", BN(j), i); else if (HD(j)->cp_stat[i] != IN_USE) panic("%s: ihdlr, mbox %d, invalid cp_stat: %d.\n", BN(j), i, HD(j)->cp_stat[i]); HD(j)->cp_stat[i] = FREE; SCpnt = cpp->SCpnt; if (SCpnt == NULL) panic("%s: ihdlr, mbox %d, SCpnt == NULL.\n", BN(j), i); if (SCpnt->host_scribble == NULL) panic("%s: ihdlr, mbox %d, pid %ld, SCpnt %p garbled.\n", BN(j), i, SCpnt->pid, SCpnt); if (*(unsigned int *)SCpnt->host_scribble != i) panic("%s: ihdlr, mbox %d, pid %ld, index mismatch %d.\n", BN(j), i, SCpnt->pid, *(unsigned int *)SCpnt->host_scribble); sync_dma(i, j); if (linked_comm && SCpnt->device->queue_depth > 2 && TLDEV(SCpnt->device->type)) flush_dev(SCpnt->device, SCpnt->request->sector, j, TRUE); tstatus = status_byte(spp->target_status); #if defined(DEBUG_GENERATE_ERRORS) if ((HD(j)->iocount > 500) && ((HD(j)->iocount % 200) < 2)) spp->adapter_status = 0x01; #endif switch (spp->adapter_status) { case ASOK: /* status OK */ /* Forces a reset if a disk drive keeps returning BUSY */ if (tstatus == BUSY && SCpnt->device->type != TYPE_TAPE) status = DID_ERROR << 16; /* If there was a bus reset, redo operation on each target */ else if (tstatus != GOOD && SCpnt->device->type == TYPE_DISK && HD(j)->target_redo[scmd_id(SCpnt)][scmd_channel(SCpnt)]) status = DID_BUS_BUSY << 16; /* Works around a flaw in scsi.c */ else if (tstatus == CHECK_CONDITION && SCpnt->device->type == TYPE_DISK && (SCpnt->sense_buffer[2] & 0xf) == RECOVERED_ERROR) status = DID_BUS_BUSY << 16; else status = DID_OK << 16; if (tstatus == GOOD) HD(j)->target_redo[scmd_id(SCpnt)][scmd_channel(SCpnt)] = FALSE; if (spp->target_status && SCpnt->device->type == TYPE_DISK && (!(tstatus == CHECK_CONDITION && HD(j)->iocount <= 1000 && (SCpnt->sense_buffer[2] & 0xf) == NOT_READY))) scmd_printk(KERN_INFO, SCpnt, "ihdlr, pid %ld, target_status 0x%x, sense key 0x%x.\n", SCpnt->pid, spp->target_status, SCpnt->sense_buffer[2]); HD(j)->target_to[scmd_id(SCpnt)][scmd_channel(SCpnt)] = 0; if (HD(j)->last_retried_pid == SCpnt->pid) HD(j)->retries = 0; break; case ASST: /* Selection Time Out */ if (HD(j)->target_to[scmd_id(SCpnt)][scmd_channel(SCpnt)] > 1) status = DID_ERROR << 16; else { status = DID_TIME_OUT << 16; HD(j)->target_to[scmd_id(SCpnt)][scmd_channel(SCpnt)]++; } break; /* Perform a limited number of internal retries */ case 0x93: /* Unexpected bus free */ case 0x94: /* Target bus phase sequence failure */ case 0x96: /* Illegal SCSI command */ case 0xa3: /* SCSI bus reset error */ for (c = 0; c <= sh[j]->max_channel; c++) for (k = 0; k < sh[j]->max_id; k++) HD(j)->target_redo[k][c] = TRUE; case 0x92: /* Data over/under-run */ if (SCpnt->device->type != TYPE_TAPE && HD(j)->retries < MAX_INTERNAL_RETRIES) { #if defined(DID_SOFT_ERROR) status = DID_SOFT_ERROR << 16; #else status = DID_BUS_BUSY << 16; #endif HD(j)->retries++; HD(j)->last_retried_pid = SCpnt->pid; } else status = DID_ERROR << 16; break; case 0x01: /* Invalid command */ case 0x02: /* Invalid parameters */ case 0x03: /* Invalid data list */ case 0x84: /* SCSI bus abort error */ case 0x9b: /* Auto request sense error */ case 0x9f: /* Unexpected command complete message error */ case 0xff: /* Invalid parameter in the S/G list */ default: status = DID_ERROR << 16; break; } SCpnt->result = status | spp->target_status; #if defined(DEBUG_INTERRUPT) if (SCpnt->result || do_trace) #else if ((spp->adapter_status != ASOK && HD(j)->iocount > 1000) || (spp->adapter_status != ASOK && spp->adapter_status != ASST && HD(j)->iocount <= 1000) || do_trace || msg_byte(spp->target_status)) #endif scmd_printk(KERN_INFO, SCpnt, "ihdlr, mbox %2d, err 0x%x:%x,"\ " pid %ld, reg 0x%x, count %d.\n", i, spp->adapter_status, spp->target_status, SCpnt->pid, reg, HD(j)->iocount); unmap_dma(i, j); /* Set the command state to inactive */ SCpnt->host_scribble = NULL; SCpnt->scsi_done(SCpnt); if (do_trace) printk("%s: ihdlr, exit, irq %d, count %d.\n", BN(j), irq, HD(j)->iocount); handled: return IRQ_HANDLED; none: return IRQ_NONE; } static irqreturn_t do_interrupt_handler(int irq, void *shap, struct pt_regs *regs) { unsigned int j; unsigned long spin_flags; irqreturn_t ret; /* Check if the interrupt must be processed by this handler */ if ((j = (unsigned int)((char *)shap - sha)) >= num_boards) return IRQ_NONE; spin_lock_irqsave(sh[j]->host_lock, spin_flags); ret = ihdlr(irq, j); spin_unlock_irqrestore(sh[j]->host_lock, spin_flags); return ret; } static int u14_34f_release(struct Scsi_Host *shpnt) { unsigned int i, j; for (j = 0; sh[j] != NULL && sh[j] != shpnt; j++); if (sh[j] == NULL) panic("%s: release, invalid Scsi_Host pointer.\n", driver_name); for (i = 0; i < sh[j]->can_queue; i++) kfree((&HD(j)->cp[i])->sglist); for (i = 0; i < sh[j]->can_queue; i++) pci_unmap_single(HD(j)->pdev, HD(j)->cp[i].cp_dma_addr, sizeof(struct mscp), PCI_DMA_BIDIRECTIONAL); free_irq(sh[j]->irq, &sha[j]); if (sh[j]->dma_channel != NO_DMA) free_dma(sh[j]->dma_channel); release_region(sh[j]->io_port, sh[j]->n_io_port); scsi_unregister(sh[j]); return FALSE; } #include "scsi_module.c" #ifndef MODULE __setup("u14-34f=", option_setup); #endif /* end MODULE */