#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/huge_mm.h>
#include <linux/mount.h>
#include <linux/seq_file.h>
#include <linux/highmem.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/mempolicy.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <asm/elf.h>
#include <asm/uaccess.h>
#include <asm/tlbflush.h>
#include "internal.h"
void task_mem(struct seq_file *m, struct mm_struct *mm)
{
unsigned long data, text, lib, swap;
unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
/*
* Note: to minimize their overhead, mm maintains hiwater_vm and
* hiwater_rss only when about to *lower* total_vm or rss. Any
* collector of these hiwater stats must therefore get total_vm
* and rss too, which will usually be the higher. Barriers? not
* worth the effort, such snapshots can always be inconsistent.
*/
hiwater_vm = total_vm = mm->total_vm;
if (hiwater_vm < mm->hiwater_vm)
hiwater_vm = mm->hiwater_vm;
hiwater_rss = total_rss = get_mm_rss(mm);
if (hiwater_rss < mm->hiwater_rss)
hiwater_rss = mm->hiwater_rss;
data = mm->total_vm - mm->shared_vm - mm->stack_vm;
text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
swap = get_mm_counter(mm, MM_SWAPENTS);
seq_printf(m,
"VmPeak:\t%8lu kB\n"
"VmSize:\t%8lu kB\n"
"VmLck:\t%8lu kB\n"
"VmHWM:\t%8lu kB\n"
"VmRSS:\t%8lu kB\n"
"VmData:\t%8lu kB\n"
"VmStk:\t%8lu kB\n"
"VmExe:\t%8lu kB\n"
"VmLib:\t%8lu kB\n"
"VmPTE:\t%8lu kB\n"
"VmSwap:\t%8lu kB\n",
hiwater_vm << (PAGE_SHIFT-10),
(total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
mm->locked_vm << (PAGE_SHIFT-10),
hiwater_rss << (PAGE_SHIFT-10),
total_rss << (PAGE_SHIFT-10),
data << (PAGE_SHIFT-10),
mm->stack_vm << (PAGE_SHIFT-10), text, lib,
(PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
swap << (PAGE_SHIFT-10));
}
unsigned long task_vsize(struct mm_struct *mm)
{
return PAGE_SIZE * mm->total_vm;
}
unsigned long task_statm(struct mm_struct *mm,
unsigned long *shared, unsigned long *text,
unsigned long *data, unsigned long *resident)
{
*shared = get_mm_counter(mm, MM_FILEPAGES);
*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
>> PAGE_SHIFT;
*data = mm->total_vm - mm->shared_vm;
*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
return mm->total_vm;
}
static void pad_len_spaces(struct seq_file *m, int len)
{
len = 25 + sizeof(void*) * 6 - len;
if (len < 1)
len = 1;
seq_printf(m, "%*c", len, ' ');
}
static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
{
if (vma && vma != priv->tail_vma) {
struct mm_struct *mm = vma->vm_mm;
up_read(&mm->mmap_sem);
mmput(mm);
}
}
static void *m_start(struct seq_file *m, loff_t *pos)
{
struct proc_maps_private *priv = m->private;
unsigned long last_addr = m->version;
struct mm_struct *mm;
struct vm_area_struct *vma, *tail_vma = NULL;
loff_t l = *pos;
/* Clear the per syscall fields in priv */
priv->task = NULL;
priv->tail_vma = NULL;
/*
* We remember last_addr rather than next_addr to hit with
* mmap_cache most of the time. We have zero last_addr at
* the beginning and also after lseek. We will have -1 last_addr
* after the end of the vmas.
*/
if (last_addr == -1UL)
return NULL;
priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
if (!priv->task)
return ERR_PTR(-ESRCH);
mm = mm_for_maps(priv->task);
if (!mm || IS_ERR(mm))
return mm;
down_read(&mm->mmap_sem);
tail_vma = get_gate_vma(priv->task->mm);
priv->tail_vma = tail_vma;
/* Start with last addr hint */
vma = find_vma(mm, last_addr);
if (last_addr && vma) {
vma = vma->vm_next;
goto out;
}
/*
* Check the vma index is within the range and do
* sequential scan until m_index.
*/
vma = NULL;
if ((unsigned long)l < mm->map_count) {
vma = mm->mmap;
while (l-- && vma)
vma = vma->vm_next;
goto out;
}
if (l != mm->map_count)
tail_vma = NULL; /* After gate vma */
out:
if (vma)
return vma;
/* End of vmas has been reached */
m->version = (tail_vma != NULL)? 0: -1UL;
up_read(&mm->mmap_sem);
mmput(mm);
return tail_vma;
}
static void *m_next(struct seq_file *m, void *v, loff_t *pos)
{
struct proc_maps_private *priv = m->private;
struct vm_area_struct *vma = v;
struct vm_area_struct *tail_vma = priv->tail_vma;
(*pos)++;
if (vma && (vma != tail_vma) && vma->vm_next)
return vma->vm_next;
vma_stop(priv, vma);
return (vma != tail_vma)? tail_vma: NULL;
}
static void m_stop(struct seq_file *m, void *v)
{
struct proc_maps_private *priv = m->private;
struct vm_area_struct *vma = v;
if (!IS_ERR(vma))
vma_stop(priv, vma);
if (priv->task)
put_task_struct(priv->task);
}
static int do_maps_open(struct inode *inode, struct file *file,
const struct seq_operations *ops)
{
struct proc_maps_private *priv;
int ret = -ENOMEM;
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (priv) {
priv->pid = proc_pid(inode);
ret = seq_open(file, ops);
if (!ret) {
struct seq_file *m = file->private_data;
m->private = priv;
} else {
kfree(priv);
}
}
return ret;
}
static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
{
struct mm_struct *mm = vma->vm_mm;
struct file *file = vma->vm_file;
vm_flags_t flags = vma->vm_flags;
unsigned long ino = 0;
unsigned long long pgoff = 0;
unsigned long start, end;
dev_t dev = 0;
int len;
if (file) {
struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
dev = inode->i_sb->s_dev;
ino = inode->i_ino;
pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
}
/* We don't show the stack guard page in /proc/maps */
start = vma->vm_start;
if (stack_guard_page_start(vma, start))
start += PAGE_SIZE;
end = vma->vm_end;
if (stack_guard_page_end(vma, end))
end -= PAGE_SIZE;
seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
start,
end,
flags & VM_READ ? 'r' : '-',
flags & VM_WRITE ? 'w' : '-',
flags & VM_EXEC ? 'x' : '-',
flags & VM_MAYSHARE ? 's' : 'p',
pgoff,
MAJOR(dev), MINOR(dev), ino, &len);
/*
* Print the dentry name for named mappings, and a
* special [heap] marker for the heap:
*/
if (file) {
pad_len_spaces(m, len);
seq_path(m, &file->f_path, "\n");
} else {
const char *name = arch_vma_name(vma);
if (!name) {
if (mm) {
if (vma->vm_start <= mm->brk &&
vma->vm_end >= mm->start_brk) {
name = "[heap]";
} else if (vma->vm_start <= mm->start_stack &&
vma->vm_end >= mm->start_stack) {
name = "[stack]";
}
} else {
name = "[vdso]";
}
}
if (name) {
pad_len_spaces(m, len);
seq_puts(m, name);
}
}
seq_putc(m, '\n');
}
static int show_map(struct seq_file *m, void *v)
{
struct vm_area_struct *vma = v;
struct proc_maps_private *priv = m->private;
struct task_struct *task = priv->task;
show_map_vma(m, vma);
if (m->count < m->size) /* vma is copied successfully */
m->version = (vma != get_gate_vma(task->mm))
? vma->vm_start : 0;
return 0;
}
static const struct seq_operations proc_pid_maps_op = {
.start = m_start,
.next = m_next,
.stop = m_stop,
.show = show_map
};
static int maps_open(struct inode *inode, struct file *file)
{
return do_maps_open(inode, file, &proc_pid_maps_op);
}
const struct file_operations proc_maps_operations = {
.open = maps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private,
};
/*
* Proportional Set Size(PSS): my share of RSS.
*
* PSS of a process is the count of pages it has in memory, where each
* page is divided by the number of processes sharing it. So if a
* process has 1000 pages all to itself, and 1000 shared with one other
* process, its PSS will be 1500.
*
* To keep (accumulated) division errors low, we adopt a 64bit
* fixed-point pss counter to minimize division errors. So (pss >>
* PSS_SHIFT) would be the real byte count.
*
* A shift of 12 before division means (assuming 4K page size):
* - 1M 3-user-pages add up to 8KB errors;
* - supports mapcount up to 2^24, or 16M;
* - supports PSS up to 2^52 bytes, or 4PB.
*/
#define PSS_SHIFT 12
#ifdef CONFIG_PROC_PAGE_MONITOR
struct mem_size_stats {
struct vm_area_struct *vma;
unsigned long resident;
unsigned long shared_clean;
unsigned long shared_dirty;
unsigned long private_clean;
unsigned long private_dirty;
unsigned long referenced;
unsigned long anonymous;
unsigned long anonymous_thp;
unsigned long swap;
u64 pss;
};
static void smaps_pte_entry(pte_t ptent, unsigned long addr,
unsigned long ptent_size, struct mm_walk *walk)
{
struct mem_size_stats *mss = walk->private;
struct vm_area_struct *vma = mss->vma;
struct page *page;
int mapcount;
if (is_swap_pte(ptent)) {
mss->swap += ptent_size;
return;
}
if (!pte_present(ptent))
return;
page = vm_normal_page(vma, addr, ptent);
if (!page)
return;
if (PageAnon(page))
mss->anonymous += ptent_size;
mss->resident += ptent_size;
/* Accumulate the size in pages that have been accessed. */
if (pte_young(ptent) || PageReferenced(page))
mss->referenced += ptent_size;
mapcount = page_mapcount(page);
if (mapcount >= 2) {
if (pte_dirty(ptent) || PageDirty(page))
mss->shared_dirty += ptent_size;
else
mss->shared_clean += ptent_size;
mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
} else {
if (pte_dirty(ptent) || PageDirty(page))
mss->private_dirty += ptent_size;
else
mss->private_clean += ptent_size;
mss->pss += (ptent_size << PSS_SHIFT);
}
}
static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct mem_size_stats *mss = walk->private;
struct vm_area_struct *vma = mss->vma;
pte_t *pte;
spinlock_t *ptl;
spin_lock(&walk->mm->page_table_lock);
if (pmd_trans_huge(*pmd)) {
if (pmd_trans_splitting(*pmd)) {
spin_unlock(&walk->mm->page_table_lock);
wait_split_huge_page(vma->anon_vma, pmd);
} else {
smaps_pte_entry(*(pte_t *)pmd, addr,
HPAGE_PMD_SIZE, walk);
spin_unlock(&walk->mm->page_table_lock);
mss->anonymous_thp += HPAGE_PMD_SIZE;
return 0;
}
} else {
spin_unlock(&walk->mm->page_table_lock);
}
/*
* The mmap_sem held all the way back in m_start() is what
* keeps khugepaged out of here and from collapsing things
* in here.
*/
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
for (; addr != end; pte++, addr += PAGE_SIZE)
smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
pte_unmap_unlock(pte - 1, ptl);
cond_resched();
return 0;
}
static int show_smap(struct seq_file *m, void *v)
{
struct proc_maps_private *priv = m->private;
struct task_struct *task = priv->task;
struct vm_area_struct *vma = v;
struct mem_size_stats mss;
struct mm_walk smaps_walk = {
.pmd_entry = smaps_pte_range,
.mm = vma->vm_mm,
.private = &mss,
};
memset(&mss, 0, sizeof mss);
mss.vma = vma;
/* mmap_sem is held in m_start */
if (vma->vm_mm && !is_vm_hugetlb_page(vma))
walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
show_map_vma(m, vma);
seq_printf(m,
"Size: %8lu kB\n"
"Rss: %8lu kB\n"
"Pss: %8lu kB\n"
"Shared_Clean: %8lu kB\n"
"Shared_Dirty: %8lu kB\n"
"Private_Clean: %8lu kB\n"
"Private_Dirty: %8lu kB\n"
"Referenced: %8lu kB\n"
"Anonymous: %8lu kB\n"
"AnonHugePages: %8lu kB\n"
"Swap: %8lu kB\n"
"KernelPageSize: %8lu kB\n"
"MMUPageSize: %8lu kB\n"
"Locked: %8lu kB\n",
(vma->vm_end - vma->vm_start) >> 10,
mss.resident >> 10,
(unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
mss.shared_clean >> 10,
mss.shared_dirty >> 10,
mss.private_clean >> 10,
mss.private_dirty >> 10,
mss.referenced >> 10,
mss.anonymous >> 10,
mss.anonymous_thp >> 10,
mss.swap >> 10,
vma_kernel_pagesize(vma) >> 10,
vma_mmu_pagesize(vma) >> 10,
(vma->vm_flags & VM_LOCKED) ?
(unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
if (m->count < m->size) /* vma is copied successfully */
m->version = (vma != get_gate_vma(task->mm))
? vma->vm_start : 0;
return 0;
}
static const struct seq_operations proc_pid_smaps_op = {
.start = m_start,
.next = m_next,
.stop = m_stop,
.show = show_smap
};
static int smaps_open(struct inode *inode, struct file *file)
{
return do_maps_open(inode, file, &proc_pid_smaps_op);
}
const struct file_operations proc_smaps_operations = {
.open = smaps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private,
};
static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
unsigned long end, struct mm_walk *walk)
{
struct vm_area_struct *vma = walk->private;
pte_t *pte, ptent;
spinlock_t *ptl;
struct page *page;
split_huge_page_pmd(walk->mm, pmd);
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
for (; addr != end; pte++, addr += PAGE_SIZE) {
ptent = *pte;
if (!pte_present(ptent))
continue;
page = vm_normal_page(vma, addr, ptent);
if (!page)
continue;
/* Clear accessed and referenced bits. */
ptep_test_and_clear_young(vma, addr, pte);
ClearPageReferenced(page);
}
pte_unmap_unlock(pte - 1, ptl);
cond_resched();
return 0;
}
#define CLEAR_REFS_ALL 1
#define CLEAR_REFS_ANON 2
#define CLEAR_REFS_MAPPED 3
static ssize_t clear_refs_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
struct task_struct *task;
char buffer[PROC_NUMBUF];
struct mm_struct *mm;
struct vm_area_struct *vma;
int type;
int rv;
memset(buffer, 0, sizeof(buffer));
if (count > sizeof(buffer) - 1)
count = sizeof(buffer) - 1;
if (copy_from_user(buffer, buf, count))
return -EFAULT;
rv = kstrtoint(strstrip(buffer), 10, &type);
if (rv < 0)
return rv;
if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
return -EINVAL;
task = get_proc_task(file->f_path.dentry->d_inode);
if (!task)
return -ESRCH;
mm = get_task_mm(task);
if (mm) {
struct mm_walk clear_refs_walk = {
.pmd_entry = clear_refs_pte_range,
.mm = mm,
};
down_read(&mm->mmap_sem);
for (vma = mm->mmap; vma; vma = vma->vm_next) {
clear_refs_walk.private = vma;
if (is_vm_hugetlb_page(vma))
continue;
/*
* Writing 1 to /proc/pid/clear_refs affects all pages.
*
* Writing 2 to /proc/pid/clear_refs only affects
* Anonymous pages.
*
* Writing 3 to /proc/pid/clear_refs only affects file
* mapped pages.
*/
if (type == CLEAR_REFS_ANON && vma->vm_file)
continue;
if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
continue;
walk_page_range(vma->vm_start, vma->vm_end,
&clear_refs_walk);
}
flush_tlb_mm(mm);
up_read(&mm->mmap_sem);
mmput(mm);
}
put_task_struct(task);
return count;
}
const struct file_operations proc_clear_refs_operations = {
.write = clear_refs_write,
.llseek = noop_llseek,
};
struct pagemapread {
int pos, len;
u64 *buffer;
};
#define PM_ENTRY_BYTES sizeof(u64)
#define PM_STATUS_BITS 3
#define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
#define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
#define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
#define PM_PSHIFT_BITS 6
#define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
#define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
#define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
#define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
#define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
#define PM_PRESENT PM_STATUS(4LL)
#define PM_SWAP PM_STATUS(2LL)
#define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
#define PM_END_OF_BUFFER 1
static int add_to_pagemap(unsigned long addr, u64 pfn,
struct pagemapread *pm)
{
pm->buffer[pm->pos++] = pfn;
if (pm->pos >= pm->len)
return PM_END_OF_BUFFER;
return 0;
}
static int pagemap_pte_hole(unsigned long start, unsigned long end,
struct mm_walk *walk)
{
struct pagemapread *pm = walk->private;
unsigned long addr;
int err = 0;
for (addr = start; addr < end; addr += PAGE_SIZE) {
err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
if (err)
break;
}
return err;
}
static u64 swap_pte_to_pagemap_entry(pte_t pte)
{
swp_entry_t e = pte_to_swp_entry(pte);
return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
}
static u64 pte_to_pagemap_entry(pte_t pte)
{
u64 pme = 0;
if (is_swap_pte(pte))
pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
| PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
else if (pte_present(pte))
pme = PM_PFRAME(pte_pfn(pte))
| PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
return pme;
}
static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct vm_area_struct *vma;
struct pagemapread *pm = walk->private;
pte_t *pte;
int err = 0;
split_huge_page_pmd(walk->mm, pmd);
/* find the first VMA at or above 'addr' */
vma = find_vma(walk->mm, addr);
for (; addr != end; addr += PAGE_SIZE) {
u64 pfn = PM_NOT_PRESENT;
/* check to see if we've left 'vma' behind
* and need a new, higher one */
if (vma && (addr >= vma->vm_end))
vma = find_vma(walk->mm, addr);
/* check that 'vma' actually covers this address,
* and that it isn't a huge page vma */
if (vma && (vma->vm_start <= addr) &&
!is_vm_hugetlb_page(vma)) {
pte = pte_offset_map(pmd, addr);
pfn = pte_to_pagemap_entry(*pte);
/* unmap before userspace copy */
pte_unmap(pte);
}
err = add_to_pagemap(addr, pfn, pm);
if (err)
return err;
}
cond_resched();
return err;
}
#ifdef CONFIG_HUGETLB_PAGE
static u64 huge_pte_to_pagemap_entry(pte_t pte, int offset)
{
u64 pme = 0;
if (pte_present(pte))
pme = PM_PFRAME(pte_pfn(pte) + offset)
| PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
return pme;
}
/* This function walks within one hugetlb entry in the single call */
static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct pagemapread *pm = walk->private;
int err = 0;
u64 pfn;
for (; addr != end; addr += PAGE_SIZE) {
int offset = (addr & ~hmask) >> PAGE_SHIFT;
pfn = huge_pte_to_pagemap_entry(*pte, offset);
err = add_to_pagemap(addr, pfn, pm);
if (err)
return err;
}
cond_resched();
return err;
}
#endif /* HUGETLB_PAGE */
/*
* /proc/pid/pagemap - an array mapping virtual pages to pfns
*
* For each page in the address space, this file contains one 64-bit entry
* consisting of the following:
*
* Bits 0-55 page frame number (PFN) if present
* Bits 0-4 swap type if swapped
* Bits 5-55 swap offset if swapped
* Bits 55-60 page shift (page size = 1<<page shift)
* Bit 61 reserved for future use
* Bit 62 page swapped
* Bit 63 page present
*
* If the page is not present but in swap, then the PFN contains an
* encoding of the swap file number and the page's offset into the
* swap. Unmapped pages return a null PFN. This allows determining
* precisely which pages are mapped (or in swap) and comparing mapped
* pages between processes.
*
* Efficient users of this interface will use /proc/pid/maps to
* determine which areas of memory are actually mapped and llseek to
* skip over unmapped regions.
*/
#define PAGEMAP_WALK_SIZE (PMD_SIZE)
#define PAGEMAP_WALK_MASK (PMD_MASK)
static ssize_t pagemap_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
struct mm_struct *mm;
struct pagemapread pm;
int ret = -ESRCH;
struct mm_walk pagemap_walk = {};
unsigned long src;
unsigned long svpfn;
unsigned long start_vaddr;
unsigned long end_vaddr;
int copied = 0;
if (!task)
goto out;
ret = -EINVAL;
/* file position must be aligned */
if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
goto out_task;
ret = 0;
if (!count)
goto out_task;
pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
ret = -ENOMEM;
if (!pm.buffer)
goto out_task;
mm = mm_for_maps(task);
ret = PTR_ERR(mm);
if (!mm || IS_ERR(mm))
goto out_free;
pagemap_walk.pmd_entry = pagemap_pte_range;
pagemap_walk.pte_hole = pagemap_pte_hole;
#ifdef CONFIG_HUGETLB_PAGE
pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
#endif
pagemap_walk.mm = mm;
pagemap_walk.private = ±
src = *ppos;
svpfn = src / PM_ENTRY_BYTES;
start_vaddr = svpfn << PAGE_SHIFT;
end_vaddr = TASK_SIZE_OF(task);
/* watch out for wraparound */
if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
start_vaddr = end_vaddr;
/*
* The odds are that this will stop walking way
* before end_vaddr, because the length of the
* user buffer is tracked in "pm", and the walk
* will stop when we hit the end of the buffer.
*/
ret = 0;
while (count && (start_vaddr < end_vaddr)) {
int len;
unsigned long end;
pm.pos = 0;
end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
/* overflow ? */
if (end < start_vaddr || end > end_vaddr)
end = end_vaddr;
down_read(&mm->mmap_sem);
ret = walk_page_range(start_vaddr, end, &pagemap_walk);
up_read(&mm->mmap_sem);
start_vaddr = end;
len = min(count, PM_ENTRY_BYTES * pm.pos);
if (copy_to_user(buf, pm.buffer, len)) {
ret = -EFAULT;
goto out_mm;
}
copied += len;
buf += len;
count -= len;
}
*ppos += copied;
if (!ret || ret == PM_END_OF_BUFFER)
ret = copied;
out_mm:
mmput(mm);
out_free:
kfree(pm.buffer);
out_task:
put_task_struct(task);
out:
return ret;
}
const struct file_operations proc_pagemap_operations = {
.llseek = mem_lseek, /* borrow this */
.read = pagemap_read,
};
#endif /* CONFIG_PROC_PAGE_MONITOR */
#ifdef CONFIG_NUMA
struct numa_maps {
struct vm_area_struct *vma;
unsigned long pages;
unsigned long anon;
unsigned long active;
unsigned long writeback;
unsigned long mapcount_max;
unsigned long dirty;
unsigned long swapcache;
unsigned long node[MAX_NUMNODES];
};
struct numa_maps_private {
struct proc_maps_private proc_maps;
struct numa_maps md;
};
static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
unsigned long nr_pages)
{
int count = page_mapcount(page);
md->pages += nr_pages;
if (pte_dirty || PageDirty(page))
md->dirty += nr_pages;
if (PageSwapCache(page))
md->swapcache += nr_pages;
if (PageActive(page) || PageUnevictable(page))
md->active += nr_pages;
if (PageWriteback(page))
md->writeback += nr_pages;
if (PageAnon(page))
md->anon += nr_pages;
if (count > md->mapcount_max)
md->mapcount_max = count;
md->node[page_to_nid(page)] += nr_pages;
}
static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
unsigned long addr)
{
struct page *page;
int nid;
if (!pte_present(pte))
return NULL;
page = vm_normal_page(vma, addr, pte);
if (!page)
return NULL;
if (PageReserved(page))
return NULL;
nid = page_to_nid(page);
if (!node_isset(nid, node_states[N_HIGH_MEMORY]))
return NULL;
return page;
}
static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
unsigned long end, struct mm_walk *walk)
{
struct numa_maps *md;
spinlock_t *ptl;
pte_t *orig_pte;
pte_t *pte;
md = walk->private;
spin_lock(&walk->mm->page_table_lock);
if (pmd_trans_huge(*pmd)) {
if (pmd_trans_splitting(*pmd)) {
spin_unlock(&walk->mm->page_table_lock);
wait_split_huge_page(md->vma->anon_vma, pmd);
} else {
pte_t huge_pte = *(pte_t *)pmd;
struct page *page;
page = can_gather_numa_stats(huge_pte, md->vma, addr);
if (page)
gather_stats(page, md, pte_dirty(huge_pte),
HPAGE_PMD_SIZE/PAGE_SIZE);
spin_unlock(&walk->mm->page_table_lock);
return 0;
}
} else {
spin_unlock(&walk->mm->page_table_lock);
}
orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
do {
struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
if (!page)
continue;
gather_stats(page, md, pte_dirty(*pte), 1);
} while (pte++, addr += PAGE_SIZE, addr != end);
pte_unmap_unlock(orig_pte, ptl);
return 0;
}
#ifdef CONFIG_HUGETLB_PAGE
static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
unsigned long addr, unsigned long end, struct mm_walk *walk)
{
struct numa_maps *md;
struct page *page;
if (pte_none(*pte))
return 0;
page = pte_page(*pte);
if (!page)
return 0;
md = walk->private;
gather_stats(page, md, pte_dirty(*pte), 1);
return 0;
}
#else
static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
unsigned long addr, unsigned long end, struct mm_walk *walk)
{
return 0;
}
#endif
/*
* Display pages allocated per node and memory policy via /proc.
*/
static int show_numa_map(struct seq_file *m, void *v)
{
struct numa_maps_private *numa_priv = m->private;
struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
struct vm_area_struct *vma = v;
struct numa_maps *md = &numa_priv->md;
struct file *file = vma->vm_file;
struct mm_struct *mm = vma->vm_mm;
struct mm_walk walk = {};
struct mempolicy *pol;
int n;
char buffer[50];
if (!mm)
return 0;
/* Ensure we start with an empty set of numa_maps statistics. */
memset(md, 0, sizeof(*md));
md->vma = vma;
walk.hugetlb_entry = gather_hugetbl_stats;
walk.pmd_entry = gather_pte_stats;
walk.private = md;
walk.mm = mm;
pol = get_vma_policy(proc_priv->task, vma, vma->vm_start);
mpol_to_str(buffer, sizeof(buffer), pol, 0);
mpol_cond_put(pol);
seq_printf(m, "%08lx %s", vma->vm_start, buffer);
if (file) {
seq_printf(m, " file=");
seq_path(m, &file->f_path, "\n\t= ");
} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
seq_printf(m, " heap");
} else if (vma->vm_start <= mm->start_stack &&
vma->vm_end >= mm->start_stack) {
seq_printf(m, " stack");
}
walk_page_range(vma->vm_start, vma->vm_end, &walk);
if (!md->pages)
goto out;
if (md->anon)
seq_printf(m, " anon=%lu", md->anon);
if (md->dirty)
seq_printf(m, " dirty=%lu", md->dirty);
if (md->pages != md->anon && md->pages != md->dirty)
seq_printf(m, " mapped=%lu", md->pages);
if (md->mapcount_max > 1)
seq_printf(m, " mapmax=%lu", md->mapcount_max);
if (md->swapcache)
seq_printf(m, " swapcache=%lu", md->swapcache);
if (md->active < md->pages && !is_vm_hugetlb_page(vma))
seq_printf(m, " active=%lu", md->active);
if (md->writeback)
seq_printf(m, " writeback=%lu", md->writeback);
for_each_node_state(n, N_HIGH_MEMORY)
if (md->node[n])
seq_printf(m, " N%d=%lu", n, md->node[n]);
out:
seq_putc(m, '\n');
if (m->count < m->size)
m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
return 0;
}
static const struct seq_operations proc_pid_numa_maps_op = {
.start = m_start,
.next = m_next,
.stop = m_stop,
.show = show_numa_map,
};
static int numa_maps_open(struct inode *inode, struct file *file)
{
struct numa_maps_private *priv;
int ret = -ENOMEM;
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (priv) {
priv->proc_maps.pid = proc_pid(inode);
ret = seq_open(file, &proc_pid_numa_maps_op);
if (!ret) {
struct seq_file *m = file->private_data;
m->private = priv;
} else {
kfree(priv);
}
}
return ret;
}
const struct file_operations proc_numa_maps_operations = {
.open = numa_maps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private,
};
#endif /* CONFIG_NUMA */