/*
* fs/nfs/nfs4proc.c
*
* Client-side procedure declarations for NFSv4.
*
* Copyright (c) 2002 The Regents of the University of Michigan.
* All rights reserved.
*
* Kendrick Smith <kmsmith@umich.edu>
* Andy Adamson <andros@umich.edu>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <linux/mm.h>
#include <linux/utsname.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/sunrpc/clnt.h>
#include <linux/nfs.h>
#include <linux/nfs4.h>
#include <linux/nfs_fs.h>
#include <linux/nfs_page.h>
#include <linux/smp_lock.h>
#include <linux/namei.h>
#include <linux/mount.h>
#include "nfs4_fs.h"
#include "delegation.h"
#include "iostat.h"
#define NFSDBG_FACILITY NFSDBG_PROC
#define NFS4_POLL_RETRY_MIN (HZ/10)
#define NFS4_POLL_RETRY_MAX (15*HZ)
struct nfs4_opendata;
static int _nfs4_proc_open(struct nfs4_opendata *data);
static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *);
static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry);
static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception);
static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs_client *clp);
/* Prevent leaks of NFSv4 errors into userland */
int nfs4_map_errors(int err)
{
if (err < -1000) {
dprintk("%s could not handle NFSv4 error %d\n",
__FUNCTION__, -err);
return -EIO;
}
return err;
}
/*
* This is our standard bitmap for GETATTR requests.
*/
const u32 nfs4_fattr_bitmap[2] = {
FATTR4_WORD0_TYPE
| FATTR4_WORD0_CHANGE
| FATTR4_WORD0_SIZE
| FATTR4_WORD0_FSID
| FATTR4_WORD0_FILEID,
FATTR4_WORD1_MODE
| FATTR4_WORD1_NUMLINKS
| FATTR4_WORD1_OWNER
| FATTR4_WORD1_OWNER_GROUP
| FATTR4_WORD1_RAWDEV
| FATTR4_WORD1_SPACE_USED
| FATTR4_WORD1_TIME_ACCESS
| FATTR4_WORD1_TIME_METADATA
| FATTR4_WORD1_TIME_MODIFY
};
const u32 nfs4_statfs_bitmap[2] = {
FATTR4_WORD0_FILES_AVAIL
| FATTR4_WORD0_FILES_FREE
| FATTR4_WORD0_FILES_TOTAL,
FATTR4_WORD1_SPACE_AVAIL
| FATTR4_WORD1_SPACE_FREE
| FATTR4_WORD1_SPACE_TOTAL
};
const u32 nfs4_pathconf_bitmap[2] = {
FATTR4_WORD0_MAXLINK
| FATTR4_WORD0_MAXNAME,
0
};
const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE
| FATTR4_WORD0_MAXREAD
| FATTR4_WORD0_MAXWRITE
| FATTR4_WORD0_LEASE_TIME,
0
};
const u32 nfs4_fs_locations_bitmap[2] = {
FATTR4_WORD0_TYPE
| FATTR4_WORD0_CHANGE
| FATTR4_WORD0_SIZE
| FATTR4_WORD0_FSID
| FATTR4_WORD0_FILEID
| FATTR4_WORD0_FS_LOCATIONS,
FATTR4_WORD1_MODE
| FATTR4_WORD1_NUMLINKS
| FATTR4_WORD1_OWNER
| FATTR4_WORD1_OWNER_GROUP
| FATTR4_WORD1_RAWDEV
| FATTR4_WORD1_SPACE_USED
| FATTR4_WORD1_TIME_ACCESS
| FATTR4_WORD1_TIME_METADATA
| FATTR4_WORD1_TIME_MODIFY
| FATTR4_WORD1_MOUNTED_ON_FILEID
};
static void nfs4_setup_readdir(u64 cookie, __be32 *verifier, struct dentry *dentry,
struct nfs4_readdir_arg *readdir)
{
__be32 *start, *p;
BUG_ON(readdir->count < 80);
if (cookie > 2) {
readdir->cookie = cookie;
memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
return;
}
readdir->cookie = 0;
memset(&readdir->verifier, 0, sizeof(readdir->verifier));
if (cookie == 2)
return;
/*
* NFSv4 servers do not return entries for '.' and '..'
* Therefore, we fake these entries here. We let '.'
* have cookie 0 and '..' have cookie 1. Note that
* when talking to the server, we always send cookie 0
* instead of 1 or 2.
*/
start = p = kmap_atomic(*readdir->pages, KM_USER0);
if (cookie == 0) {
*p++ = xdr_one; /* next */
*p++ = xdr_zero; /* cookie, first word */
*p++ = xdr_one; /* cookie, second word */
*p++ = xdr_one; /* entry len */
memcpy(p, ".\0\0\0", 4); /* entry */
p++;
*p++ = xdr_one; /* bitmap length */
*p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */
*p++ = htonl(8); /* attribute buffer length */
p = xdr_encode_hyper(p, dentry->d_inode->i_ino);
}
*p++ = xdr_one; /* next */
*p++ = xdr_zero; /* cookie, first word */
*p++ = xdr_two; /* cookie, second word */
*p++ = xdr_two; /* entry len */
memcpy(p, "..\0\0", 4); /* entry */
p++;
*p++ = xdr_one; /* bitmap length */
*p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */
*p++ = htonl(8); /* attribute buffer length */
p = xdr_encode_hyper(p, dentry->d_parent->d_inode->i_ino);
readdir->pgbase = (char *)p - (char *)start;
readdir->count -= readdir->pgbase;
kunmap_atomic(start, KM_USER0);
}
static void renew_lease(const struct nfs_server *server, unsigned long timestamp)
{
struct nfs_client *clp = server->nfs_client;
spin_lock(&clp->cl_lock);
if (time_before(clp->cl_last_renewal,timestamp))
clp->cl_last_renewal = timestamp;
spin_unlock(&clp->cl_lock);
}
static void update_changeattr(struct inode *dir, struct nfs4_change_info *cinfo)
{
struct nfs_inode *nfsi = NFS_I(dir);
spin_lock(&dir->i_lock);
nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA;
if (cinfo->before == nfsi->change_attr && cinfo->atomic)
nfsi->change_attr = cinfo->after;
spin_unlock(&dir->i_lock);
}
struct nfs4_opendata {
atomic_t count;
struct nfs_openargs o_arg;
struct nfs_openres o_res;
struct nfs_open_confirmargs c_arg;
struct nfs_open_confirmres c_res;
struct nfs_fattr f_attr;
struct nfs_fattr dir_attr;
struct dentry *dentry;
struct dentry *dir;
struct nfs4_state_owner *owner;
struct iattr attrs;
unsigned long timestamp;
int rpc_status;
int cancelled;
};
static struct nfs4_opendata *nfs4_opendata_alloc(struct dentry *dentry,
struct nfs4_state_owner *sp, int flags,
const struct iattr *attrs)
{
struct dentry *parent = dget_parent(dentry);
struct inode *dir = parent->d_inode;
struct nfs_server *server = NFS_SERVER(dir);
struct nfs4_opendata *p;
p = kzalloc(sizeof(*p), GFP_KERNEL);
if (p == NULL)
goto err;
p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
if (p->o_arg.seqid == NULL)
goto err_free;
atomic_set(&p->count, 1);
p->dentry = dget(dentry);
p->dir = parent;
p->owner = sp;
atomic_inc(&sp->so_count);
p->o_arg.fh = NFS_FH(dir);
p->o_arg.open_flags = flags,
p->o_arg.clientid = server->nfs_client->cl_clientid;
p->o_arg.id = sp->so_id;
p->o_arg.name = &dentry->d_name;
p->o_arg.server = server;
p->o_arg.bitmask = server->attr_bitmask;
p->o_arg.claim = NFS4_OPEN_CLAIM_NULL;
p->o_res.f_attr = &p->f_attr;
p->o_res.dir_attr = &p->dir_attr;
p->o_res.server = server;
nfs_fattr_init(&p->f_attr);
nfs_fattr_init(&p->dir_attr);
if (flags & O_EXCL) {
u32 *s = (u32 *) p->o_arg.u.verifier.data;
s[0] = jiffies;
s[1] = current->pid;
} else if (flags & O_CREAT) {
p->o_arg.u.attrs = &p->attrs;
memcpy(&p->attrs, attrs, sizeof(p->attrs));
}
p->c_arg.fh = &p->o_res.fh;
p->c_arg.stateid = &p->o_res.stateid;
p->c_arg.seqid = p->o_arg.seqid;
return p;
err_free:
kfree(p);
err:
dput(parent);
return NULL;
}
static void nfs4_opendata_free(struct nfs4_opendata *p)
{
if (p != NULL && atomic_dec_and_test(&p->count)) {
nfs_free_seqid(p->o_arg.seqid);
nfs4_put_state_owner(p->owner);
dput(p->dir);
dput(p->dentry);
kfree(p);
}
}
/* Helper for asynchronous RPC calls */
static int nfs4_call_async(struct rpc_clnt *clnt,
const struct rpc_call_ops *tk_ops, void *calldata)
{
struct rpc_task *task;
if (!(task = rpc_new_task(clnt, RPC_TASK_ASYNC, tk_ops, calldata)))
return -ENOMEM;
rpc_execute(task);
return 0;
}
static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task)
{
sigset_t oldset;
int ret;
rpc_clnt_sigmask(task->tk_client, &oldset);
ret = rpc_wait_for_completion_task(task);
rpc_clnt_sigunmask(task->tk_client, &oldset);
return ret;
}
static inline void update_open_stateflags(struct nfs4_state *state, mode_t open_flags)
{
switch (open_flags) {
case FMODE_WRITE:
state->n_wronly++;
break;
case FMODE_READ:
state->n_rdonly++;
break;
case FMODE_READ|FMODE_WRITE:
state->n_rdwr++;
}
}
static void update_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags)
{
struct inode *inode = state->inode;
open_flags &= (FMODE_READ|FMODE_WRITE);
/* Protect against nfs4_find_state_byowner() */
spin_lock(&state->owner->so_lock);
spin_lock(&inode->i_lock);
memcpy(&state->stateid, stateid, sizeof(state->stateid));
update_open_stateflags(state, open_flags);
nfs4_state_set_mode_locked(state, state->state | open_flags);
spin_unlock(&inode->i_lock);
spin_unlock(&state->owner->so_lock);
}
static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
{
struct inode *inode;
struct nfs4_state *state = NULL;
if (!(data->f_attr.valid & NFS_ATTR_FATTR))
goto out;
inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr);
if (IS_ERR(inode))
goto out;
state = nfs4_get_open_state(inode, data->owner);
if (state == NULL)
goto put_inode;
update_open_stateid(state, &data->o_res.stateid, data->o_arg.open_flags);
put_inode:
iput(inode);
out:
return state;
}
static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state)
{
struct nfs_inode *nfsi = NFS_I(state->inode);
struct nfs_open_context *ctx;
spin_lock(&state->inode->i_lock);
list_for_each_entry(ctx, &nfsi->open_files, list) {
if (ctx->state != state)
continue;
get_nfs_open_context(ctx);
spin_unlock(&state->inode->i_lock);
return ctx;
}
spin_unlock(&state->inode->i_lock);
return ERR_PTR(-ENOENT);
}
static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, mode_t openflags, nfs4_stateid *stateid)
{
int ret;
opendata->o_arg.open_flags = openflags;
ret = _nfs4_proc_open(opendata);
if (ret != 0)
return ret;
memcpy(stateid->data, opendata->o_res.stateid.data,
sizeof(stateid->data));
return 0;
}
static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state)
{
nfs4_stateid stateid;
struct nfs4_state *newstate;
int mode = 0;
int delegation = 0;
int ret;
/* memory barrier prior to reading state->n_* */
smp_rmb();
if (state->n_rdwr != 0) {
ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &stateid);
if (ret != 0)
return ret;
mode |= FMODE_READ|FMODE_WRITE;
if (opendata->o_res.delegation_type != 0)
delegation = opendata->o_res.delegation_type;
smp_rmb();
}
if (state->n_wronly != 0) {
ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &stateid);
if (ret != 0)
return ret;
mode |= FMODE_WRITE;
if (opendata->o_res.delegation_type != 0)
delegation = opendata->o_res.delegation_type;
smp_rmb();
}
if (state->n_rdonly != 0) {
ret = nfs4_open_recover_helper(opendata, FMODE_READ, &stateid);
if (ret != 0)
return ret;
mode |= FMODE_READ;
}
clear_bit(NFS_DELEGATED_STATE, &state->flags);
if (mode == 0)
return 0;
if (opendata->o_res.delegation_type == 0)
opendata->o_res.delegation_type = delegation;
opendata->o_arg.open_flags |= mode;
newstate = nfs4_opendata_to_nfs4_state(opendata);
if (newstate != NULL) {
if (opendata->o_res.delegation_type != 0) {
struct nfs_inode *nfsi = NFS_I(newstate->inode);
int delegation_flags = 0;
if (nfsi->delegation)
delegation_flags = nfsi->delegation->flags;
if (!(delegation_flags & NFS_DELEGATION_NEED_RECLAIM))
nfs_inode_set_delegation(newstate->inode,
opendata->owner->so_cred,
&opendata->o_res);
else
nfs_inode_reclaim_delegation(newstate->inode,
opendata->owner->so_cred,
&opendata->o_res);
}
nfs4_close_state(newstate, opendata->o_arg.open_flags);
}
if (newstate != state)
return -ESTALE;
return 0;
}
/*
* OPEN_RECLAIM:
* reclaim state on the server after a reboot.
*/
static int _nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
{
struct nfs_delegation *delegation = NFS_I(state->inode)->delegation;
struct nfs4_opendata *opendata;
int delegation_type = 0;
int status;
if (delegation != NULL) {
if (!(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
memcpy(&state->stateid, &delegation->stateid,
sizeof(state->stateid));
set_bit(NFS_DELEGATED_STATE, &state->flags);
return 0;
}
delegation_type = delegation->type;
}
opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
if (opendata == NULL)
return -ENOMEM;
opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS;
opendata->o_arg.fh = NFS_FH(state->inode);
nfs_copy_fh(&opendata->o_res.fh, opendata->o_arg.fh);
opendata->o_arg.u.delegation_type = delegation_type;
status = nfs4_open_recover(opendata, state);
nfs4_opendata_free(opendata);
return status;
}
static int nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
{
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs4_exception exception = { };
int err;
do {
err = _nfs4_do_open_reclaim(sp, state, dentry);
if (err != -NFS4ERR_DELAY)
break;
nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
return err;
}
static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
{
struct nfs_open_context *ctx;
int ret;
ctx = nfs4_state_find_open_context(state);
if (IS_ERR(ctx))
return PTR_ERR(ctx);
ret = nfs4_do_open_reclaim(sp, state, ctx->dentry);
put_nfs_open_context(ctx);
return ret;
}
static int _nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
{
struct nfs4_state_owner *sp = state->owner;
struct nfs4_opendata *opendata;
int ret;
if (!test_bit(NFS_DELEGATED_STATE, &state->flags))
return 0;
opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
if (opendata == NULL)
return -ENOMEM;
opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR;
memcpy(opendata->o_arg.u.delegation.data, state->stateid.data,
sizeof(opendata->o_arg.u.delegation.data));
ret = nfs4_open_recover(opendata, state);
nfs4_opendata_free(opendata);
return ret;
}
int nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
{
struct nfs4_exception exception = { };
struct nfs_server *server = NFS_SERVER(dentry->d_inode);
int err;
do {
err = _nfs4_open_delegation_recall(dentry, state);
switch (err) {
case 0:
return err;
case -NFS4ERR_STALE_CLIENTID:
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_EXPIRED:
/* Don't recall a delegation if it was lost */
nfs4_schedule_state_recovery(server->nfs_client);
return err;
}
err = nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
return err;
}
static void nfs4_open_confirm_prepare(struct rpc_task *task, void *calldata)
{
struct nfs4_opendata *data = calldata;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
.rpc_argp = &data->c_arg,
.rpc_resp = &data->c_res,
.rpc_cred = data->owner->so_cred,
};
data->timestamp = jiffies;
rpc_call_setup(task, &msg, 0);
}
static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata)
{
struct nfs4_opendata *data = calldata;
data->rpc_status = task->tk_status;
if (RPC_ASSASSINATED(task))
return;
if (data->rpc_status == 0) {
memcpy(data->o_res.stateid.data, data->c_res.stateid.data,
sizeof(data->o_res.stateid.data));
renew_lease(data->o_res.server, data->timestamp);
}
nfs_increment_open_seqid(data->rpc_status, data->c_arg.seqid);
nfs_confirm_seqid(&data->owner->so_seqid, data->rpc_status);
}
static void nfs4_open_confirm_release(void *calldata)
{
struct nfs4_opendata *data = calldata;
struct nfs4_state *state = NULL;
/* If this request hasn't been cancelled, do nothing */
if (data->cancelled == 0)
goto out_free;
/* In case of error, no cleanup! */
if (data->rpc_status != 0)
goto out_free;
nfs_confirm_seqid(&data->owner->so_seqid, 0);
state = nfs4_opendata_to_nfs4_state(data);
if (state != NULL)
nfs4_close_state(state, data->o_arg.open_flags);
out_free:
nfs4_opendata_free(data);
}
static const struct rpc_call_ops nfs4_open_confirm_ops = {
.rpc_call_prepare = nfs4_open_confirm_prepare,
.rpc_call_done = nfs4_open_confirm_done,
.rpc_release = nfs4_open_confirm_release,
};
/*
* Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata
*/
static int _nfs4_proc_open_confirm(struct nfs4_opendata *data)
{
struct nfs_server *server = NFS_SERVER(data->dir->d_inode);
struct rpc_task *task;
int status;
atomic_inc(&data->count);
/*
* If rpc_run_task() ends up calling ->rpc_release(), we
* want to ensure that it takes the 'error' code path.
*/
data->rpc_status = -ENOMEM;
task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_confirm_ops, data);
if (IS_ERR(task))
return PTR_ERR(task);
status = nfs4_wait_for_completion_rpc_task(task);
if (status != 0) {
data->cancelled = 1;
smp_wmb();
} else
status = data->rpc_status;
rpc_put_task(task);
return status;
}
static void nfs4_open_prepare(struct rpc_task *task, void *calldata)
{
struct nfs4_opendata *data = calldata;
struct nfs4_state_owner *sp = data->owner;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
.rpc_argp = &data->o_arg,
.rpc_resp = &data->o_res,
.rpc_cred = sp->so_cred,
};
if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0)
return;
/* Update sequence id. */
data->o_arg.id = sp->so_id;
data->o_arg.clientid = sp->so_client->cl_clientid;
if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS)
msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR];
data->timestamp = jiffies;
rpc_call_setup(task, &msg, 0);
}
static void nfs4_open_done(struct rpc_task *task, void *calldata)
{
struct nfs4_opendata *data = calldata;
data->rpc_status = task->tk_status;
if (RPC_ASSASSINATED(task))
return;
if (task->tk_status == 0) {
switch (data->o_res.f_attr->mode & S_IFMT) {
case S_IFREG:
break;
case S_IFLNK:
data->rpc_status = -ELOOP;
break;
case S_IFDIR:
data->rpc_status = -EISDIR;
break;
default:
data->rpc_status = -ENOTDIR;
}
renew_lease(data->o_res.server, data->timestamp);
}
nfs_increment_open_seqid(data->rpc_status, data->o_arg.seqid);
}
static void nfs4_open_release(void *calldata)
{
struct nfs4_opendata *data = calldata;
struct nfs4_state *state = NULL;
/* If this request hasn't been cancelled, do nothing */
if (data->cancelled == 0)
goto out_free;
/* In case of error, no cleanup! */
if (data->rpc_status != 0)
goto out_free;
/* In case we need an open_confirm, no cleanup! */
if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)
goto out_free;
nfs_confirm_seqid(&data->owner->so_seqid, 0);
state = nfs4_opendata_to_nfs4_state(data);
if (state != NULL)
nfs4_close_state(state, data->o_arg.open_flags);
out_free:
nfs4_opendata_free(data);
}
static const struct rpc_call_ops nfs4_open_ops = {
.rpc_call_prepare = nfs4_open_prepare,
.rpc_call_done = nfs4_open_done,
.rpc_release = nfs4_open_release,
};
/*
* Note: On error, nfs4_proc_open will free the struct nfs4_opendata
*/
static int _nfs4_proc_open(struct nfs4_opendata *data)
{
struct inode *dir = data->dir->d_inode;
struct nfs_server *server = NFS_SERVER(dir);
struct nfs_openargs *o_arg = &data->o_arg;
struct nfs_openres *o_res = &data->o_res;
struct rpc_task *task;
int status;
atomic_inc(&data->count);
/*
* If rpc_run_task() ends up calling ->rpc_release(), we
* want to ensure that it takes the 'error' code path.
*/
data->rpc_status = -ENOMEM;
task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_ops, data);
if (IS_ERR(task))
return PTR_ERR(task);
status = nfs4_wait_for_completion_rpc_task(task);
if (status != 0) {
data->cancelled = 1;
smp_wmb();
} else
status = data->rpc_status;
rpc_put_task(task);
if (status != 0)
return status;
if (o_arg->open_flags & O_CREAT) {
update_changeattr(dir, &o_res->cinfo);
nfs_post_op_update_inode(dir, o_res->dir_attr);
} else
nfs_refresh_inode(dir, o_res->dir_attr);
if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
status = _nfs4_proc_open_confirm(data);
if (status != 0)
return status;
}
nfs_confirm_seqid(&data->owner->so_seqid, 0);
if (!(o_res->f_attr->valid & NFS_ATTR_FATTR))
return server->nfs_client->rpc_ops->getattr(server, &o_res->fh, o_res->f_attr);
return 0;
}
static int _nfs4_do_access(struct inode *inode, struct rpc_cred *cred, int openflags)
{
struct nfs_access_entry cache;
int mask = 0;
int status;
if (openflags & FMODE_READ)
mask |= MAY_READ;
if (openflags & FMODE_WRITE)
mask |= MAY_WRITE;
status = nfs_access_get_cached(inode, cred, &cache);
if (status == 0)
goto out;
/* Be clever: ask server to check for all possible rights */
cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
cache.cred = cred;
cache.jiffies = jiffies;
status = _nfs4_proc_access(inode, &cache);
if (status != 0)
return status;
nfs_access_add_cache(inode, &cache);
out:
if ((cache.mask & mask) == mask)
return 0;
return -EACCES;
}
int nfs4_recover_expired_lease(struct nfs_server *server)
{
struct nfs_client *clp = server->nfs_client;
int ret;
for (;;) {
ret = nfs4_wait_clnt_recover(server->client, clp);
if (ret != 0)
return ret;
if (!test_and_clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state))
break;
nfs4_schedule_state_recovery(clp);
}
return 0;
}
/*
* OPEN_EXPIRED:
* reclaim state on the server after a network partition.
* Assumes caller holds the appropriate lock
*/
static int _nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
{
struct inode *inode = state->inode;
struct nfs_delegation *delegation = NFS_I(inode)->delegation;
struct nfs4_opendata *opendata;
int openflags = state->state & (FMODE_READ|FMODE_WRITE);
int ret;
if (delegation != NULL && !(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
ret = _nfs4_do_access(inode, sp->so_cred, openflags);
if (ret < 0)
return ret;
memcpy(&state->stateid, &delegation->stateid, sizeof(state->stateid));
set_bit(NFS_DELEGATED_STATE, &state->flags);
return 0;
}
opendata = nfs4_opendata_alloc(dentry, sp, openflags, NULL);
if (opendata == NULL)
return -ENOMEM;
ret = nfs4_open_recover(opendata, state);
if (ret == -ESTALE) {
/* Invalidate the state owner so we don't ever use it again */
nfs4_drop_state_owner(sp);
d_drop(dentry);
}
nfs4_opendata_free(opendata);
return ret;
}
static inline int nfs4_do_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
{
struct nfs_server *server = NFS_SERVER(dentry->d_inode);
struct nfs4_exception exception = { };
int err;
do {
err = _nfs4_open_expired(sp, state, dentry);
if (err == -NFS4ERR_DELAY)
nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
return err;
}
static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
{
struct nfs_open_context *ctx;
int ret;
ctx = nfs4_state_find_open_context(state);
if (IS_ERR(ctx))
return PTR_ERR(ctx);
ret = nfs4_do_open_expired(sp, state, ctx->dentry);
put_nfs_open_context(ctx);
return ret;
}
/*
* Returns a referenced nfs4_state if there is an open delegation on the file
*/
static int _nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred, struct nfs4_state **res)
{
struct nfs_delegation *delegation;
struct nfs_server *server = NFS_SERVER(inode);
struct nfs_client *clp = server->nfs_client;
struct nfs_inode *nfsi = NFS_I(inode);
struct nfs4_state_owner *sp = NULL;
struct nfs4_state *state = NULL;
int open_flags = flags & (FMODE_READ|FMODE_WRITE);
int err;
err = -ENOMEM;
if (!(sp = nfs4_get_state_owner(server, cred))) {
dprintk("%s: nfs4_get_state_owner failed!\n", __FUNCTION__);
return err;
}
err = nfs4_recover_expired_lease(server);
if (err != 0)
goto out_put_state_owner;
/* Protect against reboot recovery - NOTE ORDER! */
down_read(&clp->cl_sem);
/* Protect against delegation recall */
down_read(&nfsi->rwsem);
delegation = NFS_I(inode)->delegation;
err = -ENOENT;
if (delegation == NULL || (delegation->type & open_flags) != open_flags)
goto out_err;
err = -ENOMEM;
state = nfs4_get_open_state(inode, sp);
if (state == NULL)
goto out_err;
err = -ENOENT;
if ((state->state & open_flags) == open_flags) {
spin_lock(&inode->i_lock);
update_open_stateflags(state, open_flags);
spin_unlock(&inode->i_lock);
goto out_ok;
} else if (state->state != 0)
goto out_put_open_state;
lock_kernel();
err = _nfs4_do_access(inode, cred, open_flags);
unlock_kernel();
if (err != 0)
goto out_put_open_state;
set_bit(NFS_DELEGATED_STATE, &state->flags);
update_open_stateid(state, &delegation->stateid, open_flags);
out_ok:
nfs4_put_state_owner(sp);
up_read(&nfsi->rwsem);
up_read(&clp->cl_sem);
*res = state;
return 0;
out_put_open_state:
nfs4_put_open_state(state);
out_err:
up_read(&nfsi->rwsem);
up_read(&clp->cl_sem);
if (err != -EACCES)
nfs_inode_return_delegation(inode);
out_put_state_owner:
nfs4_put_state_owner(sp);
return err;
}
static struct nfs4_state *nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred)
{
struct nfs4_exception exception = { };
struct nfs4_state *res = ERR_PTR(-EIO);
int err;
do {
err = _nfs4_open_delegated(inode, flags, cred, &res);
if (err == 0)
break;
res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(inode),
err, &exception));
} while (exception.retry);
return res;
}
/*
* Returns a referenced nfs4_state
*/
static int _nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res)
{
struct nfs4_state_owner *sp;
struct nfs4_state *state = NULL;
struct nfs_server *server = NFS_SERVER(dir);
struct nfs_client *clp = server->nfs_client;
struct nfs4_opendata *opendata;
int status;
/* Protect against reboot recovery conflicts */
status = -ENOMEM;
if (!(sp = nfs4_get_state_owner(server, cred))) {
dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
goto out_err;
}
status = nfs4_recover_expired_lease(server);
if (status != 0)
goto err_put_state_owner;
down_read(&clp->cl_sem);
status = -ENOMEM;
opendata = nfs4_opendata_alloc(dentry, sp, flags, sattr);
if (opendata == NULL)
goto err_release_rwsem;
status = _nfs4_proc_open(opendata);
if (status != 0)
goto err_opendata_free;
status = -ENOMEM;
state = nfs4_opendata_to_nfs4_state(opendata);
if (state == NULL)
goto err_opendata_free;
if (opendata->o_res.delegation_type != 0)
nfs_inode_set_delegation(state->inode, cred, &opendata->o_res);
nfs4_opendata_free(opendata);
nfs4_put_state_owner(sp);
up_read(&clp->cl_sem);
*res = state;
return 0;
err_opendata_free:
nfs4_opendata_free(opendata);
err_release_rwsem:
up_read(&clp->cl_sem);
err_put_state_owner:
nfs4_put_state_owner(sp);
out_err:
*res = NULL;
return status;
}
static struct nfs4_state *nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred)
{
struct nfs4_exception exception = { };
struct nfs4_state *res;
int status;
do {
status = _nfs4_do_open(dir, dentry, flags, sattr, cred, &res);
if (status == 0)
break;
/* NOTE: BAD_SEQID means the server and client disagree about the
* book-keeping w.r.t. state-changing operations
* (OPEN/CLOSE/LOCK/LOCKU...)
* It is actually a sign of a bug on the client or on the server.
*
* If we receive a BAD_SEQID error in the particular case of
* doing an OPEN, we assume that nfs_increment_open_seqid() will
* have unhashed the old state_owner for us, and that we can
* therefore safely retry using a new one. We should still warn
* the user though...
*/
if (status == -NFS4ERR_BAD_SEQID) {
printk(KERN_WARNING "NFS: v4 server returned a bad sequence-id error!\n");
exception.retry = 1;
continue;
}
/*
* BAD_STATEID on OPEN means that the server cancelled our
* state before it received the OPEN_CONFIRM.
* Recover by retrying the request as per the discussion
* on Page 181 of RFC3530.
*/
if (status == -NFS4ERR_BAD_STATEID) {
exception.retry = 1;
continue;
}
res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir),
status, &exception));
} while (exception.retry);
return res;
}
static int _nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
struct iattr *sattr, struct nfs4_state *state)
{
struct nfs_server *server = NFS_SERVER(inode);
struct nfs_setattrargs arg = {
.fh = NFS_FH(inode),
.iap = sattr,
.server = server,
.bitmask = server->attr_bitmask,
};
struct nfs_setattrres res = {
.fattr = fattr,
.server = server,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
.rpc_argp = &arg,
.rpc_resp = &res,
};
unsigned long timestamp = jiffies;
int status;
nfs_fattr_init(fattr);
if (nfs4_copy_delegation_stateid(&arg.stateid, inode)) {
/* Use that stateid */
} else if (state != NULL) {
msg.rpc_cred = state->owner->so_cred;
nfs4_copy_stateid(&arg.stateid, state, current->files);
} else
memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid));
status = rpc_call_sync(server->client, &msg, 0);
if (status == 0 && state != NULL)
renew_lease(server, timestamp);
return status;
}
static int nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
struct iattr *sattr, struct nfs4_state *state)
{
struct nfs_server *server = NFS_SERVER(inode);
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_do_setattr(inode, fattr, sattr, state),
&exception);
} while (exception.retry);
return err;
}
struct nfs4_closedata {
struct inode *inode;
struct nfs4_state *state;
struct nfs_closeargs arg;
struct nfs_closeres res;
struct nfs_fattr fattr;
unsigned long timestamp;
};
static void nfs4_free_closedata(void *data)
{
struct nfs4_closedata *calldata = data;
struct nfs4_state_owner *sp = calldata->state->owner;
nfs4_put_open_state(calldata->state);
nfs_free_seqid(calldata->arg.seqid);
nfs4_put_state_owner(sp);
kfree(calldata);
}
static void nfs4_close_done(struct rpc_task *task, void *data)
{
struct nfs4_closedata *calldata = data;
struct nfs4_state *state = calldata->state;
struct nfs_server *server = NFS_SERVER(calldata->inode);
if (RPC_ASSASSINATED(task))
return;
/* hmm. we are done with the inode, and in the process of freeing
* the state_owner. we keep this around to process errors
*/
nfs_increment_open_seqid(task->tk_status, calldata->arg.seqid);
switch (task->tk_status) {
case 0:
memcpy(&state->stateid, &calldata->res.stateid,
sizeof(state->stateid));
renew_lease(server, calldata->timestamp);
break;
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_EXPIRED:
nfs4_schedule_state_recovery(server->nfs_client);
break;
default:
if (nfs4_async_handle_error(task, server) == -EAGAIN) {
rpc_restart_call(task);
return;
}
}
nfs_refresh_inode(calldata->inode, calldata->res.fattr);
}
static void nfs4_close_prepare(struct rpc_task *task, void *data)
{
struct nfs4_closedata *calldata = data;
struct nfs4_state *state = calldata->state;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
.rpc_argp = &calldata->arg,
.rpc_resp = &calldata->res,
.rpc_cred = state->owner->so_cred,
};
int mode = 0, old_mode;
if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
return;
/* Recalculate the new open mode in case someone reopened the file
* while we were waiting in line to be scheduled.
*/
spin_lock(&state->owner->so_lock);
spin_lock(&calldata->inode->i_lock);
mode = old_mode = state->state;
if (state->n_rdwr == 0) {
if (state->n_rdonly == 0)
mode &= ~FMODE_READ;
if (state->n_wronly == 0)
mode &= ~FMODE_WRITE;
}
nfs4_state_set_mode_locked(state, mode);
spin_unlock(&calldata->inode->i_lock);
spin_unlock(&state->owner->so_lock);
if (mode == old_mode || test_bit(NFS_DELEGATED_STATE, &state->flags)) {
/* Note: exit _without_ calling nfs4_close_done */
task->tk_action = NULL;
return;
}
nfs_fattr_init(calldata->res.fattr);
if (mode != 0)
msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
calldata->arg.open_flags = mode;
calldata->timestamp = jiffies;
rpc_call_setup(task, &msg, 0);
}
static const struct rpc_call_ops nfs4_close_ops = {
.rpc_call_prepare = nfs4_close_prepare,
.rpc_call_done = nfs4_close_done,
.rpc_release = nfs4_free_closedata,
};
/*
* It is possible for data to be read/written from a mem-mapped file
* after the sys_close call (which hits the vfs layer as a flush).
* This means that we can't safely call nfsv4 close on a file until
* the inode is cleared. This in turn means that we are not good
* NFSv4 citizens - we do not indicate to the server to update the file's
* share state even when we are done with one of the three share
* stateid's in the inode.
*
* NOTE: Caller must be holding the sp->so_owner semaphore!
*/
int nfs4_do_close(struct inode *inode, struct nfs4_state *state)
{
struct nfs_server *server = NFS_SERVER(inode);
struct nfs4_closedata *calldata;
int status = -ENOMEM;
calldata = kmalloc(sizeof(*calldata), GFP_KERNEL);
if (calldata == NULL)
goto out;
calldata->inode = inode;
calldata->state = state;
calldata->arg.fh = NFS_FH(inode);
calldata->arg.stateid = &state->stateid;
/* Serialization for the sequence id */
calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid);
if (calldata->arg.seqid == NULL)
goto out_free_calldata;
calldata->arg.bitmask = server->attr_bitmask;
calldata->res.fattr = &calldata->fattr;
calldata->res.server = server;
status = nfs4_call_async(server->client, &nfs4_close_ops, calldata);
if (status == 0)
goto out;
nfs_free_seqid(calldata->arg.seqid);
out_free_calldata:
kfree(calldata);
out:
return status;
}
static int nfs4_intent_set_file(struct nameidata *nd, struct dentry *dentry, struct nfs4_state *state)
{
struct file *filp;
filp = lookup_instantiate_filp(nd, dentry, NULL);
if (!IS_ERR(filp)) {
struct nfs_open_context *ctx;
ctx = (struct nfs_open_context *)filp->private_data;
ctx->state = state;
return 0;
}
nfs4_close_state(state, nd->intent.open.flags);
return PTR_ERR(filp);
}
struct dentry *
nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
{
struct iattr attr;
struct rpc_cred *cred;
struct nfs4_state *state;
struct dentry *res;
if (nd->flags & LOOKUP_CREATE) {
attr.ia_mode = nd->intent.open.create_mode;
attr.ia_valid = ATTR_MODE;
if (!IS_POSIXACL(dir))
attr.ia_mode &= ~current->fs->umask;
} else {
attr.ia_valid = 0;
BUG_ON(nd->intent.open.flags & O_CREAT);
}
cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
if (IS_ERR(cred))
return (struct dentry *)cred;
state = nfs4_do_open(dir, dentry, nd->intent.open.flags, &attr, cred);
put_rpccred(cred);
if (IS_ERR(state)) {
if (PTR_ERR(state) == -ENOENT)
d_add(dentry, NULL);
return (struct dentry *)state;
}
res = d_add_unique(dentry, igrab(state->inode));
if (res != NULL)
dentry = res;
nfs4_intent_set_file(nd, dentry, state);
return res;
}
int
nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd)
{
struct rpc_cred *cred;
struct nfs4_state *state;
cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
if (IS_ERR(cred))
return PTR_ERR(cred);
state = nfs4_open_delegated(dentry->d_inode, openflags, cred);
if (IS_ERR(state))
state = nfs4_do_open(dir, dentry, openflags, NULL, cred);
put_rpccred(cred);
if (IS_ERR(state)) {
switch (PTR_ERR(state)) {
case -EPERM:
case -EACCES:
case -EDQUOT:
case -ENOSPC:
case -EROFS:
lookup_instantiate_filp(nd, (struct dentry *)state, NULL);
return 1;
default:
goto out_drop;
}
}
if (state->inode == dentry->d_inode) {
nfs4_intent_set_file(nd, dentry, state);
return 1;
}
nfs4_close_state(state, openflags);
out_drop:
d_drop(dentry);
return 0;
}
static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
{
struct nfs4_server_caps_res res = {};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
.rpc_argp = fhandle,
.rpc_resp = &res,
};
int status;
status = rpc_call_sync(server->client, &msg, 0);
if (status == 0) {
memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
if (res.attr_bitmask[0] & FATTR4_WORD0_ACL)
server->caps |= NFS_CAP_ACLS;
if (res.has_links != 0)
server->caps |= NFS_CAP_HARDLINKS;
if (res.has_symlinks != 0)
server->caps |= NFS_CAP_SYMLINKS;
server->acl_bitmask = res.acl_bitmask;
}
return status;
}
int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_server_capabilities(server, fhandle),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info)
{
struct nfs4_lookup_root_arg args = {
.bitmask = nfs4_fattr_bitmap,
};
struct nfs4_lookup_res res = {
.server = server,
.fattr = info->fattr,
.fh = fhandle,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
.rpc_argp = &args,
.rpc_resp = &res,
};
nfs_fattr_init(info->fattr);
return rpc_call_sync(server->client, &msg, 0);
}
static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_lookup_root(server, fhandle, info),
&exception);
} while (exception.retry);
return err;
}
/*
* get the file handle for the "/" directory on the server
*/
static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info)
{
int status;
status = nfs4_lookup_root(server, fhandle, info);
if (status == 0)
status = nfs4_server_capabilities(server, fhandle);
if (status == 0)
status = nfs4_do_fsinfo(server, fhandle, info);
return nfs4_map_errors(status);
}
/*
* Get locations and (maybe) other attributes of a referral.
* Note that we'll actually follow the referral later when
* we detect fsid mismatch in inode revalidation
*/
static int nfs4_get_referral(struct inode *dir, struct qstr *name, struct nfs_fattr *fattr, struct nfs_fh *fhandle)
{
int status = -ENOMEM;
struct page *page = NULL;
struct nfs4_fs_locations *locations = NULL;
struct dentry dentry = {};
page = alloc_page(GFP_KERNEL);
if (page == NULL)
goto out;
locations = kmalloc(sizeof(struct nfs4_fs_locations), GFP_KERNEL);
if (locations == NULL)
goto out;
dentry.d_name.name = name->name;
dentry.d_name.len = name->len;
status = nfs4_proc_fs_locations(dir, &dentry, locations, page);
if (status != 0)
goto out;
/* Make sure server returned a different fsid for the referral */
if (nfs_fsid_equal(&NFS_SERVER(dir)->fsid, &locations->fattr.fsid)) {
dprintk("%s: server did not return a different fsid for a referral at %s\n", __FUNCTION__, name->name);
status = -EIO;
goto out;
}
memcpy(fattr, &locations->fattr, sizeof(struct nfs_fattr));
fattr->valid |= NFS_ATTR_FATTR_V4_REFERRAL;
if (!fattr->mode)
fattr->mode = S_IFDIR;
memset(fhandle, 0, sizeof(struct nfs_fh));
out:
if (page)
__free_page(page);
if (locations)
kfree(locations);
return status;
}
static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
{
struct nfs4_getattr_arg args = {
.fh = fhandle,
.bitmask = server->attr_bitmask,
};
struct nfs4_getattr_res res = {
.fattr = fattr,
.server = server,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
.rpc_argp = &args,
.rpc_resp = &res,
};
nfs_fattr_init(fattr);
return rpc_call_sync(server->client, &msg, 0);
}
static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_proc_getattr(server, fhandle, fattr),
&exception);
} while (exception.retry);
return err;
}
/*
* The file is not closed if it is opened due to the a request to change
* the size of the file. The open call will not be needed once the
* VFS layer lookup-intents are implemented.
*
* Close is called when the inode is destroyed.
* If we haven't opened the file for O_WRONLY, we
* need to in the size_change case to obtain a stateid.
*
* Got race?
* Because OPEN is always done by name in nfsv4, it is
* possible that we opened a different file by the same
* name. We can recognize this race condition, but we
* can't do anything about it besides returning an error.
*
* This will be fixed with VFS changes (lookup-intent).
*/
static int
nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
struct iattr *sattr)
{
struct rpc_cred *cred;
struct inode *inode = dentry->d_inode;
struct nfs_open_context *ctx;
struct nfs4_state *state = NULL;
int status;
nfs_fattr_init(fattr);
cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
if (IS_ERR(cred))
return PTR_ERR(cred);
/* Search for an existing open(O_WRITE) file */
ctx = nfs_find_open_context(inode, cred, FMODE_WRITE);
if (ctx != NULL)
state = ctx->state;
status = nfs4_do_setattr(inode, fattr, sattr, state);
if (status == 0)
nfs_setattr_update_inode(inode, sattr);
if (ctx != NULL)
put_nfs_open_context(ctx);
put_rpccred(cred);
return status;
}
static int _nfs4_proc_lookupfh(struct nfs_server *server, struct nfs_fh *dirfh,
struct qstr *name, struct nfs_fh *fhandle,
struct nfs_fattr *fattr)
{
int status;
struct nfs4_lookup_arg args = {
.bitmask = server->attr_bitmask,
.dir_fh = dirfh,
.name = name,
};
struct nfs4_lookup_res res = {
.server = server,
.fattr = fattr,
.fh = fhandle,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
.rpc_argp = &args,
.rpc_resp = &res,
};
nfs_fattr_init(fattr);
dprintk("NFS call lookupfh %s\n", name->name);
status = rpc_call_sync(server->client, &msg, 0);
dprintk("NFS reply lookupfh: %d\n", status);
if (status == -NFS4ERR_MOVED)
status = -EREMOTE;
return status;
}
static int nfs4_proc_lookupfh(struct nfs_server *server, struct nfs_fh *dirfh,
struct qstr *name, struct nfs_fh *fhandle,
struct nfs_fattr *fattr)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_proc_lookupfh(server, dirfh, name,
fhandle, fattr),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_lookup(struct inode *dir, struct qstr *name,
struct nfs_fh *fhandle, struct nfs_fattr *fattr)
{
int status;
struct nfs_server *server = NFS_SERVER(dir);
struct nfs4_lookup_arg args = {
.bitmask = server->attr_bitmask,
.dir_fh = NFS_FH(dir),
.name = name,
};
struct nfs4_lookup_res res = {
.server = server,
.fattr = fattr,
.fh = fhandle,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
.rpc_argp = &args,
.rpc_resp = &res,
};
nfs_fattr_init(fattr);
dprintk("NFS call lookup %s\n", name->name);
status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
if (status == -NFS4ERR_MOVED)
status = nfs4_get_referral(dir, name, fattr, fhandle);
dprintk("NFS reply lookup: %d\n", status);
return status;
}
static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(dir),
_nfs4_proc_lookup(dir, name, fhandle, fattr),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
{
struct nfs4_accessargs args = {
.fh = NFS_FH(inode),
};
struct nfs4_accessres res = { 0 };
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
.rpc_argp = &args,
.rpc_resp = &res,
.rpc_cred = entry->cred,
};
int mode = entry->mask;
int status;
/*
* Determine which access bits we want to ask for...
*/
if (mode & MAY_READ)
args.access |= NFS4_ACCESS_READ;
if (S_ISDIR(inode->i_mode)) {
if (mode & MAY_WRITE)
args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE;
if (mode & MAY_EXEC)
args.access |= NFS4_ACCESS_LOOKUP;
} else {
if (mode & MAY_WRITE)
args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND;
if (mode & MAY_EXEC)
args.access |= NFS4_ACCESS_EXECUTE;
}
status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
if (!status) {
entry->mask = 0;
if (res.access & NFS4_ACCESS_READ)
entry->mask |= MAY_READ;
if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
entry->mask |= MAY_WRITE;
if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
entry->mask |= MAY_EXEC;
}
return status;
}
static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(inode),
_nfs4_proc_access(inode, entry),
&exception);
} while (exception.retry);
return err;
}
/*
* TODO: For the time being, we don't try to get any attributes
* along with any of the zero-copy operations READ, READDIR,
* READLINK, WRITE.
*
* In the case of the first three, we want to put the GETATTR
* after the read-type operation -- this is because it is hard
* to predict the length of a GETATTR response in v4, and thus
* align the READ data correctly. This means that the GETATTR
* may end up partially falling into the page cache, and we should
* shift it into the 'tail' of the xdr_buf before processing.
* To do this efficiently, we need to know the total length
* of data received, which doesn't seem to be available outside
* of the RPC layer.
*
* In the case of WRITE, we also want to put the GETATTR after
* the operation -- in this case because we want to make sure
* we get the post-operation mtime and size. This means that
* we can't use xdr_encode_pages() as written: we need a variant
* of it which would leave room in the 'tail' iovec.
*
* Both of these changes to the XDR layer would in fact be quite
* minor, but I decided to leave them for a subsequent patch.
*/
static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
unsigned int pgbase, unsigned int pglen)
{
struct nfs4_readlink args = {
.fh = NFS_FH(inode),
.pgbase = pgbase,
.pglen = pglen,
.pages = &page,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
.rpc_argp = &args,
.rpc_resp = NULL,
};
return rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
}
static int nfs4_proc_readlink(struct inode *inode, struct page *page,
unsigned int pgbase, unsigned int pglen)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(inode),
_nfs4_proc_readlink(inode, page, pgbase, pglen),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_read(struct nfs_read_data *rdata)
{
int flags = rdata->flags;
struct inode *inode = rdata->inode;
struct nfs_fattr *fattr = rdata->res.fattr;
struct nfs_server *server = NFS_SERVER(inode);
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
.rpc_argp = &rdata->args,
.rpc_resp = &rdata->res,
.rpc_cred = rdata->cred,
};
unsigned long timestamp = jiffies;
int status;
dprintk("NFS call read %d @ %Ld\n", rdata->args.count,
(long long) rdata->args.offset);
nfs_fattr_init(fattr);
status = rpc_call_sync(server->client, &msg, flags);
if (!status)
renew_lease(server, timestamp);
dprintk("NFS reply read: %d\n", status);
return status;
}
static int nfs4_proc_read(struct nfs_read_data *rdata)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(rdata->inode),
_nfs4_proc_read(rdata),
&exception);
} while (exception.retry);
return err;
}
/*
* Got race?
* We will need to arrange for the VFS layer to provide an atomic open.
* Until then, this create/open method is prone to inefficiency and race
* conditions due to the lookup, create, and open VFS calls from sys_open()
* placed on the wire.
*
* Given the above sorry state of affairs, I'm simply sending an OPEN.
* The file will be opened again in the subsequent VFS open call
* (nfs4_proc_file_open).
*
* The open for read will just hang around to be used by any process that
* opens the file O_RDONLY. This will all be resolved with the VFS changes.
*/
static int
nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
int flags, struct nameidata *nd)
{
struct nfs4_state *state;
struct rpc_cred *cred;
int status = 0;
cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
if (IS_ERR(cred)) {
status = PTR_ERR(cred);
goto out;
}
state = nfs4_do_open(dir, dentry, flags, sattr, cred);
put_rpccred(cred);
if (IS_ERR(state)) {
status = PTR_ERR(state);
goto out;
}
d_instantiate(dentry, igrab(state->inode));
if (flags & O_EXCL) {
struct nfs_fattr fattr;
status = nfs4_do_setattr(state->inode, &fattr, sattr, state);
if (status == 0)
nfs_setattr_update_inode(state->inode, sattr);
}
if (status == 0 && nd != NULL && (nd->flags & LOOKUP_OPEN))
status = nfs4_intent_set_file(nd, dentry, state);
else
nfs4_close_state(state, flags);
out:
return status;
}
static int _nfs4_proc_remove(struct inode *dir, struct qstr *name)
{
struct nfs_server *server = NFS_SERVER(dir);
struct nfs4_remove_arg args = {
.fh = NFS_FH(dir),
.name = name,
.bitmask = server->attr_bitmask,
};
struct nfs_fattr dir_attr;
struct nfs4_remove_res res = {
.server = server,
.dir_attr = &dir_attr,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
.rpc_argp = &args,
.rpc_resp = &res,
};
int status;
nfs_fattr_init(res.dir_attr);
status = rpc_call_sync(server->client, &msg, 0);
if (status == 0) {
update_changeattr(dir, &res.cinfo);
nfs_post_op_update_inode(dir, res.dir_attr);
}
return status;
}
static int nfs4_proc_remove(struct inode *dir, struct qstr *name)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(dir),
_nfs4_proc_remove(dir, name),
&exception);
} while (exception.retry);
return err;
}
struct unlink_desc {
struct nfs4_remove_arg args;
struct nfs4_remove_res res;
struct nfs_fattr dir_attr;
};
static int nfs4_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir,
struct qstr *name)
{
struct nfs_server *server = NFS_SERVER(dir->d_inode);
struct unlink_desc *up;
up = (struct unlink_desc *) kmalloc(sizeof(*up), GFP_KERNEL);
if (!up)
return -ENOMEM;
up->args.fh = NFS_FH(dir->d_inode);
up->args.name = name;
up->args.bitmask = server->attr_bitmask;
up->res.server = server;
up->res.dir_attr = &up->dir_attr;
msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
msg->rpc_argp = &up->args;
msg->rpc_resp = &up->res;
return 0;
}
static int nfs4_proc_unlink_done(struct dentry *dir, struct rpc_task *task)
{
struct rpc_message *msg = &task->tk_msg;
struct unlink_desc *up;
if (msg->rpc_resp != NULL) {
up = container_of(msg->rpc_resp, struct unlink_desc, res);
update_changeattr(dir->d_inode, &up->res.cinfo);
nfs_post_op_update_inode(dir->d_inode, up->res.dir_attr);
kfree(up);
msg->rpc_resp = NULL;
msg->rpc_argp = NULL;
}
return 0;
}
static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
struct inode *new_dir, struct qstr *new_name)
{
struct nfs_server *server = NFS_SERVER(old_dir);
struct nfs4_rename_arg arg = {
.old_dir = NFS_FH(old_dir),
.new_dir = NFS_FH(new_dir),
.old_name = old_name,
.new_name = new_name,
.bitmask = server->attr_bitmask,
};
struct nfs_fattr old_fattr, new_fattr;
struct nfs4_rename_res res = {
.server = server,
.old_fattr = &old_fattr,
.new_fattr = &new_fattr,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME],
.rpc_argp = &arg,
.rpc_resp = &res,
};
int status;
nfs_fattr_init(res.old_fattr);
nfs_fattr_init(res.new_fattr);
status = rpc_call_sync(server->client, &msg, 0);
if (!status) {
update_changeattr(old_dir, &res.old_cinfo);
nfs_post_op_update_inode(old_dir, res.old_fattr);
update_changeattr(new_dir, &res.new_cinfo);
nfs_post_op_update_inode(new_dir, res.new_fattr);
}
return status;
}
static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
struct inode *new_dir, struct qstr *new_name)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(old_dir),
_nfs4_proc_rename(old_dir, old_name,
new_dir, new_name),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
{
struct nfs_server *server = NFS_SERVER(inode);
struct nfs4_link_arg arg = {
.fh = NFS_FH(inode),
.dir_fh = NFS_FH(dir),
.name = name,
.bitmask = server->attr_bitmask,
};
struct nfs_fattr fattr, dir_attr;
struct nfs4_link_res res = {
.server = server,
.fattr = &fattr,
.dir_attr = &dir_attr,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
.rpc_argp = &arg,
.rpc_resp = &res,
};
int status;
nfs_fattr_init(res.fattr);
nfs_fattr_init(res.dir_attr);
status = rpc_call_sync(server->client, &msg, 0);
if (!status) {
update_changeattr(dir, &res.cinfo);
nfs_post_op_update_inode(dir, res.dir_attr);
nfs_post_op_update_inode(inode, res.fattr);
}
return status;
}
static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(inode),
_nfs4_proc_link(inode, dir, name),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
struct page *page, unsigned int len, struct iattr *sattr)
{
struct nfs_server *server = NFS_SERVER(dir);
struct nfs_fh fhandle;
struct nfs_fattr fattr, dir_fattr;
struct nfs4_create_arg arg = {
.dir_fh = NFS_FH(dir),
.server = server,
.name = &dentry->d_name,
.attrs = sattr,
.ftype = NF4LNK,
.bitmask = server->attr_bitmask,
};
struct nfs4_create_res res = {
.server = server,
.fh = &fhandle,
.fattr = &fattr,
.dir_fattr = &dir_fattr,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK],
.rpc_argp = &arg,
.rpc_resp = &res,
};
int status;
if (len > NFS4_MAXPATHLEN)
return -ENAMETOOLONG;
arg.u.symlink.pages = &page;
arg.u.symlink.len = len;
nfs_fattr_init(&fattr);
nfs_fattr_init(&dir_fattr);
status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
if (!status) {
update_changeattr(dir, &res.dir_cinfo);
nfs_post_op_update_inode(dir, res.dir_fattr);
status = nfs_instantiate(dentry, &fhandle, &fattr);
}
return status;
}
static int nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
struct page *page, unsigned int len, struct iattr *sattr)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(dir),
_nfs4_proc_symlink(dir, dentry, page,
len, sattr),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
struct iattr *sattr)
{
struct nfs_server *server = NFS_SERVER(dir);
struct nfs_fh fhandle;
struct nfs_fattr fattr, dir_fattr;
struct nfs4_create_arg arg = {
.dir_fh = NFS_FH(dir),
.server = server,
.name = &dentry->d_name,
.attrs = sattr,
.ftype = NF4DIR,
.bitmask = server->attr_bitmask,
};
struct nfs4_create_res res = {
.server = server,
.fh = &fhandle,
.fattr = &fattr,
.dir_fattr = &dir_fattr,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
.rpc_argp = &arg,
.rpc_resp = &res,
};
int status;
nfs_fattr_init(&fattr);
nfs_fattr_init(&dir_fattr);
status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
if (!status) {
update_changeattr(dir, &res.dir_cinfo);
nfs_post_op_update_inode(dir, res.dir_fattr);
status = nfs_instantiate(dentry, &fhandle, &fattr);
}
return status;
}
static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
struct iattr *sattr)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(dir),
_nfs4_proc_mkdir(dir, dentry, sattr),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
u64 cookie, struct page *page, unsigned int count, int plus)
{
struct inode *dir = dentry->d_inode;
struct nfs4_readdir_arg args = {
.fh = NFS_FH(dir),
.pages = &page,
.pgbase = 0,
.count = count,
.bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask,
};
struct nfs4_readdir_res res;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
.rpc_argp = &args,
.rpc_resp = &res,
.rpc_cred = cred,
};
int status;
dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __FUNCTION__,
dentry->d_parent->d_name.name,
dentry->d_name.name,
(unsigned long long)cookie);
nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args);
res.pgbase = args.pgbase;
status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
if (status == 0)
memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE);
dprintk("%s: returns %d\n", __FUNCTION__, status);
return status;
}
static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
u64 cookie, struct page *page, unsigned int count, int plus)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode),
_nfs4_proc_readdir(dentry, cred, cookie,
page, count, plus),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
struct iattr *sattr, dev_t rdev)
{
struct nfs_server *server = NFS_SERVER(dir);
struct nfs_fh fh;
struct nfs_fattr fattr, dir_fattr;
struct nfs4_create_arg arg = {
.dir_fh = NFS_FH(dir),
.server = server,
.name = &dentry->d_name,
.attrs = sattr,
.bitmask = server->attr_bitmask,
};
struct nfs4_create_res res = {
.server = server,
.fh = &fh,
.fattr = &fattr,
.dir_fattr = &dir_fattr,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
.rpc_argp = &arg,
.rpc_resp = &res,
};
int status;
int mode = sattr->ia_mode;
nfs_fattr_init(&fattr);
nfs_fattr_init(&dir_fattr);
BUG_ON(!(sattr->ia_valid & ATTR_MODE));
BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode));
if (S_ISFIFO(mode))
arg.ftype = NF4FIFO;
else if (S_ISBLK(mode)) {
arg.ftype = NF4BLK;
arg.u.device.specdata1 = MAJOR(rdev);
arg.u.device.specdata2 = MINOR(rdev);
}
else if (S_ISCHR(mode)) {
arg.ftype = NF4CHR;
arg.u.device.specdata1 = MAJOR(rdev);
arg.u.device.specdata2 = MINOR(rdev);
}
else
arg.ftype = NF4SOCK;
status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
if (status == 0) {
update_changeattr(dir, &res.dir_cinfo);
nfs_post_op_update_inode(dir, res.dir_fattr);
status = nfs_instantiate(dentry, &fh, &fattr);
}
return status;
}
static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
struct iattr *sattr, dev_t rdev)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(dir),
_nfs4_proc_mknod(dir, dentry, sattr, rdev),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsstat *fsstat)
{
struct nfs4_statfs_arg args = {
.fh = fhandle,
.bitmask = server->attr_bitmask,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
.rpc_argp = &args,
.rpc_resp = fsstat,
};
nfs_fattr_init(fsstat->fattr);
return rpc_call_sync(server->client, &msg, 0);
}
static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_proc_statfs(server, fhandle, fsstat),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *fsinfo)
{
struct nfs4_fsinfo_arg args = {
.fh = fhandle,
.bitmask = server->attr_bitmask,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
.rpc_argp = &args,
.rpc_resp = fsinfo,
};
return rpc_call_sync(server->client, &msg, 0);
}
static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_do_fsinfo(server, fhandle, fsinfo),
&exception);
} while (exception.retry);
return err;
}
static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
{
nfs_fattr_init(fsinfo->fattr);
return nfs4_do_fsinfo(server, fhandle, fsinfo);
}
static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_pathconf *pathconf)
{
struct nfs4_pathconf_arg args = {
.fh = fhandle,
.bitmask = server->attr_bitmask,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
.rpc_argp = &args,
.rpc_resp = pathconf,
};
/* None of the pathconf attributes are mandatory to implement */
if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
memset(pathconf, 0, sizeof(*pathconf));
return 0;
}
nfs_fattr_init(pathconf->fattr);
return rpc_call_sync(server->client, &msg, 0);
}
static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_pathconf *pathconf)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_proc_pathconf(server, fhandle, pathconf),
&exception);
} while (exception.retry);
return err;
}
static int nfs4_read_done(struct rpc_task *task, struct nfs_read_data *data)
{
struct nfs_server *server = NFS_SERVER(data->inode);
if (nfs4_async_handle_error(task, server) == -EAGAIN) {
rpc_restart_call(task);
return -EAGAIN;
}
if (task->tk_status > 0)
renew_lease(server, data->timestamp);
return 0;
}
static void nfs4_proc_read_setup(struct nfs_read_data *data)
{
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
.rpc_argp = &data->args,
.rpc_resp = &data->res,
.rpc_cred = data->cred,
};
data->timestamp = jiffies;
rpc_call_setup(&data->task, &msg, 0);
}
static int nfs4_write_done(struct rpc_task *task, struct nfs_write_data *data)
{
struct inode *inode = data->inode;
if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
rpc_restart_call(task);
return -EAGAIN;
}
if (task->tk_status >= 0) {
renew_lease(NFS_SERVER(inode), data->timestamp);
nfs_post_op_update_inode(inode, data->res.fattr);
}
return 0;
}
static void nfs4_proc_write_setup(struct nfs_write_data *data, int how)
{
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
.rpc_argp = &data->args,
.rpc_resp = &data->res,
.rpc_cred = data->cred,
};
struct inode *inode = data->inode;
struct nfs_server *server = NFS_SERVER(inode);
int stable;
if (how & FLUSH_STABLE) {
if (!NFS_I(inode)->ncommit)
stable = NFS_FILE_SYNC;
else
stable = NFS_DATA_SYNC;
} else
stable = NFS_UNSTABLE;
data->args.stable = stable;
data->args.bitmask = server->attr_bitmask;
data->res.server = server;
data->timestamp = jiffies;
/* Finalize the task. */
rpc_call_setup(&data->task, &msg, 0);
}
static int nfs4_commit_done(struct rpc_task *task, struct nfs_write_data *data)
{
struct inode *inode = data->inode;
if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
rpc_restart_call(task);
return -EAGAIN;
}
if (task->tk_status >= 0)
nfs_post_op_update_inode(inode, data->res.fattr);
return 0;
}
static void nfs4_proc_commit_setup(struct nfs_write_data *data, int how)
{
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
.rpc_argp = &data->args,
.rpc_resp = &data->res,
.rpc_cred = data->cred,
};
struct nfs_server *server = NFS_SERVER(data->inode);
data->args.bitmask = server->attr_bitmask;
data->res.server = server;
rpc_call_setup(&data->task, &msg, 0);
}
/*
* nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
* standalone procedure for queueing an asynchronous RENEW.
*/
static void nfs4_renew_done(struct rpc_task *task, void *data)
{
struct nfs_client *clp = (struct nfs_client *)task->tk_msg.rpc_argp;
unsigned long timestamp = (unsigned long)data;
if (task->tk_status < 0) {
switch (task->tk_status) {
case -NFS4ERR_STALE_CLIENTID:
case -NFS4ERR_EXPIRED:
case -NFS4ERR_CB_PATH_DOWN:
nfs4_schedule_state_recovery(clp);
}
return;
}
spin_lock(&clp->cl_lock);
if (time_before(clp->cl_last_renewal,timestamp))
clp->cl_last_renewal = timestamp;
spin_unlock(&clp->cl_lock);
}
static const struct rpc_call_ops nfs4_renew_ops = {
.rpc_call_done = nfs4_renew_done,
};
int nfs4_proc_async_renew(struct nfs_client *clp, struct rpc_cred *cred)
{
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
.rpc_argp = clp,
.rpc_cred = cred,
};
return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
&nfs4_renew_ops, (void *)jiffies);
}
int nfs4_proc_renew(struct nfs_client *clp, struct rpc_cred *cred)
{
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
.rpc_argp = clp,
.rpc_cred = cred,
};
unsigned long now = jiffies;
int status;
status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
if (status < 0)
return status;
spin_lock(&clp->cl_lock);
if (time_before(clp->cl_last_renewal,now))
clp->cl_last_renewal = now;
spin_unlock(&clp->cl_lock);
return 0;
}
static inline int nfs4_server_supports_acls(struct nfs_server *server)
{
return (server->caps & NFS_CAP_ACLS)
&& (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
&& (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL);
}
/* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that
* it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on
* the stack.
*/
#define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT)
static void buf_to_pages(const void *buf, size_t buflen,
struct page **pages, unsigned int *pgbase)
{
const void *p = buf;
*pgbase = offset_in_page(buf);
p -= *pgbase;
while (p < buf + buflen) {
*(pages++) = virt_to_page(p);
p += PAGE_CACHE_SIZE;
}
}
struct nfs4_cached_acl {
int cached;
size_t len;
char data[0];
};
static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
{
struct nfs_inode *nfsi = NFS_I(inode);
spin_lock(&inode->i_lock);
kfree(nfsi->nfs4_acl);
nfsi->nfs4_acl = acl;
spin_unlock(&inode->i_lock);
}
static void nfs4_zap_acl_attr(struct inode *inode)
{
nfs4_set_cached_acl(inode, NULL);
}
static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen)
{
struct nfs_inode *nfsi = NFS_I(inode);
struct nfs4_cached_acl *acl;
int ret = -ENOENT;
spin_lock(&inode->i_lock);
acl = nfsi->nfs4_acl;
if (acl == NULL)
goto out;
if (buf == NULL) /* user is just asking for length */
goto out_len;
if (acl->cached == 0)
goto out;
ret = -ERANGE; /* see getxattr(2) man page */
if (acl->len > buflen)
goto out;
memcpy(buf, acl->data, acl->len);
out_len:
ret = acl->len;
out:
spin_unlock(&inode->i_lock);
return ret;
}
static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len)
{
struct nfs4_cached_acl *acl;
if (buf && acl_len <= PAGE_SIZE) {
acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL);
if (acl == NULL)
goto out;
acl->cached = 1;
memcpy(acl->data, buf, acl_len);
} else {
acl = kmalloc(sizeof(*acl), GFP_KERNEL);
if (acl == NULL)
goto out;
acl->cached = 0;
}
acl->len = acl_len;
out:
nfs4_set_cached_acl(inode, acl);
}
static ssize_t __nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
{
struct page *pages[NFS4ACL_MAXPAGES];
struct nfs_getaclargs args = {
.fh = NFS_FH(inode),
.acl_pages = pages,
.acl_len = buflen,
};
size_t resp_len = buflen;
void *resp_buf;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
.rpc_argp = &args,
.rpc_resp = &resp_len,
};
struct page *localpage = NULL;
int ret;
if (buflen < PAGE_SIZE) {
/* As long as we're doing a round trip to the server anyway,
* let's be prepared for a page of acl data. */
localpage = alloc_page(GFP_KERNEL);
resp_buf = page_address(localpage);
if (localpage == NULL)
return -ENOMEM;
args.acl_pages[0] = localpage;
args.acl_pgbase = 0;
resp_len = args.acl_len = PAGE_SIZE;
} else {
resp_buf = buf;
buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase);
}
ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
if (ret)
goto out_free;
if (resp_len > args.acl_len)
nfs4_write_cached_acl(inode, NULL, resp_len);
else
nfs4_write_cached_acl(inode, resp_buf, resp_len);
if (buf) {
ret = -ERANGE;
if (resp_len > buflen)
goto out_free;
if (localpage)
memcpy(buf, resp_buf, resp_len);
}
ret = resp_len;
out_free:
if (localpage)
__free_page(localpage);
return ret;
}
static ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
{
struct nfs4_exception exception = { };
ssize_t ret;
do {
ret = __nfs4_get_acl_uncached(inode, buf, buflen);
if (ret >= 0)
break;
ret = nfs4_handle_exception(NFS_SERVER(inode), ret, &exception);
} while (exception.retry);
return ret;
}
static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen)
{
struct nfs_server *server = NFS_SERVER(inode);
int ret;
if (!nfs4_server_supports_acls(server))
return -EOPNOTSUPP;
ret = nfs_revalidate_inode(server, inode);
if (ret < 0)
return ret;
ret = nfs4_read_cached_acl(inode, buf, buflen);
if (ret != -ENOENT)
return ret;
return nfs4_get_acl_uncached(inode, buf, buflen);
}
static int __nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
{
struct nfs_server *server = NFS_SERVER(inode);
struct page *pages[NFS4ACL_MAXPAGES];
struct nfs_setaclargs arg = {
.fh = NFS_FH(inode),
.acl_pages = pages,
.acl_len = buflen,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETACL],
.rpc_argp = &arg,
.rpc_resp = NULL,
};
int ret;
if (!nfs4_server_supports_acls(server))
return -EOPNOTSUPP;
nfs_inode_return_delegation(inode);
buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase);
ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
if (ret == 0)
nfs4_write_cached_acl(inode, buf, buflen);
return ret;
}
static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(inode),
__nfs4_proc_set_acl(inode, buf, buflen),
&exception);
} while (exception.retry);
return err;
}
static int
nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server)
{
struct nfs_client *clp = server->nfs_client;
if (!clp || task->tk_status >= 0)
return 0;
switch(task->tk_status) {
case -NFS4ERR_STALE_CLIENTID:
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_EXPIRED:
rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL, NULL);
nfs4_schedule_state_recovery(clp);
if (test_bit(NFS4CLNT_STATE_RECOVER, &clp->cl_state) == 0)
rpc_wake_up_task(task);
task->tk_status = 0;
return -EAGAIN;
case -NFS4ERR_DELAY:
nfs_inc_server_stats((struct nfs_server *) server,
NFSIOS_DELAY);
case -NFS4ERR_GRACE:
rpc_delay(task, NFS4_POLL_RETRY_MAX);
task->tk_status = 0;
return -EAGAIN;
case -NFS4ERR_OLD_STATEID:
task->tk_status = 0;
return -EAGAIN;
}
task->tk_status = nfs4_map_errors(task->tk_status);
return 0;
}
static int nfs4_wait_bit_interruptible(void *word)
{
if (signal_pending(current))
return -ERESTARTSYS;
schedule();
return 0;
}
static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs_client *clp)
{
sigset_t oldset;
int res;
might_sleep();
rpc_clnt_sigmask(clnt, &oldset);
res = wait_on_bit(&clp->cl_state, NFS4CLNT_STATE_RECOVER,
nfs4_wait_bit_interruptible,
TASK_INTERRUPTIBLE);
rpc_clnt_sigunmask(clnt, &oldset);
return res;
}
static int nfs4_delay(struct rpc_clnt *clnt, long *timeout)
{
sigset_t oldset;
int res = 0;
might_sleep();
if (*timeout <= 0)
*timeout = NFS4_POLL_RETRY_MIN;
if (*timeout > NFS4_POLL_RETRY_MAX)
*timeout = NFS4_POLL_RETRY_MAX;
rpc_clnt_sigmask(clnt, &oldset);
if (clnt->cl_intr) {
schedule_timeout_interruptible(*timeout);
if (signalled())
res = -ERESTARTSYS;
} else
schedule_timeout_uninterruptible(*timeout);
rpc_clnt_sigunmask(clnt, &oldset);
*timeout <<= 1;
return res;
}
/* This is the error handling routine for processes that are allowed
* to sleep.
*/
int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
{
struct nfs_client *clp = server->nfs_client;
int ret = errorcode;
exception->retry = 0;
switch(errorcode) {
case 0:
return 0;
case -NFS4ERR_STALE_CLIENTID:
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_EXPIRED:
nfs4_schedule_state_recovery(clp);
ret = nfs4_wait_clnt_recover(server->client, clp);
if (ret == 0)
exception->retry = 1;
break;
case -NFS4ERR_FILE_OPEN:
case -NFS4ERR_GRACE:
case -NFS4ERR_DELAY:
ret = nfs4_delay(server->client, &exception->timeout);
if (ret != 0)
break;
case -NFS4ERR_OLD_STATEID:
exception->retry = 1;
}
/* We failed to handle the error */
return nfs4_map_errors(ret);
}
int nfs4_proc_setclientid(struct nfs_client *clp, u32 program, unsigned short port, struct rpc_cred *cred)
{
nfs4_verifier sc_verifier;
struct nfs4_setclientid setclientid = {
.sc_verifier = &sc_verifier,
.sc_prog = program,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
.rpc_argp = &setclientid,
.rpc_resp = clp,
.rpc_cred = cred,
};
__be32 *p;
int loop = 0;
int status;
p = (__be32*)sc_verifier.data;
*p++ = htonl((u32)clp->cl_boot_time.tv_sec);
*p = htonl((u32)clp->cl_boot_time.tv_nsec);
for(;;) {
setclientid.sc_name_len = scnprintf(setclientid.sc_name,
sizeof(setclientid.sc_name), "%s/%u.%u.%u.%u %s %u",
clp->cl_ipaddr, NIPQUAD(clp->cl_addr.sin_addr),
cred->cr_ops->cr_name,
clp->cl_id_uniquifier);
setclientid.sc_netid_len = scnprintf(setclientid.sc_netid,
sizeof(setclientid.sc_netid), "tcp");
setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
sizeof(setclientid.sc_uaddr), "%s.%d.%d",
clp->cl_ipaddr, port >> 8, port & 255);
status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
if (status != -NFS4ERR_CLID_INUSE)
break;
if (signalled())
break;
if (loop++ & 1)
ssleep(clp->cl_lease_time + 1);
else
if (++clp->cl_id_uniquifier == 0)
break;
}
return status;
}
static int _nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
{
struct nfs_fsinfo fsinfo;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
.rpc_argp = clp,
.rpc_resp = &fsinfo,
.rpc_cred = cred,
};
unsigned long now;
int status;
now = jiffies;
status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
if (status == 0) {
spin_lock(&clp->cl_lock);
clp->cl_lease_time = fsinfo.lease_time * HZ;
clp->cl_last_renewal = now;
clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state);
spin_unlock(&clp->cl_lock);
}
return status;
}
int nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
{
long timeout;
int err;
do {
err = _nfs4_proc_setclientid_confirm(clp, cred);
switch (err) {
case 0:
return err;
case -NFS4ERR_RESOURCE:
/* The IBM lawyers misread another document! */
case -NFS4ERR_DELAY:
err = nfs4_delay(clp->cl_rpcclient, &timeout);
}
} while (err == 0);
return err;
}
struct nfs4_delegreturndata {
struct nfs4_delegreturnargs args;
struct nfs4_delegreturnres res;
struct nfs_fh fh;
nfs4_stateid stateid;
struct rpc_cred *cred;
unsigned long timestamp;
struct nfs_fattr fattr;
int rpc_status;
};
static void nfs4_delegreturn_prepare(struct rpc_task *task, void *calldata)
{
struct nfs4_delegreturndata *data = calldata;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
.rpc_argp = &data->args,
.rpc_resp = &data->res,
.rpc_cred = data->cred,
};
nfs_fattr_init(data->res.fattr);
rpc_call_setup(task, &msg, 0);
}
static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata)
{
struct nfs4_delegreturndata *data = calldata;
data->rpc_status = task->tk_status;
if (data->rpc_status == 0)
renew_lease(data->res.server, data->timestamp);
}
static void nfs4_delegreturn_release(void *calldata)
{
struct nfs4_delegreturndata *data = calldata;
put_rpccred(data->cred);
kfree(calldata);
}
static const struct rpc_call_ops nfs4_delegreturn_ops = {
.rpc_call_prepare = nfs4_delegreturn_prepare,
.rpc_call_done = nfs4_delegreturn_done,
.rpc_release = nfs4_delegreturn_release,
};
static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
{
struct nfs4_delegreturndata *data;
struct nfs_server *server = NFS_SERVER(inode);
struct rpc_task *task;
int status;
data = kmalloc(sizeof(*data), GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
data->args.fhandle = &data->fh;
data->args.stateid = &data->stateid;
data->args.bitmask = server->attr_bitmask;
nfs_copy_fh(&data->fh, NFS_FH(inode));
memcpy(&data->stateid, stateid, sizeof(data->stateid));
data->res.fattr = &data->fattr;
data->res.server = server;
data->cred = get_rpccred(cred);
data->timestamp = jiffies;
data->rpc_status = 0;
task = rpc_run_task(NFS_CLIENT(inode), RPC_TASK_ASYNC, &nfs4_delegreturn_ops, data);
if (IS_ERR(task))
return PTR_ERR(task);
status = nfs4_wait_for_completion_rpc_task(task);
if (status == 0) {
status = data->rpc_status;
if (status == 0)
nfs_post_op_update_inode(inode, &data->fattr);
}
rpc_put_task(task);
return status;
}
int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
{
struct nfs_server *server = NFS_SERVER(inode);
struct nfs4_exception exception = { };
int err;
do {
err = _nfs4_proc_delegreturn(inode, cred, stateid);
switch (err) {
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_EXPIRED:
nfs4_schedule_state_recovery(server->nfs_client);
case 0:
return 0;
}
err = nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
return err;
}
#define NFS4_LOCK_MINTIMEOUT (1 * HZ)
#define NFS4_LOCK_MAXTIMEOUT (30 * HZ)
/*
* sleep, with exponential backoff, and retry the LOCK operation.
*/
static unsigned long
nfs4_set_lock_task_retry(unsigned long timeout)
{
schedule_timeout_interruptible(timeout);
timeout <<= 1;
if (timeout > NFS4_LOCK_MAXTIMEOUT)
return NFS4_LOCK_MAXTIMEOUT;
return timeout;
}
static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
struct inode *inode = state->inode;
struct nfs_server *server = NFS_SERVER(inode);
struct nfs_client *clp = server->nfs_client;
struct nfs_lockt_args arg = {
.fh = NFS_FH(inode),
.fl = request,
};
struct nfs_lockt_res res = {
.denied = request,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
.rpc_argp = &arg,
.rpc_resp = &res,
.rpc_cred = state->owner->so_cred,
};
struct nfs4_lock_state *lsp;
int status;
down_read(&clp->cl_sem);
arg.lock_owner.clientid = clp->cl_clientid;
status = nfs4_set_lock_state(state, request);
if (status != 0)
goto out;
lsp = request->fl_u.nfs4_fl.owner;
arg.lock_owner.id = lsp->ls_id;
status = rpc_call_sync(server->client, &msg, 0);
switch (status) {
case 0:
request->fl_type = F_UNLCK;
break;
case -NFS4ERR_DENIED:
status = 0;
}
out:
up_read(&clp->cl_sem);
return status;
}
static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(state->inode),
_nfs4_proc_getlk(state, cmd, request),
&exception);
} while (exception.retry);
return err;
}
static int do_vfs_lock(struct file *file, struct file_lock *fl)
{
int res = 0;
switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
case FL_POSIX:
res = posix_lock_file_wait(file, fl);
break;
case FL_FLOCK:
res = flock_lock_file_wait(file, fl);
break;
default:
BUG();
}
return res;
}
struct nfs4_unlockdata {
struct nfs_locku_args arg;
struct nfs_locku_res res;
struct nfs4_lock_state *lsp;
struct nfs_open_context *ctx;
struct file_lock fl;
const struct nfs_server *server;
unsigned long timestamp;
};
static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl,
struct nfs_open_context *ctx,
struct nfs4_lock_state *lsp,
struct nfs_seqid *seqid)
{
struct nfs4_unlockdata *p;
struct inode *inode = lsp->ls_state->inode;
p = kmalloc(sizeof(*p), GFP_KERNEL);
if (p == NULL)
return NULL;
p->arg.fh = NFS_FH(inode);
p->arg.fl = &p->fl;
p->arg.seqid = seqid;
p->arg.stateid = &lsp->ls_stateid;
p->lsp = lsp;
atomic_inc(&lsp->ls_count);
/* Ensure we don't close file until we're done freeing locks! */
p->ctx = get_nfs_open_context(ctx);
memcpy(&p->fl, fl, sizeof(p->fl));
p->server = NFS_SERVER(inode);
return p;
}
static void nfs4_locku_release_calldata(void *data)
{
struct nfs4_unlockdata *calldata = data;
nfs_free_seqid(calldata->arg.seqid);
nfs4_put_lock_state(calldata->lsp);
put_nfs_open_context(calldata->ctx);
kfree(calldata);
}
static void nfs4_locku_done(struct rpc_task *task, void *data)
{
struct nfs4_unlockdata *calldata = data;
if (RPC_ASSASSINATED(task))
return;
nfs_increment_lock_seqid(task->tk_status, calldata->arg.seqid);
switch (task->tk_status) {
case 0:
memcpy(calldata->lsp->ls_stateid.data,
calldata->res.stateid.data,
sizeof(calldata->lsp->ls_stateid.data));
renew_lease(calldata->server, calldata->timestamp);
break;
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_EXPIRED:
nfs4_schedule_state_recovery(calldata->server->nfs_client);
break;
default:
if (nfs4_async_handle_error(task, calldata->server) == -EAGAIN) {
rpc_restart_call(task);
}
}
}
static void nfs4_locku_prepare(struct rpc_task *task, void *data)
{
struct nfs4_unlockdata *calldata = data;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
.rpc_argp = &calldata->arg,
.rpc_resp = &calldata->res,
.rpc_cred = calldata->lsp->ls_state->owner->so_cred,
};
if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
return;
if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) {
/* Note: exit _without_ running nfs4_locku_done */
task->tk_action = NULL;
return;
}
calldata->timestamp = jiffies;
rpc_call_setup(task, &msg, 0);
}
static const struct rpc_call_ops nfs4_locku_ops = {
.rpc_call_prepare = nfs4_locku_prepare,
.rpc_call_done = nfs4_locku_done,
.rpc_release = nfs4_locku_release_calldata,
};
static struct rpc_task *nfs4_do_unlck(struct file_lock *fl,
struct nfs_open_context *ctx,
struct nfs4_lock_state *lsp,
struct nfs_seqid *seqid)
{
struct nfs4_unlockdata *data;
data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid);
if (data == NULL) {
nfs_free_seqid(seqid);
return ERR_PTR(-ENOMEM);
}
return rpc_run_task(NFS_CLIENT(lsp->ls_state->inode), RPC_TASK_ASYNC, &nfs4_locku_ops, data);
}
static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
{
struct nfs_seqid *seqid;
struct nfs4_lock_state *lsp;
struct rpc_task *task;
int status = 0;
status = nfs4_set_lock_state(state, request);
/* Unlock _before_ we do the RPC call */
request->fl_flags |= FL_EXISTS;
if (do_vfs_lock(request->fl_file, request) == -ENOENT)
goto out;
if (status != 0)
goto out;
/* Is this a delegated lock? */
if (test_bit(NFS_DELEGATED_STATE, &state->flags))
goto out;
lsp = request->fl_u.nfs4_fl.owner;
seqid = nfs_alloc_seqid(&lsp->ls_seqid);
status = -ENOMEM;
if (seqid == NULL)
goto out;
task = nfs4_do_unlck(request, request->fl_file->private_data, lsp, seqid);
status = PTR_ERR(task);
if (IS_ERR(task))
goto out;
status = nfs4_wait_for_completion_rpc_task(task);
rpc_put_task(task);
out:
return status;
}
struct nfs4_lockdata {
struct nfs_lock_args arg;
struct nfs_lock_res res;
struct nfs4_lock_state *lsp;
struct nfs_open_context *ctx;
struct file_lock fl;
unsigned long timestamp;
int rpc_status;
int cancelled;
};
static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl,
struct nfs_open_context *ctx, struct nfs4_lock_state *lsp)
{
struct nfs4_lockdata *p;
struct inode *inode = lsp->ls_state->inode;
struct nfs_server *server = NFS_SERVER(inode);
p = kzalloc(sizeof(*p), GFP_KERNEL);
if (p == NULL)
return NULL;
p->arg.fh = NFS_FH(inode);
p->arg.fl = &p->fl;
p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid);
if (p->arg.lock_seqid == NULL)
goto out_free;
p->arg.lock_stateid = &lsp->ls_stateid;
p->arg.lock_owner.clientid = server->nfs_client->cl_clientid;
p->arg.lock_owner.id = lsp->ls_id;
p->lsp = lsp;
atomic_inc(&lsp->ls_count);
p->ctx = get_nfs_open_context(ctx);
memcpy(&p->fl, fl, sizeof(p->fl));
return p;
out_free:
kfree(p);
return NULL;
}
static void nfs4_lock_prepare(struct rpc_task *task, void *calldata)
{
struct nfs4_lockdata *data = calldata;
struct nfs4_state *state = data->lsp->ls_state;
struct nfs4_state_owner *sp = state->owner;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
.rpc_argp = &data->arg,
.rpc_resp = &data->res,
.rpc_cred = sp->so_cred,
};
if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0)
return;
dprintk("%s: begin!\n", __FUNCTION__);
/* Do we need to do an open_to_lock_owner? */
if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) {
data->arg.open_seqid = nfs_alloc_seqid(&sp->so_seqid);
if (data->arg.open_seqid == NULL) {
data->rpc_status = -ENOMEM;
task->tk_action = NULL;
goto out;
}
data->arg.open_stateid = &state->stateid;
data->arg.new_lock_owner = 1;
}
data->timestamp = jiffies;
rpc_call_setup(task, &msg, 0);
out:
dprintk("%s: done!, ret = %d\n", __FUNCTION__, data->rpc_status);
}
static void nfs4_lock_done(struct rpc_task *task, void *calldata)
{
struct nfs4_lockdata *data = calldata;
dprintk("%s: begin!\n", __FUNCTION__);
data->rpc_status = task->tk_status;
if (RPC_ASSASSINATED(task))
goto out;
if (data->arg.new_lock_owner != 0) {
nfs_increment_open_seqid(data->rpc_status, data->arg.open_seqid);
if (data->rpc_status == 0)
nfs_confirm_seqid(&data->lsp->ls_seqid, 0);
else
goto out;
}
if (data->rpc_status == 0) {
memcpy(data->lsp->ls_stateid.data, data->res.stateid.data,
sizeof(data->lsp->ls_stateid.data));
data->lsp->ls_flags |= NFS_LOCK_INITIALIZED;
renew_lease(NFS_SERVER(data->ctx->dentry->d_inode), data->timestamp);
}
nfs_increment_lock_seqid(data->rpc_status, data->arg.lock_seqid);
out:
dprintk("%s: done, ret = %d!\n", __FUNCTION__, data->rpc_status);
}
static void nfs4_lock_release(void *calldata)
{
struct nfs4_lockdata *data = calldata;
dprintk("%s: begin!\n", __FUNCTION__);
if (data->arg.open_seqid != NULL)
nfs_free_seqid(data->arg.open_seqid);
if (data->cancelled != 0) {
struct rpc_task *task;
task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp,
data->arg.lock_seqid);
if (!IS_ERR(task))
rpc_put_task(task);
dprintk("%s: cancelling lock!\n", __FUNCTION__);
} else
nfs_free_seqid(data->arg.lock_seqid);
nfs4_put_lock_state(data->lsp);
put_nfs_open_context(data->ctx);
kfree(data);
dprintk("%s: done!\n", __FUNCTION__);
}
static const struct rpc_call_ops nfs4_lock_ops = {
.rpc_call_prepare = nfs4_lock_prepare,
.rpc_call_done = nfs4_lock_done,
.rpc_release = nfs4_lock_release,
};
static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int reclaim)
{
struct nfs4_lockdata *data;
struct rpc_task *task;
int ret;
dprintk("%s: begin!\n", __FUNCTION__);
data = nfs4_alloc_lockdata(fl, fl->fl_file->private_data,
fl->fl_u.nfs4_fl.owner);
if (data == NULL)
return -ENOMEM;
if (IS_SETLKW(cmd))
data->arg.block = 1;
if (reclaim != 0)
data->arg.reclaim = 1;
task = rpc_run_task(NFS_CLIENT(state->inode), RPC_TASK_ASYNC,
&nfs4_lock_ops, data);
if (IS_ERR(task))
return PTR_ERR(task);
ret = nfs4_wait_for_completion_rpc_task(task);
if (ret == 0) {
ret = data->rpc_status;
if (ret == -NFS4ERR_DENIED)
ret = -EAGAIN;
} else
data->cancelled = 1;
rpc_put_task(task);
dprintk("%s: done, ret = %d!\n", __FUNCTION__, ret);
return ret;
}
static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request)
{
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs4_exception exception = { };
int err;
do {
/* Cache the lock if possible... */
if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
return 0;
err = _nfs4_do_setlk(state, F_SETLK, request, 1);
if (err != -NFS4ERR_DELAY)
break;
nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
return err;
}
static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request)
{
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs4_exception exception = { };
int err;
err = nfs4_set_lock_state(state, request);
if (err != 0)
return err;
do {
if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
return 0;
err = _nfs4_do_setlk(state, F_SETLK, request, 0);
if (err != -NFS4ERR_DELAY)
break;
nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
struct nfs_client *clp = state->owner->so_client;
unsigned char fl_flags = request->fl_flags;
int status;
/* Is this a delegated open? */
status = nfs4_set_lock_state(state, request);
if (status != 0)
goto out;
request->fl_flags |= FL_ACCESS;
status = do_vfs_lock(request->fl_file, request);
if (status < 0)
goto out;
down_read(&clp->cl_sem);
if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
struct nfs_inode *nfsi = NFS_I(state->inode);
/* Yes: cache locks! */
down_read(&nfsi->rwsem);
/* ...but avoid races with delegation recall... */
if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
request->fl_flags = fl_flags & ~FL_SLEEP;
status = do_vfs_lock(request->fl_file, request);
up_read(&nfsi->rwsem);
goto out_unlock;
}
up_read(&nfsi->rwsem);
}
status = _nfs4_do_setlk(state, cmd, request, 0);
if (status != 0)
goto out_unlock;
/* Note: we always want to sleep here! */
request->fl_flags = fl_flags | FL_SLEEP;
if (do_vfs_lock(request->fl_file, request) < 0)
printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __FUNCTION__);
out_unlock:
up_read(&clp->cl_sem);
out:
request->fl_flags = fl_flags;
return status;
}
static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(state->inode),
_nfs4_proc_setlk(state, cmd, request),
&exception);
} while (exception.retry);
return err;
}
static int
nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request)
{
struct nfs_open_context *ctx;
struct nfs4_state *state;
unsigned long timeout = NFS4_LOCK_MINTIMEOUT;
int status;
/* verify open state */
ctx = (struct nfs_open_context *)filp->private_data;
state = ctx->state;
if (request->fl_start < 0 || request->fl_end < 0)
return -EINVAL;
if (IS_GETLK(cmd))
return nfs4_proc_getlk(state, F_GETLK, request);
if (!(IS_SETLK(cmd) || IS_SETLKW(cmd)))
return -EINVAL;
if (request->fl_type == F_UNLCK)
return nfs4_proc_unlck(state, cmd, request);
do {
status = nfs4_proc_setlk(state, cmd, request);
if ((status != -EAGAIN) || IS_SETLK(cmd))
break;
timeout = nfs4_set_lock_task_retry(timeout);
status = -ERESTARTSYS;
if (signalled())
break;
} while(status < 0);
return status;
}
int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl)
{
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs4_exception exception = { };
int err;
err = nfs4_set_lock_state(state, fl);
if (err != 0)
goto out;
do {
err = _nfs4_do_setlk(state, F_SETLK, fl, 0);
if (err != -NFS4ERR_DELAY)
break;
err = nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
out:
return err;
}
#define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"
int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf,
size_t buflen, int flags)
{
struct inode *inode = dentry->d_inode;
if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
return -EOPNOTSUPP;
if (!S_ISREG(inode->i_mode) &&
(!S_ISDIR(inode->i_mode) || inode->i_mode & S_ISVTX))
return -EPERM;
return nfs4_proc_set_acl(inode, buf, buflen);
}
/* The getxattr man page suggests returning -ENODATA for unknown attributes,
* and that's what we'll do for e.g. user attributes that haven't been set.
* But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported
* attributes in kernel-managed attribute namespaces. */
ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf,
size_t buflen)
{
struct inode *inode = dentry->d_inode;
if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
return -EOPNOTSUPP;
return nfs4_proc_get_acl(inode, buf, buflen);
}
ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen)
{
size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1;
if (!nfs4_server_supports_acls(NFS_SERVER(dentry->d_inode)))
return 0;
if (buf && buflen < len)
return -ERANGE;
if (buf)
memcpy(buf, XATTR_NAME_NFSV4_ACL, len);
return len;
}
int nfs4_proc_fs_locations(struct inode *dir, struct dentry *dentry,
struct nfs4_fs_locations *fs_locations, struct page *page)
{
struct nfs_server *server = NFS_SERVER(dir);
u32 bitmask[2] = {
[0] = FATTR4_WORD0_FSID | FATTR4_WORD0_FS_LOCATIONS,
[1] = FATTR4_WORD1_MOUNTED_ON_FILEID,
};
struct nfs4_fs_locations_arg args = {
.dir_fh = NFS_FH(dir),
.name = &dentry->d_name,
.page = page,
.bitmask = bitmask,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS],
.rpc_argp = &args,
.rpc_resp = fs_locations,
};
int status;
dprintk("%s: start\n", __FUNCTION__);
fs_locations->fattr.valid = 0;
fs_locations->server = server;
fs_locations->nlocations = 0;
status = rpc_call_sync(server->client, &msg, 0);
dprintk("%s: returned status = %d\n", __FUNCTION__, status);
return status;
}
struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops = {
.recover_open = nfs4_open_reclaim,
.recover_lock = nfs4_lock_reclaim,
};
struct nfs4_state_recovery_ops nfs4_network_partition_recovery_ops = {
.recover_open = nfs4_open_expired,
.recover_lock = nfs4_lock_expired,
};
static struct inode_operations nfs4_file_inode_operations = {
.permission = nfs_permission,
.getattr = nfs_getattr,
.setattr = nfs_setattr,
.getxattr = nfs4_getxattr,
.setxattr = nfs4_setxattr,
.listxattr = nfs4_listxattr,
};
const struct nfs_rpc_ops nfs_v4_clientops = {
.version = 4, /* protocol version */
.dentry_ops = &nfs4_dentry_operations,
.dir_inode_ops = &nfs4_dir_inode_operations,
.file_inode_ops = &nfs4_file_inode_operations,
.getroot = nfs4_proc_get_root,
.getattr = nfs4_proc_getattr,
.setattr = nfs4_proc_setattr,
.lookupfh = nfs4_proc_lookupfh,
.lookup = nfs4_proc_lookup,
.access = nfs4_proc_access,
.readlink = nfs4_proc_readlink,
.read = nfs4_proc_read,
.create = nfs4_proc_create,
.remove = nfs4_proc_remove,
.unlink_setup = nfs4_proc_unlink_setup,
.unlink_done = nfs4_proc_unlink_done,
.rename = nfs4_proc_rename,
.link = nfs4_proc_link,
.symlink = nfs4_proc_symlink,
.mkdir = nfs4_proc_mkdir,
.rmdir = nfs4_proc_remove,
.readdir = nfs4_proc_readdir,
.mknod = nfs4_proc_mknod,
.statfs = nfs4_proc_statfs,
.fsinfo = nfs4_proc_fsinfo,
.pathconf = nfs4_proc_pathconf,
.set_capabilities = nfs4_server_capabilities,
.decode_dirent = nfs4_decode_dirent,
.read_setup = nfs4_proc_read_setup,
.read_done = nfs4_read_done,
.write_setup = nfs4_proc_write_setup,
.write_done = nfs4_write_done,
.commit_setup = nfs4_proc_commit_setup,
.commit_done = nfs4_commit_done,
.file_open = nfs_open,
.file_release = nfs_release,
.lock = nfs4_proc_lock,
.clear_acl_cache = nfs4_zap_acl_attr,
};
/*
* Local variables:
* c-basic-offset: 8
* End:
*/