aboutsummaryrefslogblamecommitdiffstats
path: root/fs/ext4/mballoc.c
blob: 1d7fde994521434271682c95ffd611991e287e7f (plain) (tree)
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157






















                                                                         
                    




















































































































































































































































































































                                                                               

                                                                 
                       

                                                      
                         

                                                      


                                

                    






                                                     
                                                   




                                                  
                                                   




                                                                           
                                                   




                                                    
                                                   




                                                                             
                                                   


                                               



















                                                                       



                                                                       




































                                                                               
                                                                       
































































































































































                                                                                

                                                                                
                                                          
                                                





                                                                   
                                                                     














                                                                     
                                                






































                                                                              
                                                  



                               
                                                     






                                                                             
                                                                  



                                      
                                        

                                                                              



                                                                        


















































































































































































                                                                                


                                                               




































































































































































































                                                                               
                                                                       















































































































































































































































































































































































































































                                                                               
                                                         






































                                                                          
                                                 

                                                                              
                          
                                                                       


                                                                     
                                                                         

                                                                          




                                                                   
                                       
                                                                         

                                                                          





                                                                         
                 

































































































                                                                            

                                                             


































































































































































































































































































































































































































































































                                                                                



                                                                       











                                                                       

                                                         


































































































                                                                               





                                                                           
                            






































                                                                         
                       
                                                  

                                 
                       






















































































































































































                                                                                

                                                     

























































                                                                               








































































                                                                         
                                      
































                                                                    
                                      



















                                                                        







                                                                            
                     
                                                     
                                   
                                                                       
      






                                               
                                           
                     
                                           







                                                                       

                                                               















































                                                                       
                                        






















                                                                              
                                                                      










                                                                                
                          




















                                                                               
                                                            






                                                        

                                                             



                                                                   


                                                          
                                       




























                                                             

                                     
 

                                                         

















                                                
                                                                          
                                                              


                                                                          



                                                                             
                                                                          





















                                                                             
                                                                          

                                     








































                                                                             
                                                                          
                                     


























































































                                                                             
                                                                   

















                                                                    
                                                                    
                                                               

                                                                            






                                                                             

                                                            



                                                          






                                                
                                                                          






























                                                                             
                                                                           






















































































































                                                                                

                                                        





















































































                                                                        

                                                        







































































                                                                        

                                                                               

                                                           
 














                                                                      




                                                    

                           
                                                                         

                               
                                                                     








                                                                           






                                                        




                                                                   
                                                                          


                                                          
                                                                 
                                                                   



                                                                     
         




                                               

                                                

                                                                   
 



                                            

                                                    






                                                                      







                                                
         












                                             

                                                            




                                                                       
                                           


























                                                                 
                                                        





















































                                                                            
                                                               
                    
                                                                          






                                                               

                                                    



















                                                              
                                           













                                                                        
                                                        































































                                                                              
                                                                  







                                                               

                                                    


























































                                                                               
                                         

























































                                                                           

                                                              




















































































































                                                                               
                                                  
























                                                                        





                                                        

                                                 
                                                   




                            

                                             
 

                                                  


                                            
                                              



                                                              


                                                                        

         

                                                        
                          

                                                                 
                
                                                                                


                                    
                                       
                            
                                    

         
                                    




                                                               
                                            
































                                                                             

                                                               


































































                                                                                
                                             
                                             
                                                  



















                                                          
                                        






                                                                      





                                                        


























                                                                    
                                        




































                                                                         





                                                   













                                                                             
                                                        























                                                                       

                                                    

               
/*
 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
 * Written by Alex Tomas <alex@clusterfs.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public Licens
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
 */


/*
 * mballoc.c contains the multiblocks allocation routines
 */

#include "mballoc.h"
/*
 * MUSTDO:
 *   - test ext4_ext_search_left() and ext4_ext_search_right()
 *   - search for metadata in few groups
 *
 * TODO v4:
 *   - normalization should take into account whether file is still open
 *   - discard preallocations if no free space left (policy?)
 *   - don't normalize tails
 *   - quota
 *   - reservation for superuser
 *
 * TODO v3:
 *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
 *   - track min/max extents in each group for better group selection
 *   - mb_mark_used() may allocate chunk right after splitting buddy
 *   - tree of groups sorted by number of free blocks
 *   - error handling
 */

/*
 * The allocation request involve request for multiple number of blocks
 * near to the goal(block) value specified.
 *
 * During initialization phase of the allocator we decide to use the group
 * preallocation or inode preallocation depending on the size file. The
 * size of the file could be the resulting file size we would have after
 * allocation or the current file size which ever is larger. If the size is
 * less that sbi->s_mb_stream_request we select the group
 * preallocation. The default value of s_mb_stream_request is 16
 * blocks. This can also be tuned via
 * /proc/fs/ext4/<partition>/stream_req. The value is represented in terms
 * of number of blocks.
 *
 * The main motivation for having small file use group preallocation is to
 * ensure that we have small file closer in the disk.
 *
 * First stage the allocator looks at the inode prealloc list
 * ext4_inode_info->i_prealloc_list contain list of prealloc spaces for
 * this particular inode. The inode prealloc space is represented as:
 *
 * pa_lstart -> the logical start block for this prealloc space
 * pa_pstart -> the physical start block for this prealloc space
 * pa_len    -> lenght for this prealloc space
 * pa_free   ->  free space available in this prealloc space
 *
 * The inode preallocation space is used looking at the _logical_ start
 * block. If only the logical file block falls within the range of prealloc
 * space we will consume the particular prealloc space. This make sure that
 * that the we have contiguous physical blocks representing the file blocks
 *
 * The important thing to be noted in case of inode prealloc space is that
 * we don't modify the values associated to inode prealloc space except
 * pa_free.
 *
 * If we are not able to find blocks in the inode prealloc space and if we
 * have the group allocation flag set then we look at the locality group
 * prealloc space. These are per CPU prealloc list repreasented as
 *
 * ext4_sb_info.s_locality_groups[smp_processor_id()]
 *
 * The reason for having a per cpu locality group is to reduce the contention
 * between CPUs. It is possible to get scheduled at this point.
 *
 * The locality group prealloc space is used looking at whether we have
 * enough free space (pa_free) withing the prealloc space.
 *
 * If we can't allocate blocks via inode prealloc or/and locality group
 * prealloc then we look at the buddy cache. The buddy cache is represented
 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
 * mapped to the buddy and bitmap information regarding different
 * groups. The buddy information is attached to buddy cache inode so that
 * we can access them through the page cache. The information regarding
 * each group is loaded via ext4_mb_load_buddy.  The information involve
 * block bitmap and buddy information. The information are stored in the
 * inode as:
 *
 *  {                        page                        }
 *  [ group 0 buddy][ group 0 bitmap] [group 1][ group 1]...
 *
 *
 * one block each for bitmap and buddy information.  So for each group we
 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
 * blocksize) blocks.  So it can have information regarding groups_per_page
 * which is blocks_per_page/2
 *
 * The buddy cache inode is not stored on disk. The inode is thrown
 * away when the filesystem is unmounted.
 *
 * We look for count number of blocks in the buddy cache. If we were able
 * to locate that many free blocks we return with additional information
 * regarding rest of the contiguous physical block available
 *
 * Before allocating blocks via buddy cache we normalize the request
 * blocks. This ensure we ask for more blocks that we needed. The extra
 * blocks that we get after allocation is added to the respective prealloc
 * list. In case of inode preallocation we follow a list of heuristics
 * based on file size. This can be found in ext4_mb_normalize_request. If
 * we are doing a group prealloc we try to normalize the request to
 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is set to
 * 512 blocks. This can be tuned via
 * /proc/fs/ext4/<partition/group_prealloc. The value is represented in
 * terms of number of blocks. If we have mounted the file system with -O
 * stripe=<value> option the group prealloc request is normalized to the
 * stripe value (sbi->s_stripe)
 *
 * The regular allocator(using the buddy cache) support few tunables.
 *
 * /proc/fs/ext4/<partition>/min_to_scan
 * /proc/fs/ext4/<partition>/max_to_scan
 * /proc/fs/ext4/<partition>/order2_req
 *
 * The regular allocator use buddy scan only if the request len is power of
 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
 * value of s_mb_order2_reqs can be tuned via
 * /proc/fs/ext4/<partition>/order2_req.  If the request len is equal to
 * stripe size (sbi->s_stripe), we try to search for contigous block in
 * stripe size. This should result in better allocation on RAID setup. If
 * not we search in the specific group using bitmap for best extents. The
 * tunable min_to_scan and max_to_scan controll the behaviour here.
 * min_to_scan indicate how long the mballoc __must__ look for a best
 * extent and max_to_scanindicate how long the mballoc __can__ look for a
 * best extent in the found extents. Searching for the blocks starts with
 * the group specified as the goal value in allocation context via
 * ac_g_ex. Each group is first checked based on the criteria whether it
 * can used for allocation. ext4_mb_good_group explains how the groups are
 * checked.
 *
 * Both the prealloc space are getting populated as above. So for the first
 * request we will hit the buddy cache which will result in this prealloc
 * space getting filled. The prealloc space is then later used for the
 * subsequent request.
 */

/*
 * mballoc operates on the following data:
 *  - on-disk bitmap
 *  - in-core buddy (actually includes buddy and bitmap)
 *  - preallocation descriptors (PAs)
 *
 * there are two types of preallocations:
 *  - inode
 *    assiged to specific inode and can be used for this inode only.
 *    it describes part of inode's space preallocated to specific
 *    physical blocks. any block from that preallocated can be used
 *    independent. the descriptor just tracks number of blocks left
 *    unused. so, before taking some block from descriptor, one must
 *    make sure corresponded logical block isn't allocated yet. this
 *    also means that freeing any block within descriptor's range
 *    must discard all preallocated blocks.
 *  - locality group
 *    assigned to specific locality group which does not translate to
 *    permanent set of inodes: inode can join and leave group. space
 *    from this type of preallocation can be used for any inode. thus
 *    it's consumed from the beginning to the end.
 *
 * relation between them can be expressed as:
 *    in-core buddy = on-disk bitmap + preallocation descriptors
 *
 * this mean blocks mballoc considers used are:
 *  - allocated blocks (persistent)
 *  - preallocated blocks (non-persistent)
 *
 * consistency in mballoc world means that at any time a block is either
 * free or used in ALL structures. notice: "any time" should not be read
 * literally -- time is discrete and delimited by locks.
 *
 *  to keep it simple, we don't use block numbers, instead we count number of
 *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
 *
 * all operations can be expressed as:
 *  - init buddy:			buddy = on-disk + PAs
 *  - new PA:				buddy += N; PA = N
 *  - use inode PA:			on-disk += N; PA -= N
 *  - discard inode PA			buddy -= on-disk - PA; PA = 0
 *  - use locality group PA		on-disk += N; PA -= N
 *  - discard locality group PA		buddy -= PA; PA = 0
 *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
 *        is used in real operation because we can't know actual used
 *        bits from PA, only from on-disk bitmap
 *
 * if we follow this strict logic, then all operations above should be atomic.
 * given some of them can block, we'd have to use something like semaphores
 * killing performance on high-end SMP hardware. let's try to relax it using
 * the following knowledge:
 *  1) if buddy is referenced, it's already initialized
 *  2) while block is used in buddy and the buddy is referenced,
 *     nobody can re-allocate that block
 *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
 *     bit set and PA claims same block, it's OK. IOW, one can set bit in
 *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
 *     block
 *
 * so, now we're building a concurrency table:
 *  - init buddy vs.
 *    - new PA
 *      blocks for PA are allocated in the buddy, buddy must be referenced
 *      until PA is linked to allocation group to avoid concurrent buddy init
 *    - use inode PA
 *      we need to make sure that either on-disk bitmap or PA has uptodate data
 *      given (3) we care that PA-=N operation doesn't interfere with init
 *    - discard inode PA
 *      the simplest way would be to have buddy initialized by the discard
 *    - use locality group PA
 *      again PA-=N must be serialized with init
 *    - discard locality group PA
 *      the simplest way would be to have buddy initialized by the discard
 *  - new PA vs.
 *    - use inode PA
 *      i_data_sem serializes them
 *    - discard inode PA
 *      discard process must wait until PA isn't used by another process
 *    - use locality group PA
 *      some mutex should serialize them
 *    - discard locality group PA
 *      discard process must wait until PA isn't used by another process
 *  - use inode PA
 *    - use inode PA
 *      i_data_sem or another mutex should serializes them
 *    - discard inode PA
 *      discard process must wait until PA isn't used by another process
 *    - use locality group PA
 *      nothing wrong here -- they're different PAs covering different blocks
 *    - discard locality group PA
 *      discard process must wait until PA isn't used by another process
 *
 * now we're ready to make few consequences:
 *  - PA is referenced and while it is no discard is possible
 *  - PA is referenced until block isn't marked in on-disk bitmap
 *  - PA changes only after on-disk bitmap
 *  - discard must not compete with init. either init is done before
 *    any discard or they're serialized somehow
 *  - buddy init as sum of on-disk bitmap and PAs is done atomically
 *
 * a special case when we've used PA to emptiness. no need to modify buddy
 * in this case, but we should care about concurrent init
 *
 */

 /*
 * Logic in few words:
 *
 *  - allocation:
 *    load group
 *    find blocks
 *    mark bits in on-disk bitmap
 *    release group
 *
 *  - use preallocation:
 *    find proper PA (per-inode or group)
 *    load group
 *    mark bits in on-disk bitmap
 *    release group
 *    release PA
 *
 *  - free:
 *    load group
 *    mark bits in on-disk bitmap
 *    release group
 *
 *  - discard preallocations in group:
 *    mark PAs deleted
 *    move them onto local list
 *    load on-disk bitmap
 *    load group
 *    remove PA from object (inode or locality group)
 *    mark free blocks in-core
 *
 *  - discard inode's preallocations:
 */

/*
 * Locking rules
 *
 * Locks:
 *  - bitlock on a group	(group)
 *  - object (inode/locality)	(object)
 *  - per-pa lock		(pa)
 *
 * Paths:
 *  - new pa
 *    object
 *    group
 *
 *  - find and use pa:
 *    pa
 *
 *  - release consumed pa:
 *    pa
 *    group
 *    object
 *
 *  - generate in-core bitmap:
 *    group
 *        pa
 *
 *  - discard all for given object (inode, locality group):
 *    object
 *        pa
 *    group
 *
 *  - discard all for given group:
 *    group
 *        pa
 *    group
 *        object
 *
 */

static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
{
#if BITS_PER_LONG == 64
	*bit += ((unsigned long) addr & 7UL) << 3;
	addr = (void *) ((unsigned long) addr & ~7UL);
#elif BITS_PER_LONG == 32
	*bit += ((unsigned long) addr & 3UL) << 3;
	addr = (void *) ((unsigned long) addr & ~3UL);
#else
#error "how many bits you are?!"
#endif
	return addr;
}

static inline int mb_test_bit(int bit, void *addr)
{
	/*
	 * ext4_test_bit on architecture like powerpc
	 * needs unsigned long aligned address
	 */
	addr = mb_correct_addr_and_bit(&bit, addr);
	return ext4_test_bit(bit, addr);
}

static inline void mb_set_bit(int bit, void *addr)
{
	addr = mb_correct_addr_and_bit(&bit, addr);
	ext4_set_bit(bit, addr);
}

static inline void mb_set_bit_atomic(spinlock_t *lock, int bit, void *addr)
{
	addr = mb_correct_addr_and_bit(&bit, addr);
	ext4_set_bit_atomic(lock, bit, addr);
}

static inline void mb_clear_bit(int bit, void *addr)
{
	addr = mb_correct_addr_and_bit(&bit, addr);
	ext4_clear_bit(bit, addr);
}

static inline void mb_clear_bit_atomic(spinlock_t *lock, int bit, void *addr)
{
	addr = mb_correct_addr_and_bit(&bit, addr);
	ext4_clear_bit_atomic(lock, bit, addr);
}

static inline int mb_find_next_zero_bit(void *addr, int max, int start)
{
	int fix = 0;
	addr = mb_correct_addr_and_bit(&fix, addr);
	max += fix;
	start += fix;

	return ext4_find_next_zero_bit(addr, max, start) - fix;
}

static inline int mb_find_next_bit(void *addr, int max, int start)
{
	int fix = 0;
	addr = mb_correct_addr_and_bit(&fix, addr);
	max += fix;
	start += fix;

	return ext4_find_next_bit(addr, max, start) - fix;
}

static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
{
	char *bb;

	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
	BUG_ON(max == NULL);

	if (order > e4b->bd_blkbits + 1) {
		*max = 0;
		return NULL;
	}

	/* at order 0 we see each particular block */
	*max = 1 << (e4b->bd_blkbits + 3);
	if (order == 0)
		return EXT4_MB_BITMAP(e4b);

	bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];

	return bb;
}

#ifdef DOUBLE_CHECK
static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
			   int first, int count)
{
	int i;
	struct super_block *sb = e4b->bd_sb;

	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
		return;
	BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
	for (i = 0; i < count; i++) {
		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
			ext4_fsblk_t blocknr;
			blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
			blocknr += first + i;
			blocknr +=
			    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);

			ext4_error(sb, __func__, "double-free of inode"
				   " %lu's block %llu(bit %u in group %lu)\n",
				   inode ? inode->i_ino : 0, blocknr,
				   first + i, e4b->bd_group);
		}
		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
	}
}

static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
{
	int i;

	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
		return;
	BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
	for (i = 0; i < count; i++) {
		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
	}
}

static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
{
	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
		unsigned char *b1, *b2;
		int i;
		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
		b2 = (unsigned char *) bitmap;
		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
			if (b1[i] != b2[i]) {
				printk("corruption in group %lu at byte %u(%u):"
				       " %x in copy != %x on disk/prealloc\n",
					e4b->bd_group, i, i * 8, b1[i], b2[i]);
				BUG();
			}
		}
	}
}

#else
static inline void mb_free_blocks_double(struct inode *inode,
				struct ext4_buddy *e4b, int first, int count)
{
	return;
}
static inline void mb_mark_used_double(struct ext4_buddy *e4b,
						int first, int count)
{
	return;
}
static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
{
	return;
}
#endif

#ifdef AGGRESSIVE_CHECK

#define MB_CHECK_ASSERT(assert)						\
do {									\
	if (!(assert)) {						\
		printk(KERN_EMERG					\
			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
			function, file, line, # assert);		\
		BUG();							\
	}								\
} while (0)

static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
				const char *function, int line)
{
	struct super_block *sb = e4b->bd_sb;
	int order = e4b->bd_blkbits + 1;
	int max;
	int max2;
	int i;
	int j;
	int k;
	int count;
	struct ext4_group_info *grp;
	int fragments = 0;
	int fstart;
	struct list_head *cur;
	void *buddy;
	void *buddy2;

	if (!test_opt(sb, MBALLOC))
		return 0;

	{
		static int mb_check_counter;
		if (mb_check_counter++ % 100 != 0)
			return 0;
	}

	while (order > 1) {
		buddy = mb_find_buddy(e4b, order, &max);
		MB_CHECK_ASSERT(buddy);
		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
		MB_CHECK_ASSERT(buddy2);
		MB_CHECK_ASSERT(buddy != buddy2);
		MB_CHECK_ASSERT(max * 2 == max2);

		count = 0;
		for (i = 0; i < max; i++) {

			if (mb_test_bit(i, buddy)) {
				/* only single bit in buddy2 may be 1 */
				if (!mb_test_bit(i << 1, buddy2)) {
					MB_CHECK_ASSERT(
						mb_test_bit((i<<1)+1, buddy2));
				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
					MB_CHECK_ASSERT(
						mb_test_bit(i << 1, buddy2));
				}
				continue;
			}

			/* both bits in buddy2 must be 0 */
			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));

			for (j = 0; j < (1 << order); j++) {
				k = (i * (1 << order)) + j;
				MB_CHECK_ASSERT(
					!mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
			}
			count++;
		}
		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
		order--;
	}

	fstart = -1;
	buddy = mb_find_buddy(e4b, 0, &max);
	for (i = 0; i < max; i++) {
		if (!mb_test_bit(i, buddy)) {
			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
			if (fstart == -1) {
				fragments++;
				fstart = i;
			}
			continue;
		}
		fstart = -1;
		/* check used bits only */
		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
			buddy2 = mb_find_buddy(e4b, j, &max2);
			k = i >> j;
			MB_CHECK_ASSERT(k < max2);
			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
		}
	}
	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);

	grp = ext4_get_group_info(sb, e4b->bd_group);
	buddy = mb_find_buddy(e4b, 0, &max);
	list_for_each(cur, &grp->bb_prealloc_list) {
		ext4_group_t groupnr;
		struct ext4_prealloc_space *pa;
		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
		for (i = 0; i < pa->pa_len; i++)
			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
	}
	return 0;
}
#undef MB_CHECK_ASSERT
#define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
					__FILE__, __func__, __LINE__)
#else
#define mb_check_buddy(e4b)
#endif

/* FIXME!! need more doc */
static void ext4_mb_mark_free_simple(struct super_block *sb,
				void *buddy, unsigned first, int len,
					struct ext4_group_info *grp)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	unsigned short min;
	unsigned short max;
	unsigned short chunk;
	unsigned short border;

	BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));

	border = 2 << sb->s_blocksize_bits;

	while (len > 0) {
		/* find how many blocks can be covered since this position */
		max = ffs(first | border) - 1;

		/* find how many blocks of power 2 we need to mark */
		min = fls(len) - 1;

		if (max < min)
			min = max;
		chunk = 1 << min;

		/* mark multiblock chunks only */
		grp->bb_counters[min]++;
		if (min > 0)
			mb_clear_bit(first >> min,
				     buddy + sbi->s_mb_offsets[min]);

		len -= chunk;
		first += chunk;
	}
}

static void ext4_mb_generate_buddy(struct super_block *sb,
				void *buddy, void *bitmap, ext4_group_t group)
{
	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
	unsigned short max = EXT4_BLOCKS_PER_GROUP(sb);
	unsigned short i = 0;
	unsigned short first;
	unsigned short len;
	unsigned free = 0;
	unsigned fragments = 0;
	unsigned long long period = get_cycles();

	/* initialize buddy from bitmap which is aggregation
	 * of on-disk bitmap and preallocations */
	i = mb_find_next_zero_bit(bitmap, max, 0);
	grp->bb_first_free = i;
	while (i < max) {
		fragments++;
		first = i;
		i = mb_find_next_bit(bitmap, max, i);
		len = i - first;
		free += len;
		if (len > 1)
			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
		else
			grp->bb_counters[0]++;
		if (i < max)
			i = mb_find_next_zero_bit(bitmap, max, i);
	}
	grp->bb_fragments = fragments;

	if (free != grp->bb_free) {
		ext4_error(sb, __func__,
			"EXT4-fs: group %lu: %u blocks in bitmap, %u in gd\n",
			group, free, grp->bb_free);
		/*
		 * If we intent to continue, we consider group descritor
		 * corrupt and update bb_free using bitmap value
		 */
		grp->bb_free = free;
	}

	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));

	period = get_cycles() - period;
	spin_lock(&EXT4_SB(sb)->s_bal_lock);
	EXT4_SB(sb)->s_mb_buddies_generated++;
	EXT4_SB(sb)->s_mb_generation_time += period;
	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
}

/* The buddy information is attached the buddy cache inode
 * for convenience. The information regarding each group
 * is loaded via ext4_mb_load_buddy. The information involve
 * block bitmap and buddy information. The information are
 * stored in the inode as
 *
 * {                        page                        }
 * [ group 0 buddy][ group 0 bitmap] [group 1][ group 1]...
 *
 *
 * one block each for bitmap and buddy information.
 * So for each group we take up 2 blocks. A page can
 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
 * So it can have information regarding groups_per_page which
 * is blocks_per_page/2
 */

static int ext4_mb_init_cache(struct page *page, char *incore)
{
	int blocksize;
	int blocks_per_page;
	int groups_per_page;
	int err = 0;
	int i;
	ext4_group_t first_group;
	int first_block;
	struct super_block *sb;
	struct buffer_head *bhs;
	struct buffer_head **bh;
	struct inode *inode;
	char *data;
	char *bitmap;

	mb_debug("init page %lu\n", page->index);

	inode = page->mapping->host;
	sb = inode->i_sb;
	blocksize = 1 << inode->i_blkbits;
	blocks_per_page = PAGE_CACHE_SIZE / blocksize;

	groups_per_page = blocks_per_page >> 1;
	if (groups_per_page == 0)
		groups_per_page = 1;

	/* allocate buffer_heads to read bitmaps */
	if (groups_per_page > 1) {
		err = -ENOMEM;
		i = sizeof(struct buffer_head *) * groups_per_page;
		bh = kzalloc(i, GFP_NOFS);
		if (bh == NULL)
			goto out;
	} else
		bh = &bhs;

	first_group = page->index * blocks_per_page / 2;

	/* read all groups the page covers into the cache */
	for (i = 0; i < groups_per_page; i++) {
		struct ext4_group_desc *desc;

		if (first_group + i >= EXT4_SB(sb)->s_groups_count)
			break;

		err = -EIO;
		desc = ext4_get_group_desc(sb, first_group + i, NULL);
		if (desc == NULL)
			goto out;

		err = -ENOMEM;
		bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
		if (bh[i] == NULL)
			goto out;

		if (bh_uptodate_or_lock(bh[i]))
			continue;

		if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
			ext4_init_block_bitmap(sb, bh[i],
						first_group + i, desc);
			set_buffer_uptodate(bh[i]);
			unlock_buffer(bh[i]);
			continue;
		}
		get_bh(bh[i]);
		bh[i]->b_end_io = end_buffer_read_sync;
		submit_bh(READ, bh[i]);
		mb_debug("read bitmap for group %lu\n", first_group + i);
	}

	/* wait for I/O completion */
	for (i = 0; i < groups_per_page && bh[i]; i++)
		wait_on_buffer(bh[i]);

	err = -EIO;
	for (i = 0; i < groups_per_page && bh[i]; i++)
		if (!buffer_uptodate(bh[i]))
			goto out;

	first_block = page->index * blocks_per_page;
	for (i = 0; i < blocks_per_page; i++) {
		int group;
		struct ext4_group_info *grinfo;

		group = (first_block + i) >> 1;
		if (group >= EXT4_SB(sb)->s_groups_count)
			break;

		/*
		 * data carry information regarding this
		 * particular group in the format specified
		 * above
		 *
		 */
		data = page_address(page) + (i * blocksize);
		bitmap = bh[group - first_group]->b_data;

		/*
		 * We place the buddy block and bitmap block
		 * close together
		 */
		if ((first_block + i) & 1) {
			/* this is block of buddy */
			BUG_ON(incore == NULL);
			mb_debug("put buddy for group %u in page %lu/%x\n",
				group, page->index, i * blocksize);
			memset(data, 0xff, blocksize);
			grinfo = ext4_get_group_info(sb, group);
			grinfo->bb_fragments = 0;
			memset(grinfo->bb_counters, 0,
			       sizeof(unsigned short)*(sb->s_blocksize_bits+2));
			/*
			 * incore got set to the group block bitmap below
			 */
			ext4_mb_generate_buddy(sb, data, incore, group);
			incore = NULL;
		} else {
			/* this is block of bitmap */
			BUG_ON(incore != NULL);
			mb_debug("put bitmap for group %u in page %lu/%x\n",
				group, page->index, i * blocksize);

			/* see comments in ext4_mb_put_pa() */
			ext4_lock_group(sb, group);
			memcpy(data, bitmap, blocksize);

			/* mark all preallocated blks used in in-core bitmap */
			ext4_mb_generate_from_pa(sb, data, group);
			ext4_unlock_group(sb, group);

			/* set incore so that the buddy information can be
			 * generated using this
			 */
			incore = data;
		}
	}
	SetPageUptodate(page);

out:
	if (bh) {
		for (i = 0; i < groups_per_page && bh[i]; i++)
			brelse(bh[i]);
		if (bh != &bhs)
			kfree(bh);
	}
	return err;
}

static noinline_for_stack int
ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
					struct ext4_buddy *e4b)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct inode *inode = sbi->s_buddy_cache;
	int blocks_per_page;
	int block;
	int pnum;
	int poff;
	struct page *page;

	mb_debug("load group %lu\n", group);

	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;

	e4b->bd_blkbits = sb->s_blocksize_bits;
	e4b->bd_info = ext4_get_group_info(sb, group);
	e4b->bd_sb = sb;
	e4b->bd_group = group;
	e4b->bd_buddy_page = NULL;
	e4b->bd_bitmap_page = NULL;

	/*
	 * the buddy cache inode stores the block bitmap
	 * and buddy information in consecutive blocks.
	 * So for each group we need two blocks.
	 */
	block = group * 2;
	pnum = block / blocks_per_page;
	poff = block % blocks_per_page;

	/* we could use find_or_create_page(), but it locks page
	 * what we'd like to avoid in fast path ... */
	page = find_get_page(inode->i_mapping, pnum);
	if (page == NULL || !PageUptodate(page)) {
		if (page)
			page_cache_release(page);
		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
		if (page) {
			BUG_ON(page->mapping != inode->i_mapping);
			if (!PageUptodate(page)) {
				ext4_mb_init_cache(page, NULL);
				mb_cmp_bitmaps(e4b, page_address(page) +
					       (poff * sb->s_blocksize));
			}
			unlock_page(page);
		}
	}
	if (page == NULL || !PageUptodate(page))
		goto err;
	e4b->bd_bitmap_page = page;
	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
	mark_page_accessed(page);

	block++;
	pnum = block / blocks_per_page;
	poff = block % blocks_per_page;

	page = find_get_page(inode->i_mapping, pnum);
	if (page == NULL || !PageUptodate(page)) {
		if (page)
			page_cache_release(page);
		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
		if (page) {
			BUG_ON(page->mapping != inode->i_mapping);
			if (!PageUptodate(page))
				ext4_mb_init_cache(page, e4b->bd_bitmap);

			unlock_page(page);
		}
	}
	if (page == NULL || !PageUptodate(page))
		goto err;
	e4b->bd_buddy_page = page;
	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
	mark_page_accessed(page);

	BUG_ON(e4b->bd_bitmap_page == NULL);
	BUG_ON(e4b->bd_buddy_page == NULL);

	return 0;

err:
	if (e4b->bd_bitmap_page)
		page_cache_release(e4b->bd_bitmap_page);
	if (e4b->bd_buddy_page)
		page_cache_release(e4b->bd_buddy_page);
	e4b->bd_buddy = NULL;
	e4b->bd_bitmap = NULL;
	return -EIO;
}

static void ext4_mb_release_desc(struct ext4_buddy *e4b)
{
	if (e4b->bd_bitmap_page)
		page_cache_release(e4b->bd_bitmap_page);
	if (e4b->bd_buddy_page)
		page_cache_release(e4b->bd_buddy_page);
}


static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
{
	int order = 1;
	void *bb;

	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));

	bb = EXT4_MB_BUDDY(e4b);
	while (order <= e4b->bd_blkbits + 1) {
		block = block >> 1;
		if (!mb_test_bit(block, bb)) {
			/* this block is part of buddy of order 'order' */
			return order;
		}
		bb += 1 << (e4b->bd_blkbits - order);
		order++;
	}
	return 0;
}

static void mb_clear_bits(spinlock_t *lock, void *bm, int cur, int len)
{
	__u32 *addr;

	len = cur + len;
	while (cur < len) {
		if ((cur & 31) == 0 && (len - cur) >= 32) {
			/* fast path: clear whole word at once */
			addr = bm + (cur >> 3);
			*addr = 0;
			cur += 32;
			continue;
		}
		mb_clear_bit_atomic(lock, cur, bm);
		cur++;
	}
}

static void mb_set_bits(spinlock_t *lock, void *bm, int cur, int len)
{
	__u32 *addr;

	len = cur + len;
	while (cur < len) {
		if ((cur & 31) == 0 && (len - cur) >= 32) {
			/* fast path: set whole word at once */
			addr = bm + (cur >> 3);
			*addr = 0xffffffff;
			cur += 32;
			continue;
		}
		mb_set_bit_atomic(lock, cur, bm);
		cur++;
	}
}

static int mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
			  int first, int count)
{
	int block = 0;
	int max = 0;
	int order;
	void *buddy;
	void *buddy2;
	struct super_block *sb = e4b->bd_sb;

	BUG_ON(first + count > (sb->s_blocksize << 3));
	BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
	mb_check_buddy(e4b);
	mb_free_blocks_double(inode, e4b, first, count);

	e4b->bd_info->bb_free += count;
	if (first < e4b->bd_info->bb_first_free)
		e4b->bd_info->bb_first_free = first;

	/* let's maintain fragments counter */
	if (first != 0)
		block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
	if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
		max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
	if (block && max)
		e4b->bd_info->bb_fragments--;
	else if (!block && !max)
		e4b->bd_info->bb_fragments++;

	/* let's maintain buddy itself */
	while (count-- > 0) {
		block = first++;
		order = 0;

		if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
			ext4_fsblk_t blocknr;
			blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
			blocknr += block;
			blocknr +=
			    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);

			ext4_error(sb, __func__, "double-free of inode"
				   " %lu's block %llu(bit %u in group %lu)\n",
				   inode ? inode->i_ino : 0, blocknr, block,
				   e4b->bd_group);
		}
		mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
		e4b->bd_info->bb_counters[order]++;

		/* start of the buddy */
		buddy = mb_find_buddy(e4b, order, &max);

		do {
			block &= ~1UL;
			if (mb_test_bit(block, buddy) ||
					mb_test_bit(block + 1, buddy))
				break;

			/* both the buddies are free, try to coalesce them */
			buddy2 = mb_find_buddy(e4b, order + 1, &max);

			if (!buddy2)
				break;

			if (order > 0) {
				/* for special purposes, we don't set
				 * free bits in bitmap */
				mb_set_bit(block, buddy);
				mb_set_bit(block + 1, buddy);
			}
			e4b->bd_info->bb_counters[order]--;
			e4b->bd_info->bb_counters[order]--;

			block = block >> 1;
			order++;
			e4b->bd_info->bb_counters[order]++;

			mb_clear_bit(block, buddy2);
			buddy = buddy2;
		} while (1);
	}
	mb_check_buddy(e4b);

	return 0;
}

static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
				int needed, struct ext4_free_extent *ex)
{
	int next = block;
	int max;
	int ord;
	void *buddy;

	BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
	BUG_ON(ex == NULL);

	buddy = mb_find_buddy(e4b, order, &max);
	BUG_ON(buddy == NULL);
	BUG_ON(block >= max);
	if (mb_test_bit(block, buddy)) {
		ex->fe_len = 0;
		ex->fe_start = 0;
		ex->fe_group = 0;
		return 0;
	}

	/* FIXME dorp order completely ? */
	if (likely(order == 0)) {
		/* find actual order */
		order = mb_find_order_for_block(e4b, block);
		block = block >> order;
	}

	ex->fe_len = 1 << order;
	ex->fe_start = block << order;
	ex->fe_group = e4b->bd_group;

	/* calc difference from given start */
	next = next - ex->fe_start;
	ex->fe_len -= next;
	ex->fe_start += next;

	while (needed > ex->fe_len &&
	       (buddy = mb_find_buddy(e4b, order, &max))) {

		if (block + 1 >= max)
			break;

		next = (block + 1) * (1 << order);
		if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
			break;

		ord = mb_find_order_for_block(e4b, next);

		order = ord;
		block = next >> order;
		ex->fe_len += 1 << order;
	}

	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
	return ex->fe_len;
}

static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
{
	int ord;
	int mlen = 0;
	int max = 0;
	int cur;
	int start = ex->fe_start;
	int len = ex->fe_len;
	unsigned ret = 0;
	int len0 = len;
	void *buddy;

	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
	BUG_ON(e4b->bd_group != ex->fe_group);
	BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
	mb_check_buddy(e4b);
	mb_mark_used_double(e4b, start, len);

	e4b->bd_info->bb_free -= len;
	if (e4b->bd_info->bb_first_free == start)
		e4b->bd_info->bb_first_free += len;

	/* let's maintain fragments counter */
	if (start != 0)
		mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
		max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
	if (mlen && max)
		e4b->bd_info->bb_fragments++;
	else if (!mlen && !max)
		e4b->bd_info->bb_fragments--;

	/* let's maintain buddy itself */
	while (len) {
		ord = mb_find_order_for_block(e4b, start);

		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
			/* the whole chunk may be allocated at once! */
			mlen = 1 << ord;
			buddy = mb_find_buddy(e4b, ord, &max);
			BUG_ON((start >> ord) >= max);
			mb_set_bit(start >> ord, buddy);
			e4b->bd_info->bb_counters[ord]--;
			start += mlen;
			len -= mlen;
			BUG_ON(len < 0);
			continue;
		}

		/* store for history */
		if (ret == 0)
			ret = len | (ord << 16);

		/* we have to split large buddy */
		BUG_ON(ord <= 0);
		buddy = mb_find_buddy(e4b, ord, &max);
		mb_set_bit(start >> ord, buddy);
		e4b->bd_info->bb_counters[ord]--;

		ord--;
		cur = (start >> ord) & ~1U;
		buddy = mb_find_buddy(e4b, ord, &max);
		mb_clear_bit(cur, buddy);
		mb_clear_bit(cur + 1, buddy);
		e4b->bd_info->bb_counters[ord]++;
		e4b->bd_info->bb_counters[ord]++;
	}

	mb_set_bits(sb_bgl_lock(EXT4_SB(e4b->bd_sb), ex->fe_group),
			EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
	mb_check_buddy(e4b);

	return ret;
}

/*
 * Must be called under group lock!
 */
static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
					struct ext4_buddy *e4b)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	int ret;

	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
	BUG_ON(ac->ac_status == AC_STATUS_FOUND);

	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
	ret = mb_mark_used(e4b, &ac->ac_b_ex);

	/* preallocation can change ac_b_ex, thus we store actually
	 * allocated blocks for history */
	ac->ac_f_ex = ac->ac_b_ex;

	ac->ac_status = AC_STATUS_FOUND;
	ac->ac_tail = ret & 0xffff;
	ac->ac_buddy = ret >> 16;

	/* XXXXXXX: SUCH A HORRIBLE **CK */
	/*FIXME!! Why ? */
	ac->ac_bitmap_page = e4b->bd_bitmap_page;
	get_page(ac->ac_bitmap_page);
	ac->ac_buddy_page = e4b->bd_buddy_page;
	get_page(ac->ac_buddy_page);

	/* store last allocated for subsequent stream allocation */
	if ((ac->ac_flags & EXT4_MB_HINT_DATA)) {
		spin_lock(&sbi->s_md_lock);
		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
		spin_unlock(&sbi->s_md_lock);
	}
}

/*
 * regular allocator, for general purposes allocation
 */

static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
					struct ext4_buddy *e4b,
					int finish_group)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	struct ext4_free_extent *bex = &ac->ac_b_ex;
	struct ext4_free_extent *gex = &ac->ac_g_ex;
	struct ext4_free_extent ex;
	int max;

	/*
	 * We don't want to scan for a whole year
	 */
	if (ac->ac_found > sbi->s_mb_max_to_scan &&
			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
		ac->ac_status = AC_STATUS_BREAK;
		return;
	}

	/*
	 * Haven't found good chunk so far, let's continue
	 */
	if (bex->fe_len < gex->fe_len)
		return;

	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
			&& bex->fe_group == e4b->bd_group) {
		/* recheck chunk's availability - we don't know
		 * when it was found (within this lock-unlock
		 * period or not) */
		max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
		if (max >= gex->fe_len) {
			ext4_mb_use_best_found(ac, e4b);
			return;
		}
	}
}

/*
 * The routine checks whether found extent is good enough. If it is,
 * then the extent gets marked used and flag is set to the context
 * to stop scanning. Otherwise, the extent is compared with the
 * previous found extent and if new one is better, then it's stored
 * in the context. Later, the best found extent will be used, if
 * mballoc can't find good enough extent.
 *
 * FIXME: real allocation policy is to be designed yet!
 */
static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
					struct ext4_free_extent *ex,
					struct ext4_buddy *e4b)
{
	struct ext4_free_extent *bex = &ac->ac_b_ex;
	struct ext4_free_extent *gex = &ac->ac_g_ex;

	BUG_ON(ex->fe_len <= 0);
	BUG_ON(ex->fe_len >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
	BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);

	ac->ac_found++;

	/*
	 * The special case - take what you catch first
	 */
	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
		*bex = *ex;
		ext4_mb_use_best_found(ac, e4b);
		return;
	}

	/*
	 * Let's check whether the chuck is good enough
	 */
	if (ex->fe_len == gex->fe_len) {
		*bex = *ex;
		ext4_mb_use_best_found(ac, e4b);
		return;
	}

	/*
	 * If this is first found extent, just store it in the context
	 */
	if (bex->fe_len == 0) {
		*bex = *ex;
		return;
	}

	/*
	 * If new found extent is better, store it in the context
	 */
	if (bex->fe_len < gex->fe_len) {
		/* if the request isn't satisfied, any found extent
		 * larger than previous best one is better */
		if (ex->fe_len > bex->fe_len)
			*bex = *ex;
	} else if (ex->fe_len > gex->fe_len) {
		/* if the request is satisfied, then we try to find
		 * an extent that still satisfy the request, but is
		 * smaller than previous one */
		if (ex->fe_len < bex->fe_len)
			*bex = *ex;
	}

	ext4_mb_check_limits(ac, e4b, 0);
}

static int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
					struct ext4_buddy *e4b)
{
	struct ext4_free_extent ex = ac->ac_b_ex;
	ext4_group_t group = ex.fe_group;
	int max;
	int err;

	BUG_ON(ex.fe_len <= 0);
	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
	if (err)
		return err;

	ext4_lock_group(ac->ac_sb, group);
	max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);

	if (max > 0) {
		ac->ac_b_ex = ex;
		ext4_mb_use_best_found(ac, e4b);
	}

	ext4_unlock_group(ac->ac_sb, group);
	ext4_mb_release_desc(e4b);

	return 0;
}

static int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
				struct ext4_buddy *e4b)
{
	ext4_group_t group = ac->ac_g_ex.fe_group;
	int max;
	int err;
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	struct ext4_super_block *es = sbi->s_es;
	struct ext4_free_extent ex;

	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
		return 0;

	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
	if (err)
		return err;

	ext4_lock_group(ac->ac_sb, group);
	max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
			     ac->ac_g_ex.fe_len, &ex);

	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
		ext4_fsblk_t start;

		start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) +
			ex.fe_start + le32_to_cpu(es->s_first_data_block);
		/* use do_div to get remainder (would be 64-bit modulo) */
		if (do_div(start, sbi->s_stripe) == 0) {
			ac->ac_found++;
			ac->ac_b_ex = ex;
			ext4_mb_use_best_found(ac, e4b);
		}
	} else if (max >= ac->ac_g_ex.fe_len) {
		BUG_ON(ex.fe_len <= 0);
		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
		ac->ac_found++;
		ac->ac_b_ex = ex;
		ext4_mb_use_best_found(ac, e4b);
	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
		/* Sometimes, caller may want to merge even small
		 * number of blocks to an existing extent */
		BUG_ON(ex.fe_len <= 0);
		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
		ac->ac_found++;
		ac->ac_b_ex = ex;
		ext4_mb_use_best_found(ac, e4b);
	}
	ext4_unlock_group(ac->ac_sb, group);
	ext4_mb_release_desc(e4b);

	return 0;
}

/*
 * The routine scans buddy structures (not bitmap!) from given order
 * to max order and tries to find big enough chunk to satisfy the req
 */
static void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
					struct ext4_buddy *e4b)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_group_info *grp = e4b->bd_info;
	void *buddy;
	int i;
	int k;
	int max;

	BUG_ON(ac->ac_2order <= 0);
	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
		if (grp->bb_counters[i] == 0)
			continue;

		buddy = mb_find_buddy(e4b, i, &max);
		BUG_ON(buddy == NULL);

		k = mb_find_next_zero_bit(buddy, max, 0);
		BUG_ON(k >= max);

		ac->ac_found++;

		ac->ac_b_ex.fe_len = 1 << i;
		ac->ac_b_ex.fe_start = k << i;
		ac->ac_b_ex.fe_group = e4b->bd_group;

		ext4_mb_use_best_found(ac, e4b);

		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);

		if (EXT4_SB(sb)->s_mb_stats)
			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);

		break;
	}
}

/*
 * The routine scans the group and measures all found extents.
 * In order to optimize scanning, caller must pass number of
 * free blocks in the group, so the routine can know upper limit.
 */
static void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
					struct ext4_buddy *e4b)
{
	struct super_block *sb = ac->ac_sb;
	void *bitmap = EXT4_MB_BITMAP(e4b);
	struct ext4_free_extent ex;
	int i;
	int free;

	free = e4b->bd_info->bb_free;
	BUG_ON(free <= 0);

	i = e4b->bd_info->bb_first_free;

	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
		i = mb_find_next_zero_bit(bitmap,
						EXT4_BLOCKS_PER_GROUP(sb), i);
		if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
			/*
			 * IF we have corrupt bitmap, we won't find any
			 * free blocks even though group info says we
			 * we have free blocks
			 */
			ext4_error(sb, __func__, "%d free blocks as per "
					"group info. But bitmap says 0\n",
					free);
			break;
		}

		mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
		BUG_ON(ex.fe_len <= 0);
		if (free < ex.fe_len) {
			ext4_error(sb, __func__, "%d free blocks as per "
					"group info. But got %d blocks\n",
					free, ex.fe_len);
			/*
			 * The number of free blocks differs. This mostly
			 * indicate that the bitmap is corrupt. So exit
			 * without claiming the space.
			 */
			break;
		}

		ext4_mb_measure_extent(ac, &ex, e4b);

		i += ex.fe_len;
		free -= ex.fe_len;
	}

	ext4_mb_check_limits(ac, e4b, 1);
}

/*
 * This is a special case for storages like raid5
 * we try to find stripe-aligned chunks for stripe-size requests
 * XXX should do so at least for multiples of stripe size as well
 */
static void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
				 struct ext4_buddy *e4b)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	void *bitmap = EXT4_MB_BITMAP(e4b);
	struct ext4_free_extent ex;
	ext4_fsblk_t first_group_block;
	ext4_fsblk_t a;
	ext4_grpblk_t i;
	int max;

	BUG_ON(sbi->s_stripe == 0);

	/* find first stripe-aligned block in group */
	first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb)
		+ le32_to_cpu(sbi->s_es->s_first_data_block);
	a = first_group_block + sbi->s_stripe - 1;
	do_div(a, sbi->s_stripe);
	i = (a * sbi->s_stripe) - first_group_block;

	while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
		if (!mb_test_bit(i, bitmap)) {
			max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
			if (max >= sbi->s_stripe) {
				ac->ac_found++;
				ac->ac_b_ex = ex;
				ext4_mb_use_best_found(ac, e4b);
				break;
			}
		}
		i += sbi->s_stripe;
	}
}

static int ext4_mb_good_group(struct ext4_allocation_context *ac,
				ext4_group_t group, int cr)
{
	unsigned free, fragments;
	unsigned i, bits;
	struct ext4_group_desc *desc;
	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);

	BUG_ON(cr < 0 || cr >= 4);
	BUG_ON(EXT4_MB_GRP_NEED_INIT(grp));

	free = grp->bb_free;
	fragments = grp->bb_fragments;
	if (free == 0)
		return 0;
	if (fragments == 0)
		return 0;

	switch (cr) {
	case 0:
		BUG_ON(ac->ac_2order == 0);
		/* If this group is uninitialized, skip it initially */
		desc = ext4_get_group_desc(ac->ac_sb, group, NULL);
		if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
			return 0;

		bits = ac->ac_sb->s_blocksize_bits + 1;
		for (i = ac->ac_2order; i <= bits; i++)
			if (grp->bb_counters[i] > 0)
				return 1;
		break;
	case 1:
		if ((free / fragments) >= ac->ac_g_ex.fe_len)
			return 1;
		break;
	case 2:
		if (free >= ac->ac_g_ex.fe_len)
			return 1;
		break;
	case 3:
		return 1;
	default:
		BUG();
	}

	return 0;
}

static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
{
	ext4_group_t group;
	ext4_group_t i;
	int cr;
	int err = 0;
	int bsbits;
	struct ext4_sb_info *sbi;
	struct super_block *sb;
	struct ext4_buddy e4b;
	loff_t size, isize;

	sb = ac->ac_sb;
	sbi = EXT4_SB(sb);
	BUG_ON(ac->ac_status == AC_STATUS_FOUND);

	/* first, try the goal */
	err = ext4_mb_find_by_goal(ac, &e4b);
	if (err || ac->ac_status == AC_STATUS_FOUND)
		goto out;

	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
		goto out;

	/*
	 * ac->ac2_order is set only if the fe_len is a power of 2
	 * if ac2_order is set we also set criteria to 0 so that we
	 * try exact allocation using buddy.
	 */
	i = fls(ac->ac_g_ex.fe_len);
	ac->ac_2order = 0;
	/*
	 * We search using buddy data only if the order of the request
	 * is greater than equal to the sbi_s_mb_order2_reqs
	 * You can tune it via /proc/fs/ext4/<partition>/order2_req
	 */
	if (i >= sbi->s_mb_order2_reqs) {
		/*
		 * This should tell if fe_len is exactly power of 2
		 */
		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
			ac->ac_2order = i - 1;
	}

	bsbits = ac->ac_sb->s_blocksize_bits;
	/* if stream allocation is enabled, use global goal */
	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
	isize = i_size_read(ac->ac_inode) >> bsbits;
	if (size < isize)
		size = isize;

	if (size < sbi->s_mb_stream_request &&
			(ac->ac_flags & EXT4_MB_HINT_DATA)) {
		/* TBD: may be hot point */
		spin_lock(&sbi->s_md_lock);
		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
		spin_unlock(&sbi->s_md_lock);
	}

	/* searching for the right group start from the goal value specified */
	group = ac->ac_g_ex.fe_group;

	/* Let's just scan groups to find more-less suitable blocks */
	cr = ac->ac_2order ? 0 : 1;
	/*
	 * cr == 0 try to get exact allocation,
	 * cr == 3  try to get anything
	 */
repeat:
	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
		ac->ac_criteria = cr;
		for (i = 0; i < EXT4_SB(sb)->s_groups_count; group++, i++) {
			struct ext4_group_info *grp;
			struct ext4_group_desc *desc;

			if (group == EXT4_SB(sb)->s_groups_count)
				group = 0;

			/* quick check to skip empty groups */
			grp = ext4_get_group_info(ac->ac_sb, group);
			if (grp->bb_free == 0)
				continue;

			/*
			 * if the group is already init we check whether it is
			 * a good group and if not we don't load the buddy
			 */
			if (EXT4_MB_GRP_NEED_INIT(grp)) {
				/*
				 * we need full data about the group
				 * to make a good selection
				 */
				err = ext4_mb_load_buddy(sb, group, &e4b);
				if (err)
					goto out;
				ext4_mb_release_desc(&e4b);
			}

			/*
			 * If the particular group doesn't satisfy our
			 * criteria we continue with the next group
			 */
			if (!ext4_mb_good_group(ac, group, cr))
				continue;

			err = ext4_mb_load_buddy(sb, group, &e4b);
			if (err)
				goto out;

			ext4_lock_group(sb, group);
			if (!ext4_mb_good_group(ac, group, cr)) {
				/* someone did allocation from this group */
				ext4_unlock_group(sb, group);
				ext4_mb_release_desc(&e4b);
				continue;
			}

			ac->ac_groups_scanned++;
			desc = ext4_get_group_desc(sb, group, NULL);
			if (cr == 0 || (desc->bg_flags &
					cpu_to_le16(EXT4_BG_BLOCK_UNINIT) &&
					ac->ac_2order != 0))
				ext4_mb_simple_scan_group(ac, &e4b);
			else if (cr == 1 &&
					ac->ac_g_ex.fe_len == sbi->s_stripe)
				ext4_mb_scan_aligned(ac, &e4b);
			else
				ext4_mb_complex_scan_group(ac, &e4b);

			ext4_unlock_group(sb, group);
			ext4_mb_release_desc(&e4b);

			if (ac->ac_status != AC_STATUS_CONTINUE)
				break;
		}
	}

	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
		/*
		 * We've been searching too long. Let's try to allocate
		 * the best chunk we've found so far
		 */

		ext4_mb_try_best_found(ac, &e4b);
		if (ac->ac_status != AC_STATUS_FOUND) {
			/*
			 * Someone more lucky has already allocated it.
			 * The only thing we can do is just take first
			 * found block(s)
			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
			 */
			ac->ac_b_ex.fe_group = 0;
			ac->ac_b_ex.fe_start = 0;
			ac->ac_b_ex.fe_len = 0;
			ac->ac_status = AC_STATUS_CONTINUE;
			ac->ac_flags |= EXT4_MB_HINT_FIRST;
			cr = 3;
			atomic_inc(&sbi->s_mb_lost_chunks);
			goto repeat;
		}
	}
out:
	return err;
}

#ifdef EXT4_MB_HISTORY
struct ext4_mb_proc_session {
	struct ext4_mb_history *history;
	struct super_block *sb;
	int start;
	int max;
};

static void *ext4_mb_history_skip_empty(struct ext4_mb_proc_session *s,
					struct ext4_mb_history *hs,
					int first)
{
	if (hs == s->history + s->max)
		hs = s->history;
	if (!first && hs == s->history + s->start)
		return NULL;
	while (hs->orig.fe_len == 0) {
		hs++;
		if (hs == s->history + s->max)
			hs = s->history;
		if (hs == s->history + s->start)
			return NULL;
	}
	return hs;
}

static void *ext4_mb_seq_history_start(struct seq_file *seq, loff_t *pos)
{
	struct ext4_mb_proc_session *s = seq->private;
	struct ext4_mb_history *hs;
	int l = *pos;

	if (l == 0)
		return SEQ_START_TOKEN;
	hs = ext4_mb_history_skip_empty(s, s->history + s->start, 1);
	if (!hs)
		return NULL;
	while (--l && (hs = ext4_mb_history_skip_empty(s, ++hs, 0)) != NULL);
	return hs;
}

static void *ext4_mb_seq_history_next(struct seq_file *seq, void *v,
				      loff_t *pos)
{
	struct ext4_mb_proc_session *s = seq->private;
	struct ext4_mb_history *hs = v;

	++*pos;
	if (v == SEQ_START_TOKEN)
		return ext4_mb_history_skip_empty(s, s->history + s->start, 1);
	else
		return ext4_mb_history_skip_empty(s, ++hs, 0);
}

static int ext4_mb_seq_history_show(struct seq_file *seq, void *v)
{
	char buf[25], buf2[25], buf3[25], *fmt;
	struct ext4_mb_history *hs = v;

	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-5s %-8s %-23s %-23s %-23s %-5s "
				"%-5s %-2s %-5s %-5s %-5s %-6s\n",
			  "pid", "inode", "original", "goal", "result", "found",
			   "grps", "cr", "flags", "merge", "tail", "broken");
		return 0;
	}

	if (hs->op == EXT4_MB_HISTORY_ALLOC) {
		fmt = "%-5u %-8u %-23s %-23s %-23s %-5u %-5u %-2u "
			"%-5u %-5s %-5u %-6u\n";
		sprintf(buf2, "%lu/%d/%u@%u", hs->result.fe_group,
			hs->result.fe_start, hs->result.fe_len,
			hs->result.fe_logical);
		sprintf(buf, "%lu/%d/%u@%u", hs->orig.fe_group,
			hs->orig.fe_start, hs->orig.fe_len,
			hs->orig.fe_logical);
		sprintf(buf3, "%lu/%d/%u@%u", hs->goal.fe_group,
			hs->goal.fe_start, hs->goal.fe_len,
			hs->goal.fe_logical);
		seq_printf(seq, fmt, hs->pid, hs->ino, buf, buf3, buf2,
				hs->found, hs->groups, hs->cr, hs->flags,
				hs->merged ? "M" : "", hs->tail,
				hs->buddy ? 1 << hs->buddy : 0);
	} else if (hs->op == EXT4_MB_HISTORY_PREALLOC) {
		fmt = "%-5u %-8u %-23s %-23s %-23s\n";
		sprintf(buf2, "%lu/%d/%u@%u", hs->result.fe_group,
			hs->result.fe_start, hs->result.fe_len,
			hs->result.fe_logical);
		sprintf(buf, "%lu/%d/%u@%u", hs->orig.fe_group,
			hs->orig.fe_start, hs->orig.fe_len,
			hs->orig.fe_logical);
		seq_printf(seq, fmt, hs->pid, hs->ino, buf, "", buf2);
	} else if (hs->op == EXT4_MB_HISTORY_DISCARD) {
		sprintf(buf2, "%lu/%d/%u", hs->result.fe_group,
			hs->result.fe_start, hs->result.fe_len);
		seq_printf(seq, "%-5u %-8u %-23s discard\n",
				hs->pid, hs->ino, buf2);
	} else if (hs->op == EXT4_MB_HISTORY_FREE) {
		sprintf(buf2, "%lu/%d/%u", hs->result.fe_group,
			hs->result.fe_start, hs->result.fe_len);
		seq_printf(seq, "%-5u %-8u %-23s free\n",
				hs->pid, hs->ino, buf2);
	}
	return 0;
}

static void ext4_mb_seq_history_stop(struct seq_file *seq, void *v)
{
}

static struct seq_operations ext4_mb_seq_history_ops = {
	.start  = ext4_mb_seq_history_start,
	.next   = ext4_mb_seq_history_next,
	.stop   = ext4_mb_seq_history_stop,
	.show   = ext4_mb_seq_history_show,
};

static int ext4_mb_seq_history_open(struct inode *inode, struct file *file)
{
	struct super_block *sb = PDE(inode)->data;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct ext4_mb_proc_session *s;
	int rc;
	int size;

	s = kmalloc(sizeof(*s), GFP_KERNEL);
	if (s == NULL)
		return -ENOMEM;
	s->sb = sb;
	size = sizeof(struct ext4_mb_history) * sbi->s_mb_history_max;
	s->history = kmalloc(size, GFP_KERNEL);
	if (s->history == NULL) {
		kfree(s);
		return -ENOMEM;
	}

	spin_lock(&sbi->s_mb_history_lock);
	memcpy(s->history, sbi->s_mb_history, size);
	s->max = sbi->s_mb_history_max;
	s->start = sbi->s_mb_history_cur % s->max;
	spin_unlock(&sbi->s_mb_history_lock);

	rc = seq_open(file, &ext4_mb_seq_history_ops);
	if (rc == 0) {
		struct seq_file *m = (struct seq_file *)file->private_data;
		m->private = s;
	} else {
		kfree(s->history);
		kfree(s);
	}
	return rc;

}

static int ext4_mb_seq_history_release(struct inode *inode, struct file *file)
{
	struct seq_file *seq = (struct seq_file *)file->private_data;
	struct ext4_mb_proc_session *s = seq->private;
	kfree(s->history);
	kfree(s);
	return seq_release(inode, file);
}

static ssize_t ext4_mb_seq_history_write(struct file *file,
				const char __user *buffer,
				size_t count, loff_t *ppos)
{
	struct seq_file *seq = (struct seq_file *)file->private_data;
	struct ext4_mb_proc_session *s = seq->private;
	struct super_block *sb = s->sb;
	char str[32];
	int value;

	if (count >= sizeof(str)) {
		printk(KERN_ERR "EXT4-fs: %s string too long, max %u bytes\n",
				"mb_history", (int)sizeof(str));
		return -EOVERFLOW;
	}

	if (copy_from_user(str, buffer, count))
		return -EFAULT;

	value = simple_strtol(str, NULL, 0);
	if (value < 0)
		return -ERANGE;
	EXT4_SB(sb)->s_mb_history_filter = value;

	return count;
}

static struct file_operations ext4_mb_seq_history_fops = {
	.owner		= THIS_MODULE,
	.open		= ext4_mb_seq_history_open,
	.read		= seq_read,
	.write		= ext4_mb_seq_history_write,
	.llseek		= seq_lseek,
	.release	= ext4_mb_seq_history_release,
};

static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
{
	struct super_block *sb = seq->private;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	ext4_group_t group;

	if (*pos < 0 || *pos >= sbi->s_groups_count)
		return NULL;

	group = *pos + 1;
	return (void *) group;
}

static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct super_block *sb = seq->private;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	ext4_group_t group;

	++*pos;
	if (*pos < 0 || *pos >= sbi->s_groups_count)
		return NULL;
	group = *pos + 1;
	return (void *) group;;
}

static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
{
	struct super_block *sb = seq->private;
	long group = (long) v;
	int i;
	int err;
	struct ext4_buddy e4b;
	struct sg {
		struct ext4_group_info info;
		unsigned short counters[16];
	} sg;

	group--;
	if (group == 0)
		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
			   "group", "free", "frags", "first",
			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");

	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
		sizeof(struct ext4_group_info);
	err = ext4_mb_load_buddy(sb, group, &e4b);
	if (err) {
		seq_printf(seq, "#%-5lu: I/O error\n", group);
		return 0;
	}
	ext4_lock_group(sb, group);
	memcpy(&sg, ext4_get_group_info(sb, group), i);
	ext4_unlock_group(sb, group);
	ext4_mb_release_desc(&e4b);

	seq_printf(seq, "#%-5lu: %-5u %-5u %-5u [", group, sg.info.bb_free,
			sg.info.bb_fragments, sg.info.bb_first_free);
	for (i = 0; i <= 13; i++)
		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
				sg.info.bb_counters[i] : 0);
	seq_printf(seq, " ]\n");

	return 0;
}

static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
{
}

static struct seq_operations ext4_mb_seq_groups_ops = {
	.start  = ext4_mb_seq_groups_start,
	.next   = ext4_mb_seq_groups_next,
	.stop   = ext4_mb_seq_groups_stop,
	.show   = ext4_mb_seq_groups_show,
};

static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
{
	struct super_block *sb = PDE(inode)->data;
	int rc;

	rc = seq_open(file, &ext4_mb_seq_groups_ops);
	if (rc == 0) {
		struct seq_file *m = (struct seq_file *)file->private_data;
		m->private = sb;
	}
	return rc;

}

static struct file_operations ext4_mb_seq_groups_fops = {
	.owner		= THIS_MODULE,
	.open		= ext4_mb_seq_groups_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static void ext4_mb_history_release(struct super_block *sb)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	remove_proc_entry("mb_groups", sbi->s_mb_proc);
	remove_proc_entry("mb_history", sbi->s_mb_proc);

	kfree(sbi->s_mb_history);
}

static void ext4_mb_history_init(struct super_block *sb)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	int i;

	if (sbi->s_mb_proc != NULL) {
		proc_create_data("mb_history", S_IRUGO, sbi->s_mb_proc,
				 &ext4_mb_seq_history_fops, sb);
		proc_create_data("mb_groups", S_IRUGO, sbi->s_mb_proc,
				 &ext4_mb_seq_groups_fops, sb);
	}

	sbi->s_mb_history_max = 1000;
	sbi->s_mb_history_cur = 0;
	spin_lock_init(&sbi->s_mb_history_lock);
	i = sbi->s_mb_history_max * sizeof(struct ext4_mb_history);
	sbi->s_mb_history = kmalloc(i, GFP_KERNEL);
	if (likely(sbi->s_mb_history != NULL))
		memset(sbi->s_mb_history, 0, i);
	/* if we can't allocate history, then we simple won't use it */
}

static noinline_for_stack void
ext4_mb_store_history(struct ext4_allocation_context *ac)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	struct ext4_mb_history h;

	if (unlikely(sbi->s_mb_history == NULL))
		return;

	if (!(ac->ac_op & sbi->s_mb_history_filter))
		return;

	h.op = ac->ac_op;
	h.pid = current->pid;
	h.ino = ac->ac_inode ? ac->ac_inode->i_ino : 0;
	h.orig = ac->ac_o_ex;
	h.result = ac->ac_b_ex;
	h.flags = ac->ac_flags;
	h.found = ac->ac_found;
	h.groups = ac->ac_groups_scanned;
	h.cr = ac->ac_criteria;
	h.tail = ac->ac_tail;
	h.buddy = ac->ac_buddy;
	h.merged = 0;
	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) {
		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
			h.merged = 1;
		h.goal = ac->ac_g_ex;
		h.result = ac->ac_f_ex;
	}

	spin_lock(&sbi->s_mb_history_lock);
	memcpy(sbi->s_mb_history + sbi->s_mb_history_cur, &h, sizeof(h));
	if (++sbi->s_mb_history_cur >= sbi->s_mb_history_max)
		sbi->s_mb_history_cur = 0;
	spin_unlock(&sbi->s_mb_history_lock);
}

#else
#define ext4_mb_history_release(sb)
#define ext4_mb_history_init(sb)
#endif

static int ext4_mb_init_backend(struct super_block *sb)
{
	ext4_group_t i;
	int j, len, metalen;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	int num_meta_group_infos =
		(sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) >>
			EXT4_DESC_PER_BLOCK_BITS(sb);
	struct ext4_group_info **meta_group_info;

	/* An 8TB filesystem with 64-bit pointers requires a 4096 byte
	 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
	 * So a two level scheme suffices for now. */
	sbi->s_group_info = kmalloc(sizeof(*sbi->s_group_info) *
				    num_meta_group_infos, GFP_KERNEL);
	if (sbi->s_group_info == NULL) {
		printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
		return -ENOMEM;
	}
	sbi->s_buddy_cache = new_inode(sb);
	if (sbi->s_buddy_cache == NULL) {
		printk(KERN_ERR "EXT4-fs: can't get new inode\n");
		goto err_freesgi;
	}
	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;

	metalen = sizeof(*meta_group_info) << EXT4_DESC_PER_BLOCK_BITS(sb);
	for (i = 0; i < num_meta_group_infos; i++) {
		if ((i + 1) == num_meta_group_infos)
			metalen = sizeof(*meta_group_info) *
				(sbi->s_groups_count -
					(i << EXT4_DESC_PER_BLOCK_BITS(sb)));
		meta_group_info = kmalloc(metalen, GFP_KERNEL);
		if (meta_group_info == NULL) {
			printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
			       "buddy group\n");
			goto err_freemeta;
		}
		sbi->s_group_info[i] = meta_group_info;
	}

	/*
	 * calculate needed size. if change bb_counters size,
	 * don't forget about ext4_mb_generate_buddy()
	 */
	len = sizeof(struct ext4_group_info);
	len += sizeof(unsigned short) * (sb->s_blocksize_bits + 2);
	for (i = 0; i < sbi->s_groups_count; i++) {
		struct ext4_group_desc *desc;

		meta_group_info =
			sbi->s_group_info[i >> EXT4_DESC_PER_BLOCK_BITS(sb)];
		j = i & (EXT4_DESC_PER_BLOCK(sb) - 1);

		meta_group_info[j] = kzalloc(len, GFP_KERNEL);
		if (meta_group_info[j] == NULL) {
			printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
			goto err_freebuddy;
		}
		desc = ext4_get_group_desc(sb, i, NULL);
		if (desc == NULL) {
			printk(KERN_ERR
				"EXT4-fs: can't read descriptor %lu\n", i);
			i++;
			goto err_freebuddy;
		}
		memset(meta_group_info[j], 0, len);
		set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
			&(meta_group_info[j]->bb_state));

		/*
		 * initialize bb_free to be able to skip
		 * empty groups without initialization
		 */
		if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
			meta_group_info[j]->bb_free =
				ext4_free_blocks_after_init(sb, i, desc);
		} else {
			meta_group_info[j]->bb_free =
				le16_to_cpu(desc->bg_free_blocks_count);
		}

		INIT_LIST_HEAD(&meta_group_info[j]->bb_prealloc_list);

#ifdef DOUBLE_CHECK
		{
			struct buffer_head *bh;
			meta_group_info[j]->bb_bitmap =
				kmalloc(sb->s_blocksize, GFP_KERNEL);
			BUG_ON(meta_group_info[j]->bb_bitmap == NULL);
			bh = read_block_bitmap(sb, i);
			BUG_ON(bh == NULL);
			memcpy(meta_group_info[j]->bb_bitmap, bh->b_data,
					sb->s_blocksize);
			put_bh(bh);
		}
#endif

	}

	return 0;

err_freebuddy:
	while (i-- > 0)
		kfree(ext4_get_group_info(sb, i));
	i = num_meta_group_infos;
err_freemeta:
	while (i-- > 0)
		kfree(sbi->s_group_info[i]);
	iput(sbi->s_buddy_cache);
err_freesgi:
	kfree(sbi->s_group_info);
	return -ENOMEM;
}

int ext4_mb_init(struct super_block *sb, int needs_recovery)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	unsigned i;
	unsigned offset;
	unsigned max;

	if (!test_opt(sb, MBALLOC))
		return 0;

	i = (sb->s_blocksize_bits + 2) * sizeof(unsigned short);

	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
	if (sbi->s_mb_offsets == NULL) {
		clear_opt(sbi->s_mount_opt, MBALLOC);
		return -ENOMEM;
	}
	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
	if (sbi->s_mb_maxs == NULL) {
		clear_opt(sbi->s_mount_opt, MBALLOC);
		kfree(sbi->s_mb_maxs);
		return -ENOMEM;
	}

	/* order 0 is regular bitmap */
	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
	sbi->s_mb_offsets[0] = 0;

	i = 1;
	offset = 0;
	max = sb->s_blocksize << 2;
	do {
		sbi->s_mb_offsets[i] = offset;
		sbi->s_mb_maxs[i] = max;
		offset += 1 << (sb->s_blocksize_bits - i);
		max = max >> 1;
		i++;
	} while (i <= sb->s_blocksize_bits + 1);

	/* init file for buddy data */
	i = ext4_mb_init_backend(sb);
	if (i) {
		clear_opt(sbi->s_mount_opt, MBALLOC);
		kfree(sbi->s_mb_offsets);
		kfree(sbi->s_mb_maxs);
		return i;
	}

	spin_lock_init(&sbi->s_md_lock);
	INIT_LIST_HEAD(&sbi->s_active_transaction);
	INIT_LIST_HEAD(&sbi->s_closed_transaction);
	INIT_LIST_HEAD(&sbi->s_committed_transaction);
	spin_lock_init(&sbi->s_bal_lock);

	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
	sbi->s_mb_stats = MB_DEFAULT_STATS;
	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
	sbi->s_mb_history_filter = EXT4_MB_HISTORY_DEFAULT;
	sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;

	i = sizeof(struct ext4_locality_group) * NR_CPUS;
	sbi->s_locality_groups = kmalloc(i, GFP_KERNEL);
	if (sbi->s_locality_groups == NULL) {
		clear_opt(sbi->s_mount_opt, MBALLOC);
		kfree(sbi->s_mb_offsets);
		kfree(sbi->s_mb_maxs);
		return -ENOMEM;
	}
	for (i = 0; i < NR_CPUS; i++) {
		struct ext4_locality_group *lg;
		lg = &sbi->s_locality_groups[i];
		mutex_init(&lg->lg_mutex);
		INIT_LIST_HEAD(&lg->lg_prealloc_list);
		spin_lock_init(&lg->lg_prealloc_lock);
	}

	ext4_mb_init_per_dev_proc(sb);
	ext4_mb_history_init(sb);

	printk("EXT4-fs: mballoc enabled\n");
	return 0;
}

/* need to called with ext4 group lock (ext4_lock_group) */
static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
{
	struct ext4_prealloc_space *pa;
	struct list_head *cur, *tmp;
	int count = 0;

	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
		list_del(&pa->pa_group_list);
		count++;
		kfree(pa);
	}
	if (count)
		mb_debug("mballoc: %u PAs left\n", count);

}

int ext4_mb_release(struct super_block *sb)
{
	ext4_group_t i;
	int num_meta_group_infos;
	struct ext4_group_info *grinfo;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	if (!test_opt(sb, MBALLOC))
		return 0;

	/* release freed, non-committed blocks */
	spin_lock(&sbi->s_md_lock);
	list_splice_init(&sbi->s_closed_transaction,
			&sbi->s_committed_transaction);
	list_splice_init(&sbi->s_active_transaction,
			&sbi->s_committed_transaction);
	spin_unlock(&sbi->s_md_lock);
	ext4_mb_free_committed_blocks(sb);

	if (sbi->s_group_info) {
		for (i = 0; i < sbi->s_groups_count; i++) {
			grinfo = ext4_get_group_info(sb, i);
#ifdef DOUBLE_CHECK
			kfree(grinfo->bb_bitmap);
#endif
			ext4_lock_group(sb, i);
			ext4_mb_cleanup_pa(grinfo);
			ext4_unlock_group(sb, i);
			kfree(grinfo);
		}
		num_meta_group_infos = (sbi->s_groups_count +
				EXT4_DESC_PER_BLOCK(sb) - 1) >>
			EXT4_DESC_PER_BLOCK_BITS(sb);
		for (i = 0; i < num_meta_group_infos; i++)
			kfree(sbi->s_group_info[i]);
		kfree(sbi->s_group_info);
	}
	kfree(sbi->s_mb_offsets);
	kfree(sbi->s_mb_maxs);
	if (sbi->s_buddy_cache)
		iput(sbi->s_buddy_cache);
	if (sbi->s_mb_stats) {
		printk(KERN_INFO
		       "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
				atomic_read(&sbi->s_bal_allocated),
				atomic_read(&sbi->s_bal_reqs),
				atomic_read(&sbi->s_bal_success));
		printk(KERN_INFO
		      "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
				"%u 2^N hits, %u breaks, %u lost\n",
				atomic_read(&sbi->s_bal_ex_scanned),
				atomic_read(&sbi->s_bal_goals),
				atomic_read(&sbi->s_bal_2orders),
				atomic_read(&sbi->s_bal_breaks),
				atomic_read(&sbi->s_mb_lost_chunks));
		printk(KERN_INFO
		       "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
				sbi->s_mb_buddies_generated++,
				sbi->s_mb_generation_time);
		printk(KERN_INFO
		       "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
				atomic_read(&sbi->s_mb_preallocated),
				atomic_read(&sbi->s_mb_discarded));
	}

	kfree(sbi->s_locality_groups);

	ext4_mb_history_release(sb);
	ext4_mb_destroy_per_dev_proc(sb);

	return 0;
}

static noinline_for_stack void
ext4_mb_free_committed_blocks(struct super_block *sb)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	int err;
	int i;
	int count = 0;
	int count2 = 0;
	struct ext4_free_metadata *md;
	struct ext4_buddy e4b;

	if (list_empty(&sbi->s_committed_transaction))
		return;

	/* there is committed blocks to be freed yet */
	do {
		/* get next array of blocks */
		md = NULL;
		spin_lock(&sbi->s_md_lock);
		if (!list_empty(&sbi->s_committed_transaction)) {
			md = list_entry(sbi->s_committed_transaction.next,
					struct ext4_free_metadata, list);
			list_del(&md->list);
		}
		spin_unlock(&sbi->s_md_lock);

		if (md == NULL)
			break;

		mb_debug("gonna free %u blocks in group %lu (0x%p):",
				md->num, md->group, md);

		err = ext4_mb_load_buddy(sb, md->group, &e4b);
		/* we expect to find existing buddy because it's pinned */
		BUG_ON(err != 0);

		/* there are blocks to put in buddy to make them really free */
		count += md->num;
		count2++;
		ext4_lock_group(sb, md->group);
		for (i = 0; i < md->num; i++) {
			mb_debug(" %u", md->blocks[i]);
			err = mb_free_blocks(NULL, &e4b, md->blocks[i], 1);
			BUG_ON(err != 0);
		}
		mb_debug("\n");
		ext4_unlock_group(sb, md->group);

		/* balance refcounts from ext4_mb_free_metadata() */
		page_cache_release(e4b.bd_buddy_page);
		page_cache_release(e4b.bd_bitmap_page);

		kfree(md);
		ext4_mb_release_desc(&e4b);

	} while (md);

	mb_debug("freed %u blocks in %u structures\n", count, count2);
}

#define EXT4_MB_STATS_NAME		"stats"
#define EXT4_MB_MAX_TO_SCAN_NAME	"max_to_scan"
#define EXT4_MB_MIN_TO_SCAN_NAME	"min_to_scan"
#define EXT4_MB_ORDER2_REQ		"order2_req"
#define EXT4_MB_STREAM_REQ		"stream_req"
#define EXT4_MB_GROUP_PREALLOC		"group_prealloc"



#define MB_PROC_VALUE_READ(name)				\
static int ext4_mb_read_##name(char *page, char **start,	\
		off_t off, int count, int *eof, void *data)	\
{								\
	struct ext4_sb_info *sbi = data;			\
	int len;						\
	*eof = 1;						\
	if (off != 0)						\
		return 0;					\
	len = sprintf(page, "%ld\n", sbi->s_mb_##name);		\
	*start = page;						\
	return len;						\
}

#define MB_PROC_VALUE_WRITE(name)				\
static int ext4_mb_write_##name(struct file *file,		\
		const char __user *buf, unsigned long cnt, void *data)	\
{								\
	struct ext4_sb_info *sbi = data;			\
	char str[32];						\
	long value;						\
	if (cnt >= sizeof(str))					\
		return -EINVAL;					\
	if (copy_from_user(str, buf, cnt))			\
		return -EFAULT;					\
	value = simple_strtol(str, NULL, 0);			\
	if (value <= 0)						\
		return -ERANGE;					\
	sbi->s_mb_##name = value;				\
	return cnt;						\
}

MB_PROC_VALUE_READ(stats);
MB_PROC_VALUE_WRITE(stats);
MB_PROC_VALUE_READ(max_to_scan);
MB_PROC_VALUE_WRITE(max_to_scan);
MB_PROC_VALUE_READ(min_to_scan);
MB_PROC_VALUE_WRITE(min_to_scan);
MB_PROC_VALUE_READ(order2_reqs);
MB_PROC_VALUE_WRITE(order2_reqs);
MB_PROC_VALUE_READ(stream_request);
MB_PROC_VALUE_WRITE(stream_request);
MB_PROC_VALUE_READ(group_prealloc);
MB_PROC_VALUE_WRITE(group_prealloc);

#define	MB_PROC_HANDLER(name, var)					\
do {									\
	proc = create_proc_entry(name, mode, sbi->s_mb_proc);		\
	if (proc == NULL) {						\
		printk(KERN_ERR "EXT4-fs: can't to create %s\n", name);	\
		goto err_out;						\
	}								\
	proc->data = sbi;						\
	proc->read_proc  = ext4_mb_read_##var ;				\
	proc->write_proc = ext4_mb_write_##var;				\
} while (0)

static int ext4_mb_init_per_dev_proc(struct super_block *sb)
{
	mode_t mode = S_IFREG | S_IRUGO | S_IWUSR;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct proc_dir_entry *proc;
	char devname[64];

	bdevname(sb->s_bdev, devname);
	sbi->s_mb_proc = proc_mkdir(devname, proc_root_ext4);

	MB_PROC_HANDLER(EXT4_MB_STATS_NAME, stats);
	MB_PROC_HANDLER(EXT4_MB_MAX_TO_SCAN_NAME, max_to_scan);
	MB_PROC_HANDLER(EXT4_MB_MIN_TO_SCAN_NAME, min_to_scan);
	MB_PROC_HANDLER(EXT4_MB_ORDER2_REQ, order2_reqs);
	MB_PROC_HANDLER(EXT4_MB_STREAM_REQ, stream_request);
	MB_PROC_HANDLER(EXT4_MB_GROUP_PREALLOC, group_prealloc);

	return 0;

err_out:
	printk(KERN_ERR "EXT4-fs: Unable to create %s\n", devname);
	remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_mb_proc);
	remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_mb_proc);
	remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_mb_proc);
	remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_mb_proc);
	remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_mb_proc);
	remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_mb_proc);
	remove_proc_entry(devname, proc_root_ext4);
	sbi->s_mb_proc = NULL;

	return -ENOMEM;
}

static int ext4_mb_destroy_per_dev_proc(struct super_block *sb)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	char devname[64];

	if (sbi->s_mb_proc == NULL)
		return -EINVAL;

	bdevname(sb->s_bdev, devname);
	remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_mb_proc);
	remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_mb_proc);
	remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_mb_proc);
	remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_mb_proc);
	remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_mb_proc);
	remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_mb_proc);
	remove_proc_entry(devname, proc_root_ext4);

	return 0;
}

int __init init_ext4_mballoc(void)
{
	ext4_pspace_cachep =
		kmem_cache_create("ext4_prealloc_space",
				     sizeof(struct ext4_prealloc_space),
				     0, SLAB_RECLAIM_ACCOUNT, NULL);
	if (ext4_pspace_cachep == NULL)
		return -ENOMEM;

	ext4_ac_cachep =
		kmem_cache_create("ext4_alloc_context",
				     sizeof(struct ext4_allocation_context),
				     0, SLAB_RECLAIM_ACCOUNT, NULL);
	if (ext4_ac_cachep == NULL) {
		kmem_cache_destroy(ext4_pspace_cachep);
		return -ENOMEM;
	}
#ifdef CONFIG_PROC_FS
	proc_root_ext4 = proc_mkdir("fs/ext4", NULL);
	if (proc_root_ext4 == NULL)
		printk(KERN_ERR "EXT4-fs: Unable to create fs/ext4\n");
#endif
	return 0;
}

void exit_ext4_mballoc(void)
{
	/* XXX: synchronize_rcu(); */
	kmem_cache_destroy(ext4_pspace_cachep);
	kmem_cache_destroy(ext4_ac_cachep);
#ifdef CONFIG_PROC_FS
	remove_proc_entry("fs/ext4", NULL);
#endif
}


/*
 * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
 * Returns 0 if success or error code
 */
static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
				handle_t *handle)
{
	struct buffer_head *bitmap_bh = NULL;
	struct ext4_super_block *es;
	struct ext4_group_desc *gdp;
	struct buffer_head *gdp_bh;
	struct ext4_sb_info *sbi;
	struct super_block *sb;
	ext4_fsblk_t block;
	int err;

	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
	BUG_ON(ac->ac_b_ex.fe_len <= 0);

	sb = ac->ac_sb;
	sbi = EXT4_SB(sb);
	es = sbi->s_es;

	ext4_debug("using block group %lu(%d)\n", ac->ac_b_ex.fe_group,
			gdp->bg_free_blocks_count);

	err = -EIO;
	bitmap_bh = read_block_bitmap(sb, ac->ac_b_ex.fe_group);
	if (!bitmap_bh)
		goto out_err;

	err = ext4_journal_get_write_access(handle, bitmap_bh);
	if (err)
		goto out_err;

	err = -EIO;
	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
	if (!gdp)
		goto out_err;

	err = ext4_journal_get_write_access(handle, gdp_bh);
	if (err)
		goto out_err;

	block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb)
		+ ac->ac_b_ex.fe_start
		+ le32_to_cpu(es->s_first_data_block);

	if (block == ext4_block_bitmap(sb, gdp) ||
			block == ext4_inode_bitmap(sb, gdp) ||
			in_range(block, ext4_inode_table(sb, gdp),
				EXT4_SB(sb)->s_itb_per_group)) {

		ext4_error(sb, __func__,
			   "Allocating block in system zone - block = %llu",
			   block);
	}
#ifdef AGGRESSIVE_CHECK
	{
		int i;
		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
						bitmap_bh->b_data));
		}
	}
#endif
	mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group), bitmap_bh->b_data,
				ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len);

	spin_lock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
		gdp->bg_free_blocks_count =
			cpu_to_le16(ext4_free_blocks_after_init(sb,
						ac->ac_b_ex.fe_group,
						gdp));
	}
	le16_add_cpu(&gdp->bg_free_blocks_count, -ac->ac_b_ex.fe_len);
	gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
	spin_unlock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
	percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);

	err = ext4_journal_dirty_metadata(handle, bitmap_bh);
	if (err)
		goto out_err;
	err = ext4_journal_dirty_metadata(handle, gdp_bh);

out_err:
	sb->s_dirt = 1;
	brelse(bitmap_bh);
	return err;
}

/*
 * here we normalize request for locality group
 * Group request are normalized to s_strip size if we set the same via mount
 * option. If not we set it to s_mb_group_prealloc which can be configured via
 * /proc/fs/ext4/<partition>/group_prealloc
 *
 * XXX: should we try to preallocate more than the group has now?
 */
static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_locality_group *lg = ac->ac_lg;

	BUG_ON(lg == NULL);
	if (EXT4_SB(sb)->s_stripe)
		ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
	else
		ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
	mb_debug("#%u: goal %u blocks for locality group\n",
		current->pid, ac->ac_g_ex.fe_len);
}

/*
 * Normalization means making request better in terms of
 * size and alignment
 */
static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context *ac,
				struct ext4_allocation_request *ar)
{
	int bsbits, max;
	ext4_lblk_t end;
	loff_t size, orig_size, start_off;
	ext4_lblk_t start, orig_start;
	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
	struct ext4_prealloc_space *pa;

	/* do normalize only data requests, metadata requests
	   do not need preallocation */
	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
		return;

	/* sometime caller may want exact blocks */
	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
		return;

	/* caller may indicate that preallocation isn't
	 * required (it's a tail, for example) */
	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
		return;

	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
		ext4_mb_normalize_group_request(ac);
		return ;
	}

	bsbits = ac->ac_sb->s_blocksize_bits;

	/* first, let's learn actual file size
	 * given current request is allocated */
	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
	size = size << bsbits;
	if (size < i_size_read(ac->ac_inode))
		size = i_size_read(ac->ac_inode);

	/* max size of free chunks */
	max = 2 << bsbits;

#define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
		(req <= (size) || max <= (chunk_size))

	/* first, try to predict filesize */
	/* XXX: should this table be tunable? */
	start_off = 0;
	if (size <= 16 * 1024) {
		size = 16 * 1024;
	} else if (size <= 32 * 1024) {
		size = 32 * 1024;
	} else if (size <= 64 * 1024) {
		size = 64 * 1024;
	} else if (size <= 128 * 1024) {
		size = 128 * 1024;
	} else if (size <= 256 * 1024) {
		size = 256 * 1024;
	} else if (size <= 512 * 1024) {
		size = 512 * 1024;
	} else if (size <= 1024 * 1024) {
		size = 1024 * 1024;
	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
						(21 - bsbits)) << 21;
		size = 2 * 1024 * 1024;
	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
							(22 - bsbits)) << 22;
		size = 4 * 1024 * 1024;
	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
					(8<<20)>>bsbits, max, 8 * 1024)) {
		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
							(23 - bsbits)) << 23;
		size = 8 * 1024 * 1024;
	} else {
		start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
		size	  = ac->ac_o_ex.fe_len << bsbits;
	}
	orig_size = size = size >> bsbits;
	orig_start = start = start_off >> bsbits;

	/* don't cover already allocated blocks in selected range */
	if (ar->pleft && start <= ar->lleft) {
		size -= ar->lleft + 1 - start;
		start = ar->lleft + 1;
	}
	if (ar->pright && start + size - 1 >= ar->lright)
		size -= start + size - ar->lright;

	end = start + size;

	/* check we don't cross already preallocated blocks */
	rcu_read_lock();
	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
		unsigned long pa_end;

		if (pa->pa_deleted)
			continue;
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted) {
			spin_unlock(&pa->pa_lock);
			continue;
		}

		pa_end = pa->pa_lstart + pa->pa_len;

		/* PA must not overlap original request */
		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
			ac->ac_o_ex.fe_logical < pa->pa_lstart));

		/* skip PA normalized request doesn't overlap with */
		if (pa->pa_lstart >= end) {
			spin_unlock(&pa->pa_lock);
			continue;
		}
		if (pa_end <= start) {
			spin_unlock(&pa->pa_lock);
			continue;
		}
		BUG_ON(pa->pa_lstart <= start && pa_end >= end);

		if (pa_end <= ac->ac_o_ex.fe_logical) {
			BUG_ON(pa_end < start);
			start = pa_end;
		}

		if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
			BUG_ON(pa->pa_lstart > end);
			end = pa->pa_lstart;
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();
	size = end - start;

	/* XXX: extra loop to check we really don't overlap preallocations */
	rcu_read_lock();
	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
		unsigned long pa_end;
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted == 0) {
			pa_end = pa->pa_lstart + pa->pa_len;
			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();

	if (start + size <= ac->ac_o_ex.fe_logical &&
			start > ac->ac_o_ex.fe_logical) {
		printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
			(unsigned long) start, (unsigned long) size,
			(unsigned long) ac->ac_o_ex.fe_logical);
	}
	BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
			start > ac->ac_o_ex.fe_logical);
	BUG_ON(size <= 0 || size >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));

	/* now prepare goal request */

	/* XXX: is it better to align blocks WRT to logical
	 * placement or satisfy big request as is */
	ac->ac_g_ex.fe_logical = start;
	ac->ac_g_ex.fe_len = size;

	/* define goal start in order to merge */
	if (ar->pright && (ar->lright == (start + size))) {
		/* merge to the right */
		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
						&ac->ac_f_ex.fe_group,
						&ac->ac_f_ex.fe_start);
		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
	}
	if (ar->pleft && (ar->lleft + 1 == start)) {
		/* merge to the left */
		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
						&ac->ac_f_ex.fe_group,
						&ac->ac_f_ex.fe_start);
		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
	}

	mb_debug("goal: %u(was %u) blocks at %u\n", (unsigned) size,
		(unsigned) orig_size, (unsigned) start);
}

static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);

	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
		atomic_inc(&sbi->s_bal_reqs);
		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
		if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len)
			atomic_inc(&sbi->s_bal_success);
		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
			atomic_inc(&sbi->s_bal_goals);
		if (ac->ac_found > sbi->s_mb_max_to_scan)
			atomic_inc(&sbi->s_bal_breaks);
	}

	ext4_mb_store_history(ac);
}

/*
 * use blocks preallocated to inode
 */
static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
				struct ext4_prealloc_space *pa)
{
	ext4_fsblk_t start;
	ext4_fsblk_t end;
	int len;

	/* found preallocated blocks, use them */
	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
	end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
	len = end - start;
	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
					&ac->ac_b_ex.fe_start);
	ac->ac_b_ex.fe_len = len;
	ac->ac_status = AC_STATUS_FOUND;
	ac->ac_pa = pa;

	BUG_ON(start < pa->pa_pstart);
	BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
	BUG_ON(pa->pa_free < len);
	pa->pa_free -= len;

	mb_debug("use %llu/%u from inode pa %p\n", start, len, pa);
}

/*
 * use blocks preallocated to locality group
 */
static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
				struct ext4_prealloc_space *pa)
{
	unsigned len = ac->ac_o_ex.fe_len;

	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
					&ac->ac_b_ex.fe_group,
					&ac->ac_b_ex.fe_start);
	ac->ac_b_ex.fe_len = len;
	ac->ac_status = AC_STATUS_FOUND;
	ac->ac_pa = pa;

	/* we don't correct pa_pstart or pa_plen here to avoid
	 * possible race when the group is being loaded concurrently
	 * instead we correct pa later, after blocks are marked
	 * in on-disk bitmap -- see ext4_mb_release_context()
	 * Other CPUs are prevented from allocating from this pa by lg_mutex
	 */
	mb_debug("use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
}

/*
 * search goal blocks in preallocated space
 */
static noinline_for_stack int
ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
{
	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
	struct ext4_locality_group *lg;
	struct ext4_prealloc_space *pa;

	/* only data can be preallocated */
	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
		return 0;

	/* first, try per-file preallocation */
	rcu_read_lock();
	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {

		/* all fields in this condition don't change,
		 * so we can skip locking for them */
		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
			ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
			continue;

		/* found preallocated blocks, use them */
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted == 0 && pa->pa_free) {
			atomic_inc(&pa->pa_count);
			ext4_mb_use_inode_pa(ac, pa);
			spin_unlock(&pa->pa_lock);
			ac->ac_criteria = 10;
			rcu_read_unlock();
			return 1;
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();

	/* can we use group allocation? */
	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
		return 0;

	/* inode may have no locality group for some reason */
	lg = ac->ac_lg;
	if (lg == NULL)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list, pa_inode_list) {
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted == 0 && pa->pa_free >= ac->ac_o_ex.fe_len) {
			atomic_inc(&pa->pa_count);
			ext4_mb_use_group_pa(ac, pa);
			spin_unlock(&pa->pa_lock);
			ac->ac_criteria = 20;
			rcu_read_unlock();
			return 1;
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();

	return 0;
}

/*
 * the function goes through all preallocation in this group and marks them
 * used in in-core bitmap. buddy must be generated from this bitmap
 * Need to be called with ext4 group lock (ext4_lock_group)
 */
static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
					ext4_group_t group)
{
	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
	struct ext4_prealloc_space *pa;
	struct list_head *cur;
	ext4_group_t groupnr;
	ext4_grpblk_t start;
	int preallocated = 0;
	int count = 0;
	int len;

	/* all form of preallocation discards first load group,
	 * so the only competing code is preallocation use.
	 * we don't need any locking here
	 * notice we do NOT ignore preallocations with pa_deleted
	 * otherwise we could leave used blocks available for
	 * allocation in buddy when concurrent ext4_mb_put_pa()
	 * is dropping preallocation
	 */
	list_for_each(cur, &grp->bb_prealloc_list) {
		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
		spin_lock(&pa->pa_lock);
		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
					     &groupnr, &start);
		len = pa->pa_len;
		spin_unlock(&pa->pa_lock);
		if (unlikely(len == 0))
			continue;
		BUG_ON(groupnr != group);
		mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group),
						bitmap, start, len);
		preallocated += len;
		count++;
	}
	mb_debug("prellocated %u for group %lu\n", preallocated, group);
}

static void ext4_mb_pa_callback(struct rcu_head *head)
{
	struct ext4_prealloc_space *pa;
	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
	kmem_cache_free(ext4_pspace_cachep, pa);
}

/*
 * drops a reference to preallocated space descriptor
 * if this was the last reference and the space is consumed
 */
static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
			struct super_block *sb, struct ext4_prealloc_space *pa)
{
	unsigned long grp;

	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
		return;

	/* in this short window concurrent discard can set pa_deleted */
	spin_lock(&pa->pa_lock);
	if (pa->pa_deleted == 1) {
		spin_unlock(&pa->pa_lock);
		return;
	}

	pa->pa_deleted = 1;
	spin_unlock(&pa->pa_lock);

	/* -1 is to protect from crossing allocation group */
	ext4_get_group_no_and_offset(sb, pa->pa_pstart - 1, &grp, NULL);

	/*
	 * possible race:
	 *
	 *  P1 (buddy init)			P2 (regular allocation)
	 *					find block B in PA
	 *  copy on-disk bitmap to buddy
	 *  					mark B in on-disk bitmap
	 *					drop PA from group
	 *  mark all PAs in buddy
	 *
	 * thus, P1 initializes buddy with B available. to prevent this
	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
	 * against that pair
	 */
	ext4_lock_group(sb, grp);
	list_del(&pa->pa_group_list);
	ext4_unlock_group(sb, grp);

	spin_lock(pa->pa_obj_lock);
	list_del_rcu(&pa->pa_inode_list);
	spin_unlock(pa->pa_obj_lock);

	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
}

/*
 * creates new preallocated space for given inode
 */
static noinline_for_stack int
ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_prealloc_space *pa;
	struct ext4_group_info *grp;
	struct ext4_inode_info *ei;

	/* preallocate only when found space is larger then requested */
	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));

	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
	if (pa == NULL)
		return -ENOMEM;

	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
		int winl;
		int wins;
		int win;
		int offs;

		/* we can't allocate as much as normalizer wants.
		 * so, found space must get proper lstart
		 * to cover original request */
		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);

		/* we're limited by original request in that
		 * logical block must be covered any way
		 * winl is window we can move our chunk within */
		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;

		/* also, we should cover whole original request */
		wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;

		/* the smallest one defines real window */
		win = min(winl, wins);

		offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
		if (offs && offs < win)
			win = offs;

		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
	}

	/* preallocation can change ac_b_ex, thus we store actually
	 * allocated blocks for history */
	ac->ac_f_ex = ac->ac_b_ex;

	pa->pa_lstart = ac->ac_b_ex.fe_logical;
	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
	pa->pa_len = ac->ac_b_ex.fe_len;
	pa->pa_free = pa->pa_len;
	atomic_set(&pa->pa_count, 1);
	spin_lock_init(&pa->pa_lock);
	pa->pa_deleted = 0;
	pa->pa_linear = 0;

	mb_debug("new inode pa %p: %llu/%u for %u\n", pa,
			pa->pa_pstart, pa->pa_len, pa->pa_lstart);

	ext4_mb_use_inode_pa(ac, pa);
	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);

	ei = EXT4_I(ac->ac_inode);
	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);

	pa->pa_obj_lock = &ei->i_prealloc_lock;
	pa->pa_inode = ac->ac_inode;

	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);

	spin_lock(pa->pa_obj_lock);
	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
	spin_unlock(pa->pa_obj_lock);

	return 0;
}

/*
 * creates new preallocated space for locality group inodes belongs to
 */
static noinline_for_stack int
ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_locality_group *lg;
	struct ext4_prealloc_space *pa;
	struct ext4_group_info *grp;

	/* preallocate only when found space is larger then requested */
	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));

	BUG_ON(ext4_pspace_cachep == NULL);
	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
	if (pa == NULL)
		return -ENOMEM;

	/* preallocation can change ac_b_ex, thus we store actually
	 * allocated blocks for history */
	ac->ac_f_ex = ac->ac_b_ex;

	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
	pa->pa_lstart = pa->pa_pstart;
	pa->pa_len = ac->ac_b_ex.fe_len;
	pa->pa_free = pa->pa_len;
	atomic_set(&pa->pa_count, 1);
	spin_lock_init(&pa->pa_lock);
	pa->pa_deleted = 0;
	pa->pa_linear = 1;

	mb_debug("new group pa %p: %llu/%u for %u\n", pa,
			pa->pa_pstart, pa->pa_len, pa->pa_lstart);

	ext4_mb_use_group_pa(ac, pa);
	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);

	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
	lg = ac->ac_lg;
	BUG_ON(lg == NULL);

	pa->pa_obj_lock = &lg->lg_prealloc_lock;
	pa->pa_inode = NULL;

	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);

	spin_lock(pa->pa_obj_lock);
	list_add_tail_rcu(&pa->pa_inode_list, &lg->lg_prealloc_list);
	spin_unlock(pa->pa_obj_lock);

	return 0;
}

static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
{
	int err;

	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
		err = ext4_mb_new_group_pa(ac);
	else
		err = ext4_mb_new_inode_pa(ac);
	return err;
}

/*
 * finds all unused blocks in on-disk bitmap, frees them in
 * in-core bitmap and buddy.
 * @pa must be unlinked from inode and group lists, so that
 * nobody else can find/use it.
 * the caller MUST hold group/inode locks.
 * TODO: optimize the case when there are no in-core structures yet
 */
static noinline_for_stack int
ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
			struct ext4_prealloc_space *pa,
			struct ext4_allocation_context *ac)
{
	struct super_block *sb = e4b->bd_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	unsigned long end;
	unsigned long next;
	ext4_group_t group;
	ext4_grpblk_t bit;
	sector_t start;
	int err = 0;
	int free = 0;

	BUG_ON(pa->pa_deleted == 0);
	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
	end = bit + pa->pa_len;

	if (ac) {
		ac->ac_sb = sb;
		ac->ac_inode = pa->pa_inode;
		ac->ac_op = EXT4_MB_HISTORY_DISCARD;
	}

	while (bit < end) {
		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
		if (bit >= end)
			break;
		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
		if (next > end)
			next = end;
		start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit +
				le32_to_cpu(sbi->s_es->s_first_data_block);
		mb_debug("    free preallocated %u/%u in group %u\n",
				(unsigned) start, (unsigned) next - bit,
				(unsigned) group);
		free += next - bit;

		if (ac) {
			ac->ac_b_ex.fe_group = group;
			ac->ac_b_ex.fe_start = bit;
			ac->ac_b_ex.fe_len = next - bit;
			ac->ac_b_ex.fe_logical = 0;
			ext4_mb_store_history(ac);
		}

		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
		bit = next + 1;
	}
	if (free != pa->pa_free) {
		printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
			pa, (unsigned long) pa->pa_lstart,
			(unsigned long) pa->pa_pstart,
			(unsigned long) pa->pa_len);
		ext4_error(sb, __func__, "free %u, pa_free %u\n",
						free, pa->pa_free);
		/*
		 * pa is already deleted so we use the value obtained
		 * from the bitmap and continue.
		 */
	}
	atomic_add(free, &sbi->s_mb_discarded);

	return err;
}

static noinline_for_stack int
ext4_mb_release_group_pa(struct ext4_buddy *e4b,
				struct ext4_prealloc_space *pa,
				struct ext4_allocation_context *ac)
{
	struct super_block *sb = e4b->bd_sb;
	ext4_group_t group;
	ext4_grpblk_t bit;

	if (ac)
		ac->ac_op = EXT4_MB_HISTORY_DISCARD;

	BUG_ON(pa->pa_deleted == 0);
	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);

	if (ac) {
		ac->ac_sb = sb;
		ac->ac_inode = NULL;
		ac->ac_b_ex.fe_group = group;
		ac->ac_b_ex.fe_start = bit;
		ac->ac_b_ex.fe_len = pa->pa_len;
		ac->ac_b_ex.fe_logical = 0;
		ext4_mb_store_history(ac);
	}

	return 0;
}

/*
 * releases all preallocations in given group
 *
 * first, we need to decide discard policy:
 * - when do we discard
 *   1) ENOSPC
 * - how many do we discard
 *   1) how many requested
 */
static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block *sb,
					ext4_group_t group, int needed)
{
	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
	struct buffer_head *bitmap_bh = NULL;
	struct ext4_prealloc_space *pa, *tmp;
	struct ext4_allocation_context *ac;
	struct list_head list;
	struct ext4_buddy e4b;
	int err;
	int busy = 0;
	int free = 0;

	mb_debug("discard preallocation for group %lu\n", group);

	if (list_empty(&grp->bb_prealloc_list))
		return 0;

	bitmap_bh = read_block_bitmap(sb, group);
	if (bitmap_bh == NULL) {
		/* error handling here */
		ext4_mb_release_desc(&e4b);
		BUG_ON(bitmap_bh == NULL);
	}

	err = ext4_mb_load_buddy(sb, group, &e4b);
	BUG_ON(err != 0); /* error handling here */

	if (needed == 0)
		needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;

	grp = ext4_get_group_info(sb, group);
	INIT_LIST_HEAD(&list);

	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
repeat:
	ext4_lock_group(sb, group);
	list_for_each_entry_safe(pa, tmp,
				&grp->bb_prealloc_list, pa_group_list) {
		spin_lock(&pa->pa_lock);
		if (atomic_read(&pa->pa_count)) {
			spin_unlock(&pa->pa_lock);
			busy = 1;
			continue;
		}
		if (pa->pa_deleted) {
			spin_unlock(&pa->pa_lock);
			continue;
		}

		/* seems this one can be freed ... */
		pa->pa_deleted = 1;

		/* we can trust pa_free ... */
		free += pa->pa_free;

		spin_unlock(&pa->pa_lock);

		list_del(&pa->pa_group_list);
		list_add(&pa->u.pa_tmp_list, &list);
	}

	/* if we still need more blocks and some PAs were used, try again */
	if (free < needed && busy) {
		busy = 0;
		ext4_unlock_group(sb, group);
		/*
		 * Yield the CPU here so that we don't get soft lockup
		 * in non preempt case.
		 */
		yield();
		goto repeat;
	}

	/* found anything to free? */
	if (list_empty(&list)) {
		BUG_ON(free != 0);
		goto out;
	}

	/* now free all selected PAs */
	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {

		/* remove from object (inode or locality group) */
		spin_lock(pa->pa_obj_lock);
		list_del_rcu(&pa->pa_inode_list);
		spin_unlock(pa->pa_obj_lock);

		if (pa->pa_linear)
			ext4_mb_release_group_pa(&e4b, pa, ac);
		else
			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);

		list_del(&pa->u.pa_tmp_list);
		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
	}

out:
	ext4_unlock_group(sb, group);
	if (ac)
		kmem_cache_free(ext4_ac_cachep, ac);
	ext4_mb_release_desc(&e4b);
	put_bh(bitmap_bh);
	return free;
}

/*
 * releases all non-used preallocated blocks for given inode
 *
 * It's important to discard preallocations under i_data_sem
 * We don't want another block to be served from the prealloc
 * space when we are discarding the inode prealloc space.
 *
 * FIXME!! Make sure it is valid at all the call sites
 */
void ext4_mb_discard_inode_preallocations(struct inode *inode)
{
	struct ext4_inode_info *ei = EXT4_I(inode);
	struct super_block *sb = inode->i_sb;
	struct buffer_head *bitmap_bh = NULL;
	struct ext4_prealloc_space *pa, *tmp;
	struct ext4_allocation_context *ac;
	ext4_group_t group = 0;
	struct list_head list;
	struct ext4_buddy e4b;
	int err;

	if (!test_opt(sb, MBALLOC) || !S_ISREG(inode->i_mode)) {
		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
		return;
	}

	mb_debug("discard preallocation for inode %lu\n", inode->i_ino);

	INIT_LIST_HEAD(&list);

	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
repeat:
	/* first, collect all pa's in the inode */
	spin_lock(&ei->i_prealloc_lock);
	while (!list_empty(&ei->i_prealloc_list)) {
		pa = list_entry(ei->i_prealloc_list.next,
				struct ext4_prealloc_space, pa_inode_list);
		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
		spin_lock(&pa->pa_lock);
		if (atomic_read(&pa->pa_count)) {
			/* this shouldn't happen often - nobody should
			 * use preallocation while we're discarding it */
			spin_unlock(&pa->pa_lock);
			spin_unlock(&ei->i_prealloc_lock);
			printk(KERN_ERR "uh-oh! used pa while discarding\n");
			WARN_ON(1);
			schedule_timeout_uninterruptible(HZ);
			goto repeat;

		}
		if (pa->pa_deleted == 0) {
			pa->pa_deleted = 1;
			spin_unlock(&pa->pa_lock);
			list_del_rcu(&pa->pa_inode_list);
			list_add(&pa->u.pa_tmp_list, &list);
			continue;
		}

		/* someone is deleting pa right now */
		spin_unlock(&pa->pa_lock);
		spin_unlock(&ei->i_prealloc_lock);

		/* we have to wait here because pa_deleted
		 * doesn't mean pa is already unlinked from
		 * the list. as we might be called from
		 * ->clear_inode() the inode will get freed
		 * and concurrent thread which is unlinking
		 * pa from inode's list may access already
		 * freed memory, bad-bad-bad */

		/* XXX: if this happens too often, we can
		 * add a flag to force wait only in case
		 * of ->clear_inode(), but not in case of
		 * regular truncate */
		schedule_timeout_uninterruptible(HZ);
		goto repeat;
	}
	spin_unlock(&ei->i_prealloc_lock);

	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
		BUG_ON(pa->pa_linear != 0);
		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);

		err = ext4_mb_load_buddy(sb, group, &e4b);
		BUG_ON(err != 0); /* error handling here */

		bitmap_bh = read_block_bitmap(sb, group);
		if (bitmap_bh == NULL) {
			/* error handling here */
			ext4_mb_release_desc(&e4b);
			BUG_ON(bitmap_bh == NULL);
		}

		ext4_lock_group(sb, group);
		list_del(&pa->pa_group_list);
		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
		ext4_unlock_group(sb, group);

		ext4_mb_release_desc(&e4b);
		put_bh(bitmap_bh);

		list_del(&pa->u.pa_tmp_list);
		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
	}
	if (ac)
		kmem_cache_free(ext4_ac_cachep, ac);
}

/*
 * finds all preallocated spaces and return blocks being freed to them
 * if preallocated space becomes full (no block is used from the space)
 * then the function frees space in buddy
 * XXX: at the moment, truncate (which is the only way to free blocks)
 * discards all preallocations
 */
static void ext4_mb_return_to_preallocation(struct inode *inode,
					struct ext4_buddy *e4b,
					sector_t block, int count)
{
	BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
}
#ifdef MB_DEBUG
static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
{
	struct super_block *sb = ac->ac_sb;
	ext4_group_t i;

	printk(KERN_ERR "EXT4-fs: Can't allocate:"
			" Allocation context details:\n");
	printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
			ac->ac_status, ac->ac_flags);
	printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
			"best %lu/%lu/%lu@%lu cr %d\n",
			(unsigned long)ac->ac_o_ex.fe_group,
			(unsigned long)ac->ac_o_ex.fe_start,
			(unsigned long)ac->ac_o_ex.fe_len,
			(unsigned long)ac->ac_o_ex.fe_logical,
			(unsigned long)ac->ac_g_ex.fe_group,
			(unsigned long)ac->ac_g_ex.fe_start,
			(unsigned long)ac->ac_g_ex.fe_len,
			(unsigned long)ac->ac_g_ex.fe_logical,
			(unsigned long)ac->ac_b_ex.fe_group,
			(unsigned long)ac->ac_b_ex.fe_start,
			(unsigned long)ac->ac_b_ex.fe_len,
			(unsigned long)ac->ac_b_ex.fe_logical,
			(int)ac->ac_criteria);
	printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
		ac->ac_found);
	printk(KERN_ERR "EXT4-fs: groups: \n");
	for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) {
		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
		struct ext4_prealloc_space *pa;
		ext4_grpblk_t start;
		struct list_head *cur;
		ext4_lock_group(sb, i);
		list_for_each(cur, &grp->bb_prealloc_list) {
			pa = list_entry(cur, struct ext4_prealloc_space,
					pa_group_list);
			spin_lock(&pa->pa_lock);
			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
						     NULL, &start);
			spin_unlock(&pa->pa_lock);
			printk(KERN_ERR "PA:%lu:%d:%u \n", i,
							start, pa->pa_len);
		}
		ext4_unlock_group(sb, i);

		if (grp->bb_free == 0)
			continue;
		printk(KERN_ERR "%lu: %d/%d \n",
		       i, grp->bb_free, grp->bb_fragments);
	}
	printk(KERN_ERR "\n");
}
#else
static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
{
	return;
}
#endif

/*
 * We use locality group preallocation for small size file. The size of the
 * file is determined by the current size or the resulting size after
 * allocation which ever is larger
 *
 * One can tune this size via /proc/fs/ext4/<partition>/stream_req
 */
static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	int bsbits = ac->ac_sb->s_blocksize_bits;
	loff_t size, isize;

	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
		return;

	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
	isize = i_size_read(ac->ac_inode) >> bsbits;
	size = max(size, isize);

	/* don't use group allocation for large files */
	if (size >= sbi->s_mb_stream_request)
		return;

	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
		return;

	BUG_ON(ac->ac_lg != NULL);
	/*
	 * locality group prealloc space are per cpu. The reason for having
	 * per cpu locality group is to reduce the contention between block
	 * request from multiple CPUs.
	 */
	ac->ac_lg = &sbi->s_locality_groups[get_cpu()];
	put_cpu();

	/* we're going to use group allocation */
	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;

	/* serialize all allocations in the group */
	mutex_lock(&ac->ac_lg->lg_mutex);
}

static noinline_for_stack int
ext4_mb_initialize_context(struct ext4_allocation_context *ac,
				struct ext4_allocation_request *ar)
{
	struct super_block *sb = ar->inode->i_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct ext4_super_block *es = sbi->s_es;
	ext4_group_t group;
	unsigned long len;
	unsigned long goal;
	ext4_grpblk_t block;

	/* we can't allocate > group size */
	len = ar->len;

	/* just a dirty hack to filter too big requests  */
	if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
		len = EXT4_BLOCKS_PER_GROUP(sb) - 10;

	/* start searching from the goal */
	goal = ar->goal;
	if (goal < le32_to_cpu(es->s_first_data_block) ||
			goal >= ext4_blocks_count(es))
		goal = le32_to_cpu(es->s_first_data_block);
	ext4_get_group_no_and_offset(sb, goal, &group, &block);

	/* set up allocation goals */
	ac->ac_b_ex.fe_logical = ar->logical;
	ac->ac_b_ex.fe_group = 0;
	ac->ac_b_ex.fe_start = 0;
	ac->ac_b_ex.fe_len = 0;
	ac->ac_status = AC_STATUS_CONTINUE;
	ac->ac_groups_scanned = 0;
	ac->ac_ex_scanned = 0;
	ac->ac_found = 0;
	ac->ac_sb = sb;
	ac->ac_inode = ar->inode;
	ac->ac_o_ex.fe_logical = ar->logical;
	ac->ac_o_ex.fe_group = group;
	ac->ac_o_ex.fe_start = block;
	ac->ac_o_ex.fe_len = len;
	ac->ac_g_ex.fe_logical = ar->logical;
	ac->ac_g_ex.fe_group = group;
	ac->ac_g_ex.fe_start = block;
	ac->ac_g_ex.fe_len = len;
	ac->ac_f_ex.fe_len = 0;
	ac->ac_flags = ar->flags;
	ac->ac_2order = 0;
	ac->ac_criteria = 0;
	ac->ac_pa = NULL;
	ac->ac_bitmap_page = NULL;
	ac->ac_buddy_page = NULL;
	ac->ac_lg = NULL;

	/* we have to define context: we'll we work with a file or
	 * locality group. this is a policy, actually */
	ext4_mb_group_or_file(ac);

	mb_debug("init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
			"left: %u/%u, right %u/%u to %swritable\n",
			(unsigned) ar->len, (unsigned) ar->logical,
			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
			(unsigned) ar->lleft, (unsigned) ar->pleft,
			(unsigned) ar->lright, (unsigned) ar->pright,
			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
	return 0;

}

/*
 * release all resource we used in allocation
 */
static int ext4_mb_release_context(struct ext4_allocation_context *ac)
{
	if (ac->ac_pa) {
		if (ac->ac_pa->pa_linear) {
			/* see comment in ext4_mb_use_group_pa() */
			spin_lock(&ac->ac_pa->pa_lock);
			ac->ac_pa->pa_pstart += ac->ac_b_ex.fe_len;
			ac->ac_pa->pa_lstart += ac->ac_b_ex.fe_len;
			ac->ac_pa->pa_free -= ac->ac_b_ex.fe_len;
			ac->ac_pa->pa_len -= ac->ac_b_ex.fe_len;
			spin_unlock(&ac->ac_pa->pa_lock);
		}
		ext4_mb_put_pa(ac, ac->ac_sb, ac->ac_pa);
	}
	if (ac->ac_bitmap_page)
		page_cache_release(ac->ac_bitmap_page);
	if (ac->ac_buddy_page)
		page_cache_release(ac->ac_buddy_page);
	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
		mutex_unlock(&ac->ac_lg->lg_mutex);
	ext4_mb_collect_stats(ac);
	return 0;
}

static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
{
	ext4_group_t i;
	int ret;
	int freed = 0;

	for (i = 0; i < EXT4_SB(sb)->s_groups_count && needed > 0; i++) {
		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
		freed += ret;
		needed -= ret;
	}

	return freed;
}

/*
 * Main entry point into mballoc to allocate blocks
 * it tries to use preallocation first, then falls back
 * to usual allocation
 */
ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
				 struct ext4_allocation_request *ar, int *errp)
{
	struct ext4_allocation_context *ac = NULL;
	struct ext4_sb_info *sbi;
	struct super_block *sb;
	ext4_fsblk_t block = 0;
	int freed;
	int inquota;

	sb = ar->inode->i_sb;
	sbi = EXT4_SB(sb);

	if (!test_opt(sb, MBALLOC)) {
		block = ext4_new_blocks_old(handle, ar->inode, ar->goal,
					    &(ar->len), errp);
		return block;
	}

	while (ar->len && DQUOT_ALLOC_BLOCK(ar->inode, ar->len)) {
		ar->flags |= EXT4_MB_HINT_NOPREALLOC;
		ar->len--;
	}
	if (ar->len == 0) {
		*errp = -EDQUOT;
		return 0;
	}
	inquota = ar->len;

	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
	if (!ac) {
		*errp = -ENOMEM;
		return 0;
	}

	ext4_mb_poll_new_transaction(sb, handle);

	*errp = ext4_mb_initialize_context(ac, ar);
	if (*errp) {
		ar->len = 0;
		goto out;
	}

	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
	if (!ext4_mb_use_preallocated(ac)) {

		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
		ext4_mb_normalize_request(ac, ar);

repeat:
		/* allocate space in core */
		ext4_mb_regular_allocator(ac);

		/* as we've just preallocated more space than
		 * user requested orinally, we store allocated
		 * space in a special descriptor */
		if (ac->ac_status == AC_STATUS_FOUND &&
				ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
			ext4_mb_new_preallocation(ac);
	}

	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
		ext4_mb_mark_diskspace_used(ac, handle);
		*errp = 0;
		block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
		ar->len = ac->ac_b_ex.fe_len;
	} else {
		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
		if (freed)
			goto repeat;
		*errp = -ENOSPC;
		ac->ac_b_ex.fe_len = 0;
		ar->len = 0;
		ext4_mb_show_ac(ac);
	}

	ext4_mb_release_context(ac);

out:
	if (ar->len < inquota)
		DQUOT_FREE_BLOCK(ar->inode, inquota - ar->len);

	kmem_cache_free(ext4_ac_cachep, ac);
	return block;
}
static void ext4_mb_poll_new_transaction(struct super_block *sb,
						handle_t *handle)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	if (sbi->s_last_transaction == handle->h_transaction->t_tid)
		return;

	/* new transaction! time to close last one and free blocks for
	 * committed transaction. we know that only transaction can be
	 * active, so previos transaction can be being logged and we
	 * know that transaction before previous is known to be already
	 * logged. this means that now we may free blocks freed in all
	 * transactions before previous one. hope I'm clear enough ... */

	spin_lock(&sbi->s_md_lock);
	if (sbi->s_last_transaction != handle->h_transaction->t_tid) {
		mb_debug("new transaction %lu, old %lu\n",
				(unsigned long) handle->h_transaction->t_tid,
				(unsigned long) sbi->s_last_transaction);
		list_splice_init(&sbi->s_closed_transaction,
				&sbi->s_committed_transaction);
		list_splice_init(&sbi->s_active_transaction,
				&sbi->s_closed_transaction);
		sbi->s_last_transaction = handle->h_transaction->t_tid;
	}
	spin_unlock(&sbi->s_md_lock);

	ext4_mb_free_committed_blocks(sb);
}

static noinline_for_stack int
ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
			  ext4_group_t group, ext4_grpblk_t block, int count)
{
	struct ext4_group_info *db = e4b->bd_info;
	struct super_block *sb = e4b->bd_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct ext4_free_metadata *md;
	int i;

	BUG_ON(e4b->bd_bitmap_page == NULL);
	BUG_ON(e4b->bd_buddy_page == NULL);

	ext4_lock_group(sb, group);
	for (i = 0; i < count; i++) {
		md = db->bb_md_cur;
		if (md && db->bb_tid != handle->h_transaction->t_tid) {
			db->bb_md_cur = NULL;
			md = NULL;
		}

		if (md == NULL) {
			ext4_unlock_group(sb, group);
			md = kmalloc(sizeof(*md), GFP_NOFS);
			if (md == NULL)
				return -ENOMEM;
			md->num = 0;
			md->group = group;

			ext4_lock_group(sb, group);
			if (db->bb_md_cur == NULL) {
				spin_lock(&sbi->s_md_lock);
				list_add(&md->list, &sbi->s_active_transaction);
				spin_unlock(&sbi->s_md_lock);
				/* protect buddy cache from being freed,
				 * otherwise we'll refresh it from
				 * on-disk bitmap and lose not-yet-available
				 * blocks */
				page_cache_get(e4b->bd_buddy_page);
				page_cache_get(e4b->bd_bitmap_page);
				db->bb_md_cur = md;
				db->bb_tid = handle->h_transaction->t_tid;
				mb_debug("new md 0x%p for group %lu\n",
						md, md->group);
			} else {
				kfree(md);
				md = db->bb_md_cur;
			}
		}

		BUG_ON(md->num >= EXT4_BB_MAX_BLOCKS);
		md->blocks[md->num] = block + i;
		md->num++;
		if (md->num == EXT4_BB_MAX_BLOCKS) {
			/* no more space, put full container on a sb's list */
			db->bb_md_cur = NULL;
		}
	}
	ext4_unlock_group(sb, group);
	return 0;
}

/*
 * Main entry point into mballoc to free blocks
 */
void ext4_mb_free_blocks(handle_t *handle, struct inode *inode,
			unsigned long block, unsigned long count,
			int metadata, unsigned long *freed)
{
	struct buffer_head *bitmap_bh = NULL;
	struct super_block *sb = inode->i_sb;
	struct ext4_allocation_context *ac = NULL;
	struct ext4_group_desc *gdp;
	struct ext4_super_block *es;
	unsigned long overflow;
	ext4_grpblk_t bit;
	struct buffer_head *gd_bh;
	ext4_group_t block_group;
	struct ext4_sb_info *sbi;
	struct ext4_buddy e4b;
	int err = 0;
	int ret;

	*freed = 0;

	ext4_mb_poll_new_transaction(sb, handle);

	sbi = EXT4_SB(sb);
	es = EXT4_SB(sb)->s_es;
	if (block < le32_to_cpu(es->s_first_data_block) ||
	    block + count < block ||
	    block + count > ext4_blocks_count(es)) {
		ext4_error(sb, __func__,
			    "Freeing blocks not in datazone - "
			    "block = %lu, count = %lu", block, count);
		goto error_return;
	}

	ext4_debug("freeing block %lu\n", block);

	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
	if (ac) {
		ac->ac_op = EXT4_MB_HISTORY_FREE;
		ac->ac_inode = inode;
		ac->ac_sb = sb;
	}

do_more:
	overflow = 0;
	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);

	/*
	 * Check to see if we are freeing blocks across a group
	 * boundary.
	 */
	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
		overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
		count -= overflow;
	}
	bitmap_bh = read_block_bitmap(sb, block_group);
	if (!bitmap_bh)
		goto error_return;
	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
	if (!gdp)
		goto error_return;

	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
	    in_range(block, ext4_inode_table(sb, gdp),
		      EXT4_SB(sb)->s_itb_per_group) ||
	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
		      EXT4_SB(sb)->s_itb_per_group)) {

		ext4_error(sb, __func__,
			   "Freeing blocks in system zone - "
			   "Block = %lu, count = %lu", block, count);
	}

	BUFFER_TRACE(bitmap_bh, "getting write access");
	err = ext4_journal_get_write_access(handle, bitmap_bh);
	if (err)
		goto error_return;

	/*
	 * We are about to modify some metadata.  Call the journal APIs
	 * to unshare ->b_data if a currently-committing transaction is
	 * using it
	 */
	BUFFER_TRACE(gd_bh, "get_write_access");
	err = ext4_journal_get_write_access(handle, gd_bh);
	if (err)
		goto error_return;

	err = ext4_mb_load_buddy(sb, block_group, &e4b);
	if (err)
		goto error_return;

#ifdef AGGRESSIVE_CHECK
	{
		int i;
		for (i = 0; i < count; i++)
			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
	}
#endif
	mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data,
			bit, count);

	/* We dirtied the bitmap block */
	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
	err = ext4_journal_dirty_metadata(handle, bitmap_bh);

	if (ac) {
		ac->ac_b_ex.fe_group = block_group;
		ac->ac_b_ex.fe_start = bit;
		ac->ac_b_ex.fe_len = count;
		ext4_mb_store_history(ac);
	}

	if (metadata) {
		/* blocks being freed are metadata. these blocks shouldn't
		 * be used until this transaction is committed */
		ext4_mb_free_metadata(handle, &e4b, block_group, bit, count);
	} else {
		ext4_lock_group(sb, block_group);
		err = mb_free_blocks(inode, &e4b, bit, count);
		ext4_mb_return_to_preallocation(inode, &e4b, block, count);
		ext4_unlock_group(sb, block_group);
		BUG_ON(err != 0);
	}

	spin_lock(sb_bgl_lock(sbi, block_group));
	le16_add_cpu(&gdp->bg_free_blocks_count, count);
	gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
	spin_unlock(sb_bgl_lock(sbi, block_group));
	percpu_counter_add(&sbi->s_freeblocks_counter, count);

	ext4_mb_release_desc(&e4b);

	*freed += count;

	/* And the group descriptor block */
	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
	ret = ext4_journal_dirty_metadata(handle, gd_bh);
	if (!err)
		err = ret;

	if (overflow && !err) {
		block += count;
		count = overflow;
		put_bh(bitmap_bh);
		goto do_more;
	}
	sb->s_dirt = 1;
error_return:
	brelse(bitmap_bh);
	ext4_std_error(sb, err);
	if (ac)
		kmem_cache_free(ext4_ac_cachep, ac);
	return;
}