/*
* linux/fs/ext4/ialloc.c
*
* Copyright (C) 1992, 1993, 1994, 1995
* Remy Card (card@masi.ibp.fr)
* Laboratoire MASI - Institut Blaise Pascal
* Universite Pierre et Marie Curie (Paris VI)
*
* BSD ufs-inspired inode and directory allocation by
* Stephen Tweedie (sct@redhat.com), 1993
* Big-endian to little-endian byte-swapping/bitmaps by
* David S. Miller (davem@caip.rutgers.edu), 1995
*/
#include <linux/time.h>
#include <linux/fs.h>
#include <linux/jbd2.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/quotaops.h>
#include <linux/buffer_head.h>
#include <linux/random.h>
#include <linux/bitops.h>
#include <linux/blkdev.h>
#include <asm/byteorder.h>
#include "ext4.h"
#include "ext4_jbd2.h"
#include "xattr.h"
#include "acl.h"
#include <trace/events/ext4.h>
/*
* ialloc.c contains the inodes allocation and deallocation routines
*/
/*
* The free inodes are managed by bitmaps. A file system contains several
* blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
* block for inodes, N blocks for the inode table and data blocks.
*
* The file system contains group descriptors which are located after the
* super block. Each descriptor contains the number of the bitmap block and
* the free blocks count in the block.
*/
/*
* To avoid calling the atomic setbit hundreds or thousands of times, we only
* need to use it within a single byte (to ensure we get endianness right).
* We can use memset for the rest of the bitmap as there are no other users.
*/
void mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
{
int i;
if (start_bit >= end_bit)
return;
ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
ext4_set_bit(i, bitmap);
if (i < end_bit)
memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
}
/* Initializes an uninitialized inode bitmap */
unsigned ext4_init_inode_bitmap(struct super_block *sb, struct buffer_head *bh,
ext4_group_t block_group,
struct ext4_group_desc *gdp)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
J_ASSERT_BH(bh, buffer_locked(bh));
/* If checksum is bad mark all blocks and inodes use to prevent
* allocation, essentially implementing a per-group read-only flag. */
if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
ext4_error(sb, __func__, "Checksum bad for group %u",
block_group);
ext4_free_blks_set(sb, gdp, 0);
ext4_free_inodes_set(sb, gdp, 0);
ext4_itable_unused_set(sb, gdp, 0);
memset(bh->b_data, 0xff, sb->s_blocksize);
return 0;
}
memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
bh->b_data);
return EXT4_INODES_PER_GROUP(sb);
}
/*
* Read the inode allocation bitmap for a given block_group, reading
* into the specified slot in the superblock's bitmap cache.
*
* Return buffer_head of bitmap on success or NULL.
*/
static struct buffer_head *
ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
{
struct ext4_group_desc *desc;
struct buffer_head *bh = NULL;
ext4_fsblk_t bitmap_blk;
desc = ext4_get_group_desc(sb, block_group, NULL);
if (!desc)
return NULL;
bitmap_blk = ext4_inode_bitmap(sb, desc);
bh = sb_getblk(sb, bitmap_blk);
if (unlikely(!bh)) {
ext4_error(sb, __func__,
"Cannot read inode bitmap - "
"block_group = %u, inode_bitmap = %llu",
block_group, bitmap_blk);
return NULL;
}
if (bitmap_uptodate(bh))
return bh;
lock_buffer(bh);
if (bitmap_uptodate(bh)) {
unlock_buffer(bh);
return bh;
}
ext4_lock_group(sb, block_group);
if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
ext4_init_inode_bitmap(sb, bh, block_group, desc);
set_bitmap_uptodate(bh);
set_buffer_uptodate(bh);
ext4_unlock_group(sb, block_group);
unlock_buffer(bh);
return bh;
}
ext4_unlock_group(sb, block_group);
if (buffer_uptodate(bh)) {
/*
* if not uninit if bh is uptodate,
* bitmap is also uptodate
*/
set_bitmap_uptodate(bh);
unlock_buffer(bh);
return bh;
}
/*
* submit the buffer_head for read. We can
* safely mark the bitmap as uptodate now.
* We do it here so the bitmap uptodate bit
* get set with buffer lock held.
*/
set_bitmap_uptodate(bh);
if (bh_submit_read(bh) < 0) {
put_bh(bh);
ext4_error(sb, __func__,
"Cannot read inode bitmap - "
"block_group = %u, inode_bitmap = %llu",
block_group, bitmap_blk);
return NULL;
}
return bh;
}
/*
* NOTE! When we get the inode, we're the only people
* that have access to it, and as such there are no
* race conditions we have to worry about. The inode
* is not on the hash-lists, and it cannot be reached
* through the filesystem because the directory entry
* has been deleted earlier.
*
* HOWEVER: we must make sure that we get no aliases,
* which means that we have to call "clear_inode()"
* _before_ we mark the inode not in use in the inode
* bitmaps. Otherwise a newly created file might use
* the same inode number (not actually the same pointer
* though), and then we'd have two inodes sharing the
* same inode number and space on the harddisk.
*/
void ext4_free_inode(handle_t *handle, struct inode *inode)
{
struct super_block *sb = inode->i_sb;
int is_directory;
unsigned long ino;
struct buffer_head *bitmap_bh = NULL;
struct buffer_head *bh2;
ext4_group_t block_group;
unsigned long bit;
struct ext4_group_desc *gdp;
struct ext4_super_block *es;
struct ext4_sb_info *sbi;
int fatal = 0, err, count, cleared;
if (atomic_read(&inode->i_count) > 1) {
printk(KERN_ERR "ext4_free_inode: inode has count=%d\n",
atomic_read(&inode->i_count));
return;
}
if (inode->i_nlink) {
printk(KERN_ERR "ext4_free_inode: inode has nlink=%d\n",
inode->i_nlink);
return;
}
if (!sb) {
printk(KERN_ERR "ext4_free_inode: inode on "
"nonexistent device\n");
return;
}
sbi = EXT4_SB(sb);
ino = inode->i_ino;
ext4_debug("freeing inode %lu\n", ino);
trace_ext4_free_inode(inode);
/*
* Note: we must free any quota before locking the superblock,
* as writing the quota to disk may need the lock as well.
*/
vfs_dq_init(inode);
ext4_xattr_delete_inode(handle, inode);
vfs_dq_free_inode(inode);
vfs_dq_drop(inode);
is_directory = S_ISDIR(inode->i_mode);
/* Do this BEFORE marking the inode not in use or returning an error */
clear_inode(inode);
es = EXT4_SB(sb)->s_es;
if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
ext4_error(sb, "ext4_free_inode",
"reserved or nonexistent inode %lu", ino);
goto error_return;
}
block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
if (!bitmap_bh)
goto error_return;
BUFFER_TRACE(bitmap_bh, "get_write_access");
fatal = ext4_journal_get_write_access(handle, bitmap_bh);
if (fatal)
goto error_return;
/* Ok, now we can actually update the inode bitmaps.. */
cleared = ext4_clear_bit_atomic(ext4_group_lock_ptr(sb, block_group),
bit, bitmap_bh->b_data);
if (!cleared)
ext4_error(sb, "ext4_free_inode",
"bit already cleared for inode %lu", ino);
else {
gdp = ext4_get_group_desc(sb, block_group, &bh2);
BUFFER_TRACE(bh2, "get_write_access");
fatal = ext4_journal_get_write_access(handle, bh2);
if (fatal) goto error_return;
if (gdp) {
ext4_lock_group(sb, block_group);
count = ext4_free_inodes_count(sb, gdp) + 1;
ext4_free_inodes_set(sb, gdp, count);
if (is_directory) {
count = ext4_used_dirs_count(sb, gdp) - 1;
ext4_used_dirs_set(sb, gdp, count);
if (sbi->s_log_groups_per_flex) {
ext4_group_t f;
f = ext4_flex_group(sbi, block_group);
atomic_dec(&sbi->s_flex_groups[f].free_inodes);
}
}
gdp->bg_checksum = ext4_group_desc_csum(sbi,
block_group, gdp);
ext4_unlock_group(sb, block_group);
percpu_counter_inc(&sbi->s_freeinodes_counter);
if (is_directory)
percpu_counter_dec(&sbi->s_dirs_counter);
if (sbi->s_log_groups_per_flex) {
ext4_group_t f;
f = ext4_flex_group(sbi, block_group);
atomic_inc(&sbi->s_flex_groups[f].free_inodes);
}
}
BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
err = ext4_handle_dirty_metadata(handle, NULL, bh2);
if (!fatal) fatal = err;
}
BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
if (!fatal)
fatal = err;
sb->s_dirt = 1;
error_return:
brelse(bitmap_bh);
ext4_std_error(sb, fatal);
}
/*
* There are two policies for allocating an inode. If the new inode is
* a directory, then a forward search is made for a block group with both
* free space and a low directory-to-inode ratio; if that fails, then of
* the groups with above-average free space, that group with the fewest
* directories already is chosen.
*
* For other inodes, search forward from the parent directory\'s block
* group to find a free inode.
*/
static int find_group_dir(struct super_block *sb, struct inode *parent,
ext4_group_t *best_group)
{
ext4_group_t ngroups = ext4_get_groups_count(sb);
unsigned int freei, avefreei;
struct ext4_group_desc *desc, *best_desc = NULL;
ext4_group_t group;
int ret = -1;
freei = percpu_counter_read_positive(&EXT4_SB(sb)->s_freeinodes_counter);
avefreei = freei / ngroups;
for (group = 0; group < ngroups; group++) {
desc = ext4_get_group_desc(sb, group, NULL);
if (!desc || !ext4_free_inodes_count(sb, desc))
continue;
if (ext4_free_inodes_count(sb, desc) < avefreei)
continue;
if (!best_desc ||
(ext4_free_blks_count(sb, desc) >
ext4_free_blks_count(sb, best_desc))) {
*best_group = group;
best_desc = desc;
ret = 0;
}
}
return ret;
}
#define free_block_ratio 10
static int find_group_flex(struct super_block *sb, struct inode *parent,
ext4_group_t *best_group)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_group_desc *desc;
struct flex_groups *flex_group = sbi->s_flex_groups;
ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
ext4_group_t parent_fbg_group = ext4_flex_group(sbi, parent_group);
ext4_group_t ngroups = ext4_get_groups_count(sb);
int flex_size = ext4_flex_bg_size(sbi);
ext4_group_t best_flex = parent_fbg_group;
int blocks_per_flex = sbi->s_blocks_per_group * flex_size;
int flexbg_free_blocks;
int flex_freeb_ratio;
ext4_group_t n_fbg_groups;
ext4_group_t i;
n_fbg_groups = (ngroups + flex_size - 1) >>
sbi->s_log_groups_per_flex;
find_close_to_parent:
flexbg_free_blocks = atomic_read(&flex_group[best_flex].free_blocks);
flex_freeb_ratio = flexbg_free_blocks * 100 / blocks_per_flex;
if (atomic_read(&flex_group[best_flex].free_inodes) &&
flex_freeb_ratio > free_block_ratio)
goto found_flexbg;
if (best_flex && best_flex == parent_fbg_group) {
best_flex--;
goto find_close_to_parent;
}
for (i = 0; i < n_fbg_groups; i++) {
if (i == parent_fbg_group || i == parent_fbg_group - 1)
continue;
flexbg_free_blocks = atomic_read(&flex_group[i].free_blocks);
flex_freeb_ratio = flexbg_free_blocks * 100 / blocks_per_flex;
if (flex_freeb_ratio > free_block_ratio &&
(atomic_read(&flex_group[i].free_inodes))) {
best_flex = i;
goto found_flexbg;
}
if ((atomic_read(&flex_group[best_flex].free_inodes) == 0) ||
((atomic_read(&flex_group[i].free_blocks) >
atomic_read(&flex_group[best_flex].free_blocks)) &&
atomic_read(&flex_group[i].free_inodes)))
best_flex = i;
}
if (!atomic_read(&flex_group[best_flex].free_inodes) ||
!atomic_read(&flex_group[best_flex].free_blocks))
return -1;
found_flexbg:
for (i = best_flex * flex_size; i < ngroups &&
i < (best_flex + 1) * flex_size; i++) {
desc = ext4_get_group_desc(sb, i, NULL);
if (ext4_free_inodes_count(sb, desc)) {
*best_group = i;
goto out;
}
}
return -1;
out:
return 0;
}
struct orlov_stats {
__u32 free_inodes;
__u32 free_blocks;
__u32 used_dirs;
};
/*
* Helper function for Orlov's allocator; returns critical information
* for a particular block group or flex_bg. If flex_size is 1, then g
* is a block group number; otherwise it is flex_bg number.
*/
void get_orlov_stats(struct super_block *sb, ext4_group_t g,
int flex_size, struct orlov_stats *stats)
{
struct ext4_group_desc *desc;
struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
if (flex_size > 1) {
stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
stats->free_blocks = atomic_read(&flex_group[g].free_blocks);
stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
return;
}
desc = ext4_get_group_desc(sb, g, NULL);
if (desc) {
stats->free_inodes = ext4_free_inodes_count(sb, desc);
stats->free_blocks = ext4_free_blks_count(sb, desc);
stats->used_dirs = ext4_used_dirs_count(sb, desc);
} else {
stats->free_inodes = 0;
stats->free_blocks = 0;
stats->used_dirs = 0;
}
}
/*
* Orlov's allocator for directories.
*
* We always try to spread first-level directories.
*
* If there are blockgroups with both free inodes and free blocks counts
* not worse than average we return one with smallest directory count.
* Otherwise we simply return a random group.
*
* For the rest rules look so:
*
* It's OK to put directory into a group unless
* it has too many directories already (max_dirs) or
* it has too few free inodes left (min_inodes) or
* it has too few free blocks left (min_blocks) or
* Parent's group is preferred, if it doesn't satisfy these
* conditions we search cyclically through the rest. If none
* of the groups look good we just look for a group with more
* free inodes than average (starting at parent's group).
*/
static int find_group_orlov(struct super_block *sb, struct inode *parent,
ext4_group_t *group, int mode,
const struct qstr *qstr)
{
ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
struct ext4_sb_info *sbi = EXT4_SB(sb);
ext4_group_t real_ngroups = ext4_get_groups_count(sb);
int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
unsigned int freei, avefreei;
ext4_fsblk_t freeb, avefreeb;
unsigned int ndirs;
int max_dirs, min_inodes;
ext4_grpblk_t min_blocks;
ext4_group_t i, grp, g, ngroups;
struct ext4_group_desc *desc;
struct orlov_stats stats;
int flex_size = ext4_flex_bg_size(sbi);
struct dx_hash_info hinfo;
ngroups = real_ngroups;
if (flex_size > 1) {
ngroups = (real_ngroups + flex_size - 1) >>
sbi->s_log_groups_per_flex;
parent_group >>= sbi->s_log_groups_per_flex;
}
freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
avefreei = freei / ngroups;
freeb = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
avefreeb = freeb;
do_div(avefreeb, ngroups);
ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
if (S_ISDIR(mode) &&
((parent == sb->s_root->d_inode) ||
(EXT4_I(parent)->i_flags & EXT4_TOPDIR_FL))) {
int best_ndir = inodes_per_group;
int ret = -1;
if (qstr) {
hinfo.hash_version = DX_HASH_HALF_MD4;
hinfo.seed = sbi->s_hash_seed;
ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
grp = hinfo.hash;
} else
get_random_bytes(&grp, sizeof(grp));
parent_group = (unsigned)grp % ngroups;
for (i = 0; i < ngroups; i++) {
g = (parent_group + i) % ngroups;
get_orlov_stats(sb, g, flex_size, &stats);
if (!stats.free_inodes)
continue;
if (stats.used_dirs >= best_ndir)
continue;
if (stats.free_inodes < avefreei)
continue;
if (stats.free_blocks < avefreeb)
continue;
grp = g;
ret = 0;
best_ndir = stats.used_dirs;
}
if (ret)
goto fallback;
found_flex_bg:
if (flex_size == 1) {
*group = grp;
return 0;
}
/*
* We pack inodes at the beginning of the flexgroup's
* inode tables. Block allocation decisions will do
* something similar, although regular files will
* start at 2nd block group of the flexgroup. See
* ext4_ext_find_goal() and ext4_find_near().
*/
grp *= flex_size;
for (i = 0; i < flex_size; i++) {
if (grp+i >= real_ngroups)
break;
desc = ext4_get_group_desc(sb, grp+i, NULL);
if (desc && ext4_free_inodes_count(sb, desc)) {
*group = grp+i;
return 0;
}
}
goto fallback;
}
max_dirs = ndirs / ngroups + inodes_per_group / 16;
min_inodes = avefreei - inodes_per_group*flex_size / 4;
if (min_inodes < 1)
min_inodes = 1;
min_blocks = avefreeb - EXT4_BLOCKS_PER_GROUP(sb)*flex_size / 4;
/*
* Start looking in the flex group where we last allocated an
* inode for this parent directory
*/
if (EXT4_I(parent)->i_last_alloc_group != ~0) {
parent_group = EXT4_I(parent)->i_last_alloc_group;
if (flex_size > 1)
parent_group >>= sbi->s_log_groups_per_flex;
}
for (i = 0; i < ngroups; i++) {
grp = (parent_group + i) % ngroups;
get_orlov_stats(sb, grp, flex_size, &stats);
if (stats.used_dirs >= max_dirs)
continue;
if (stats.free_inodes < min_inodes)
continue;
if (stats.free_blocks < min_blocks)
continue;
goto found_flex_bg;
}
fallback:
ngroups = real_ngroups;
avefreei = freei / ngroups;
fallback_retry:
parent_group = EXT4_I(parent)->i_block_group;
for (i = 0; i < ngroups; i++) {
grp = (parent_group + i) % ngroups;
desc = ext4_get_group_desc(sb, grp, NULL);
if (desc && ext4_free_inodes_count(sb, desc) &&
ext4_free_inodes_count(sb, desc) >= avefreei) {
*group = grp;
return 0;
}
}
if (avefreei) {
/*
* The free-inodes counter is approximate, and for really small
* filesystems the above test can fail to find any blockgroups
*/
avefreei = 0;
goto fallback_retry;
}
return -1;
}
static int find_group_other(struct super_block *sb, struct inode *parent,
ext4_group_t *group, int mode)
{
ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
struct ext4_group_desc *desc;
int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
/*
* Try to place the inode is the same flex group as its
* parent. If we can't find space, use the Orlov algorithm to
* find another flex group, and store that information in the
* parent directory's inode information so that use that flex
* group for future allocations.
*/
if (flex_size > 1) {
int retry = 0;
try_again:
parent_group &= ~(flex_size-1);
last = parent_group + flex_size;
if (last > ngroups)
last = ngroups;
for (i = parent_group; i < last; i++) {
desc = ext4_get_group_desc(sb, i, NULL);
if (desc && ext4_free_inodes_count(sb, desc)) {
*group = i;
return 0;
}
}
if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
retry = 1;
parent_group = EXT4_I(parent)->i_last_alloc_group;
goto try_again;
}
/*
* If this didn't work, use the Orlov search algorithm
* to find a new flex group; we pass in the mode to
* avoid the topdir algorithms.
*/
*group = parent_group + flex_size;
if (*group > ngroups)
*group = 0;
return find_group_orlov(sb, parent, group, mode, 0);
}
/*
* Try to place the inode in its parent directory
*/
*group = parent_group;
desc = ext4_get_group_desc(sb, *group, NULL);
if (desc && ext4_free_inodes_count(sb, desc) &&
ext4_free_blks_count(sb, desc))
return 0;
/*
* We're going to place this inode in a different blockgroup from its
* parent. We want to cause files in a common directory to all land in
* the same blockgroup. But we want files which are in a different
* directory which shares a blockgroup with our parent to land in a
* different blockgroup.
*
* So add our directory's i_ino into the starting point for the hash.
*/
*group = (*group + parent->i_ino) % ngroups;
/*
* Use a quadratic hash to find a group with a free inode and some free
* blocks.
*/
for (i = 1; i < ngroups; i <<= 1) {
*group += i;
if (*group >= ngroups)
*group -= ngroups;
desc = ext4_get_group_desc(sb, *group, NULL);
if (desc && ext4_free_inodes_count(sb, desc) &&
ext4_free_blks_count(sb, desc))
return 0;
}
/*
* That failed: try linear search for a free inode, even if that group
* has no free blocks.
*/
*group = parent_group;
for (i = 0; i < ngroups; i++) {
if (++*group >= ngroups)
*group = 0;
desc = ext4_get_group_desc(sb, *group, NULL);
if (desc && ext4_free_inodes_count(sb, desc))
return 0;
}
return -1;
}
/*
* claim the inode from the inode bitmap. If the group
* is uninit we need to take the groups's ext4_group_lock
* and clear the uninit flag. The inode bitmap update
* and group desc uninit flag clear should be done
* after holding ext4_group_lock so that ext4_read_inode_bitmap
* doesn't race with the ext4_claim_inode
*/
static int ext4_claim_inode(struct super_block *sb,
struct buffer_head *inode_bitmap_bh,
unsigned long ino, ext4_group_t group, int mode)
{
int free = 0, retval = 0, count;
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
ext4_lock_group(sb, group);
if (ext4_set_bit(ino, inode_bitmap_bh->b_data)) {
/* not a free inode */
retval = 1;
goto err_ret;
}
ino++;
if ((group == 0 && ino < EXT4_FIRST_INO(sb)) ||
ino > EXT4_INODES_PER_GROUP(sb)) {
ext4_unlock_group(sb, group);
ext4_error(sb, __func__,
"reserved inode or inode > inodes count - "
"block_group = %u, inode=%lu", group,
ino + group * EXT4_INODES_PER_GROUP(sb));
return 1;
}
/* If we didn't allocate from within the initialized part of the inode
* table then we need to initialize up to this inode. */
if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
/* When marking the block group with
* ~EXT4_BG_INODE_UNINIT we don't want to depend
* on the value of bg_itable_unused even though
* mke2fs could have initialized the same for us.
* Instead we calculated the value below
*/
free = 0;
} else {
free = EXT4_INODES_PER_GROUP(sb) -
ext4_itable_unused_count(sb, gdp);
}
/*
* Check the relative inode number against the last used
* relative inode number in this group. if it is greater
* we need to update the bg_itable_unused count
*
*/
if (ino > free)
ext4_itable_unused_set(sb, gdp,
(EXT4_INODES_PER_GROUP(sb) - ino));
}
count = ext4_free_inodes_count(sb, gdp) - 1;
ext4_free_inodes_set(sb, gdp, count);
if (S_ISDIR(mode)) {
count = ext4_used_dirs_count(sb, gdp) + 1;
ext4_used_dirs_set(sb, gdp, count);
if (sbi->s_log_groups_per_flex) {
ext4_group_t f = ext4_flex_group(sbi, group);
atomic_inc(&sbi->s_flex_groups[f].free_inodes);
}
}
gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp);
err_ret:
ext4_unlock_group(sb, group);
return retval;
}
/*
* There are two policies for allocating an inode. If the new inode is
* a directory, then a forward search is made for a block group with both
* free space and a low directory-to-inode ratio; if that fails, then of
* the groups with above-average free space, that group with the fewest
* directories already is chosen.
*
* For other inodes, search forward from the parent directory's block
* group to find a free inode.
*/
struct inode *ext4_new_inode(handle_t *handle, struct inode *dir, int mode,
const struct qstr *qstr)
{
struct super_block *sb;
struct buffer_head *inode_bitmap_bh = NULL;
struct buffer_head *group_desc_bh;
ext4_group_t ngroups, group = 0;
unsigned long ino = 0;
struct inode *inode;
struct ext4_group_desc *gdp = NULL;
struct ext4_inode_info *ei;
struct ext4_sb_info *sbi;
int ret2, err = 0;
struct inode *ret;
ext4_group_t i;
int free = 0;
static int once = 1;
ext4_group_t flex_group;
/* Cannot create files in a deleted directory */
if (!dir || !dir->i_nlink)
return ERR_PTR(-EPERM);
sb = dir->i_sb;
ngroups = ext4_get_groups_count(sb);
trace_ext4_request_inode(dir, mode);
inode = new_inode(sb);
if (!inode)
return ERR_PTR(-ENOMEM);
ei = EXT4_I(inode);
sbi = EXT4_SB(sb);
if (sbi->s_log_groups_per_flex && test_opt(sb, OLDALLOC)) {
ret2 = find_group_flex(sb, dir, &group);
if (ret2 == -1) {
ret2 = find_group_other(sb, dir, &group, mode);
if (ret2 == 0 && once) {
once = 0;
printk(KERN_NOTICE "ext4: find_group_flex "
"failed, fallback succeeded dir %lu\n",
dir->i_ino);
}
}
goto got_group;
}
if (S_ISDIR(mode)) {
if (test_opt(sb, OLDALLOC))
ret2 = find_group_dir(sb, dir, &group);
else
ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
} else
ret2 = find_group_other(sb, dir, &group, mode);
got_group:
EXT4_I(dir)->i_last_alloc_group = group;
err = -ENOSPC;
if (ret2 == -1)
goto out;
for (i = 0; i < ngroups; i++) {
err = -EIO;
gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
if (!gdp)
goto fail;
brelse(inode_bitmap_bh);
inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
if (!inode_bitmap_bh)
goto fail;
ino = 0;
repeat_in_this_group:
ino = ext4_find_next_zero_bit((unsigned long *)
inode_bitmap_bh->b_data,
EXT4_INODES_PER_GROUP(sb), ino);
if (ino < EXT4_INODES_PER_GROUP(sb)) {
BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
err = ext4_journal_get_write_access(handle,
inode_bitmap_bh);
if (err)
goto fail;
BUFFER_TRACE(group_desc_bh, "get_write_access");
err = ext4_journal_get_write_access(handle,
group_desc_bh);
if (err)
goto fail;
if (!ext4_claim_inode(sb, inode_bitmap_bh,
ino, group, mode)) {
/* we won it */
BUFFER_TRACE(inode_bitmap_bh,
"call ext4_handle_dirty_metadata");
err = ext4_handle_dirty_metadata(handle,
inode,
inode_bitmap_bh);
if (err)
goto fail;
/* zero bit is inode number 1*/
ino++;
goto got;
}
/* we lost it */
ext4_handle_release_buffer(handle, inode_bitmap_bh);
ext4_handle_release_buffer(handle, group_desc_bh);
if (++ino < EXT4_INODES_PER_GROUP(sb))
goto repeat_in_this_group;
}
/*
* This case is possible in concurrent environment. It is very
* rare. We cannot repeat the find_group_xxx() call because
* that will simply return the same blockgroup, because the
* group descriptor metadata has not yet been updated.
* So we just go onto the next blockgroup.
*/
if (++group == ngroups)
group = 0;
}
err = -ENOSPC;
goto out;
got:
/* We may have to initialize the block bitmap if it isn't already */
if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM) &&
gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
struct buffer_head *block_bitmap_bh;
block_bitmap_bh = ext4_read_block_bitmap(sb, group);
BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
err = ext4_journal_get_write_access(handle, block_bitmap_bh);
if (err) {
brelse(block_bitmap_bh);
goto fail;
}
free = 0;
ext4_lock_group(sb, group);
/* recheck and clear flag under lock if we still need to */
if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
free = ext4_free_blocks_after_init(sb, group, gdp);
gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
ext4_free_blks_set(sb, gdp, free);
gdp->bg_checksum = ext4_group_desc_csum(sbi, group,
gdp);
}
ext4_unlock_group(sb, group);
/* Don't need to dirty bitmap block if we didn't change it */
if (free) {
BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
err = ext4_handle_dirty_metadata(handle,
NULL, block_bitmap_bh);
}
brelse(block_bitmap_bh);
if (err)
goto fail;
}
BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
if (err)
goto fail;
percpu_counter_dec(&sbi->s_freeinodes_counter);
if (S_ISDIR(mode))
percpu_counter_inc(&sbi->s_dirs_counter);
sb->s_dirt = 1;
if (sbi->s_log_groups_per_flex) {
flex_group = ext4_flex_group(sbi, group);
atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
}
inode->i_uid = current_fsuid();
if (test_opt(sb, GRPID))
inode->i_gid = dir->i_gid;
else if (dir->i_mode & S_ISGID) {
inode->i_gid = dir->i_gid;
if (S_ISDIR(mode))
mode |= S_ISGID;
} else
inode->i_gid = current_fsgid();
inode->i_mode = mode;
inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
/* This is the optimal IO size (for stat), not the fs block size */
inode->i_blocks = 0;
inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
ext4_current_time(inode);
memset(ei->i_data, 0, sizeof(ei->i_data));
ei->i_dir_start_lookup = 0;
ei->i_disksize = 0;
/*
* Don't inherit extent flag from directory, amongst others. We set
* extent flag on newly created directory and file only if -o extent
* mount option is specified
*/
ei->i_flags =
ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
ei->i_file_acl = 0;
ei->i_dtime = 0;
ei->i_block_group = group;
ei->i_last_alloc_group = ~0;
ext4_set_inode_flags(inode);
if (IS_DIRSYNC(inode))
ext4_handle_sync(handle);
if (insert_inode_locked(inode) < 0) {
err = -EINVAL;
goto fail_drop;
}
spin_lock(&sbi->s_next_gen_lock);
inode->i_generation = sbi->s_next_generation++;
spin_unlock(&sbi->s_next_gen_lock);
ei->i_state = EXT4_STATE_NEW;
ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
ret = inode;
if (vfs_dq_alloc_inode(inode)) {
err = -EDQUOT;
goto fail_drop;
}
err = ext4_init_acl(handle, inode, dir);
if (err)
goto fail_free_drop;
err = ext4_init_security(handle, inode, dir);
if (err)
goto fail_free_drop;
if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
/* set extent flag only for directory, file and normal symlink*/
if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
EXT4_I(inode)->i_flags |= EXT4_EXTENTS_FL;
ext4_ext_tree_init(handle, inode);
}
}
err = ext4_mark_inode_dirty(handle, inode);
if (err) {
ext4_std_error(sb, err);
goto fail_free_drop;
}
ext4_debug("allocating inode %lu\n", inode->i_ino);
trace_ext4_allocate_inode(inode, dir, mode);
goto really_out;
fail:
ext4_std_error(sb, err);
out:
iput(inode);
ret = ERR_PTR(err);
really_out:
brelse(inode_bitmap_bh);
return ret;
fail_free_drop:
vfs_dq_free_inode(inode);
fail_drop:
vfs_dq_drop(inode);
inode->i_flags |= S_NOQUOTA;
inode->i_nlink = 0;
unlock_new_inode(inode);
iput(inode);
brelse(inode_bitmap_bh);
return ERR_PTR(err);
}
/* Verify that we are loading a valid orphan from disk */
struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
{
unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
ext4_group_t block_group;
int bit;
struct buffer_head *bitmap_bh;
struct inode *inode = NULL;
long err = -EIO;
/* Error cases - e2fsck has already cleaned up for us */
if (ino > max_ino) {
ext4_warning(sb, __func__,
"bad orphan ino %lu! e2fsck was run?", ino);
goto error;
}
block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
if (!bitmap_bh) {
ext4_warning(sb, __func__,
"inode bitmap error for orphan %lu", ino);
goto error;
}
/* Having the inode bit set should be a 100% indicator that this
* is a valid orphan (no e2fsck run on fs). Orphans also include
* inodes that were being truncated, so we can't check i_nlink==0.
*/
if (!ext4_test_bit(bit, bitmap_bh->b_data))
goto bad_orphan;
inode = ext4_iget(sb, ino);
if (IS_ERR(inode))
goto iget_failed;
/*
* If the orphans has i_nlinks > 0 then it should be able to be
* truncated, otherwise it won't be removed from the orphan list
* during processing and an infinite loop will result.
*/
if (inode->i_nlink && !ext4_can_truncate(inode))
goto bad_orphan;
if (NEXT_ORPHAN(inode) > max_ino)
goto bad_orphan;
brelse(bitmap_bh);
return inode;
iget_failed:
err = PTR_ERR(inode);
inode = NULL;
bad_orphan:
ext4_warning(sb, __func__,
"bad orphan inode %lu! e2fsck was run?", ino);
printk(KERN_NOTICE "ext4_test_bit(bit=%d, block=%llu) = %d\n",
bit, (unsigned long long)bitmap_bh->b_blocknr,
ext4_test_bit(bit, bitmap_bh->b_data));
printk(KERN_NOTICE "inode=%p\n", inode);
if (inode) {
printk(KERN_NOTICE "is_bad_inode(inode)=%d\n",
is_bad_inode(inode));
printk(KERN_NOTICE "NEXT_ORPHAN(inode)=%u\n",
NEXT_ORPHAN(inode));
printk(KERN_NOTICE "max_ino=%lu\n", max_ino);
printk(KERN_NOTICE "i_nlink=%u\n", inode->i_nlink);
/* Avoid freeing blocks if we got a bad deleted inode */
if (inode->i_nlink == 0)
inode->i_blocks = 0;
iput(inode);
}
brelse(bitmap_bh);
error:
return ERR_PTR(err);
}
unsigned long ext4_count_free_inodes(struct super_block *sb)
{
unsigned long desc_count;
struct ext4_group_desc *gdp;
ext4_group_t i, ngroups = ext4_get_groups_count(sb);
#ifdef EXT4FS_DEBUG
struct ext4_super_block *es;
unsigned long bitmap_count, x;
struct buffer_head *bitmap_bh = NULL;
es = EXT4_SB(sb)->s_es;
desc_count = 0;
bitmap_count = 0;
gdp = NULL;
for (i = 0; i < ngroups; i++) {
gdp = ext4_get_group_desc(sb, i, NULL);
if (!gdp)
continue;
desc_count += ext4_free_inodes_count(sb, gdp);
brelse(bitmap_bh);
bitmap_bh = ext4_read_inode_bitmap(sb, i);
if (!bitmap_bh)
continue;
x = ext4_count_free(bitmap_bh, EXT4_INODES_PER_GROUP(sb) / 8);
printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
i, ext4_free_inodes_count(sb, gdp), x);
bitmap_count += x;
}
brelse(bitmap_bh);
printk(KERN_DEBUG "ext4_count_free_inodes: "
"stored = %u, computed = %lu, %lu\n",
le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
return desc_count;
#else
desc_count = 0;
for (i = 0; i < ngroups; i++) {
gdp = ext4_get_group_desc(sb, i, NULL);
if (!gdp)
continue;
desc_count += ext4_free_inodes_count(sb, gdp);
cond_resched();
}
return desc_count;
#endif
}
/* Called at mount-time, super-block is locked */
unsigned long ext4_count_dirs(struct super_block * sb)
{
unsigned long count = 0;
ext4_group_t i, ngroups = ext4_get_groups_count(sb);
for (i = 0; i < ngroups; i++) {
struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
if (!gdp)
continue;
count += ext4_used_dirs_count(sb, gdp);
}
return count;
}