/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#ifndef __BTRFS_I__
#define __BTRFS_I__
#include "extent_map.h"
#include "extent_io.h"
#include "ordered-data.h"
#include "delayed-inode.h"
/* in memory btrfs inode */
struct btrfs_inode {
/* which subvolume this inode belongs to */
struct btrfs_root *root;
/* key used to find this inode on disk. This is used by the code
* to read in roots of subvolumes
*/
struct btrfs_key location;
/* Lock for counters */
spinlock_t lock;
/* the extent_tree has caches of all the extent mappings to disk */
struct extent_map_tree extent_tree;
/* the io_tree does range state (DIRTY, LOCKED etc) */
struct extent_io_tree io_tree;
/* special utility tree used to record which mirrors have already been
* tried when checksums fail for a given block
*/
struct extent_io_tree io_failure_tree;
/* held while logging the inode in tree-log.c */
struct mutex log_mutex;
/* held while doing delalloc reservations */
struct mutex delalloc_mutex;
/* used to order data wrt metadata */
struct btrfs_ordered_inode_tree ordered_tree;
/* for keeping track of orphaned inodes */
struct list_head i_orphan;
/* list of all the delalloc inodes in the FS. There are times we need
* to write all the delalloc pages to disk, and this list is used
* to walk them all.
*/
struct list_head delalloc_inodes;
/*
* list for tracking inodes that must be sent to disk before a
* rename or truncate commit
*/
struct list_head ordered_operations;
/* node for the red-black tree that links inodes in subvolume root */
struct rb_node rb_node;
/* the space_info for where this inode's data allocations are done */
struct btrfs_space_info *space_info;
/* full 64 bit generation number, struct vfs_inode doesn't have a big
* enough field for this.
*/
u64 generation;
/* sequence number for NFS changes */
u64 sequence;
/*
* transid of the trans_handle that last modified this inode
*/
u64 last_trans;
/*
* log transid when this inode was last modified
*/
u64 last_sub_trans;
/*
* transid that last logged this inode
*/
u64 logged_trans;
/* total number of bytes pending delalloc, used by stat to calc the
* real block usage of the file
*/
u64 delalloc_bytes;
/*
* the size of the file stored in the metadata on disk. data=ordered
* means the in-memory i_size might be larger than the size on disk
* because not all the blocks are written yet.
*/
u64 disk_i_size;
/*
* if this is a directory then index_cnt is the counter for the index
* number for new files that are created
*/
u64 index_cnt;
/* the fsync log has some corner cases that mean we have to check
* directories to see if any unlinks have been done before
* the directory was logged. See tree-log.c for all the
* details
*/
u64 last_unlink_trans;
/*
* Number of bytes outstanding that are going to need csums. This is
* used in ENOSPC accounting.
*/
u64 csum_bytes;
/* flags field from the on disk inode */
u32 flags;
/*
* Counters to keep track of the number of extent item's we may use due
* to delalloc and such. outstanding_extents is the number of extent
* items we think we'll end up using, and reserved_extents is the number
* of extent items we've reserved metadata for.
*/
unsigned outstanding_extents;
unsigned reserved_extents;
/*
* ordered_data_close is set by truncate when a file that used
* to have good data has been truncated to zero. When it is set
* the btrfs file release call will add this inode to the
* ordered operations list so that we make sure to flush out any
* new data the application may have written before commit.
*/
unsigned ordered_data_close:1;
unsigned orphan_meta_reserved:1;
unsigned dummy_inode:1;
unsigned in_defrag:1;
unsigned delalloc_meta_reserved:1;
/*
* always compress this one file
*/
unsigned force_compress:4;
struct btrfs_delayed_node *delayed_node;
struct inode vfs_inode;
};
extern unsigned char btrfs_filetype_table[];
static inline struct btrfs_inode *BTRFS_I(struct inode *inode)
{
return container_of(inode, struct btrfs_inode, vfs_inode);
}
static inline u64 btrfs_ino(struct inode *inode)
{
u64 ino = BTRFS_I(inode)->location.objectid;
/*
* !ino: btree_inode
* type == BTRFS_ROOT_ITEM_KEY: subvol dir
*/
if (!ino || BTRFS_I(inode)->location.type == BTRFS_ROOT_ITEM_KEY)
ino = inode->i_ino;
return ino;
}
static inline void btrfs_i_size_write(struct inode *inode, u64 size)
{
i_size_write(inode, size);
BTRFS_I(inode)->disk_i_size = size;
}
static inline bool btrfs_is_free_space_inode(struct btrfs_root *root,
struct inode *inode)
{
if (root == root->fs_info->tree_root ||
BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID)
return true;
return false;
}
#endif