/*
* OMAP1 internal LCD controller
*
* Copyright (C) 2004 Nokia Corporation
* Author: Imre Deak <imre.deak@nokia.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/err.h>
#include <linux/mm.h>
#include <linux/fb.h>
#include <linux/dma-mapping.h>
#include <linux/vmalloc.h>
#include <linux/clk.h>
#include <mach/dma.h>
#include <mach/omapfb.h>
#include <asm/mach-types.h>
#include "lcdc.h"
#define MODULE_NAME "lcdc"
#define OMAP_LCDC_BASE 0xfffec000
#define OMAP_LCDC_SIZE 256
#define OMAP_LCDC_IRQ INT_LCD_CTRL
#define OMAP_LCDC_CONTROL (OMAP_LCDC_BASE + 0x00)
#define OMAP_LCDC_TIMING0 (OMAP_LCDC_BASE + 0x04)
#define OMAP_LCDC_TIMING1 (OMAP_LCDC_BASE + 0x08)
#define OMAP_LCDC_TIMING2 (OMAP_LCDC_BASE + 0x0c)
#define OMAP_LCDC_STATUS (OMAP_LCDC_BASE + 0x10)
#define OMAP_LCDC_SUBPANEL (OMAP_LCDC_BASE + 0x14)
#define OMAP_LCDC_LINE_INT (OMAP_LCDC_BASE + 0x18)
#define OMAP_LCDC_DISPLAY_STATUS (OMAP_LCDC_BASE + 0x1c)
#define OMAP_LCDC_STAT_DONE (1 << 0)
#define OMAP_LCDC_STAT_VSYNC (1 << 1)
#define OMAP_LCDC_STAT_SYNC_LOST (1 << 2)
#define OMAP_LCDC_STAT_ABC (1 << 3)
#define OMAP_LCDC_STAT_LINE_INT (1 << 4)
#define OMAP_LCDC_STAT_FUF (1 << 5)
#define OMAP_LCDC_STAT_LOADED_PALETTE (1 << 6)
#define OMAP_LCDC_CTRL_LCD_EN (1 << 0)
#define OMAP_LCDC_CTRL_LCD_TFT (1 << 7)
#define OMAP_LCDC_CTRL_LINE_IRQ_CLR_SEL (1 << 10)
#define OMAP_LCDC_IRQ_VSYNC (1 << 2)
#define OMAP_LCDC_IRQ_DONE (1 << 3)
#define OMAP_LCDC_IRQ_LOADED_PALETTE (1 << 4)
#define OMAP_LCDC_IRQ_LINE_NIRQ (1 << 5)
#define OMAP_LCDC_IRQ_LINE (1 << 6)
#define OMAP_LCDC_IRQ_MASK (((1 << 5) - 1) << 2)
#define MAX_PALETTE_SIZE PAGE_SIZE
enum lcdc_load_mode {
OMAP_LCDC_LOAD_PALETTE,
OMAP_LCDC_LOAD_FRAME,
OMAP_LCDC_LOAD_PALETTE_AND_FRAME
};
static struct omap_lcd_controller {
enum omapfb_update_mode update_mode;
int ext_mode;
unsigned long frame_offset;
int screen_width;
int xres;
int yres;
enum omapfb_color_format color_mode;
int bpp;
void *palette_virt;
dma_addr_t palette_phys;
int palette_code;
int palette_size;
unsigned int irq_mask;
struct completion last_frame_complete;
struct completion palette_load_complete;
struct clk *lcd_ck;
struct omapfb_device *fbdev;
void (*dma_callback)(void *data);
void *dma_callback_data;
int fbmem_allocated;
dma_addr_t vram_phys;
void *vram_virt;
unsigned long vram_size;
} lcdc;
static void inline enable_irqs(int mask)
{
lcdc.irq_mask |= mask;
}
static void inline disable_irqs(int mask)
{
lcdc.irq_mask &= ~mask;
}
static void set_load_mode(enum lcdc_load_mode mode)
{
u32 l;
l = omap_readl(OMAP_LCDC_CONTROL);
l &= ~(3 << 20);
switch (mode) {
case OMAP_LCDC_LOAD_PALETTE:
l |= 1 << 20;
break;
case OMAP_LCDC_LOAD_FRAME:
l |= 2 << 20;
break;
case OMAP_LCDC_LOAD_PALETTE_AND_FRAME:
break;
default:
BUG();
}
omap_writel(l, OMAP_LCDC_CONTROL);
}
static void enable_controller(void)
{
u32 l;
l = omap_readl(OMAP_LCDC_CONTROL);
l |= OMAP_LCDC_CTRL_LCD_EN;
l &= ~OMAP_LCDC_IRQ_MASK;
l |= lcdc.irq_mask | OMAP_LCDC_IRQ_DONE; /* enabled IRQs */
omap_writel(l, OMAP_LCDC_CONTROL);
}
static void disable_controller_async(void)
{
u32 l;
u32 mask;
l = omap_readl(OMAP_LCDC_CONTROL);
mask = OMAP_LCDC_CTRL_LCD_EN | OMAP_LCDC_IRQ_MASK;
/*
* Preserve the DONE mask, since we still want to get the
* final DONE irq. It will be disabled in the IRQ handler.
*/
mask &= ~OMAP_LCDC_IRQ_DONE;
l &= ~mask;
omap_writel(l, OMAP_LCDC_CONTROL);
}
static void disable_controller(void)
{
init_completion(&lcdc.last_frame_complete);
disable_controller_async();
if (!wait_for_completion_timeout(&lcdc.last_frame_complete,
msecs_to_jiffies(500)))
dev_err(lcdc.fbdev->dev, "timeout waiting for FRAME DONE\n");
}
static void reset_controller(u32 status)
{
static unsigned long reset_count;
static unsigned long last_jiffies;
disable_controller_async();
reset_count++;
if (reset_count == 1 || time_after(jiffies, last_jiffies + HZ)) {
dev_err(lcdc.fbdev->dev,
"resetting (status %#010x,reset count %lu)\n",
status, reset_count);
last_jiffies = jiffies;
}
if (reset_count < 100) {
enable_controller();
} else {
reset_count = 0;
dev_err(lcdc.fbdev->dev,
"too many reset attempts, giving up.\n");
}
}
/*
* Configure the LCD DMA according to the current mode specified by parameters
* in lcdc.fbdev and fbdev->var.
*/
static void setup_lcd_dma(void)
{
static const int dma_elem_type[] = {
0,
OMAP_DMA_DATA_TYPE_S8,
OMAP_DMA_DATA_TYPE_S16,
0,
OMAP_DMA_DATA_TYPE_S32,
};
struct omapfb_plane_struct *plane = lcdc.fbdev->fb_info[0]->par;
struct fb_var_screeninfo *var = &lcdc.fbdev->fb_info[0]->var;
unsigned long src;
int esize, xelem, yelem;
src = lcdc.vram_phys + lcdc.frame_offset;
switch (var->rotate) {
case 0:
if (plane->info.mirror || (src & 3) ||
lcdc.color_mode == OMAPFB_COLOR_YUV420 ||
(lcdc.xres & 1))
esize = 2;
else
esize = 4;
xelem = lcdc.xres * lcdc.bpp / 8 / esize;
yelem = lcdc.yres;
break;
case 90:
case 180:
case 270:
if (cpu_is_omap15xx()) {
BUG();
}
esize = 2;
xelem = lcdc.yres * lcdc.bpp / 16;
yelem = lcdc.xres;
break;
default:
BUG();
return;
}
#ifdef VERBOSE
dev_dbg(lcdc.fbdev->dev,
"setup_dma: src %#010lx esize %d xelem %d yelem %d\n",
src, esize, xelem, yelem);
#endif
omap_set_lcd_dma_b1(src, xelem, yelem, dma_elem_type[esize]);
if (!cpu_is_omap15xx()) {
int bpp = lcdc.bpp;
/*
* YUV support is only for external mode when we have the
* YUV window embedded in a 16bpp frame buffer.
*/
if (lcdc.color_mode == OMAPFB_COLOR_YUV420)
bpp = 16;
/* Set virtual xres elem size */
omap_set_lcd_dma_b1_vxres(
lcdc.screen_width * bpp / 8 / esize);
/* Setup transformations */
omap_set_lcd_dma_b1_rotation(var->rotate);
omap_set_lcd_dma_b1_mirror(plane->info.mirror);
}
omap_setup_lcd_dma();
}
static irqreturn_t lcdc_irq_handler(int irq, void *dev_id)
{
u32 status;
status = omap_readl(OMAP_LCDC_STATUS);
if (status & (OMAP_LCDC_STAT_FUF | OMAP_LCDC_STAT_SYNC_LOST))
reset_controller(status);
else {
if (status & OMAP_LCDC_STAT_DONE) {
u32 l;
/*
* Disable IRQ_DONE. The status bit will be cleared
* only when the controller is reenabled and we don't
* want to get more interrupts.
*/
l = omap_readl(OMAP_LCDC_CONTROL);
l &= ~OMAP_LCDC_IRQ_DONE;
omap_writel(l, OMAP_LCDC_CONTROL);
complete(&lcdc.last_frame_complete);
}
if (status & OMAP_LCDC_STAT_LOADED_PALETTE) {
disable_controller_async();
complete(&lcdc.palette_load_complete);
}
}
/*
* Clear these interrupt status bits.
* Sync_lost, FUF bits were cleared by disabling the LCD controller
* LOADED_PALETTE can be cleared this way only in palette only
* load mode. In other load modes it's cleared by disabling the
* controller.
*/
status &= ~(OMAP_LCDC_STAT_VSYNC |
OMAP_LCDC_STAT_LOADED_PALETTE |
OMAP_LCDC_STAT_ABC |
OMAP_LCDC_STAT_LINE_INT);
omap_writel(status, OMAP_LCDC_STATUS);
return IRQ_HANDLED;
}
/*
* Change to a new video mode. We defer this to a later time to avoid any
* flicker and not to mess up the current LCD DMA context. For this we disable
* the LCD controller, which will generate a DONE irq after the last frame has
* been transferred. Then it'll be safe to reconfigure both the LCD controller
* as well as the LCD DMA.
*/
static int omap_lcdc_setup_plane(int plane, int channel_out,
unsigned long offset, int screen_width,
int pos_x, int pos_y, int width, int height,
int color_mode)
{
struct fb_var_screeninfo *var = &lcdc.fbdev->fb_info[0]->var;
struct lcd_panel *panel = lcdc.fbdev->panel;
int rot_x, rot_y;
if (var->rotate == 0) {
rot_x = panel->x_res;
rot_y = panel->y_res;
} else {
rot_x = panel->y_res;
rot_y = panel->x_res;
}
if (plane != 0 || channel_out != 0 || pos_x != 0 || pos_y != 0 ||
width > rot_x || height > rot_y) {
#ifdef VERBOSE
dev_dbg(lcdc.fbdev->dev,
"invalid plane params plane %d pos_x %d pos_y %d "
"w %d h %d\n", plane, pos_x, pos_y, width, height);
#endif
return -EINVAL;
}
lcdc.frame_offset = offset;
lcdc.xres = width;
lcdc.yres = height;
lcdc.screen_width = screen_width;
lcdc.color_mode = color_mode;
switch (color_mode) {
case OMAPFB_COLOR_CLUT_8BPP:
lcdc.bpp = 8;
lcdc.palette_code = 0x3000;
lcdc.palette_size = 512;
break;
case OMAPFB_COLOR_RGB565:
lcdc.bpp = 16;
lcdc.palette_code = 0x4000;
lcdc.palette_size = 32;
break;
case OMAPFB_COLOR_RGB444:
lcdc.bpp = 16;
lcdc.palette_code = 0x4000;
lcdc.palette_size = 32;
break;
case OMAPFB_COLOR_YUV420:
if (lcdc.ext_mode) {
lcdc.bpp = 12;
break;
}
/* fallthrough */
case OMAPFB_COLOR_YUV422:
if (lcdc.ext_mode) {
lcdc.bpp = 16;
break;
}
/* fallthrough */
default:
/* FIXME: other BPPs.
* bpp1: code 0, size 256
* bpp2: code 0x1000 size 256
* bpp4: code 0x2000 size 256
* bpp12: code 0x4000 size 32
*/
dev_dbg(lcdc.fbdev->dev, "invalid color mode %d\n", color_mode);
BUG();
return -1;
}
if (lcdc.ext_mode) {
setup_lcd_dma();
return 0;
}
if (lcdc.update_mode == OMAPFB_AUTO_UPDATE) {
disable_controller();
omap_stop_lcd_dma();
setup_lcd_dma();
enable_controller();
}
return 0;
}
static int omap_lcdc_enable_plane(int plane, int enable)
{
dev_dbg(lcdc.fbdev->dev,
"plane %d enable %d update_mode %d ext_mode %d\n",
plane, enable, lcdc.update_mode, lcdc.ext_mode);
if (plane != OMAPFB_PLANE_GFX)
return -EINVAL;
return 0;
}
/*
* Configure the LCD DMA for a palette load operation and do the palette
* downloading synchronously. We don't use the frame+palette load mode of
* the controller, since the palette can always be downloaded seperately.
*/
static void load_palette(void)
{
u16 *palette;
palette = (u16 *)lcdc.palette_virt;
*(u16 *)palette &= 0x0fff;
*(u16 *)palette |= lcdc.palette_code;
omap_set_lcd_dma_b1(lcdc.palette_phys,
lcdc.palette_size / 4 + 1, 1, OMAP_DMA_DATA_TYPE_S32);
omap_set_lcd_dma_single_transfer(1);
omap_setup_lcd_dma();
init_completion(&lcdc.palette_load_complete);
enable_irqs(OMAP_LCDC_IRQ_LOADED_PALETTE);
set_load_mode(OMAP_LCDC_LOAD_PALETTE);
enable_controller();
if (!wait_for_completion_timeout(&lcdc.palette_load_complete,
msecs_to_jiffies(500)))
dev_err(lcdc.fbdev->dev, "timeout waiting for FRAME DONE\n");
/* The controller gets disabled in the irq handler */
disable_irqs(OMAP_LCDC_IRQ_LOADED_PALETTE);
omap_stop_lcd_dma();
omap_set_lcd_dma_single_transfer(lcdc.ext_mode);
}
/* Used only in internal controller mode */
static int omap_lcdc_setcolreg(u_int regno, u16 red, u16 green, u16 blue,
u16 transp, int update_hw_pal)
{
u16 *palette;
if (lcdc.color_mode != OMAPFB_COLOR_CLUT_8BPP || regno > 255)
return -EINVAL;
palette = (u16 *)lcdc.palette_virt;
palette[regno] &= ~0x0fff;
palette[regno] |= ((red >> 12) << 8) | ((green >> 12) << 4 ) |
(blue >> 12);
if (update_hw_pal) {
disable_controller();
omap_stop_lcd_dma();
load_palette();
setup_lcd_dma();
set_load_mode(OMAP_LCDC_LOAD_FRAME);
enable_controller();
}
return 0;
}
static void calc_ck_div(int is_tft, int pck, int *pck_div)
{
unsigned long lck;
pck = max(1, pck);
lck = clk_get_rate(lcdc.lcd_ck);
*pck_div = (lck + pck - 1) / pck;
if (is_tft)
*pck_div = max(2, *pck_div);
else
*pck_div = max(3, *pck_div);
if (*pck_div > 255) {
/* FIXME: try to adjust logic clock divider as well */
*pck_div = 255;
dev_warn(lcdc.fbdev->dev, "pixclock %d kHz too low.\n",
pck / 1000);
}
}
static void inline setup_regs(void)
{
u32 l;
struct lcd_panel *panel = lcdc.fbdev->panel;
int is_tft = panel->config & OMAP_LCDC_PANEL_TFT;
unsigned long lck;
int pcd;
l = omap_readl(OMAP_LCDC_CONTROL);
l &= ~OMAP_LCDC_CTRL_LCD_TFT;
l |= is_tft ? OMAP_LCDC_CTRL_LCD_TFT : 0;
#ifdef CONFIG_MACH_OMAP_PALMTE
/* FIXME:if (machine_is_omap_palmte()) { */
/* PalmTE uses alternate TFT setting in 8BPP mode */
l |= (is_tft && panel->bpp == 8) ? 0x810000 : 0;
/* } */
#endif
omap_writel(l, OMAP_LCDC_CONTROL);
l = omap_readl(OMAP_LCDC_TIMING2);
l &= ~(((1 << 6) - 1) << 20);
l |= (panel->config & OMAP_LCDC_SIGNAL_MASK) << 20;
omap_writel(l, OMAP_LCDC_TIMING2);
l = panel->x_res - 1;
l |= (panel->hsw - 1) << 10;
l |= (panel->hfp - 1) << 16;
l |= (panel->hbp - 1) << 24;
omap_writel(l, OMAP_LCDC_TIMING0);
l = panel->y_res - 1;
l |= (panel->vsw - 1) << 10;
l |= panel->vfp << 16;
l |= panel->vbp << 24;
omap_writel(l, OMAP_LCDC_TIMING1);
l = omap_readl(OMAP_LCDC_TIMING2);
l &= ~0xff;
lck = clk_get_rate(lcdc.lcd_ck);
if (!panel->pcd)
calc_ck_div(is_tft, panel->pixel_clock * 1000, &pcd);
else {
dev_warn(lcdc.fbdev->dev,
"Pixel clock divider value is obsolete.\n"
"Try to set pixel_clock to %lu and pcd to 0 "
"in drivers/video/omap/lcd_%s.c and submit a patch.\n",
lck / panel->pcd / 1000, panel->name);
pcd = panel->pcd;
}
l |= pcd & 0xff;
l |= panel->acb << 8;
omap_writel(l, OMAP_LCDC_TIMING2);
/* update panel info with the exact clock */
panel->pixel_clock = lck / pcd / 1000;
}
/*
* Configure the LCD controller, download the color palette and start a looped
* DMA transfer of the frame image data. Called only in internal
* controller mode.
*/
static int omap_lcdc_set_update_mode(enum omapfb_update_mode mode)
{
int r = 0;
if (mode != lcdc.update_mode) {
switch (mode) {
case OMAPFB_AUTO_UPDATE:
setup_regs();
load_palette();
/* Setup and start LCD DMA */
setup_lcd_dma();
set_load_mode(OMAP_LCDC_LOAD_FRAME);
enable_irqs(OMAP_LCDC_IRQ_DONE);
/* This will start the actual DMA transfer */
enable_controller();
lcdc.update_mode = mode;
break;
case OMAPFB_UPDATE_DISABLED:
disable_controller();
omap_stop_lcd_dma();
lcdc.update_mode = mode;
break;
default:
r = -EINVAL;
}
}
return r;
}
static enum omapfb_update_mode omap_lcdc_get_update_mode(void)
{
return lcdc.update_mode;
}
/* PM code called only in internal controller mode */
static void omap_lcdc_suspend(void)
{
if (lcdc.update_mode == OMAPFB_AUTO_UPDATE) {
disable_controller();
omap_stop_lcd_dma();
}
}
static void omap_lcdc_resume(void)
{
if (lcdc.update_mode == OMAPFB_AUTO_UPDATE) {
setup_regs();
load_palette();
setup_lcd_dma();
set_load_mode(OMAP_LCDC_LOAD_FRAME);
enable_irqs(OMAP_LCDC_IRQ_DONE);
enable_controller();
}
}
static void omap_lcdc_get_caps(int plane, struct omapfb_caps *caps)
{
return;
}
int omap_lcdc_set_dma_callback(void (*callback)(void *data), void *data)
{
BUG_ON(callback == NULL);
if (lcdc.dma_callback)
return -EBUSY;
else {
lcdc.dma_callback = callback;
lcdc.dma_callback_data = data;
}
return 0;
}
EXPORT_SYMBOL(omap_lcdc_set_dma_callback);
void omap_lcdc_free_dma_callback(void)
{
lcdc.dma_callback = NULL;
}
EXPORT_SYMBOL(omap_lcdc_free_dma_callback);
static void lcdc_dma_handler(u16 status, void *data)
{
if (lcdc.dma_callback)
lcdc.dma_callback(lcdc.dma_callback_data);
}
static int mmap_kern(void)
{
struct vm_struct *kvma;
struct vm_area_struct vma;
pgprot_t pgprot;
unsigned long vaddr;
kvma = get_vm_area(lcdc.vram_size, VM_IOREMAP);
if (kvma == NULL) {
dev_err(lcdc.fbdev->dev, "can't get kernel vm area\n");
return -ENOMEM;
}
vma.vm_mm = &init_mm;
vaddr = (unsigned long)kvma->addr;
vma.vm_start = vaddr;
vma.vm_end = vaddr + lcdc.vram_size;
pgprot = pgprot_writecombine(pgprot_kernel);
if (io_remap_pfn_range(&vma, vaddr,
lcdc.vram_phys >> PAGE_SHIFT,
lcdc.vram_size, pgprot) < 0) {
dev_err(lcdc.fbdev->dev, "kernel mmap for FB memory failed\n");
return -EAGAIN;
}
lcdc.vram_virt = (void *)vaddr;
return 0;
}
static void unmap_kern(void)
{
vunmap(lcdc.vram_virt);
}
static int alloc_palette_ram(void)
{
lcdc.palette_virt = dma_alloc_writecombine(lcdc.fbdev->dev,
MAX_PALETTE_SIZE, &lcdc.palette_phys, GFP_KERNEL);
if (lcdc.palette_virt == NULL) {
dev_err(lcdc.fbdev->dev, "failed to alloc palette memory\n");
return -ENOMEM;
}
memset(lcdc.palette_virt, 0, MAX_PALETTE_SIZE);
return 0;
}
static void free_palette_ram(void)
{
dma_free_writecombine(lcdc.fbdev->dev, MAX_PALETTE_SIZE,
lcdc.palette_virt, lcdc.palette_phys);
}
static int alloc_fbmem(struct omapfb_mem_region *region)
{
int bpp;
int frame_size;
struct lcd_panel *panel = lcdc.fbdev->panel;
bpp = panel->bpp;
if (bpp == 12)
bpp = 16;
frame_size = PAGE_ALIGN(panel->x_res * bpp / 8 * panel->y_res);
if (region->size > frame_size)
frame_size = region->size;
lcdc.vram_size = frame_size;
lcdc.vram_virt = dma_alloc_writecombine(lcdc.fbdev->dev,
lcdc.vram_size, &lcdc.vram_phys, GFP_KERNEL);
if (lcdc.vram_virt == NULL) {
dev_err(lcdc.fbdev->dev, "unable to allocate FB DMA memory\n");
return -ENOMEM;
}
region->size = frame_size;
region->paddr = lcdc.vram_phys;
region->vaddr = lcdc.vram_virt;
region->alloc = 1;
memset(lcdc.vram_virt, 0, lcdc.vram_size);
return 0;
}
static void free_fbmem(void)
{
dma_free_writecombine(lcdc.fbdev->dev, lcdc.vram_size,
lcdc.vram_virt, lcdc.vram_phys);
}
static int setup_fbmem(struct omapfb_mem_desc *req_md)
{
int r;
if (!req_md->region_cnt) {
dev_err(lcdc.fbdev->dev, "no memory regions defined\n");
return -EINVAL;
}
if (req_md->region_cnt > 1) {
dev_err(lcdc.fbdev->dev, "only one plane is supported\n");
req_md->region_cnt = 1;
}
if (req_md->region[0].paddr == 0) {
lcdc.fbmem_allocated = 1;
if ((r = alloc_fbmem(&req_md->region[0])) < 0)
return r;
return 0;
}
lcdc.vram_phys = req_md->region[0].paddr;
lcdc.vram_size = req_md->region[0].size;
if ((r = mmap_kern()) < 0)
return r;
dev_dbg(lcdc.fbdev->dev, "vram at %08x size %08lx mapped to 0x%p\n",
lcdc.vram_phys, lcdc.vram_size, lcdc.vram_virt);
return 0;
}
static void cleanup_fbmem(void)
{
if (lcdc.fbmem_allocated)
free_fbmem();
else
unmap_kern();
}
static int omap_lcdc_init(struct omapfb_device *fbdev, int ext_mode,
struct omapfb_mem_desc *req_vram)
{
int r;
u32 l;
int rate;
struct clk *tc_ck;
lcdc.irq_mask = 0;
lcdc.fbdev = fbdev;
lcdc.ext_mode = ext_mode;
l = 0;
omap_writel(l, OMAP_LCDC_CONTROL);
/* FIXME:
* According to errata some platforms have a clock rate limitiation
*/
lcdc.lcd_ck = clk_get(fbdev->dev, "lcd_ck");
if (IS_ERR(lcdc.lcd_ck)) {
dev_err(fbdev->dev, "unable to access LCD clock\n");
r = PTR_ERR(lcdc.lcd_ck);
goto fail0;
}
tc_ck = clk_get(fbdev->dev, "tc_ck");
if (IS_ERR(tc_ck)) {
dev_err(fbdev->dev, "unable to access TC clock\n");
r = PTR_ERR(tc_ck);
goto fail1;
}
rate = clk_get_rate(tc_ck);
clk_put(tc_ck);
if (machine_is_ams_delta())
rate /= 4;
if (machine_is_omap_h3())
rate /= 3;
r = clk_set_rate(lcdc.lcd_ck, rate);
if (r) {
dev_err(fbdev->dev, "failed to adjust LCD rate\n");
goto fail1;
}
clk_enable(lcdc.lcd_ck);
r = request_irq(OMAP_LCDC_IRQ, lcdc_irq_handler, 0, MODULE_NAME, fbdev);
if (r) {
dev_err(fbdev->dev, "unable to get IRQ\n");
goto fail2;
}
r = omap_request_lcd_dma(lcdc_dma_handler, NULL);
if (r) {
dev_err(fbdev->dev, "unable to get LCD DMA\n");
goto fail3;
}
omap_set_lcd_dma_single_transfer(ext_mode);
omap_set_lcd_dma_ext_controller(ext_mode);
if (!ext_mode)
if ((r = alloc_palette_ram()) < 0)
goto fail4;
if ((r = setup_fbmem(req_vram)) < 0)
goto fail5;
pr_info("omapfb: LCDC initialized\n");
return 0;
fail5:
if (!ext_mode)
free_palette_ram();
fail4:
omap_free_lcd_dma();
fail3:
free_irq(OMAP_LCDC_IRQ, lcdc.fbdev);
fail2:
clk_disable(lcdc.lcd_ck);
fail1:
clk_put(lcdc.lcd_ck);
fail0:
return r;
}
static void omap_lcdc_cleanup(void)
{
if (!lcdc.ext_mode)
free_palette_ram();
cleanup_fbmem();
omap_free_lcd_dma();
free_irq(OMAP_LCDC_IRQ, lcdc.fbdev);
clk_disable(lcdc.lcd_ck);
clk_put(lcdc.lcd_ck);
}
const struct lcd_ctrl omap1_int_ctrl = {
.name = "internal",
.init = omap_lcdc_init,
.cleanup = omap_lcdc_cleanup,
.get_caps = omap_lcdc_get_caps,
.set_update_mode = omap_lcdc_set_update_mode,
.get_update_mode = omap_lcdc_get_update_mode,
.update_window = NULL,
.suspend = omap_lcdc_suspend,
.resume = omap_lcdc_resume,
.setup_plane = omap_lcdc_setup_plane,
.enable_plane = omap_lcdc_enable_plane,
.setcolreg = omap_lcdc_setcolreg,
};