/*
* ATI Mach64 CT/VT/GT/LT Support
*/
#include <linux/fb.h>
#include <linux/delay.h>
#include <asm/io.h>
#include <video/mach64.h>
#include "atyfb.h"
#undef DEBUG
static int aty_valid_pll_ct (const struct fb_info *info, u32 vclk_per, struct pll_ct *pll);
static int aty_dsp_gt (const struct fb_info *info, u32 bpp, struct pll_ct *pll);
static int aty_var_to_pll_ct(const struct fb_info *info, u32 vclk_per, u32 bpp, union aty_pll *pll);
static u32 aty_pll_to_var_ct(const struct fb_info *info, const union aty_pll *pll);
u8 aty_ld_pll_ct(int offset, const struct atyfb_par *par)
{
u8 res;
/* write addr byte */
aty_st_8(CLOCK_CNTL_ADDR, (offset << 2) & PLL_ADDR, par);
/* read the register value */
res = aty_ld_8(CLOCK_CNTL_DATA, par);
return res;
}
static void aty_st_pll_ct(int offset, u8 val, const struct atyfb_par *par)
{
/* write addr byte */
aty_st_8(CLOCK_CNTL_ADDR, ((offset << 2) & PLL_ADDR) | PLL_WR_EN, par);
/* write the register value */
aty_st_8(CLOCK_CNTL_DATA, val & PLL_DATA, par);
aty_st_8(CLOCK_CNTL_ADDR, ((offset << 2) & PLL_ADDR) & ~PLL_WR_EN, par);
}
/*
* by Daniel Mantione
* <daniel.mantione@freepascal.org>
*
*
* ATI Mach64 CT clock synthesis description.
*
* All clocks on the Mach64 can be calculated using the same principle:
*
* XTALIN * x * FB_DIV
* CLK = ----------------------
* PLL_REF_DIV * POST_DIV
*
* XTALIN is a fixed speed clock. Common speeds are 14.31 MHz and 29.50 MHz.
* PLL_REF_DIV can be set by the user, but is the same for all clocks.
* FB_DIV can be set by the user for each clock individually, it should be set
* between 128 and 255, the chip will generate a bad clock signal for too low
* values.
* x depends on the type of clock; usually it is 2, but for the MCLK it can also
* be set to 4.
* POST_DIV can be set by the user for each clock individually, Possible values
* are 1,2,4,8 and for some clocks other values are available too.
* CLK is of course the clock speed that is generated.
*
* The Mach64 has these clocks:
*
* MCLK The clock rate of the chip
* XCLK The clock rate of the on-chip memory
* VCLK0 First pixel clock of first CRT controller
* VCLK1 Second pixel clock of first CRT controller
* VCLK2 Third pixel clock of first CRT controller
* VCLK3 Fourth pixel clock of first CRT controller
* VCLK Selected pixel clock, one of VCLK0, VCLK1, VCLK2, VCLK3
* V2CLK Pixel clock of the second CRT controller.
* SCLK Multi-purpose clock
*
* - MCLK and XCLK use the same FB_DIV
* - VCLK0 .. VCLK3 use the same FB_DIV
* - V2CLK is needed when the second CRTC is used (can be used for dualhead);
* i.e. CRT monitor connected to laptop has different resolution than built
* in LCD monitor.
* - SCLK is not available on all cards; it is know to exist on the Rage LT-PRO,
* Rage XL and Rage Mobility. It is know not to exist on the Mach64 VT.
* - V2CLK is not available on all cards, most likely only the Rage LT-PRO,
* the Rage XL and the Rage Mobility
*
* SCLK can be used to:
* - Clock the chip instead of MCLK
* - Replace XTALIN with a user defined frequency
* - Generate the pixel clock for the LCD monitor (instead of VCLK)
*/
/*
* It can be quite hard to calculate XCLK and MCLK if they don't run at the
* same frequency. Luckily, until now all cards that need asynchrone clock
* speeds seem to have SCLK.
* So this driver uses SCLK to clock the chip and XCLK to clock the memory.
*/
/* ------------------------------------------------------------------------- */
/*
* PLL programming (Mach64 CT family)
*
*
* This procedure sets the display fifo. The display fifo is a buffer that
* contains data read from the video memory that waits to be processed by
* the CRT controller.
*
* On the more modern Mach64 variants, the chip doesn't calculate the
* interval after which the display fifo has to be reloaded from memory
* automatically, the driver has to do it instead.
*/
#define Maximum_DSP_PRECISION 7
static u8 postdividers[] = {1,2,4,8,3};
static int aty_dsp_gt(const struct fb_info *info, u32 bpp, struct pll_ct *pll)
{
u32 dsp_off, dsp_on, dsp_xclks;
u32 multiplier, divider, ras_multiplier, ras_divider, tmp;
u8 vshift, xshift;
s8 dsp_precision;
multiplier = ((u32)pll->mclk_fb_div) * pll->vclk_post_div_real;
divider = ((u32)pll->vclk_fb_div) * pll->xclk_ref_div;
ras_multiplier = pll->xclkmaxrasdelay;
ras_divider = 1;
if (bpp>=8)
divider = divider * (bpp >> 2);
vshift = (6 - 2) - pll->xclk_post_div; /* FIFO is 64 bits wide in accelerator mode ... */
if (bpp == 0)
vshift--; /* ... but only 32 bits in VGA mode. */
#ifdef CONFIG_FB_ATY_GENERIC_LCD
if (pll->xres != 0) {
struct atyfb_par *par = (struct atyfb_par *) info->par;
multiplier = multiplier * par->lcd_width;
divider = divider * pll->xres & ~7;
ras_multiplier = ras_multiplier * par->lcd_width;
ras_divider = ras_divider * pll->xres & ~7;
}
#endif
/* If we don't do this, 32 bits for multiplier & divider won't be
enough in certain situations! */
while (((multiplier | divider) & 1) == 0) {
multiplier = multiplier >> 1;
divider = divider >> 1;
}
/* Determine DSP precision first */
tmp = ((multiplier * pll->fifo_size) << vshift) / divider;
for (dsp_precision = -5; tmp; dsp_precision++)
tmp >>= 1;
if (dsp_precision < 0)
dsp_precision = 0;
else if (dsp_precision > Maximum_DSP_PRECISION)
dsp_precision = Maximum_DSP_PRECISION;
xshift = 6 - dsp_precision;
vshift += xshift;
/* Move on to dsp_off */
dsp_off = ((multiplier * (pll->fifo_size - 1)) << vshift) / divider -
(1 << (vshift - xshift));
/* if (bpp == 0)
dsp_on = ((multiplier * 20 << vshift) + divider) / divider;
else */
{
dsp_on = ((multiplier << vshift) + divider) / divider;
tmp = ((ras_multiplier << xshift) + ras_divider) / ras_divider;
if (dsp_on < tmp)
dsp_on = tmp;
dsp_on = dsp_on + (tmp * 2) + (pll->xclkpagefaultdelay << xshift);
}
/* Calculate rounding factor and apply it to dsp_on */
tmp = ((1 << (Maximum_DSP_PRECISION - dsp_precision)) - 1) >> 1;
dsp_on = ((dsp_on + tmp) / (tmp + 1)) * (tmp + 1);
if (dsp_on >= ((dsp_off / (tmp + 1)) * (tmp + 1))) {
dsp_on = dsp_off - (multiplier << vshift) / divider;
dsp_on = (dsp_on / (tmp + 1)) * (tmp + 1);
}
/* Last but not least: dsp_xclks */
dsp_xclks = ((multiplier << (vshift + 5)) + divider) / divider;
/* Get register values. */
pll->dsp_on_off = (dsp_on << 16) + dsp_off;
pll->dsp_config = (dsp_precision << 20) | (pll->dsp_loop_latency << 16) | dsp_xclks;
#ifdef DEBUG
printk("atyfb(%s): dsp_config 0x%08x, dsp_on_off 0x%08x\n",
__FUNCTION__, pll->dsp_config, pll->dsp_on_off);
#endif
return 0;
}
static int aty_valid_pll_ct(const struct fb_info *info, u32 vclk_per, struct pll_ct *pll)
{
u32 q;
struct atyfb_par *par = (struct atyfb_par *) info->par;
int pllvclk;
/* FIXME: use the VTB/GTB /{3,6,12} post dividers if they're better suited */
q = par->ref_clk_per * pll->pll_ref_div * 4 / vclk_per;
if (q < 16*8 || q > 255*8) {
printk(KERN_CRIT "atyfb: vclk out of range\n");
return -EINVAL;
} else {
pll->vclk_post_div = (q < 128*8);
pll->vclk_post_div += (q < 64*8);
pll->vclk_post_div += (q < 32*8);
}
pll->vclk_post_div_real = postdividers[pll->vclk_post_div];
// pll->vclk_post_div <<= 6;
pll->vclk_fb_div = q * pll->vclk_post_div_real / 8;
pllvclk = (1000000 * 2 * pll->vclk_fb_div) /
(par->ref_clk_per * pll->pll_ref_div);
#ifdef DEBUG
printk("atyfb(%s): pllvclk=%d MHz, vclk=%d MHz\n",
__FUNCTION__, pllvclk, pllvclk / pll->vclk_post_div_real);
#endif
pll->pll_vclk_cntl = 0x03; /* VCLK = PLL_VCLK/VCLKx_POST */
/* Set ECP (scaler/overlay clock) divider */
if (par->pll_limits.ecp_max) {
int ecp = pllvclk / pll->vclk_post_div_real;
int ecp_div = 0;
while (ecp > par->pll_limits.ecp_max && ecp_div < 2) {
ecp >>= 1;
ecp_div++;
}
pll->pll_vclk_cntl |= ecp_div << 4;
}
return 0;
}
static int aty_var_to_pll_ct(const struct fb_info *info, u32 vclk_per, u32 bpp, union aty_pll *pll)
{
struct atyfb_par *par = (struct atyfb_par *) info->par;
int err;
if ((err = aty_valid_pll_ct(info, vclk_per, &pll->ct)))
return err;
if (M64_HAS(GTB_DSP) && (err = aty_dsp_gt(info, bpp, &pll->ct)))
return err;
/*aty_calc_pll_ct(info, &pll->ct);*/
return 0;
}
static u32 aty_pll_to_var_ct(const struct fb_info *info, const union aty_pll *pll)
{
struct atyfb_par *par = (struct atyfb_par *) info->par;
u32 ret;
ret = par->ref_clk_per * pll->ct.pll_ref_div * pll->ct.vclk_post_div_real / pll->ct.vclk_fb_div / 2;
#ifdef CONFIG_FB_ATY_GENERIC_LCD
if(pll->ct.xres > 0) {
ret *= par->lcd_width;
ret /= pll->ct.xres;
}
#endif
#ifdef DEBUG
printk("atyfb(%s): calculated 0x%08X(%i)\n", __FUNCTION__, ret, ret);
#endif
return ret;
}
void aty_set_pll_ct(const struct fb_info *info, const union aty_pll *pll)
{
struct atyfb_par *par = (struct atyfb_par *) info->par;
u32 crtc_gen_cntl, lcd_gen_cntrl;
u8 tmp, tmp2;
lcd_gen_cntrl = 0;
#ifdef DEBUG
printk("atyfb(%s): about to program:\n"
"pll_ext_cntl=0x%02x pll_gen_cntl=0x%02x pll_vclk_cntl=0x%02x\n",
__FUNCTION__,
pll->ct.pll_ext_cntl, pll->ct.pll_gen_cntl, pll->ct.pll_vclk_cntl);
printk("atyfb(%s): setting clock %lu for FeedBackDivider %i, ReferenceDivider %i, PostDivider %i(%i)\n",
__FUNCTION__,
par->clk_wr_offset, pll->ct.vclk_fb_div,
pll->ct.pll_ref_div, pll->ct.vclk_post_div, pll->ct.vclk_post_div_real);
#endif
#ifdef CONFIG_FB_ATY_GENERIC_LCD
if (par->lcd_table != 0) {
/* turn off LCD */
lcd_gen_cntrl = aty_ld_lcd(LCD_GEN_CNTL, par);
aty_st_lcd(LCD_GEN_CNTL, lcd_gen_cntrl & ~LCD_ON, par);
}
#endif
aty_st_8(CLOCK_CNTL, par->clk_wr_offset | CLOCK_STROBE, par);
/* Temporarily switch to accelerator mode */
crtc_gen_cntl = aty_ld_le32(CRTC_GEN_CNTL, par);
if (!(crtc_gen_cntl & CRTC_EXT_DISP_EN))
aty_st_le32(CRTC_GEN_CNTL, crtc_gen_cntl | CRTC_EXT_DISP_EN, par);
/* Reset VCLK generator */
aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl, par);
/* Set post-divider */
tmp2 = par->clk_wr_offset << 1;
tmp = aty_ld_pll_ct(VCLK_POST_DIV, par);
tmp &= ~(0x03U << tmp2);
tmp |= ((pll->ct.vclk_post_div & 0x03U) << tmp2);
aty_st_pll_ct(VCLK_POST_DIV, tmp, par);
/* Set extended post-divider */
tmp = aty_ld_pll_ct(PLL_EXT_CNTL, par);
tmp &= ~(0x10U << par->clk_wr_offset);
tmp &= 0xF0U;
tmp |= pll->ct.pll_ext_cntl;
aty_st_pll_ct(PLL_EXT_CNTL, tmp, par);
/* Set feedback divider */
tmp = VCLK0_FB_DIV + par->clk_wr_offset;
aty_st_pll_ct(tmp, (pll->ct.vclk_fb_div & 0xFFU), par);
aty_st_pll_ct(PLL_GEN_CNTL, (pll->ct.pll_gen_cntl & (~(PLL_OVERRIDE | PLL_MCLK_RST))) | OSC_EN, par);
/* End VCLK generator reset */
aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl & ~(PLL_VCLK_RST), par);
mdelay(5);
aty_st_pll_ct(PLL_GEN_CNTL, pll->ct.pll_gen_cntl, par);
aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl, par);
mdelay(1);
/* Restore mode register */
if (!(crtc_gen_cntl & CRTC_EXT_DISP_EN))
aty_st_le32(CRTC_GEN_CNTL, crtc_gen_cntl, par);
if (M64_HAS(GTB_DSP)) {
u8 dll_cntl;
if (M64_HAS(XL_DLL))
dll_cntl = 0x80;
else if (par->ram_type >= SDRAM)
dll_cntl = 0xa6;
else
dll_cntl = 0xa0;
aty_st_pll_ct(DLL_CNTL, dll_cntl, par);
aty_st_pll_ct(VFC_CNTL, 0x1b, par);
aty_st_le32(DSP_CONFIG, pll->ct.dsp_config, par);
aty_st_le32(DSP_ON_OFF, pll->ct.dsp_on_off, par);
mdelay(10);
aty_st_pll_ct(DLL_CNTL, dll_cntl, par);
mdelay(10);
aty_st_pll_ct(DLL_CNTL, dll_cntl | 0x40, par);
mdelay(10);
aty_st_pll_ct(DLL_CNTL, dll_cntl & ~0x40, par);
}
#ifdef CONFIG_FB_ATY_GENERIC_LCD
if (par->lcd_table != 0) {
/* restore LCD */
aty_st_lcd(LCD_GEN_CNTL, lcd_gen_cntrl, par);
}
#endif
}
static void __devinit aty_get_pll_ct(const struct fb_info *info,
union aty_pll *pll)
{
struct atyfb_par *par = (struct atyfb_par *) info->par;
u8 tmp, clock;
clock = aty_ld_8(CLOCK_CNTL, par) & 0x03U;
tmp = clock << 1;
pll->ct.vclk_post_div = (aty_ld_pll_ct(VCLK_POST_DIV, par) >> tmp) & 0x03U;
pll->ct.pll_ext_cntl = aty_ld_pll_ct(PLL_EXT_CNTL, par) & 0x0FU;
pll->ct.vclk_fb_div = aty_ld_pll_ct(VCLK0_FB_DIV + clock, par) & 0xFFU;
pll->ct.pll_ref_div = aty_ld_pll_ct(PLL_REF_DIV, par);
pll->ct.mclk_fb_div = aty_ld_pll_ct(MCLK_FB_DIV, par);
pll->ct.pll_gen_cntl = aty_ld_pll_ct(PLL_GEN_CNTL, par);
pll->ct.pll_vclk_cntl = aty_ld_pll_ct(PLL_VCLK_CNTL, par);
if (M64_HAS(GTB_DSP)) {
pll->ct.dsp_config = aty_ld_le32(DSP_CONFIG, par);
pll->ct.dsp_on_off = aty_ld_le32(DSP_ON_OFF, par);
}
}
static int __devinit aty_init_pll_ct(const struct fb_info *info,
union aty_pll *pll)
{
struct atyfb_par *par = (struct atyfb_par *) info->par;
u8 mpost_div, xpost_div, sclk_post_div_real;
u32 q, memcntl, trp;
u32 dsp_config, dsp_on_off, vga_dsp_config, vga_dsp_on_off;
#ifdef DEBUG
int pllmclk, pllsclk;
#endif
pll->ct.pll_ext_cntl = aty_ld_pll_ct(PLL_EXT_CNTL, par);
pll->ct.xclk_post_div = pll->ct.pll_ext_cntl & 0x07;
pll->ct.xclk_ref_div = 1;
switch (pll->ct.xclk_post_div) {
case 0: case 1: case 2: case 3:
break;
case 4:
pll->ct.xclk_ref_div = 3;
pll->ct.xclk_post_div = 0;
break;
default:
printk(KERN_CRIT "atyfb: Unsupported xclk source: %d.\n", pll->ct.xclk_post_div);
return -EINVAL;
}
pll->ct.mclk_fb_mult = 2;
if(pll->ct.pll_ext_cntl & PLL_MFB_TIMES_4_2B) {
pll->ct.mclk_fb_mult = 4;
pll->ct.xclk_post_div -= 1;
}
#ifdef DEBUG
printk("atyfb(%s): mclk_fb_mult=%d, xclk_post_div=%d\n",
__FUNCTION__, pll->ct.mclk_fb_mult, pll->ct.xclk_post_div);
#endif
memcntl = aty_ld_le32(MEM_CNTL, par);
trp = (memcntl & 0x300) >> 8;
pll->ct.xclkpagefaultdelay = ((memcntl & 0xc00) >> 10) + ((memcntl & 0x1000) >> 12) + trp + 2;
pll->ct.xclkmaxrasdelay = ((memcntl & 0x70000) >> 16) + trp + 2;
if (M64_HAS(FIFO_32)) {
pll->ct.fifo_size = 32;
} else {
pll->ct.fifo_size = 24;
pll->ct.xclkpagefaultdelay += 2;
pll->ct.xclkmaxrasdelay += 3;
}
switch (par->ram_type) {
case DRAM:
if (info->fix.smem_len<=ONE_MB) {
pll->ct.dsp_loop_latency = 10;
} else {
pll->ct.dsp_loop_latency = 8;
pll->ct.xclkpagefaultdelay += 2;
}
break;
case EDO:
case PSEUDO_EDO:
if (info->fix.smem_len<=ONE_MB) {
pll->ct.dsp_loop_latency = 9;
} else {
pll->ct.dsp_loop_latency = 8;
pll->ct.xclkpagefaultdelay += 1;
}
break;
case SDRAM:
if (info->fix.smem_len<=ONE_MB) {
pll->ct.dsp_loop_latency = 11;
} else {
pll->ct.dsp_loop_latency = 10;
pll->ct.xclkpagefaultdelay += 1;
}
break;
case SGRAM:
pll->ct.dsp_loop_latency = 8;
pll->ct.xclkpagefaultdelay += 3;
break;
default:
pll->ct.dsp_loop_latency = 11;
pll->ct.xclkpagefaultdelay += 3;
break;
}
if (pll->ct.xclkmaxrasdelay <= pll->ct.xclkpagefaultdelay)
pll->ct.xclkmaxrasdelay = pll->ct.xclkpagefaultdelay + 1;
/* Allow BIOS to override */
dsp_config = aty_ld_le32(DSP_CONFIG, par);
dsp_on_off = aty_ld_le32(DSP_ON_OFF, par);
vga_dsp_config = aty_ld_le32(VGA_DSP_CONFIG, par);
vga_dsp_on_off = aty_ld_le32(VGA_DSP_ON_OFF, par);
if (dsp_config)
pll->ct.dsp_loop_latency = (dsp_config & DSP_LOOP_LATENCY) >> 16;
#if 0
FIXME: is it relevant for us?
if ((!dsp_on_off && !M64_HAS(RESET_3D)) ||
((dsp_on_off == vga_dsp_on_off) &&
(!dsp_config || !((dsp_config ^ vga_dsp_config) & DSP_XCLKS_PER_QW)))) {
vga_dsp_on_off &= VGA_DSP_OFF;
vga_dsp_config &= VGA_DSP_XCLKS_PER_QW;
if (ATIDivide(vga_dsp_on_off, vga_dsp_config, 5, 1) > 24)
pll->ct.fifo_size = 32;
else
pll->ct.fifo_size = 24;
}
#endif
/* Exit if the user does not want us to tamper with the clock
rates of her chip. */
if (par->mclk_per == 0) {
u8 mclk_fb_div, pll_ext_cntl;
pll->ct.pll_ref_div = aty_ld_pll_ct(PLL_REF_DIV, par);
pll_ext_cntl = aty_ld_pll_ct(PLL_EXT_CNTL, par);
pll->ct.xclk_post_div_real = postdividers[pll_ext_cntl & 0x07];
mclk_fb_div = aty_ld_pll_ct(MCLK_FB_DIV, par);
if (pll_ext_cntl & PLL_MFB_TIMES_4_2B)
mclk_fb_div <<= 1;
pll->ct.mclk_fb_div = mclk_fb_div;
return 0;
}
pll->ct.pll_ref_div = par->pll_per * 2 * 255 / par->ref_clk_per;
/* FIXME: use the VTB/GTB /3 post divider if it's better suited */
q = par->ref_clk_per * pll->ct.pll_ref_div * 8 /
(pll->ct.mclk_fb_mult * par->xclk_per);
if (q < 16*8 || q > 255*8) {
printk(KERN_CRIT "atxfb: xclk out of range\n");
return -EINVAL;
} else {
xpost_div = (q < 128*8);
xpost_div += (q < 64*8);
xpost_div += (q < 32*8);
}
pll->ct.xclk_post_div_real = postdividers[xpost_div];
pll->ct.mclk_fb_div = q * pll->ct.xclk_post_div_real / 8;
#ifdef DEBUG
pllmclk = (1000000 * pll->ct.mclk_fb_mult * pll->ct.mclk_fb_div) /
(par->ref_clk_per * pll->ct.pll_ref_div);
printk("atyfb(%s): pllmclk=%d MHz, xclk=%d MHz\n",
__FUNCTION__, pllmclk, pllmclk / pll->ct.xclk_post_div_real);
#endif
if (M64_HAS(SDRAM_MAGIC_PLL) && (par->ram_type >= SDRAM))
pll->ct.pll_gen_cntl = OSC_EN;
else
pll->ct.pll_gen_cntl = OSC_EN | DLL_PWDN /* | FORCE_DCLK_TRI_STATE */;
if (M64_HAS(MAGIC_POSTDIV))
pll->ct.pll_ext_cntl = 0;
else
pll->ct.pll_ext_cntl = xpost_div;
if (pll->ct.mclk_fb_mult == 4)
pll->ct.pll_ext_cntl |= PLL_MFB_TIMES_4_2B;
if (par->mclk_per == par->xclk_per) {
pll->ct.pll_gen_cntl |= (xpost_div << 4); /* mclk == xclk */
} else {
/*
* The chip clock is not equal to the memory clock.
* Therefore we will use sclk to clock the chip.
*/
pll->ct.pll_gen_cntl |= (6 << 4); /* mclk == sclk */
q = par->ref_clk_per * pll->ct.pll_ref_div * 4 / par->mclk_per;
if (q < 16*8 || q > 255*8) {
printk(KERN_CRIT "atyfb: mclk out of range\n");
return -EINVAL;
} else {
mpost_div = (q < 128*8);
mpost_div += (q < 64*8);
mpost_div += (q < 32*8);
}
sclk_post_div_real = postdividers[mpost_div];
pll->ct.sclk_fb_div = q * sclk_post_div_real / 8;
pll->ct.spll_cntl2 = mpost_div << 4;
#ifdef DEBUG
pllsclk = (1000000 * 2 * pll->ct.sclk_fb_div) /
(par->ref_clk_per * pll->ct.pll_ref_div);
printk("atyfb(%s): use sclk, pllsclk=%d MHz, sclk=mclk=%d MHz\n",
__FUNCTION__, pllsclk, pllsclk / sclk_post_div_real);
#endif
}
/* Disable the extra precision pixel clock controls since we do not use them. */
pll->ct.ext_vpll_cntl = aty_ld_pll_ct(EXT_VPLL_CNTL, par);
pll->ct.ext_vpll_cntl &= ~(EXT_VPLL_EN | EXT_VPLL_VGA_EN | EXT_VPLL_INSYNC);
return 0;
}
static void aty_resume_pll_ct(const struct fb_info *info,
union aty_pll *pll)
{
struct atyfb_par *par = info->par;
if (par->mclk_per != par->xclk_per) {
int i;
/*
* This disables the sclk, crashes the computer as reported:
* aty_st_pll_ct(SPLL_CNTL2, 3, info);
*
* So it seems the sclk must be enabled before it is used;
* so PLL_GEN_CNTL must be programmed *after* the sclk.
*/
aty_st_pll_ct(SCLK_FB_DIV, pll->ct.sclk_fb_div, par);
aty_st_pll_ct(SPLL_CNTL2, pll->ct.spll_cntl2, par);
/*
* The sclk has been started. However, I believe the first clock
* ticks it generates are not very stable. Hope this primitive loop
* helps for Rage Mobilities that sometimes crash when
* we switch to sclk. (Daniel Mantione, 13-05-2003)
*/
for (i=0;i<=0x1ffff;i++);
}
aty_st_pll_ct(PLL_REF_DIV, pll->ct.pll_ref_div, par);
aty_st_pll_ct(PLL_GEN_CNTL, pll->ct.pll_gen_cntl, par);
aty_st_pll_ct(MCLK_FB_DIV, pll->ct.mclk_fb_div, par);
aty_st_pll_ct(PLL_EXT_CNTL, pll->ct.pll_ext_cntl, par);
aty_st_pll_ct(EXT_VPLL_CNTL, pll->ct.ext_vpll_cntl, par);
}
static int dummy(void)
{
return 0;
}
const struct aty_dac_ops aty_dac_ct = {
.set_dac = (void *) dummy,
};
const struct aty_pll_ops aty_pll_ct = {
.var_to_pll = aty_var_to_pll_ct,
.pll_to_var = aty_pll_to_var_ct,
.set_pll = aty_set_pll_ct,
.get_pll = aty_get_pll_ct,
.init_pll = aty_init_pll_ct,
.resume_pll = aty_resume_pll_ct,
};