/*
* Copyright (C) 2009 Samsung Electronics Ltd.
* Jaswinder Singh <jassi.brar@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi.h>
#include <linux/gpio.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <mach/dma.h>
#include <linux/platform_data/spi-s3c64xx.h>
#define MAX_SPI_PORTS 3
/* Registers and bit-fields */
#define S3C64XX_SPI_CH_CFG 0x00
#define S3C64XX_SPI_CLK_CFG 0x04
#define S3C64XX_SPI_MODE_CFG 0x08
#define S3C64XX_SPI_SLAVE_SEL 0x0C
#define S3C64XX_SPI_INT_EN 0x10
#define S3C64XX_SPI_STATUS 0x14
#define S3C64XX_SPI_TX_DATA 0x18
#define S3C64XX_SPI_RX_DATA 0x1C
#define S3C64XX_SPI_PACKET_CNT 0x20
#define S3C64XX_SPI_PENDING_CLR 0x24
#define S3C64XX_SPI_SWAP_CFG 0x28
#define S3C64XX_SPI_FB_CLK 0x2C
#define S3C64XX_SPI_CH_HS_EN (1<<6) /* High Speed Enable */
#define S3C64XX_SPI_CH_SW_RST (1<<5)
#define S3C64XX_SPI_CH_SLAVE (1<<4)
#define S3C64XX_SPI_CPOL_L (1<<3)
#define S3C64XX_SPI_CPHA_B (1<<2)
#define S3C64XX_SPI_CH_RXCH_ON (1<<1)
#define S3C64XX_SPI_CH_TXCH_ON (1<<0)
#define S3C64XX_SPI_CLKSEL_SRCMSK (3<<9)
#define S3C64XX_SPI_CLKSEL_SRCSHFT 9
#define S3C64XX_SPI_ENCLK_ENABLE (1<<8)
#define S3C64XX_SPI_PSR_MASK 0xff
#define S3C64XX_SPI_MODE_CH_TSZ_BYTE (0<<29)
#define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD (1<<29)
#define S3C64XX_SPI_MODE_CH_TSZ_WORD (2<<29)
#define S3C64XX_SPI_MODE_CH_TSZ_MASK (3<<29)
#define S3C64XX_SPI_MODE_BUS_TSZ_BYTE (0<<17)
#define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD (1<<17)
#define S3C64XX_SPI_MODE_BUS_TSZ_WORD (2<<17)
#define S3C64XX_SPI_MODE_BUS_TSZ_MASK (3<<17)
#define S3C64XX_SPI_MODE_RXDMA_ON (1<<2)
#define S3C64XX_SPI_MODE_TXDMA_ON (1<<1)
#define S3C64XX_SPI_MODE_4BURST (1<<0)
#define S3C64XX_SPI_SLAVE_AUTO (1<<1)
#define S3C64XX_SPI_SLAVE_SIG_INACT (1<<0)
#define S3C64XX_SPI_INT_TRAILING_EN (1<<6)
#define S3C64XX_SPI_INT_RX_OVERRUN_EN (1<<5)
#define S3C64XX_SPI_INT_RX_UNDERRUN_EN (1<<4)
#define S3C64XX_SPI_INT_TX_OVERRUN_EN (1<<3)
#define S3C64XX_SPI_INT_TX_UNDERRUN_EN (1<<2)
#define S3C64XX_SPI_INT_RX_FIFORDY_EN (1<<1)
#define S3C64XX_SPI_INT_TX_FIFORDY_EN (1<<0)
#define S3C64XX_SPI_ST_RX_OVERRUN_ERR (1<<5)
#define S3C64XX_SPI_ST_RX_UNDERRUN_ERR (1<<4)
#define S3C64XX_SPI_ST_TX_OVERRUN_ERR (1<<3)
#define S3C64XX_SPI_ST_TX_UNDERRUN_ERR (1<<2)
#define S3C64XX_SPI_ST_RX_FIFORDY (1<<1)
#define S3C64XX_SPI_ST_TX_FIFORDY (1<<0)
#define S3C64XX_SPI_PACKET_CNT_EN (1<<16)
#define S3C64XX_SPI_PND_TX_UNDERRUN_CLR (1<<4)
#define S3C64XX_SPI_PND_TX_OVERRUN_CLR (1<<3)
#define S3C64XX_SPI_PND_RX_UNDERRUN_CLR (1<<2)
#define S3C64XX_SPI_PND_RX_OVERRUN_CLR (1<<1)
#define S3C64XX_SPI_PND_TRAILING_CLR (1<<0)
#define S3C64XX_SPI_SWAP_RX_HALF_WORD (1<<7)
#define S3C64XX_SPI_SWAP_RX_BYTE (1<<6)
#define S3C64XX_SPI_SWAP_RX_BIT (1<<5)
#define S3C64XX_SPI_SWAP_RX_EN (1<<4)
#define S3C64XX_SPI_SWAP_TX_HALF_WORD (1<<3)
#define S3C64XX_SPI_SWAP_TX_BYTE (1<<2)
#define S3C64XX_SPI_SWAP_TX_BIT (1<<1)
#define S3C64XX_SPI_SWAP_TX_EN (1<<0)
#define S3C64XX_SPI_FBCLK_MSK (3<<0)
#define FIFO_LVL_MASK(i) ((i)->port_conf->fifo_lvl_mask[i->port_id])
#define S3C64XX_SPI_ST_TX_DONE(v, i) (((v) & \
(1 << (i)->port_conf->tx_st_done)) ? 1 : 0)
#define TX_FIFO_LVL(v, i) (((v) >> 6) & FIFO_LVL_MASK(i))
#define RX_FIFO_LVL(v, i) (((v) >> (i)->port_conf->rx_lvl_offset) & \
FIFO_LVL_MASK(i))
#define S3C64XX_SPI_MAX_TRAILCNT 0x3ff
#define S3C64XX_SPI_TRAILCNT_OFF 19
#define S3C64XX_SPI_TRAILCNT S3C64XX_SPI_MAX_TRAILCNT
#define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
#define RXBUSY (1<<2)
#define TXBUSY (1<<3)
struct s3c64xx_spi_dma_data {
unsigned ch;
enum dma_transfer_direction direction;
enum dma_ch dmach;
struct property *dma_prop;
};
/**
* struct s3c64xx_spi_info - SPI Controller hardware info
* @fifo_lvl_mask: Bit-mask for {TX|RX}_FIFO_LVL bits in SPI_STATUS register.
* @rx_lvl_offset: Bit offset of RX_FIFO_LVL bits in SPI_STATUS regiter.
* @tx_st_done: Bit offset of TX_DONE bit in SPI_STATUS regiter.
* @high_speed: True, if the controller supports HIGH_SPEED_EN bit.
* @clk_from_cmu: True, if the controller does not include a clock mux and
* prescaler unit.
*
* The Samsung s3c64xx SPI controller are used on various Samsung SoC's but
* differ in some aspects such as the size of the fifo and spi bus clock
* setup. Such differences are specified to the driver using this structure
* which is provided as driver data to the driver.
*/
struct s3c64xx_spi_port_config {
int fifo_lvl_mask[MAX_SPI_PORTS];
int rx_lvl_offset;
int tx_st_done;
bool high_speed;
bool clk_from_cmu;
};
/**
* struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver.
* @clk: Pointer to the spi clock.
* @src_clk: Pointer to the clock used to generate SPI signals.
* @master: Pointer to the SPI Protocol master.
* @cntrlr_info: Platform specific data for the controller this driver manages.
* @tgl_spi: Pointer to the last CS left untoggled by the cs_change hint.
* @queue: To log SPI xfer requests.
* @lock: Controller specific lock.
* @state: Set of FLAGS to indicate status.
* @rx_dmach: Controller's DMA channel for Rx.
* @tx_dmach: Controller's DMA channel for Tx.
* @sfr_start: BUS address of SPI controller regs.
* @regs: Pointer to ioremap'ed controller registers.
* @irq: interrupt
* @xfer_completion: To indicate completion of xfer task.
* @cur_mode: Stores the active configuration of the controller.
* @cur_bpw: Stores the active bits per word settings.
* @cur_speed: Stores the active xfer clock speed.
*/
struct s3c64xx_spi_driver_data {
void __iomem *regs;
struct clk *clk;
struct clk *src_clk;
struct platform_device *pdev;
struct spi_master *master;
struct s3c64xx_spi_info *cntrlr_info;
struct spi_device *tgl_spi;
struct list_head queue;
spinlock_t lock;
unsigned long sfr_start;
struct completion xfer_completion;
unsigned state;
unsigned cur_mode, cur_bpw;
unsigned cur_speed;
struct s3c64xx_spi_dma_data rx_dma;
struct s3c64xx_spi_dma_data tx_dma;
struct samsung_dma_ops *ops;
struct s3c64xx_spi_port_config *port_conf;
unsigned int port_id;
unsigned long gpios[4];
};
static struct s3c2410_dma_client s3c64xx_spi_dma_client = {
.name = "samsung-spi-dma",
};
static void flush_fifo(struct s3c64xx_spi_driver_data *sdd)
{
void __iomem *regs = sdd->regs;
unsigned long loops;
u32 val;
writel(0, regs + S3C64XX_SPI_PACKET_CNT);
val = readl(regs + S3C64XX_SPI_CH_CFG);
val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
writel(val, regs + S3C64XX_SPI_CH_CFG);
val = readl(regs + S3C64XX_SPI_CH_CFG);
val |= S3C64XX_SPI_CH_SW_RST;
val &= ~S3C64XX_SPI_CH_HS_EN;
writel(val, regs + S3C64XX_SPI_CH_CFG);
/* Flush TxFIFO*/
loops = msecs_to_loops(1);
do {
val = readl(regs + S3C64XX_SPI_STATUS);
} while (TX_FIFO_LVL(val, sdd) && loops--);
if (loops == 0)
dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n");
/* Flush RxFIFO*/
loops = msecs_to_loops(1);
do {
val = readl(regs + S3C64XX_SPI_STATUS);
if (RX_FIFO_LVL(val, sdd))
readl(regs + S3C64XX_SPI_RX_DATA);
else
break;
} while (loops--);
if (loops == 0)
dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n");
val = readl(regs + S3C64XX_SPI_CH_CFG);
val &= ~S3C64XX_SPI_CH_SW_RST;
writel(val, regs + S3C64XX_SPI_CH_CFG);
val = readl(regs + S3C64XX_SPI_MODE_CFG);
val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
writel(val, regs + S3C64XX_SPI_MODE_CFG);
}
static void s3c64xx_spi_dmacb(void *data)
{
struct s3c64xx_spi_driver_data *sdd;
struct s3c64xx_spi_dma_data *dma = data;
unsigned long flags;
if (dma->direction == DMA_DEV_TO_MEM)
sdd = container_of(data,
struct s3c64xx_spi_driver_data, rx_dma);
else
sdd = container_of(data,
struct s3c64xx_spi_driver_data, tx_dma);
spin_lock_irqsave(&sdd->lock, flags);
if (dma->direction == DMA_DEV_TO_MEM) {
sdd->state &= ~RXBUSY;
if (!(sdd->state & TXBUSY))
complete(&sdd->xfer_completion);
} else {
sdd->state &= ~TXBUSY;
if (!(sdd->state & RXBUSY))
complete(&sdd->xfer_completion);
}
spin_unlock_irqrestore(&sdd->lock, flags);
}
static void prepare_dma(struct s3c64xx_spi_dma_data *dma,
unsigned len, dma_addr_t buf)
{
struct s3c64xx_spi_driver_data *sdd;
struct samsung_dma_prep info;
struct samsung_dma_config config;
if (dma->direction == DMA_DEV_TO_MEM) {
sdd = container_of((void *)dma,
struct s3c64xx_spi_driver_data, rx_dma);
config.direction = sdd->rx_dma.direction;
config.fifo = sdd->sfr_start + S3C64XX_SPI_RX_DATA;
config.width = sdd->cur_bpw / 8;
sdd->ops->config(sdd->rx_dma.ch, &config);
} else {
sdd = container_of((void *)dma,
struct s3c64xx_spi_driver_data, tx_dma);
config.direction = sdd->tx_dma.direction;
config.fifo = sdd->sfr_start + S3C64XX_SPI_TX_DATA;
config.width = sdd->cur_bpw / 8;
sdd->ops->config(sdd->tx_dma.ch, &config);
}
info.cap = DMA_SLAVE;
info.len = len;
info.fp = s3c64xx_spi_dmacb;
info.fp_param = dma;
info.direction = dma->direction;
info.buf = buf;
sdd->ops->prepare(dma->ch, &info);
sdd->ops->trigger(dma->ch);
}
static int acquire_dma(struct s3c64xx_spi_driver_data *sdd)
{
struct samsung_dma_req req;
sdd->ops = samsung_dma_get_ops();
req.cap = DMA_SLAVE;
req.client = &s3c64xx_spi_dma_client;
req.dt_dmach_prop = sdd->rx_dma.dma_prop;
sdd->rx_dma.ch = sdd->ops->request(sdd->rx_dma.dmach, &req);
req.dt_dmach_prop = sdd->tx_dma.dma_prop;
sdd->tx_dma.ch = sdd->ops->request(sdd->tx_dma.dmach, &req);
return 1;
}
static void enable_datapath(struct s3c64xx_spi_driver_data *sdd,
struct spi_device *spi,
struct spi_transfer *xfer, int dma_mode)
{
void __iomem *regs = sdd->regs;
u32 modecfg, chcfg;
modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;
if (dma_mode) {
chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
} else {
/* Always shift in data in FIFO, even if xfer is Tx only,
* this helps setting PCKT_CNT value for generating clocks
* as exactly needed.
*/
chcfg |= S3C64XX_SPI_CH_RXCH_ON;
writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
| S3C64XX_SPI_PACKET_CNT_EN,
regs + S3C64XX_SPI_PACKET_CNT);
}
if (xfer->tx_buf != NULL) {
sdd->state |= TXBUSY;
chcfg |= S3C64XX_SPI_CH_TXCH_ON;
if (dma_mode) {
modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
prepare_dma(&sdd->tx_dma, xfer->len, xfer->tx_dma);
} else {
switch (sdd->cur_bpw) {
case 32:
iowrite32_rep(regs + S3C64XX_SPI_TX_DATA,
xfer->tx_buf, xfer->len / 4);
break;
case 16:
iowrite16_rep(regs + S3C64XX_SPI_TX_DATA,
xfer->tx_buf, xfer->len / 2);
break;
default:
iowrite8_rep(regs + S3C64XX_SPI_TX_DATA,
xfer->tx_buf, xfer->len);
break;
}
}
}
if (xfer->rx_buf != NULL) {
sdd->state |= RXBUSY;
if (sdd->port_conf->high_speed && sdd->cur_speed >= 30000000UL
&& !(sdd->cur_mode & SPI_CPHA))
chcfg |= S3C64XX_SPI_CH_HS_EN;
if (dma_mode) {
modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
chcfg |= S3C64XX_SPI_CH_RXCH_ON;
writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
| S3C64XX_SPI_PACKET_CNT_EN,
regs + S3C64XX_SPI_PACKET_CNT);
prepare_dma(&sdd->rx_dma, xfer->len, xfer->rx_dma);
}
}
writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
}
static inline void enable_cs(struct s3c64xx_spi_driver_data *sdd,
struct spi_device *spi)
{
struct s3c64xx_spi_csinfo *cs;
if (sdd->tgl_spi != NULL) { /* If last device toggled after mssg */
if (sdd->tgl_spi != spi) { /* if last mssg on diff device */
/* Deselect the last toggled device */
cs = sdd->tgl_spi->controller_data;
gpio_set_value(cs->line,
spi->mode & SPI_CS_HIGH ? 0 : 1);
}
sdd->tgl_spi = NULL;
}
cs = spi->controller_data;
gpio_set_value(cs->line, spi->mode & SPI_CS_HIGH ? 1 : 0);
}
static int wait_for_xfer(struct s3c64xx_spi_driver_data *sdd,
struct spi_transfer *xfer, int dma_mode)
{
void __iomem *regs = sdd->regs;
unsigned long val;
int ms;
/* millisecs to xfer 'len' bytes @ 'cur_speed' */
ms = xfer->len * 8 * 1000 / sdd->cur_speed;
ms += 10; /* some tolerance */
if (dma_mode) {
val = msecs_to_jiffies(ms) + 10;
val = wait_for_completion_timeout(&sdd->xfer_completion, val);
} else {
u32 status;
val = msecs_to_loops(ms);
do {
status = readl(regs + S3C64XX_SPI_STATUS);
} while (RX_FIFO_LVL(status, sdd) < xfer->len && --val);
}
if (!val)
return -EIO;
if (dma_mode) {
u32 status;
/*
* DmaTx returns after simply writing data in the FIFO,
* w/o waiting for real transmission on the bus to finish.
* DmaRx returns only after Dma read data from FIFO which
* needs bus transmission to finish, so we don't worry if
* Xfer involved Rx(with or without Tx).
*/
if (xfer->rx_buf == NULL) {
val = msecs_to_loops(10);
status = readl(regs + S3C64XX_SPI_STATUS);
while ((TX_FIFO_LVL(status, sdd)
|| !S3C64XX_SPI_ST_TX_DONE(status, sdd))
&& --val) {
cpu_relax();
status = readl(regs + S3C64XX_SPI_STATUS);
}
if (!val)
return -EIO;
}
} else {
/* If it was only Tx */
if (xfer->rx_buf == NULL) {
sdd->state &= ~TXBUSY;
return 0;
}
switch (sdd->cur_bpw) {
case 32:
ioread32_rep(regs + S3C64XX_SPI_RX_DATA,
xfer->rx_buf, xfer->len / 4);
break;
case 16:
ioread16_rep(regs + S3C64XX_SPI_RX_DATA,
xfer->rx_buf, xfer->len / 2);
break;
default:
ioread8_rep(regs + S3C64XX_SPI_RX_DATA,
xfer->rx_buf, xfer->len);
break;
}
sdd->state &= ~RXBUSY;
}
return 0;
}
static inline void disable_cs(struct s3c64xx_spi_driver_data *sdd,
struct spi_device *spi)
{
struct s3c64xx_spi_csinfo *cs = spi->controller_data;
if (sdd->tgl_spi == spi)
sdd->tgl_spi = NULL;
gpio_set_value(cs->line, spi->mode & SPI_CS_HIGH ? 0 : 1);
}
static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
{
void __iomem *regs = sdd->regs;
u32 val;
/* Disable Clock */
if (sdd->port_conf->clk_from_cmu) {
clk_disable_unprepare(sdd->src_clk);
} else {
val = readl(regs + S3C64XX_SPI_CLK_CFG);
val &= ~S3C64XX_SPI_ENCLK_ENABLE;
writel(val, regs + S3C64XX_SPI_CLK_CFG);
}
/* Set Polarity and Phase */
val = readl(regs + S3C64XX_SPI_CH_CFG);
val &= ~(S3C64XX_SPI_CH_SLAVE |
S3C64XX_SPI_CPOL_L |
S3C64XX_SPI_CPHA_B);
if (sdd->cur_mode & SPI_CPOL)
val |= S3C64XX_SPI_CPOL_L;
if (sdd->cur_mode & SPI_CPHA)
val |= S3C64XX_SPI_CPHA_B;
writel(val, regs + S3C64XX_SPI_CH_CFG);
/* Set Channel & DMA Mode */
val = readl(regs + S3C64XX_SPI_MODE_CFG);
val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
| S3C64XX_SPI_MODE_CH_TSZ_MASK);
switch (sdd->cur_bpw) {
case 32:
val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
val |= S3C64XX_SPI_MODE_CH_TSZ_WORD;
break;
case 16:
val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
val |= S3C64XX_SPI_MODE_CH_TSZ_HALFWORD;
break;
default:
val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE;
break;
}
writel(val, regs + S3C64XX_SPI_MODE_CFG);
if (sdd->port_conf->clk_from_cmu) {
/* Configure Clock */
/* There is half-multiplier before the SPI */
clk_set_rate(sdd->src_clk, sdd->cur_speed * 2);
/* Enable Clock */
clk_prepare_enable(sdd->src_clk);
} else {
/* Configure Clock */
val = readl(regs + S3C64XX_SPI_CLK_CFG);
val &= ~S3C64XX_SPI_PSR_MASK;
val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / 2 - 1)
& S3C64XX_SPI_PSR_MASK);
writel(val, regs + S3C64XX_SPI_CLK_CFG);
/* Enable Clock */
val = readl(regs + S3C64XX_SPI_CLK_CFG);
val |= S3C64XX_SPI_ENCLK_ENABLE;
writel(val, regs + S3C64XX_SPI_CLK_CFG);
}
}
#define XFER_DMAADDR_INVALID DMA_BIT_MASK(32)
static int s3c64xx_spi_map_mssg(struct s3c64xx_spi_driver_data *sdd,
struct spi_message *msg)
{
struct device *dev = &sdd->pdev->dev;
struct spi_transfer *xfer;
if (msg->is_dma_mapped)
return 0;
/* First mark all xfer unmapped */
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
xfer->rx_dma = XFER_DMAADDR_INVALID;
xfer->tx_dma = XFER_DMAADDR_INVALID;
}
/* Map until end or first fail */
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
if (xfer->len <= ((FIFO_LVL_MASK(sdd) >> 1) + 1))
continue;
if (xfer->tx_buf != NULL) {
xfer->tx_dma = dma_map_single(dev,
(void *)xfer->tx_buf, xfer->len,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, xfer->tx_dma)) {
dev_err(dev, "dma_map_single Tx failed\n");
xfer->tx_dma = XFER_DMAADDR_INVALID;
return -ENOMEM;
}
}
if (xfer->rx_buf != NULL) {
xfer->rx_dma = dma_map_single(dev, xfer->rx_buf,
xfer->len, DMA_FROM_DEVICE);
if (dma_mapping_error(dev, xfer->rx_dma)) {
dev_err(dev, "dma_map_single Rx failed\n");
dma_unmap_single(dev, xfer->tx_dma,
xfer->len, DMA_TO_DEVICE);
xfer->tx_dma = XFER_DMAADDR_INVALID;
xfer->rx_dma = XFER_DMAADDR_INVALID;
return -ENOMEM;
}
}
}
return 0;
}
static void s3c64xx_spi_unmap_mssg(struct s3c64xx_spi_driver_data *sdd,
struct spi_message *msg)
{
struct device *dev = &sdd->pdev->dev;
struct spi_transfer *xfer;
if (msg->is_dma_mapped)
return;
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
if (xfer->len <= ((FIFO_LVL_MASK(sdd) >> 1) + 1))
continue;
if (xfer->rx_buf != NULL
&& xfer->rx_dma != XFER_DMAADDR_INVALID)
dma_unmap_single(dev, xfer->rx_dma,
xfer->len, DMA_FROM_DEVICE);
if (xfer->tx_buf != NULL
&& xfer->tx_dma != XFER_DMAADDR_INVALID)
dma_unmap_single(dev, xfer->tx_dma,
xfer->len, DMA_TO_DEVICE);
}
}
static int s3c64xx_spi_transfer_one_message(struct spi_master *master,
struct spi_message *msg)
{
struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
struct spi_device *spi = msg->spi;
struct s3c64xx_spi_csinfo *cs = spi->controller_data;
struct spi_transfer *xfer;
int status = 0, cs_toggle = 0;
u32 speed;
u8 bpw;
/* If Master's(controller) state differs from that needed by Slave */
if (sdd->cur_speed != spi->max_speed_hz
|| sdd->cur_mode != spi->mode
|| sdd->cur_bpw != spi->bits_per_word) {
sdd->cur_bpw = spi->bits_per_word;
sdd->cur_speed = spi->max_speed_hz;
sdd->cur_mode = spi->mode;
s3c64xx_spi_config(sdd);
}
/* Map all the transfers if needed */
if (s3c64xx_spi_map_mssg(sdd, msg)) {
dev_err(&spi->dev,
"Xfer: Unable to map message buffers!\n");
status = -ENOMEM;
goto out;
}
/* Configure feedback delay */
writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
unsigned long flags;
int use_dma;
INIT_COMPLETION(sdd->xfer_completion);
/* Only BPW and Speed may change across transfers */
bpw = xfer->bits_per_word ? : spi->bits_per_word;
speed = xfer->speed_hz ? : spi->max_speed_hz;
if (xfer->len % (bpw / 8)) {
dev_err(&spi->dev,
"Xfer length(%u) not a multiple of word size(%u)\n",
xfer->len, bpw / 8);
status = -EIO;
goto out;
}
if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
sdd->cur_bpw = bpw;
sdd->cur_speed = speed;
s3c64xx_spi_config(sdd);
}
/* Polling method for xfers not bigger than FIFO capacity */
if (xfer->len <= ((FIFO_LVL_MASK(sdd) >> 1) + 1))
use_dma = 0;
else
use_dma = 1;
spin_lock_irqsave(&sdd->lock, flags);
/* Pending only which is to be done */
sdd->state &= ~RXBUSY;
sdd->state &= ~TXBUSY;
enable_datapath(sdd, spi, xfer, use_dma);
/* Slave Select */
enable_cs(sdd, spi);
/* Start the signals */
writel(0, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
spin_unlock_irqrestore(&sdd->lock, flags);
status = wait_for_xfer(sdd, xfer, use_dma);
/* Quiese the signals */
writel(S3C64XX_SPI_SLAVE_SIG_INACT,
sdd->regs + S3C64XX_SPI_SLAVE_SEL);
if (status) {
dev_err(&spi->dev, "I/O Error: "
"rx-%d tx-%d res:rx-%c tx-%c len-%d\n",
xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
(sdd->state & RXBUSY) ? 'f' : 'p',
(sdd->state & TXBUSY) ? 'f' : 'p',
xfer->len);
if (use_dma) {
if (xfer->tx_buf != NULL
&& (sdd->state & TXBUSY))
sdd->ops->stop(sdd->tx_dma.ch);
if (xfer->rx_buf != NULL
&& (sdd->state & RXBUSY))
sdd->ops->stop(sdd->rx_dma.ch);
}
goto out;
}
if (xfer->delay_usecs)
udelay(xfer->delay_usecs);
if (xfer->cs_change) {
/* Hint that the next mssg is gonna be
for the same device */
if (list_is_last(&xfer->transfer_list,
&msg->transfers))
cs_toggle = 1;
}
msg->actual_length += xfer->len;
flush_fifo(sdd);
}
out:
if (!cs_toggle || status)
disable_cs(sdd, spi);
else
sdd->tgl_spi = spi;
s3c64xx_spi_unmap_mssg(sdd, msg);
msg->status = status;
spi_finalize_current_message(master);
return 0;
}
static int s3c64xx_spi_prepare_transfer(struct spi_master *spi)
{
struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
/* Acquire DMA channels */
while (!acquire_dma(sdd))
msleep(10);
pm_runtime_get_sync(&sdd->pdev->dev);
return 0;
}
static int s3c64xx_spi_unprepare_transfer(struct spi_master *spi)
{
struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
/* Free DMA channels */
sdd->ops->release(sdd->rx_dma.ch, &s3c64xx_spi_dma_client);
sdd->ops->release(sdd->tx_dma.ch, &s3c64xx_spi_dma_client);
pm_runtime_put(&sdd->pdev->dev);
return 0;
}
static struct s3c64xx_spi_csinfo *s3c64xx_get_slave_ctrldata(
struct s3c64xx_spi_driver_data *sdd,
struct spi_device *spi)
{
struct s3c64xx_spi_csinfo *cs;
struct device_node *slave_np, *data_np = NULL;
u32 fb_delay = 0;
slave_np = spi->dev.of_node;
if (!slave_np) {
dev_err(&spi->dev, "device node not found\n");
return ERR_PTR(-EINVAL);
}
data_np = of_get_child_by_name(slave_np, "controller-data");
if (!data_np) {
dev_err(&spi->dev, "child node 'controller-data' not found\n");
return ERR_PTR(-EINVAL);
}
cs = kzalloc(sizeof(*cs), GFP_KERNEL);
if (!cs) {
dev_err(&spi->dev, "could not allocate memory for controller"
" data\n");
of_node_put(data_np);
return ERR_PTR(-ENOMEM);
}
cs->line = of_get_named_gpio(data_np, "cs-gpio", 0);
if (!gpio_is_valid(cs->line)) {
dev_err(&spi->dev, "chip select gpio is not specified or "
"invalid\n");
kfree(cs);
of_node_put(data_np);
return ERR_PTR(-EINVAL);
}
of_property_read_u32(data_np, "samsung,spi-feedback-delay", &fb_delay);
cs->fb_delay = fb_delay;
of_node_put(data_np);
return cs;
}
/*
* Here we only check the validity of requested configuration
* and save the configuration in a local data-structure.
* The controller is actually configured only just before we
* get a message to transfer.
*/
static int s3c64xx_spi_setup(struct spi_device *spi)
{
struct s3c64xx_spi_csinfo *cs = spi->controller_data;
struct s3c64xx_spi_driver_data *sdd;
struct s3c64xx_spi_info *sci;
struct spi_message *msg;
unsigned long flags;
int err;
sdd = spi_master_get_devdata(spi->master);
if (!cs && spi->dev.of_node) {
cs = s3c64xx_get_slave_ctrldata(sdd, spi);
spi->controller_data = cs;
}
if (IS_ERR_OR_NULL(cs)) {
dev_err(&spi->dev, "No CS for SPI(%d)\n", spi->chip_select);
return -ENODEV;
}
if (!spi_get_ctldata(spi)) {
err = gpio_request_one(cs->line, GPIOF_OUT_INIT_HIGH,
dev_name(&spi->dev));
if (err) {
dev_err(&spi->dev,
"Failed to get /CS gpio [%d]: %d\n",
cs->line, err);
goto err_gpio_req;
}
spi_set_ctldata(spi, cs);
}
sci = sdd->cntrlr_info;
spin_lock_irqsave(&sdd->lock, flags);
list_for_each_entry(msg, &sdd->queue, queue) {
/* Is some mssg is already queued for this device */
if (msg->spi == spi) {
dev_err(&spi->dev,
"setup: attempt while mssg in queue!\n");
spin_unlock_irqrestore(&sdd->lock, flags);
err = -EBUSY;
goto err_msgq;
}
}
spin_unlock_irqrestore(&sdd->lock, flags);
if (spi->bits_per_word != 8
&& spi->bits_per_word != 16
&& spi->bits_per_word != 32) {
dev_err(&spi->dev, "setup: %dbits/wrd not supported!\n",
spi->bits_per_word);
err = -EINVAL;
goto setup_exit;
}
pm_runtime_get_sync(&sdd->pdev->dev);
/* Check if we can provide the requested rate */
if (!sdd->port_conf->clk_from_cmu) {
u32 psr, speed;
/* Max possible */
speed = clk_get_rate(sdd->src_clk) / 2 / (0 + 1);
if (spi->max_speed_hz > speed)
spi->max_speed_hz = speed;
psr = clk_get_rate(sdd->src_clk) / 2 / spi->max_speed_hz - 1;
psr &= S3C64XX_SPI_PSR_MASK;
if (psr == S3C64XX_SPI_PSR_MASK)
psr--;
speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
if (spi->max_speed_hz < speed) {
if (psr+1 < S3C64XX_SPI_PSR_MASK) {
psr++;
} else {
err = -EINVAL;
goto setup_exit;
}
}
speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
if (spi->max_speed_hz >= speed) {
spi->max_speed_hz = speed;
} else {
err = -EINVAL;
goto setup_exit;
}
}
pm_runtime_put(&sdd->pdev->dev);
disable_cs(sdd, spi);
return 0;
setup_exit:
/* setup() returns with device de-selected */
disable_cs(sdd, spi);
err_msgq:
gpio_free(cs->line);
spi_set_ctldata(spi, NULL);
err_gpio_req:
if (spi->dev.of_node)
kfree(cs);
return err;
}
static void s3c64xx_spi_cleanup(struct spi_device *spi)
{
struct s3c64xx_spi_csinfo *cs = spi_get_ctldata(spi);
if (cs) {
gpio_free(cs->line);
if (spi->dev.of_node)
kfree(cs);
}
spi_set_ctldata(spi, NULL);
}
static irqreturn_t s3c64xx_spi_irq(int irq, void *data)
{
struct s3c64xx_spi_driver_data *sdd = data;
struct spi_master *spi = sdd->master;
unsigned int val;
val = readl(sdd->regs + S3C64XX_SPI_PENDING_CLR);
val &= S3C64XX_SPI_PND_RX_OVERRUN_CLR |
S3C64XX_SPI_PND_RX_UNDERRUN_CLR |
S3C64XX_SPI_PND_TX_OVERRUN_CLR |
S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
writel(val, sdd->regs + S3C64XX_SPI_PENDING_CLR);
if (val & S3C64XX_SPI_PND_RX_OVERRUN_CLR)
dev_err(&spi->dev, "RX overrun\n");
if (val & S3C64XX_SPI_PND_RX_UNDERRUN_CLR)
dev_err(&spi->dev, "RX underrun\n");
if (val & S3C64XX_SPI_PND_TX_OVERRUN_CLR)
dev_err(&spi->dev, "TX overrun\n");
if (val & S3C64XX_SPI_PND_TX_UNDERRUN_CLR)
dev_err(&spi->dev, "TX underrun\n");
return IRQ_HANDLED;
}
static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd, int channel)
{
struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
void __iomem *regs = sdd->regs;
unsigned int val;
sdd->cur_speed = 0;
writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
/* Disable Interrupts - we use Polling if not DMA mode */
writel(0, regs + S3C64XX_SPI_INT_EN);
if (!sdd->port_conf->clk_from_cmu)
writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
regs + S3C64XX_SPI_CLK_CFG);
writel(0, regs + S3C64XX_SPI_MODE_CFG);
writel(0, regs + S3C64XX_SPI_PACKET_CNT);
/* Clear any irq pending bits */
writel(readl(regs + S3C64XX_SPI_PENDING_CLR),
regs + S3C64XX_SPI_PENDING_CLR);
writel(0, regs + S3C64XX_SPI_SWAP_CFG);
val = readl(regs + S3C64XX_SPI_MODE_CFG);
val &= ~S3C64XX_SPI_MODE_4BURST;
val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
writel(val, regs + S3C64XX_SPI_MODE_CFG);
flush_fifo(sdd);
}
static int s3c64xx_spi_get_dmares(
struct s3c64xx_spi_driver_data *sdd, bool tx)
{
struct platform_device *pdev = sdd->pdev;
struct s3c64xx_spi_dma_data *dma_data;
struct property *prop;
struct resource *res;
char prop_name[15], *chan_str;
if (tx) {
dma_data = &sdd->tx_dma;
dma_data->direction = DMA_MEM_TO_DEV;
chan_str = "tx";
} else {
dma_data = &sdd->rx_dma;
dma_data->direction = DMA_DEV_TO_MEM;
chan_str = "rx";
}
if (!sdd->pdev->dev.of_node) {
res = platform_get_resource(pdev, IORESOURCE_DMA, tx ? 0 : 1);
if (!res) {
dev_err(&pdev->dev, "Unable to get SPI-%s dma "
"resource\n", chan_str);
return -ENXIO;
}
dma_data->dmach = res->start;
return 0;
}
sprintf(prop_name, "%s-dma-channel", chan_str);
prop = of_find_property(pdev->dev.of_node, prop_name, NULL);
if (!prop) {
dev_err(&pdev->dev, "%s dma channel property not specified\n",
chan_str);
return -ENXIO;
}
dma_data->dmach = DMACH_DT_PROP;
dma_data->dma_prop = prop;
return 0;
}
#ifdef CONFIG_OF
static int s3c64xx_spi_parse_dt_gpio(struct s3c64xx_spi_driver_data *sdd)
{
struct device *dev = &sdd->pdev->dev;
int idx, gpio, ret;
/* find gpios for mosi, miso and clock lines */
for (idx = 0; idx < 3; idx++) {
gpio = of_get_gpio(dev->of_node, idx);
if (!gpio_is_valid(gpio)) {
dev_err(dev, "invalid gpio[%d]: %d\n", idx, gpio);
goto free_gpio;
}
sdd->gpios[idx] = gpio;
ret = gpio_request(gpio, "spi-bus");
if (ret) {
dev_err(dev, "gpio [%d] request failed: %d\n",
gpio, ret);
goto free_gpio;
}
}
return 0;
free_gpio:
while (--idx >= 0)
gpio_free(sdd->gpios[idx]);
return -EINVAL;
}
static void s3c64xx_spi_dt_gpio_free(struct s3c64xx_spi_driver_data *sdd)
{
unsigned int idx;
for (idx = 0; idx < 3; idx++)
gpio_free(sdd->gpios[idx]);
}
static struct s3c64xx_spi_info * s3c64xx_spi_parse_dt(
struct device *dev)
{
struct s3c64xx_spi_info *sci;
u32 temp;
sci = devm_kzalloc(dev, sizeof(*sci), GFP_KERNEL);
if (!sci) {
dev_err(dev, "memory allocation for spi_info failed\n");
return ERR_PTR(-ENOMEM);
}
if (of_property_read_u32(dev->of_node, "samsung,spi-src-clk", &temp)) {
dev_warn(dev, "spi bus clock parent not specified, using "
"clock at index 0 as parent\n");
sci->src_clk_nr = 0;
} else {
sci->src_clk_nr = temp;
}
if (of_property_read_u32(dev->of_node, "num-cs", &temp)) {
dev_warn(dev, "number of chip select lines not specified, "
"assuming 1 chip select line\n");
sci->num_cs = 1;
} else {
sci->num_cs = temp;
}
return sci;
}
#else
static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
{
return dev->platform_data;
}
static int s3c64xx_spi_parse_dt_gpio(struct s3c64xx_spi_driver_data *sdd)
{
return -EINVAL;
}
static void s3c64xx_spi_dt_gpio_free(struct s3c64xx_spi_driver_data *sdd)
{
}
#endif
static const struct of_device_id s3c64xx_spi_dt_match[];
static inline struct s3c64xx_spi_port_config *s3c64xx_spi_get_port_config(
struct platform_device *pdev)
{
#ifdef CONFIG_OF
if (pdev->dev.of_node) {
const struct of_device_id *match;
match = of_match_node(s3c64xx_spi_dt_match, pdev->dev.of_node);
return (struct s3c64xx_spi_port_config *)match->data;
}
#endif
return (struct s3c64xx_spi_port_config *)
platform_get_device_id(pdev)->driver_data;
}
static int __init s3c64xx_spi_probe(struct platform_device *pdev)
{
struct resource *mem_res;
struct s3c64xx_spi_driver_data *sdd;
struct s3c64xx_spi_info *sci = pdev->dev.platform_data;
struct spi_master *master;
int ret, irq;
char clk_name[16];
if (!sci && pdev->dev.of_node) {
sci = s3c64xx_spi_parse_dt(&pdev->dev);
if (IS_ERR(sci))
return PTR_ERR(sci);
}
if (!sci) {
dev_err(&pdev->dev, "platform_data missing!\n");
return -ENODEV;
}
mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (mem_res == NULL) {
dev_err(&pdev->dev, "Unable to get SPI MEM resource\n");
return -ENXIO;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_warn(&pdev->dev, "Failed to get IRQ: %d\n", irq);
return irq;
}
master = spi_alloc_master(&pdev->dev,
sizeof(struct s3c64xx_spi_driver_data));
if (master == NULL) {
dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, master);
sdd = spi_master_get_devdata(master);
sdd->port_conf = s3c64xx_spi_get_port_config(pdev);
sdd->master = master;
sdd->cntrlr_info = sci;
sdd->pdev = pdev;
sdd->sfr_start = mem_res->start;
if (pdev->dev.of_node) {
ret = of_alias_get_id(pdev->dev.of_node, "spi");
if (ret < 0) {
dev_err(&pdev->dev, "failed to get alias id, "
"errno %d\n", ret);
goto err0;
}
sdd->port_id = ret;
} else {
sdd->port_id = pdev->id;
}
sdd->cur_bpw = 8;
ret = s3c64xx_spi_get_dmares(sdd, true);
if (ret)
goto err0;
ret = s3c64xx_spi_get_dmares(sdd, false);
if (ret)
goto err0;
master->dev.of_node = pdev->dev.of_node;
master->bus_num = sdd->port_id;
master->setup = s3c64xx_spi_setup;
master->cleanup = s3c64xx_spi_cleanup;
master->prepare_transfer_hardware = s3c64xx_spi_prepare_transfer;
master->transfer_one_message = s3c64xx_spi_transfer_one_message;
master->unprepare_transfer_hardware = s3c64xx_spi_unprepare_transfer;
master->num_chipselect = sci->num_cs;
master->dma_alignment = 8;
/* the spi->mode bits understood by this driver: */
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
sdd->regs = devm_request_and_ioremap(&pdev->dev, mem_res);
if (sdd->regs == NULL) {
dev_err(&pdev->dev, "Unable to remap IO\n");
ret = -ENXIO;
goto err1;
}
if (!sci->cfg_gpio && pdev->dev.of_node) {
if (s3c64xx_spi_parse_dt_gpio(sdd))
return -EBUSY;
} else if (sci->cfg_gpio == NULL || sci->cfg_gpio()) {
dev_err(&pdev->dev, "Unable to config gpio\n");
ret = -EBUSY;
goto err2;
}
/* Setup clocks */
sdd->clk = clk_get(&pdev->dev, "spi");
if (IS_ERR(sdd->clk)) {
dev_err(&pdev->dev, "Unable to acquire clock 'spi'\n");
ret = PTR_ERR(sdd->clk);
goto err3;
}
if (clk_prepare_enable(sdd->clk)) {
dev_err(&pdev->dev, "Couldn't enable clock 'spi'\n");
ret = -EBUSY;
goto err4;
}
sprintf(clk_name, "spi_busclk%d", sci->src_clk_nr);
sdd->src_clk = clk_get(&pdev->dev, clk_name);
if (IS_ERR(sdd->src_clk)) {
dev_err(&pdev->dev,
"Unable to acquire clock '%s'\n", clk_name);
ret = PTR_ERR(sdd->src_clk);
goto err5;
}
if (clk_prepare_enable(sdd->src_clk)) {
dev_err(&pdev->dev, "Couldn't enable clock '%s'\n", clk_name);
ret = -EBUSY;
goto err6;
}
/* Setup Deufult Mode */
s3c64xx_spi_hwinit(sdd, sdd->port_id);
spin_lock_init(&sdd->lock);
init_completion(&sdd->xfer_completion);
INIT_LIST_HEAD(&sdd->queue);
ret = request_irq(irq, s3c64xx_spi_irq, 0, "spi-s3c64xx", sdd);
if (ret != 0) {
dev_err(&pdev->dev, "Failed to request IRQ %d: %d\n",
irq, ret);
goto err7;
}
writel(S3C64XX_SPI_INT_RX_OVERRUN_EN | S3C64XX_SPI_INT_RX_UNDERRUN_EN |
S3C64XX_SPI_INT_TX_OVERRUN_EN | S3C64XX_SPI_INT_TX_UNDERRUN_EN,
sdd->regs + S3C64XX_SPI_INT_EN);
if (spi_register_master(master)) {
dev_err(&pdev->dev, "cannot register SPI master\n");
ret = -EBUSY;
goto err8;
}
dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d "
"with %d Slaves attached\n",
sdd->port_id, master->num_chipselect);
dev_dbg(&pdev->dev, "\tIOmem=[0x%x-0x%x]\tDMA=[Rx-%d, Tx-%d]\n",
mem_res->end, mem_res->start,
sdd->rx_dma.dmach, sdd->tx_dma.dmach);
pm_runtime_enable(&pdev->dev);
return 0;
err8:
free_irq(irq, sdd);
err7:
clk_disable_unprepare(sdd->src_clk);
err6:
clk_put(sdd->src_clk);
err5:
clk_disable_unprepare(sdd->clk);
err4:
clk_put(sdd->clk);
err3:
if (!sdd->cntrlr_info->cfg_gpio && pdev->dev.of_node)
s3c64xx_spi_dt_gpio_free(sdd);
err2:
err1:
err0:
platform_set_drvdata(pdev, NULL);
spi_master_put(master);
return ret;
}
static int s3c64xx_spi_remove(struct platform_device *pdev)
{
struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
pm_runtime_disable(&pdev->dev);
spi_unregister_master(master);
writel(0, sdd->regs + S3C64XX_SPI_INT_EN);
free_irq(platform_get_irq(pdev, 0), sdd);
clk_disable_unprepare(sdd->src_clk);
clk_put(sdd->src_clk);
clk_disable_unprepare(sdd->clk);
clk_put(sdd->clk);
if (!sdd->cntrlr_info->cfg_gpio && pdev->dev.of_node)
s3c64xx_spi_dt_gpio_free(sdd);
platform_set_drvdata(pdev, NULL);
spi_master_put(master);
return 0;
}
#ifdef CONFIG_PM
static int s3c64xx_spi_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
spi_master_suspend(master);
/* Disable the clock */
clk_disable_unprepare(sdd->src_clk);
clk_disable_unprepare(sdd->clk);
if (!sdd->cntrlr_info->cfg_gpio && dev->of_node)
s3c64xx_spi_dt_gpio_free(sdd);
sdd->cur_speed = 0; /* Output Clock is stopped */
return 0;
}
static int s3c64xx_spi_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
if (!sci->cfg_gpio && dev->of_node)
s3c64xx_spi_parse_dt_gpio(sdd);
else
sci->cfg_gpio();
/* Enable the clock */
clk_prepare_enable(sdd->src_clk);
clk_prepare_enable(sdd->clk);
s3c64xx_spi_hwinit(sdd, sdd->port_id);
spi_master_resume(master);
return 0;
}
#endif /* CONFIG_PM */
#ifdef CONFIG_PM_RUNTIME
static int s3c64xx_spi_runtime_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
clk_disable_unprepare(sdd->clk);
clk_disable_unprepare(sdd->src_clk);
return 0;
}
static int s3c64xx_spi_runtime_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
clk_prepare_enable(sdd->src_clk);
clk_prepare_enable(sdd->clk);
return 0;
}
#endif /* CONFIG_PM_RUNTIME */
static const struct dev_pm_ops s3c64xx_spi_pm = {
SET_SYSTEM_SLEEP_PM_OPS(s3c64xx_spi_suspend, s3c64xx_spi_resume)
SET_RUNTIME_PM_OPS(s3c64xx_spi_runtime_suspend,
s3c64xx_spi_runtime_resume, NULL)
};
static struct s3c64xx_spi_port_config s3c2443_spi_port_config = {
.fifo_lvl_mask = { 0x7f },
.rx_lvl_offset = 13,
.tx_st_done = 21,
.high_speed = true,
};
static struct s3c64xx_spi_port_config s3c6410_spi_port_config = {
.fifo_lvl_mask = { 0x7f, 0x7F },
.rx_lvl_offset = 13,
.tx_st_done = 21,
};
static struct s3c64xx_spi_port_config s5p64x0_spi_port_config = {
.fifo_lvl_mask = { 0x1ff, 0x7F },
.rx_lvl_offset = 15,
.tx_st_done = 25,
};
static struct s3c64xx_spi_port_config s5pc100_spi_port_config = {
.fifo_lvl_mask = { 0x7f, 0x7F },
.rx_lvl_offset = 13,
.tx_st_done = 21,
.high_speed = true,
};
static struct s3c64xx_spi_port_config s5pv210_spi_port_config = {
.fifo_lvl_mask = { 0x1ff, 0x7F },
.rx_lvl_offset = 15,
.tx_st_done = 25,
.high_speed = true,
};
static struct s3c64xx_spi_port_config exynos4_spi_port_config = {
.fifo_lvl_mask = { 0x1ff, 0x7F, 0x7F },
.rx_lvl_offset = 15,
.tx_st_done = 25,
.high_speed = true,
.clk_from_cmu = true,
};
static struct platform_device_id s3c64xx_spi_driver_ids[] = {
{
.name = "s3c2443-spi",
.driver_data = (kernel_ulong_t)&s3c2443_spi_port_config,
}, {
.name = "s3c6410-spi",
.driver_data = (kernel_ulong_t)&s3c6410_spi_port_config,
}, {
.name = "s5p64x0-spi",
.driver_data = (kernel_ulong_t)&s5p64x0_spi_port_config,
}, {
.name = "s5pc100-spi",
.driver_data = (kernel_ulong_t)&s5pc100_spi_port_config,
}, {
.name = "s5pv210-spi",
.driver_data = (kernel_ulong_t)&s5pv210_spi_port_config,
}, {
.name = "exynos4210-spi",
.driver_data = (kernel_ulong_t)&exynos4_spi_port_config,
},
{ },
};
#ifdef CONFIG_OF
static const struct of_device_id s3c64xx_spi_dt_match[] = {
{ .compatible = "samsung,exynos4210-spi",
.data = (void *)&exynos4_spi_port_config,
},
{ },
};
MODULE_DEVICE_TABLE(of, s3c64xx_spi_dt_match);
#endif /* CONFIG_OF */
static struct platform_driver s3c64xx_spi_driver = {
.driver = {
.name = "s3c64xx-spi",
.owner = THIS_MODULE,
.pm = &s3c64xx_spi_pm,
.of_match_table = of_match_ptr(s3c64xx_spi_dt_match),
},
.remove = s3c64xx_spi_remove,
.id_table = s3c64xx_spi_driver_ids,
};
MODULE_ALIAS("platform:s3c64xx-spi");
static int __init s3c64xx_spi_init(void)
{
return platform_driver_probe(&s3c64xx_spi_driver, s3c64xx_spi_probe);
}
subsys_initcall(s3c64xx_spi_init);
static void __exit s3c64xx_spi_exit(void)
{
platform_driver_unregister(&s3c64xx_spi_driver);
}
module_exit(s3c64xx_spi_exit);
MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
MODULE_LICENSE("GPL");