/*
* PMC-Sierra SPC 8001 SAS/SATA based host adapters driver
*
* Copyright (c) 2008-2009 USI Co., Ltd.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
*/
#include <linux/slab.h>
#include "pm8001_sas.h"
/**
* pm8001_find_tag - from sas task to find out tag that belongs to this task
* @task: the task sent to the LLDD
* @tag: the found tag associated with the task
*/
static int pm8001_find_tag(struct sas_task *task, u32 *tag)
{
if (task->lldd_task) {
struct pm8001_ccb_info *ccb;
ccb = task->lldd_task;
*tag = ccb->ccb_tag;
return 1;
}
return 0;
}
/**
* pm8001_tag_clear - clear the tags bitmap
* @pm8001_ha: our hba struct
* @tag: the found tag associated with the task
*/
static void pm8001_tag_clear(struct pm8001_hba_info *pm8001_ha, u32 tag)
{
void *bitmap = pm8001_ha->tags;
clear_bit(tag, bitmap);
}
static void pm8001_tag_free(struct pm8001_hba_info *pm8001_ha, u32 tag)
{
pm8001_tag_clear(pm8001_ha, tag);
}
static void pm8001_tag_set(struct pm8001_hba_info *pm8001_ha, u32 tag)
{
void *bitmap = pm8001_ha->tags;
set_bit(tag, bitmap);
}
/**
* pm8001_tag_alloc - allocate a empty tag for task used.
* @pm8001_ha: our hba struct
* @tag_out: the found empty tag .
*/
inline int pm8001_tag_alloc(struct pm8001_hba_info *pm8001_ha, u32 *tag_out)
{
unsigned int index, tag;
void *bitmap = pm8001_ha->tags;
index = find_first_zero_bit(bitmap, pm8001_ha->tags_num);
tag = index;
if (tag >= pm8001_ha->tags_num)
return -SAS_QUEUE_FULL;
pm8001_tag_set(pm8001_ha, tag);
*tag_out = tag;
return 0;
}
void pm8001_tag_init(struct pm8001_hba_info *pm8001_ha)
{
int i;
for (i = 0; i < pm8001_ha->tags_num; ++i)
pm8001_tag_clear(pm8001_ha, i);
}
/**
* pm8001_mem_alloc - allocate memory for pm8001.
* @pdev: pci device.
* @virt_addr: the allocated virtual address
* @pphys_addr_hi: the physical address high byte address.
* @pphys_addr_lo: the physical address low byte address.
* @mem_size: memory size.
*/
int pm8001_mem_alloc(struct pci_dev *pdev, void **virt_addr,
dma_addr_t *pphys_addr, u32 *pphys_addr_hi,
u32 *pphys_addr_lo, u32 mem_size, u32 align)
{
caddr_t mem_virt_alloc;
dma_addr_t mem_dma_handle;
u64 phys_align;
u64 align_offset = 0;
if (align)
align_offset = (dma_addr_t)align - 1;
mem_virt_alloc =
pci_alloc_consistent(pdev, mem_size + align, &mem_dma_handle);
if (!mem_virt_alloc) {
pm8001_printk("memory allocation error\n");
return -1;
}
memset((void *)mem_virt_alloc, 0, mem_size+align);
*pphys_addr = mem_dma_handle;
phys_align = (*pphys_addr + align_offset) & ~align_offset;
*virt_addr = (void *)mem_virt_alloc + phys_align - *pphys_addr;
*pphys_addr_hi = upper_32_bits(phys_align);
*pphys_addr_lo = lower_32_bits(phys_align);
return 0;
}
/**
* pm8001_find_ha_by_dev - from domain device which come from sas layer to
* find out our hba struct.
* @dev: the domain device which from sas layer.
*/
static
struct pm8001_hba_info *pm8001_find_ha_by_dev(struct domain_device *dev)
{
struct sas_ha_struct *sha = dev->port->ha;
struct pm8001_hba_info *pm8001_ha = sha->lldd_ha;
return pm8001_ha;
}
/**
* pm8001_phy_control - this function should be registered to
* sas_domain_function_template to provide libsas used, note: this is just
* control the HBA phy rather than other expander phy if you want control
* other phy, you should use SMP command.
* @sas_phy: which phy in HBA phys.
* @func: the operation.
* @funcdata: always NULL.
*/
int pm8001_phy_control(struct asd_sas_phy *sas_phy, enum phy_func func,
void *funcdata)
{
int rc = 0, phy_id = sas_phy->id;
struct pm8001_hba_info *pm8001_ha = NULL;
struct sas_phy_linkrates *rates;
DECLARE_COMPLETION_ONSTACK(completion);
unsigned long flags;
pm8001_ha = sas_phy->ha->lldd_ha;
pm8001_ha->phy[phy_id].enable_completion = &completion;
switch (func) {
case PHY_FUNC_SET_LINK_RATE:
rates = funcdata;
if (rates->minimum_linkrate) {
pm8001_ha->phy[phy_id].minimum_linkrate =
rates->minimum_linkrate;
}
if (rates->maximum_linkrate) {
pm8001_ha->phy[phy_id].maximum_linkrate =
rates->maximum_linkrate;
}
if (pm8001_ha->phy[phy_id].phy_state == 0) {
PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id);
wait_for_completion(&completion);
}
PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id,
PHY_LINK_RESET);
break;
case PHY_FUNC_HARD_RESET:
if (pm8001_ha->phy[phy_id].phy_state == 0) {
PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id);
wait_for_completion(&completion);
}
PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id,
PHY_HARD_RESET);
break;
case PHY_FUNC_LINK_RESET:
if (pm8001_ha->phy[phy_id].phy_state == 0) {
PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id);
wait_for_completion(&completion);
}
PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id,
PHY_LINK_RESET);
break;
case PHY_FUNC_RELEASE_SPINUP_HOLD:
PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id,
PHY_LINK_RESET);
break;
case PHY_FUNC_DISABLE:
PM8001_CHIP_DISP->phy_stop_req(pm8001_ha, phy_id);
break;
case PHY_FUNC_GET_EVENTS:
spin_lock_irqsave(&pm8001_ha->lock, flags);
if (-1 == pm8001_bar4_shift(pm8001_ha,
(phy_id < 4) ? 0x30000 : 0x40000)) {
spin_unlock_irqrestore(&pm8001_ha->lock, flags);
return -EINVAL;
}
{
struct sas_phy *phy = sas_phy->phy;
uint32_t *qp = (uint32_t *)(((char *)
pm8001_ha->io_mem[2].memvirtaddr)
+ 0x1034 + (0x4000 * (phy_id & 3)));
phy->invalid_dword_count = qp[0];
phy->running_disparity_error_count = qp[1];
phy->loss_of_dword_sync_count = qp[3];
phy->phy_reset_problem_count = qp[4];
}
pm8001_bar4_shift(pm8001_ha, 0);
spin_unlock_irqrestore(&pm8001_ha->lock, flags);
return 0;
default:
rc = -EOPNOTSUPP;
}
msleep(300);
return rc;
}
/**
* pm8001_scan_start - we should enable all HBA phys by sending the phy_start
* command to HBA.
* @shost: the scsi host data.
*/
void pm8001_scan_start(struct Scsi_Host *shost)
{
int i;
struct pm8001_hba_info *pm8001_ha;
struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
pm8001_ha = sha->lldd_ha;
PM8001_CHIP_DISP->sas_re_init_req(pm8001_ha);
for (i = 0; i < pm8001_ha->chip->n_phy; ++i)
PM8001_CHIP_DISP->phy_start_req(pm8001_ha, i);
}
int pm8001_scan_finished(struct Scsi_Host *shost, unsigned long time)
{
struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
/* give the phy enabling interrupt event time to come in (1s
* is empirically about all it takes) */
if (time < HZ)
return 0;
/* Wait for discovery to finish */
sas_drain_work(ha);
return 1;
}
/**
* pm8001_task_prep_smp - the dispatcher function, prepare data for smp task
* @pm8001_ha: our hba card information
* @ccb: the ccb which attached to smp task
*/
static int pm8001_task_prep_smp(struct pm8001_hba_info *pm8001_ha,
struct pm8001_ccb_info *ccb)
{
return PM8001_CHIP_DISP->smp_req(pm8001_ha, ccb);
}
u32 pm8001_get_ncq_tag(struct sas_task *task, u32 *tag)
{
struct ata_queued_cmd *qc = task->uldd_task;
if (qc) {
if (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
qc->tf.command == ATA_CMD_FPDMA_READ) {
*tag = qc->tag;
return 1;
}
}
return 0;
}
/**
* pm8001_task_prep_ata - the dispatcher function, prepare data for sata task
* @pm8001_ha: our hba card information
* @ccb: the ccb which attached to sata task
*/
static int pm8001_task_prep_ata(struct pm8001_hba_info *pm8001_ha,
struct pm8001_ccb_info *ccb)
{
return PM8001_CHIP_DISP->sata_req(pm8001_ha, ccb);
}
/**
* pm8001_task_prep_ssp_tm - the dispatcher function, prepare task management data
* @pm8001_ha: our hba card information
* @ccb: the ccb which attached to TM
* @tmf: the task management IU
*/
static int pm8001_task_prep_ssp_tm(struct pm8001_hba_info *pm8001_ha,
struct pm8001_ccb_info *ccb, struct pm8001_tmf_task *tmf)
{
return PM8001_CHIP_DISP->ssp_tm_req(pm8001_ha, ccb, tmf);
}
/**
* pm8001_task_prep_ssp - the dispatcher function,prepare ssp data for ssp task
* @pm8001_ha: our hba card information
* @ccb: the ccb which attached to ssp task
*/
static int pm8001_task_prep_ssp(struct pm8001_hba_info *pm8001_ha,
struct pm8001_ccb_info *ccb)
{
return PM8001_CHIP_DISP->ssp_io_req(pm8001_ha, ccb);
}
/* Find the local port id that's attached to this device */
static int sas_find_local_port_id(struct domain_device *dev)
{
struct domain_device *pdev = dev->parent;
/* Directly attached device */
if (!pdev)
return dev->port->id;
while (pdev) {
struct domain_device *pdev_p = pdev->parent;
if (!pdev_p)
return pdev->port->id;
pdev = pdev->parent;
}
return 0;
}
/**
* pm8001_task_exec - queue the task(ssp, smp && ata) to the hardware.
* @task: the task to be execute.
* @num: if can_queue great than 1, the task can be queued up. for SMP task,
* we always execute one one time.
* @gfp_flags: gfp_flags.
* @is_tmf: if it is task management task.
* @tmf: the task management IU
*/
#define DEV_IS_GONE(pm8001_dev) \
((!pm8001_dev || (pm8001_dev->dev_type == NO_DEVICE)))
static int pm8001_task_exec(struct sas_task *task, const int num,
gfp_t gfp_flags, int is_tmf, struct pm8001_tmf_task *tmf)
{
struct domain_device *dev = task->dev;
struct pm8001_hba_info *pm8001_ha;
struct pm8001_device *pm8001_dev;
struct pm8001_port *port = NULL;
struct sas_task *t = task;
struct pm8001_ccb_info *ccb;
u32 tag = 0xdeadbeef, rc, n_elem = 0;
u32 n = num;
unsigned long flags = 0;
if (!dev->port) {
struct task_status_struct *tsm = &t->task_status;
tsm->resp = SAS_TASK_UNDELIVERED;
tsm->stat = SAS_PHY_DOWN;
if (dev->dev_type != SATA_DEV)
t->task_done(t);
return 0;
}
pm8001_ha = pm8001_find_ha_by_dev(task->dev);
PM8001_IO_DBG(pm8001_ha, pm8001_printk("pm8001_task_exec device \n "));
spin_lock_irqsave(&pm8001_ha->lock, flags);
do {
dev = t->dev;
pm8001_dev = dev->lldd_dev;
port = &pm8001_ha->port[sas_find_local_port_id(dev)];
if (DEV_IS_GONE(pm8001_dev) || !port->port_attached) {
if (sas_protocol_ata(t->task_proto)) {
struct task_status_struct *ts = &t->task_status;
ts->resp = SAS_TASK_UNDELIVERED;
ts->stat = SAS_PHY_DOWN;
spin_unlock_irqrestore(&pm8001_ha->lock, flags);
t->task_done(t);
spin_lock_irqsave(&pm8001_ha->lock, flags);
if (n > 1)
t = list_entry(t->list.next,
struct sas_task, list);
continue;
} else {
struct task_status_struct *ts = &t->task_status;
ts->resp = SAS_TASK_UNDELIVERED;
ts->stat = SAS_PHY_DOWN;
t->task_done(t);
if (n > 1)
t = list_entry(t->list.next,
struct sas_task, list);
continue;
}
}
rc = pm8001_tag_alloc(pm8001_ha, &tag);
if (rc)
goto err_out;
ccb = &pm8001_ha->ccb_info[tag];
if (!sas_protocol_ata(t->task_proto)) {
if (t->num_scatter) {
n_elem = dma_map_sg(pm8001_ha->dev,
t->scatter,
t->num_scatter,
t->data_dir);
if (!n_elem) {
rc = -ENOMEM;
goto err_out_tag;
}
}
} else {
n_elem = t->num_scatter;
}
t->lldd_task = ccb;
ccb->n_elem = n_elem;
ccb->ccb_tag = tag;
ccb->task = t;
switch (t->task_proto) {
case SAS_PROTOCOL_SMP:
rc = pm8001_task_prep_smp(pm8001_ha, ccb);
break;
case SAS_PROTOCOL_SSP:
if (is_tmf)
rc = pm8001_task_prep_ssp_tm(pm8001_ha,
ccb, tmf);
else
rc = pm8001_task_prep_ssp(pm8001_ha, ccb);
break;
case SAS_PROTOCOL_SATA:
case SAS_PROTOCOL_STP:
case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
rc = pm8001_task_prep_ata(pm8001_ha, ccb);
break;
default:
dev_printk(KERN_ERR, pm8001_ha->dev,
"unknown sas_task proto: 0x%x\n",
t->task_proto);
rc = -EINVAL;
break;
}
if (rc) {
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("rc is %x\n", rc));
goto err_out_tag;
}
/* TODO: select normal or high priority */
spin_lock(&t->task_state_lock);
t->task_state_flags |= SAS_TASK_AT_INITIATOR;
spin_unlock(&t->task_state_lock);
pm8001_dev->running_req++;
if (n > 1)
t = list_entry(t->list.next, struct sas_task, list);
} while (--n);
rc = 0;
goto out_done;
err_out_tag:
pm8001_tag_free(pm8001_ha, tag);
err_out:
dev_printk(KERN_ERR, pm8001_ha->dev, "pm8001 exec failed[%d]!\n", rc);
if (!sas_protocol_ata(t->task_proto))
if (n_elem)
dma_unmap_sg(pm8001_ha->dev, t->scatter, n_elem,
t->data_dir);
out_done:
spin_unlock_irqrestore(&pm8001_ha->lock, flags);
return rc;
}
/**
* pm8001_queue_command - register for upper layer used, all IO commands sent
* to HBA are from this interface.
* @task: the task to be execute.
* @num: if can_queue great than 1, the task can be queued up. for SMP task,
* we always execute one one time
* @gfp_flags: gfp_flags
*/
int pm8001_queue_command(struct sas_task *task, const int num,
gfp_t gfp_flags)
{
return pm8001_task_exec(task, num, gfp_flags, 0, NULL);
}
void pm8001_ccb_free(struct pm8001_hba_info *pm8001_ha, u32 ccb_idx)
{
pm8001_tag_clear(pm8001_ha, ccb_idx);
}
/**
* pm8001_ccb_task_free - free the sg for ssp and smp command, free the ccb.
* @pm8001_ha: our hba card information
* @ccb: the ccb which attached to ssp task
* @task: the task to be free.
* @ccb_idx: ccb index.
*/
void pm8001_ccb_task_free(struct pm8001_hba_info *pm8001_ha,
struct sas_task *task, struct pm8001_ccb_info *ccb, u32 ccb_idx)
{
if (!ccb->task)
return;
if (!sas_protocol_ata(task->task_proto))
if (ccb->n_elem)
dma_unmap_sg(pm8001_ha->dev, task->scatter,
task->num_scatter, task->data_dir);
switch (task->task_proto) {
case SAS_PROTOCOL_SMP:
dma_unmap_sg(pm8001_ha->dev, &task->smp_task.smp_resp, 1,
PCI_DMA_FROMDEVICE);
dma_unmap_sg(pm8001_ha->dev, &task->smp_task.smp_req, 1,
PCI_DMA_TODEVICE);
break;
case SAS_PROTOCOL_SATA:
case SAS_PROTOCOL_STP:
case SAS_PROTOCOL_SSP:
default:
/* do nothing */
break;
}
task->lldd_task = NULL;
ccb->task = NULL;
ccb->ccb_tag = 0xFFFFFFFF;
ccb->open_retry = 0;
pm8001_ccb_free(pm8001_ha, ccb_idx);
}
/**
* pm8001_alloc_dev - find a empty pm8001_device
* @pm8001_ha: our hba card information
*/
struct pm8001_device *pm8001_alloc_dev(struct pm8001_hba_info *pm8001_ha)
{
u32 dev;
for (dev = 0; dev < PM8001_MAX_DEVICES; dev++) {
if (pm8001_ha->devices[dev].dev_type == NO_DEVICE) {
pm8001_ha->devices[dev].id = dev;
return &pm8001_ha->devices[dev];
}
}
if (dev == PM8001_MAX_DEVICES) {
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("max support %d devices, ignore ..\n",
PM8001_MAX_DEVICES));
}
return NULL;
}
static void pm8001_free_dev(struct pm8001_device *pm8001_dev)
{
u32 id = pm8001_dev->id;
memset(pm8001_dev, 0, sizeof(*pm8001_dev));
pm8001_dev->id = id;
pm8001_dev->dev_type = NO_DEVICE;
pm8001_dev->device_id = PM8001_MAX_DEVICES;
pm8001_dev->sas_device = NULL;
}
/**
* pm8001_dev_found_notify - libsas notify a device is found.
* @dev: the device structure which sas layer used.
*
* when libsas find a sas domain device, it should tell the LLDD that
* device is found, and then LLDD register this device to HBA firmware
* by the command "OPC_INB_REG_DEV", after that the HBA will assign a
* device ID(according to device's sas address) and returned it to LLDD. From
* now on, we communicate with HBA FW with the device ID which HBA assigned
* rather than sas address. it is the necessary step for our HBA but it is
* the optional for other HBA driver.
*/
static int pm8001_dev_found_notify(struct domain_device *dev)
{
unsigned long flags = 0;
int res = 0;
struct pm8001_hba_info *pm8001_ha = NULL;
struct domain_device *parent_dev = dev->parent;
struct pm8001_device *pm8001_device;
DECLARE_COMPLETION_ONSTACK(completion);
u32 flag = 0;
pm8001_ha = pm8001_find_ha_by_dev(dev);
spin_lock_irqsave(&pm8001_ha->lock, flags);
pm8001_device = pm8001_alloc_dev(pm8001_ha);
if (!pm8001_device) {
res = -1;
goto found_out;
}
pm8001_device->sas_device = dev;
dev->lldd_dev = pm8001_device;
pm8001_device->dev_type = dev->dev_type;
pm8001_device->dcompletion = &completion;
if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type)) {
int phy_id;
struct ex_phy *phy;
for (phy_id = 0; phy_id < parent_dev->ex_dev.num_phys;
phy_id++) {
phy = &parent_dev->ex_dev.ex_phy[phy_id];
if (SAS_ADDR(phy->attached_sas_addr)
== SAS_ADDR(dev->sas_addr)) {
pm8001_device->attached_phy = phy_id;
break;
}
}
if (phy_id == parent_dev->ex_dev.num_phys) {
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("Error: no attached dev:%016llx"
" at ex:%016llx.\n", SAS_ADDR(dev->sas_addr),
SAS_ADDR(parent_dev->sas_addr)));
res = -1;
}
} else {
if (dev->dev_type == SATA_DEV) {
pm8001_device->attached_phy =
dev->rphy->identify.phy_identifier;
flag = 1; /* directly sata*/
}
} /*register this device to HBA*/
PM8001_DISC_DBG(pm8001_ha, pm8001_printk("Found device\n"));
PM8001_CHIP_DISP->reg_dev_req(pm8001_ha, pm8001_device, flag);
spin_unlock_irqrestore(&pm8001_ha->lock, flags);
wait_for_completion(&completion);
if (dev->dev_type == SAS_END_DEV)
msleep(50);
pm8001_ha->flags = PM8001F_RUN_TIME;
return 0;
found_out:
spin_unlock_irqrestore(&pm8001_ha->lock, flags);
return res;
}
int pm8001_dev_found(struct domain_device *dev)
{
return pm8001_dev_found_notify(dev);
}
static void pm8001_task_done(struct sas_task *task)
{
if (!del_timer(&task->slow_task->timer))
return;
complete(&task->slow_task->completion);
}
static void pm8001_tmf_timedout(unsigned long data)
{
struct sas_task *task = (struct sas_task *)data;
task->task_state_flags |= SAS_TASK_STATE_ABORTED;
complete(&task->slow_task->completion);
}
#define PM8001_TASK_TIMEOUT 20
/**
* pm8001_exec_internal_tmf_task - execute some task management commands.
* @dev: the wanted device.
* @tmf: which task management wanted to be take.
* @para_len: para_len.
* @parameter: ssp task parameter.
*
* when errors or exception happened, we may want to do something, for example
* abort the issued task which result in this execption, it is done by calling
* this function, note it is also with the task execute interface.
*/
static int pm8001_exec_internal_tmf_task(struct domain_device *dev,
void *parameter, u32 para_len, struct pm8001_tmf_task *tmf)
{
int res, retry;
struct sas_task *task = NULL;
struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev);
for (retry = 0; retry < 3; retry++) {
task = sas_alloc_slow_task(GFP_KERNEL);
if (!task)
return -ENOMEM;
task->dev = dev;
task->task_proto = dev->tproto;
memcpy(&task->ssp_task, parameter, para_len);
task->task_done = pm8001_task_done;
task->slow_task->timer.data = (unsigned long)task;
task->slow_task->timer.function = pm8001_tmf_timedout;
task->slow_task->timer.expires = jiffies + PM8001_TASK_TIMEOUT*HZ;
add_timer(&task->slow_task->timer);
res = pm8001_task_exec(task, 1, GFP_KERNEL, 1, tmf);
if (res) {
del_timer(&task->slow_task->timer);
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("Executing internal task "
"failed\n"));
goto ex_err;
}
wait_for_completion(&task->slow_task->completion);
res = -TMF_RESP_FUNC_FAILED;
/* Even TMF timed out, return direct. */
if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("TMF task[%x]timeout.\n",
tmf->tmf));
goto ex_err;
}
}
if (task->task_status.resp == SAS_TASK_COMPLETE &&
task->task_status.stat == SAM_STAT_GOOD) {
res = TMF_RESP_FUNC_COMPLETE;
break;
}
if (task->task_status.resp == SAS_TASK_COMPLETE &&
task->task_status.stat == SAS_DATA_UNDERRUN) {
/* no error, but return the number of bytes of
* underrun */
res = task->task_status.residual;
break;
}
if (task->task_status.resp == SAS_TASK_COMPLETE &&
task->task_status.stat == SAS_DATA_OVERRUN) {
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("Blocked task error.\n"));
res = -EMSGSIZE;
break;
} else {
PM8001_EH_DBG(pm8001_ha,
pm8001_printk(" Task to dev %016llx response:"
"0x%x status 0x%x\n",
SAS_ADDR(dev->sas_addr),
task->task_status.resp,
task->task_status.stat));
sas_free_task(task);
task = NULL;
}
}
ex_err:
BUG_ON(retry == 3 && task != NULL);
sas_free_task(task);
return res;
}
static int
pm8001_exec_internal_task_abort(struct pm8001_hba_info *pm8001_ha,
struct pm8001_device *pm8001_dev, struct domain_device *dev, u32 flag,
u32 task_tag)
{
int res, retry;
u32 ccb_tag;
struct pm8001_ccb_info *ccb;
struct sas_task *task = NULL;
for (retry = 0; retry < 3; retry++) {
task = sas_alloc_slow_task(GFP_KERNEL);
if (!task)
return -ENOMEM;
task->dev = dev;
task->task_proto = dev->tproto;
task->task_done = pm8001_task_done;
task->slow_task->timer.data = (unsigned long)task;
task->slow_task->timer.function = pm8001_tmf_timedout;
task->slow_task->timer.expires = jiffies + PM8001_TASK_TIMEOUT * HZ;
add_timer(&task->slow_task->timer);
res = pm8001_tag_alloc(pm8001_ha, &ccb_tag);
if (res)
return res;
ccb = &pm8001_ha->ccb_info[ccb_tag];
ccb->device = pm8001_dev;
ccb->ccb_tag = ccb_tag;
ccb->task = task;
res = PM8001_CHIP_DISP->task_abort(pm8001_ha,
pm8001_dev, flag, task_tag, ccb_tag);
if (res) {
del_timer(&task->slow_task->timer);
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("Executing internal task "
"failed\n"));
goto ex_err;
}
wait_for_completion(&task->slow_task->completion);
res = TMF_RESP_FUNC_FAILED;
/* Even TMF timed out, return direct. */
if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("TMF task timeout.\n"));
goto ex_err;
}
}
if (task->task_status.resp == SAS_TASK_COMPLETE &&
task->task_status.stat == SAM_STAT_GOOD) {
res = TMF_RESP_FUNC_COMPLETE;
break;
} else {
PM8001_EH_DBG(pm8001_ha,
pm8001_printk(" Task to dev %016llx response: "
"0x%x status 0x%x\n",
SAS_ADDR(dev->sas_addr),
task->task_status.resp,
task->task_status.stat));
sas_free_task(task);
task = NULL;
}
}
ex_err:
BUG_ON(retry == 3 && task != NULL);
sas_free_task(task);
return res;
}
/**
* pm8001_dev_gone_notify - see the comments for "pm8001_dev_found_notify"
* @dev: the device structure which sas layer used.
*/
static void pm8001_dev_gone_notify(struct domain_device *dev)
{
unsigned long flags = 0;
u32 tag;
struct pm8001_hba_info *pm8001_ha;
struct pm8001_device *pm8001_dev = dev->lldd_dev;
pm8001_ha = pm8001_find_ha_by_dev(dev);
spin_lock_irqsave(&pm8001_ha->lock, flags);
pm8001_tag_alloc(pm8001_ha, &tag);
if (pm8001_dev) {
u32 device_id = pm8001_dev->device_id;
PM8001_DISC_DBG(pm8001_ha,
pm8001_printk("found dev[%d:%x] is gone.\n",
pm8001_dev->device_id, pm8001_dev->dev_type));
if (pm8001_dev->running_req) {
spin_unlock_irqrestore(&pm8001_ha->lock, flags);
pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev ,
dev, 1, 0);
spin_lock_irqsave(&pm8001_ha->lock, flags);
}
PM8001_CHIP_DISP->dereg_dev_req(pm8001_ha, device_id);
pm8001_free_dev(pm8001_dev);
} else {
PM8001_DISC_DBG(pm8001_ha,
pm8001_printk("Found dev has gone.\n"));
}
dev->lldd_dev = NULL;
spin_unlock_irqrestore(&pm8001_ha->lock, flags);
}
void pm8001_dev_gone(struct domain_device *dev)
{
pm8001_dev_gone_notify(dev);
}
static int pm8001_issue_ssp_tmf(struct domain_device *dev,
u8 *lun, struct pm8001_tmf_task *tmf)
{
struct sas_ssp_task ssp_task;
if (!(dev->tproto & SAS_PROTOCOL_SSP))
return TMF_RESP_FUNC_ESUPP;
strncpy((u8 *)&ssp_task.LUN, lun, 8);
return pm8001_exec_internal_tmf_task(dev, &ssp_task, sizeof(ssp_task),
tmf);
}
/* retry commands by ha, by task and/or by device */
void pm8001_open_reject_retry(
struct pm8001_hba_info *pm8001_ha,
struct sas_task *task_to_close,
struct pm8001_device *device_to_close)
{
int i;
unsigned long flags;
if (pm8001_ha == NULL)
return;
spin_lock_irqsave(&pm8001_ha->lock, flags);
for (i = 0; i < PM8001_MAX_CCB; i++) {
struct sas_task *task;
struct task_status_struct *ts;
struct pm8001_device *pm8001_dev;
unsigned long flags1;
u32 tag;
struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[i];
pm8001_dev = ccb->device;
if (!pm8001_dev || (pm8001_dev->dev_type == NO_DEVICE))
continue;
if (!device_to_close) {
uintptr_t d = (uintptr_t)pm8001_dev
- (uintptr_t)&pm8001_ha->devices;
if (((d % sizeof(*pm8001_dev)) != 0)
|| ((d / sizeof(*pm8001_dev)) >= PM8001_MAX_DEVICES))
continue;
} else if (pm8001_dev != device_to_close)
continue;
tag = ccb->ccb_tag;
if (!tag || (tag == 0xFFFFFFFF))
continue;
task = ccb->task;
if (!task || !task->task_done)
continue;
if (task_to_close && (task != task_to_close))
continue;
ts = &task->task_status;
ts->resp = SAS_TASK_COMPLETE;
/* Force the midlayer to retry */
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
if (pm8001_dev)
pm8001_dev->running_req--;
spin_lock_irqsave(&task->task_state_lock, flags1);
task->task_state_flags &= ~SAS_TASK_STATE_PENDING;
task->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
task->task_state_flags |= SAS_TASK_STATE_DONE;
if (unlikely((task->task_state_flags
& SAS_TASK_STATE_ABORTED))) {
spin_unlock_irqrestore(&task->task_state_lock,
flags1);
pm8001_ccb_task_free(pm8001_ha, task, ccb, tag);
} else {
spin_unlock_irqrestore(&task->task_state_lock,
flags1);
pm8001_ccb_task_free(pm8001_ha, task, ccb, tag);
mb();/* in order to force CPU ordering */
spin_unlock_irqrestore(&pm8001_ha->lock, flags);
task->task_done(task);
spin_lock_irqsave(&pm8001_ha->lock, flags);
}
}
spin_unlock_irqrestore(&pm8001_ha->lock, flags);
}
/**
* Standard mandates link reset for ATA (type 0) and hard reset for
* SSP (type 1) , only for RECOVERY
*/
int pm8001_I_T_nexus_reset(struct domain_device *dev)
{
int rc = TMF_RESP_FUNC_FAILED;
struct pm8001_device *pm8001_dev;
struct pm8001_hba_info *pm8001_ha;
struct sas_phy *phy;
if (!dev || !dev->lldd_dev)
return -ENODEV;
pm8001_dev = dev->lldd_dev;
pm8001_ha = pm8001_find_ha_by_dev(dev);
phy = sas_get_local_phy(dev);
if (dev_is_sata(dev)) {
DECLARE_COMPLETION_ONSTACK(completion_setstate);
if (scsi_is_sas_phy_local(phy)) {
rc = 0;
goto out;
}
rc = sas_phy_reset(phy, 1);
msleep(2000);
rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev ,
dev, 1, 0);
pm8001_dev->setds_completion = &completion_setstate;
rc = PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha,
pm8001_dev, 0x01);
wait_for_completion(&completion_setstate);
} else {
rc = sas_phy_reset(phy, 1);
msleep(2000);
}
PM8001_EH_DBG(pm8001_ha, pm8001_printk(" for device[%x]:rc=%d\n",
pm8001_dev->device_id, rc));
out:
sas_put_local_phy(phy);
return rc;
}
/* mandatory SAM-3, the task reset the specified LUN*/
int pm8001_lu_reset(struct domain_device *dev, u8 *lun)
{
int rc = TMF_RESP_FUNC_FAILED;
struct pm8001_tmf_task tmf_task;
struct pm8001_device *pm8001_dev = dev->lldd_dev;
struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev);
if (dev_is_sata(dev)) {
struct sas_phy *phy = sas_get_local_phy(dev);
rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev ,
dev, 1, 0);
rc = sas_phy_reset(phy, 1);
sas_put_local_phy(phy);
rc = PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha,
pm8001_dev, 0x01);
msleep(2000);
} else {
tmf_task.tmf = TMF_LU_RESET;
rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task);
}
/* If failed, fall-through I_T_Nexus reset */
PM8001_EH_DBG(pm8001_ha, pm8001_printk("for device[%x]:rc=%d\n",
pm8001_dev->device_id, rc));
return rc;
}
/* optional SAM-3 */
int pm8001_query_task(struct sas_task *task)
{
u32 tag = 0xdeadbeef;
int i = 0;
struct scsi_lun lun;
struct pm8001_tmf_task tmf_task;
int rc = TMF_RESP_FUNC_FAILED;
if (unlikely(!task || !task->lldd_task || !task->dev))
return rc;
if (task->task_proto & SAS_PROTOCOL_SSP) {
struct scsi_cmnd *cmnd = task->uldd_task;
struct domain_device *dev = task->dev;
struct pm8001_hba_info *pm8001_ha =
pm8001_find_ha_by_dev(dev);
int_to_scsilun(cmnd->device->lun, &lun);
rc = pm8001_find_tag(task, &tag);
if (rc == 0) {
rc = TMF_RESP_FUNC_FAILED;
return rc;
}
PM8001_EH_DBG(pm8001_ha, pm8001_printk("Query:["));
for (i = 0; i < 16; i++)
printk(KERN_INFO "%02x ", cmnd->cmnd[i]);
printk(KERN_INFO "]\n");
tmf_task.tmf = TMF_QUERY_TASK;
tmf_task.tag_of_task_to_be_managed = tag;
rc = pm8001_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task);
switch (rc) {
/* The task is still in Lun, release it then */
case TMF_RESP_FUNC_SUCC:
PM8001_EH_DBG(pm8001_ha,
pm8001_printk("The task is still in Lun\n"));
break;
/* The task is not in Lun or failed, reset the phy */
case TMF_RESP_FUNC_FAILED:
case TMF_RESP_FUNC_COMPLETE:
PM8001_EH_DBG(pm8001_ha,
pm8001_printk("The task is not in Lun or failed,"
" reset the phy\n"));
break;
}
}
pm8001_printk(":rc= %d\n", rc);
return rc;
}
/* mandatory SAM-3, still need free task/ccb info, abord the specified task */
int pm8001_abort_task(struct sas_task *task)
{
unsigned long flags;
u32 tag = 0xdeadbeef;
u32 device_id;
struct domain_device *dev ;
struct pm8001_hba_info *pm8001_ha = NULL;
struct pm8001_ccb_info *ccb;
struct scsi_lun lun;
struct pm8001_device *pm8001_dev;
struct pm8001_tmf_task tmf_task;
int rc = TMF_RESP_FUNC_FAILED;
if (unlikely(!task || !task->lldd_task || !task->dev))
return rc;
spin_lock_irqsave(&task->task_state_lock, flags);
if (task->task_state_flags & SAS_TASK_STATE_DONE) {
spin_unlock_irqrestore(&task->task_state_lock, flags);
rc = TMF_RESP_FUNC_COMPLETE;
goto out;
}
spin_unlock_irqrestore(&task->task_state_lock, flags);
if (task->task_proto & SAS_PROTOCOL_SSP) {
struct scsi_cmnd *cmnd = task->uldd_task;
dev = task->dev;
ccb = task->lldd_task;
pm8001_dev = dev->lldd_dev;
pm8001_ha = pm8001_find_ha_by_dev(dev);
int_to_scsilun(cmnd->device->lun, &lun);
rc = pm8001_find_tag(task, &tag);
if (rc == 0) {
printk(KERN_INFO "No such tag in %s\n", __func__);
rc = TMF_RESP_FUNC_FAILED;
return rc;
}
device_id = pm8001_dev->device_id;
PM8001_EH_DBG(pm8001_ha,
pm8001_printk("abort io to deviceid= %d\n", device_id));
tmf_task.tmf = TMF_ABORT_TASK;
tmf_task.tag_of_task_to_be_managed = tag;
rc = pm8001_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task);
pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev,
pm8001_dev->sas_device, 0, tag);
} else if (task->task_proto & SAS_PROTOCOL_SATA ||
task->task_proto & SAS_PROTOCOL_STP) {
dev = task->dev;
pm8001_dev = dev->lldd_dev;
pm8001_ha = pm8001_find_ha_by_dev(dev);
rc = pm8001_find_tag(task, &tag);
if (rc == 0) {
printk(KERN_INFO "No such tag in %s\n", __func__);
rc = TMF_RESP_FUNC_FAILED;
return rc;
}
rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev,
pm8001_dev->sas_device, 0, tag);
} else if (task->task_proto & SAS_PROTOCOL_SMP) {
/* SMP */
dev = task->dev;
pm8001_dev = dev->lldd_dev;
pm8001_ha = pm8001_find_ha_by_dev(dev);
rc = pm8001_find_tag(task, &tag);
if (rc == 0) {
printk(KERN_INFO "No such tag in %s\n", __func__);
rc = TMF_RESP_FUNC_FAILED;
return rc;
}
rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev,
pm8001_dev->sas_device, 0, tag);
}
out:
if (rc != TMF_RESP_FUNC_COMPLETE)
pm8001_printk("rc= %d\n", rc);
return rc;
}
int pm8001_abort_task_set(struct domain_device *dev, u8 *lun)
{
int rc = TMF_RESP_FUNC_FAILED;
struct pm8001_tmf_task tmf_task;
tmf_task.tmf = TMF_ABORT_TASK_SET;
rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task);
return rc;
}
int pm8001_clear_aca(struct domain_device *dev, u8 *lun)
{
int rc = TMF_RESP_FUNC_FAILED;
struct pm8001_tmf_task tmf_task;
tmf_task.tmf = TMF_CLEAR_ACA;
rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task);
return rc;
}
int pm8001_clear_task_set(struct domain_device *dev, u8 *lun)
{
int rc = TMF_RESP_FUNC_FAILED;
struct pm8001_tmf_task tmf_task;
struct pm8001_device *pm8001_dev = dev->lldd_dev;
struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev);
PM8001_EH_DBG(pm8001_ha,
pm8001_printk("I_T_L_Q clear task set[%x]\n",
pm8001_dev->device_id));
tmf_task.tmf = TMF_CLEAR_TASK_SET;
rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task);
return rc;
}