aboutsummaryrefslogblamecommitdiffstats
path: root/drivers/scsi/libsas/sas_expander.c
blob: e34a934354978ba4541e97e0d8739c402ea1f1e7 (plain) (tree)
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723








































































                                                                               

                                     


                                                                       



                                                  
 



                                                                       
 
                                                
 



                                                               
 
                                                                     
 


                                                                           

                                    























                                                                               
         
       



                                           


































































                                                                             



                                                          
                                                      



















































































































































































































                                                                               

                                                        

















                                               



                                                          












                                                                               
                                                                 
                                         



































































































































































































































































































                                                                                      
                                                       
                                                                                 



























                                                                               
                                                             



















































































































































                                                                               


                                            

























































































































































































































































































































































































































































































































































































































































































































































































































                                                                                                    
                                                 












































































































































                                                                             
/*
 * Serial Attached SCSI (SAS) Expander discovery and configuration
 *
 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
 *
 * This file is licensed under GPLv2.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#include <linux/pci.h>
#include <linux/scatterlist.h>

#include "sas_internal.h"

#include <scsi/scsi_transport.h>
#include <scsi/scsi_transport_sas.h>
#include "../scsi_sas_internal.h"

static int sas_discover_expander(struct domain_device *dev);
static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
static int sas_configure_phy(struct domain_device *dev, int phy_id,
			     u8 *sas_addr, int include);
static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);

#if 0
/* FIXME: smp needs to migrate into the sas class */
static ssize_t smp_portal_read(struct kobject *, char *, loff_t, size_t);
static ssize_t smp_portal_write(struct kobject *, char *, loff_t, size_t);
#endif

/* ---------- SMP task management ---------- */

static void smp_task_timedout(unsigned long _task)
{
	struct sas_task *task = (void *) _task;
	unsigned long flags;

	spin_lock_irqsave(&task->task_state_lock, flags);
	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
	spin_unlock_irqrestore(&task->task_state_lock, flags);

	complete(&task->completion);
}

static void smp_task_done(struct sas_task *task)
{
	if (!del_timer(&task->timer))
		return;
	complete(&task->completion);
}

/* Give it some long enough timeout. In seconds. */
#define SMP_TIMEOUT 10

static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
			    void *resp, int resp_size)
{
	int res, retry;
	struct sas_task *task = NULL;
	struct sas_internal *i =
		to_sas_internal(dev->port->ha->core.shost->transportt);

	for (retry = 0; retry < 3; retry++) {
		task = sas_alloc_task(GFP_KERNEL);
		if (!task)
			return -ENOMEM;

		task->dev = dev;
		task->task_proto = dev->tproto;
		sg_init_one(&task->smp_task.smp_req, req, req_size);
		sg_init_one(&task->smp_task.smp_resp, resp, resp_size);

		task->task_done = smp_task_done;

		task->timer.data = (unsigned long) task;
		task->timer.function = smp_task_timedout;
		task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
		add_timer(&task->timer);

		res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);

		if (res) {
			del_timer(&task->timer);
			SAS_DPRINTK("executing SMP task failed:%d\n", res);
			goto ex_err;
		}

		wait_for_completion(&task->completion);
		res = -ETASK;
		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
			SAS_DPRINTK("smp task timed out or aborted\n");
			i->dft->lldd_abort_task(task);
			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
				SAS_DPRINTK("SMP task aborted and not done\n");
				goto ex_err;
			}
		}
		if (task->task_status.resp == SAS_TASK_COMPLETE &&
		    task->task_status.stat == SAM_GOOD) {
			res = 0;
			break;
		} else {
			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
				    "status 0x%x\n", __FUNCTION__,
				    SAS_ADDR(dev->sas_addr),
				    task->task_status.resp,
				    task->task_status.stat);
			sas_free_task(task);
			task = NULL;
		}
	}
ex_err:
	BUG_ON(retry == 3 && task != NULL);
	if (task != NULL) {
		sas_free_task(task);
	}
	return res;
}

/* ---------- Allocations ---------- */

static inline void *alloc_smp_req(int size)
{
	u8 *p = kzalloc(size, GFP_KERNEL);
	if (p)
		p[0] = SMP_REQUEST;
	return p;
}

static inline void *alloc_smp_resp(int size)
{
	return kzalloc(size, GFP_KERNEL);
}

/* ---------- Expander configuration ---------- */

static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
			   void *disc_resp)
{
	struct expander_device *ex = &dev->ex_dev;
	struct ex_phy *phy = &ex->ex_phy[phy_id];
	struct smp_resp *resp = disc_resp;
	struct discover_resp *dr = &resp->disc;
	struct sas_rphy *rphy = dev->rphy;
	int rediscover = (phy->phy != NULL);

	if (!rediscover) {
		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);

		/* FIXME: error_handling */
		BUG_ON(!phy->phy);
	}

	switch (resp->result) {
	case SMP_RESP_PHY_VACANT:
		phy->phy_state = PHY_VACANT;
		return;
	default:
		phy->phy_state = PHY_NOT_PRESENT;
		return;
	case SMP_RESP_FUNC_ACC:
		phy->phy_state = PHY_EMPTY; /* do not know yet */
		break;
	}

	phy->phy_id = phy_id;
	phy->attached_dev_type = dr->attached_dev_type;
	phy->linkrate = dr->linkrate;
	phy->attached_sata_host = dr->attached_sata_host;
	phy->attached_sata_dev  = dr->attached_sata_dev;
	phy->attached_sata_ps   = dr->attached_sata_ps;
	phy->attached_iproto = dr->iproto << 1;
	phy->attached_tproto = dr->tproto << 1;
	memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
	phy->attached_phy_id = dr->attached_phy_id;
	phy->phy_change_count = dr->change_count;
	phy->routing_attr = dr->routing_attr;
	phy->virtual = dr->virtual;
	phy->last_da_index = -1;

	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
	phy->phy->identify.target_port_protocols = phy->attached_tproto;
	phy->phy->identify.phy_identifier = phy_id;
	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
	phy->phy->minimum_linkrate = dr->pmin_linkrate;
	phy->phy->maximum_linkrate = dr->pmax_linkrate;
	phy->phy->negotiated_linkrate = phy->linkrate;

	if (!rediscover)
		sas_phy_add(phy->phy);

	SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
		    SAS_ADDR(dev->sas_addr), phy->phy_id,
		    phy->routing_attr == TABLE_ROUTING ? 'T' :
		    phy->routing_attr == DIRECT_ROUTING ? 'D' :
		    phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
		    SAS_ADDR(phy->attached_sas_addr));

	return;
}

#define DISCOVER_REQ_SIZE  16
#define DISCOVER_RESP_SIZE 56

static int sas_ex_phy_discover(struct domain_device *dev, int single)
{
	struct expander_device *ex = &dev->ex_dev;
	int  res = 0;
	u8   *disc_req;
	u8   *disc_resp;

	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
	if (!disc_req)
		return -ENOMEM;

	disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
	if (!disc_resp) {
		kfree(disc_req);
		return -ENOMEM;
	}

	disc_req[1] = SMP_DISCOVER;

	if (0 <= single && single < ex->num_phys) {
		disc_req[9] = single;
		res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
				       disc_resp, DISCOVER_RESP_SIZE);
		if (res)
			goto out_err;
		sas_set_ex_phy(dev, single, disc_resp);
	} else {
		int i;

		for (i = 0; i < ex->num_phys; i++) {
			disc_req[9] = i;
			res = smp_execute_task(dev, disc_req,
					       DISCOVER_REQ_SIZE, disc_resp,
					       DISCOVER_RESP_SIZE);
			if (res)
				goto out_err;
			sas_set_ex_phy(dev, i, disc_resp);
		}
	}
out_err:
	kfree(disc_resp);
	kfree(disc_req);
	return res;
}

static int sas_expander_discover(struct domain_device *dev)
{
	struct expander_device *ex = &dev->ex_dev;
	int res = -ENOMEM;

	ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
	if (!ex->ex_phy)
		return -ENOMEM;

	res = sas_ex_phy_discover(dev, -1);
	if (res)
		goto out_err;

	return 0;
 out_err:
	kfree(ex->ex_phy);
	ex->ex_phy = NULL;
	return res;
}

#define MAX_EXPANDER_PHYS 128

static void ex_assign_report_general(struct domain_device *dev,
					    struct smp_resp *resp)
{
	struct report_general_resp *rg = &resp->rg;

	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
	dev->ex_dev.conf_route_table = rg->conf_route_table;
	dev->ex_dev.configuring = rg->configuring;
	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
}

#define RG_REQ_SIZE   8
#define RG_RESP_SIZE 32

static int sas_ex_general(struct domain_device *dev)
{
	u8 *rg_req;
	struct smp_resp *rg_resp;
	int res;
	int i;

	rg_req = alloc_smp_req(RG_REQ_SIZE);
	if (!rg_req)
		return -ENOMEM;

	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
	if (!rg_resp) {
		kfree(rg_req);
		return -ENOMEM;
	}

	rg_req[1] = SMP_REPORT_GENERAL;

	for (i = 0; i < 5; i++) {
		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
				       RG_RESP_SIZE);

		if (res) {
			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
				    SAS_ADDR(dev->sas_addr), res);
			goto out;
		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
				    SAS_ADDR(dev->sas_addr), rg_resp->result);
			res = rg_resp->result;
			goto out;
		}

		ex_assign_report_general(dev, rg_resp);

		if (dev->ex_dev.configuring) {
			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
				    SAS_ADDR(dev->sas_addr));
			schedule_timeout_interruptible(5*HZ);
		} else
			break;
	}
out:
	kfree(rg_req);
	kfree(rg_resp);
	return res;
}

static void ex_assign_manuf_info(struct domain_device *dev, void
					*_mi_resp)
{
	u8 *mi_resp = _mi_resp;
	struct sas_rphy *rphy = dev->rphy;
	struct sas_expander_device *edev = rphy_to_expander_device(rphy);

	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
	memcpy(edev->product_rev, mi_resp + 36,
	       SAS_EXPANDER_PRODUCT_REV_LEN);

	if (mi_resp[8] & 1) {
		memcpy(edev->component_vendor_id, mi_resp + 40,
		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
		edev->component_revision_id = mi_resp[50];
	}
}

#define MI_REQ_SIZE   8
#define MI_RESP_SIZE 64

static int sas_ex_manuf_info(struct domain_device *dev)
{
	u8 *mi_req;
	u8 *mi_resp;
	int res;

	mi_req = alloc_smp_req(MI_REQ_SIZE);
	if (!mi_req)
		return -ENOMEM;

	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
	if (!mi_resp) {
		kfree(mi_req);
		return -ENOMEM;
	}

	mi_req[1] = SMP_REPORT_MANUF_INFO;

	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
	if (res) {
		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
			    SAS_ADDR(dev->sas_addr), res);
		goto out;
	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
		goto out;
	}

	ex_assign_manuf_info(dev, mi_resp);
out:
	kfree(mi_req);
	kfree(mi_resp);
	return res;
}

#define PC_REQ_SIZE  44
#define PC_RESP_SIZE 8

int sas_smp_phy_control(struct domain_device *dev, int phy_id,
			enum phy_func phy_func,
			struct sas_phy_linkrates *rates)
{
	u8 *pc_req;
	u8 *pc_resp;
	int res;

	pc_req = alloc_smp_req(PC_REQ_SIZE);
	if (!pc_req)
		return -ENOMEM;

	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
	if (!pc_resp) {
		kfree(pc_req);
		return -ENOMEM;
	}

	pc_req[1] = SMP_PHY_CONTROL;
	pc_req[9] = phy_id;
	pc_req[10]= phy_func;
	if (rates) {
		pc_req[32] = rates->minimum_linkrate << 4;
		pc_req[33] = rates->maximum_linkrate << 4;
	}

	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);

	kfree(pc_resp);
	kfree(pc_req);
	return res;
}

static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
{
	struct expander_device *ex = &dev->ex_dev;
	struct ex_phy *phy = &ex->ex_phy[phy_id];

	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
	phy->linkrate = SAS_PHY_DISABLED;
}

static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
{
	struct expander_device *ex = &dev->ex_dev;
	int i;

	for (i = 0; i < ex->num_phys; i++) {
		struct ex_phy *phy = &ex->ex_phy[i];

		if (phy->phy_state == PHY_VACANT ||
		    phy->phy_state == PHY_NOT_PRESENT)
			continue;

		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
			sas_ex_disable_phy(dev, i);
	}
}

static int sas_dev_present_in_domain(struct asd_sas_port *port,
					    u8 *sas_addr)
{
	struct domain_device *dev;

	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
		return 1;
	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
			return 1;
	}
	return 0;
}

#define RPEL_REQ_SIZE	16
#define RPEL_RESP_SIZE	32
int sas_smp_get_phy_events(struct sas_phy *phy)
{
	int res;
	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
	u8 *req = alloc_smp_req(RPEL_REQ_SIZE);
	u8 *resp = kzalloc(RPEL_RESP_SIZE, GFP_KERNEL);

	if (!resp)
		return -ENOMEM;

	req[1] = SMP_REPORT_PHY_ERR_LOG;
	req[9] = phy->number;

	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
			            resp, RPEL_RESP_SIZE);

	if (!res)
		goto out;

	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);

 out:
	kfree(resp);
	return res;

}

#define RPS_REQ_SIZE  16
#define RPS_RESP_SIZE 60

static int sas_get_report_phy_sata(struct domain_device *dev,
					  int phy_id,
					  struct smp_resp *rps_resp)
{
	int res;
	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);

	if (!rps_req)
		return -ENOMEM;

	rps_req[1] = SMP_REPORT_PHY_SATA;
	rps_req[9] = phy_id;

	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
			            rps_resp, RPS_RESP_SIZE);

	kfree(rps_req);
	return 0;
}

static void sas_ex_get_linkrate(struct domain_device *parent,
				       struct domain_device *child,
				       struct ex_phy *parent_phy)
{
	struct expander_device *parent_ex = &parent->ex_dev;
	struct sas_port *port;
	int i;

	child->pathways = 0;

	port = parent_phy->port;

	for (i = 0; i < parent_ex->num_phys; i++) {
		struct ex_phy *phy = &parent_ex->ex_phy[i];

		if (phy->phy_state == PHY_VACANT ||
		    phy->phy_state == PHY_NOT_PRESENT)
			continue;

		if (SAS_ADDR(phy->attached_sas_addr) ==
		    SAS_ADDR(child->sas_addr)) {

			child->min_linkrate = min(parent->min_linkrate,
						  phy->linkrate);
			child->max_linkrate = max(parent->max_linkrate,
						  phy->linkrate);
			child->pathways++;
			sas_port_add_phy(port, phy->phy);
		}
	}
	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
	child->pathways = min(child->pathways, parent->pathways);
}

static struct domain_device *sas_ex_discover_end_dev(
	struct domain_device *parent, int phy_id)
{
	struct expander_device *parent_ex = &parent->ex_dev;
	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
	struct domain_device *child = NULL;
	struct sas_rphy *rphy;
	int res;

	if (phy->attached_sata_host || phy->attached_sata_ps)
		return NULL;

	child = kzalloc(sizeof(*child), GFP_KERNEL);
	if (!child)
		return NULL;

	child->parent = parent;
	child->port   = parent->port;
	child->iproto = phy->attached_iproto;
	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
	BUG_ON(!phy->port);
	/* FIXME: better error handling*/
	BUG_ON(sas_port_add(phy->port) != 0);
	sas_ex_get_linkrate(parent, child, phy);

	if ((phy->attached_tproto & SAS_PROTO_STP) || phy->attached_sata_dev) {
		child->dev_type = SATA_DEV;
		if (phy->attached_tproto & SAS_PROTO_STP)
			child->tproto = phy->attached_tproto;
		if (phy->attached_sata_dev)
			child->tproto |= SATA_DEV;
		res = sas_get_report_phy_sata(parent, phy_id,
					      &child->sata_dev.rps_resp);
		if (res) {
			SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
				    "0x%x\n", SAS_ADDR(parent->sas_addr),
				    phy_id, res);
			kfree(child);
			return NULL;
		}
		memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
		       sizeof(struct dev_to_host_fis));
		sas_init_dev(child);
		res = sas_discover_sata(child);
		if (res) {
			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
				    "%016llx:0x%x returned 0x%x\n",
				    SAS_ADDR(child->sas_addr),
				    SAS_ADDR(parent->sas_addr), phy_id, res);
			kfree(child);
			return NULL;
		}
	} else if (phy->attached_tproto & SAS_PROTO_SSP) {
		child->dev_type = SAS_END_DEV;
		rphy = sas_end_device_alloc(phy->port);
		/* FIXME: error handling */
		BUG_ON(!rphy);
		child->tproto = phy->attached_tproto;
		sas_init_dev(child);

		child->rphy = rphy;
		sas_fill_in_rphy(child, rphy);

		spin_lock(&parent->port->dev_list_lock);
		list_add_tail(&child->dev_list_node, &parent->port->dev_list);
		spin_unlock(&parent->port->dev_list_lock);

		res = sas_discover_end_dev(child);
		if (res) {
			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
				    "at %016llx:0x%x returned 0x%x\n",
				    SAS_ADDR(child->sas_addr),
				    SAS_ADDR(parent->sas_addr), phy_id, res);
			/* FIXME: this kfrees list elements without removing them */
			//kfree(child);
			return NULL;
		}
	} else {
		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
			    phy_id);
	}

	list_add_tail(&child->siblings, &parent_ex->children);
	return child;
}

static struct domain_device *sas_ex_discover_expander(
	struct domain_device *parent, int phy_id)
{
	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
	struct domain_device *child = NULL;
	struct sas_rphy *rphy;
	struct sas_expander_device *edev;
	struct asd_sas_port *port;
	int res;

	if (phy->routing_attr == DIRECT_ROUTING) {
		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
			    "allowed\n",
			    SAS_ADDR(parent->sas_addr), phy_id,
			    SAS_ADDR(phy->attached_sas_addr),
			    phy->attached_phy_id);
		return NULL;
	}
	child = kzalloc(sizeof(*child), GFP_KERNEL);
	if (!child)
		return NULL;

	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
	/* FIXME: better error handling */
	BUG_ON(sas_port_add(phy->port) != 0);


	switch (phy->attached_dev_type) {
	case EDGE_DEV:
		rphy = sas_expander_alloc(phy->port,
					  SAS_EDGE_EXPANDER_DEVICE);
		break;
	case FANOUT_DEV:
		rphy = sas_expander_alloc(phy->port,
					  SAS_FANOUT_EXPANDER_DEVICE);
		break;
	default:
		rphy = NULL;	/* shut gcc up */
		BUG();
	}
	port = parent->port;
	child->rphy = rphy;
	edev = rphy_to_expander_device(rphy);
	child->dev_type = phy->attached_dev_type;
	child->parent = parent;
	child->port = port;
	child->iproto = phy->attached_iproto;
	child->tproto = phy->attached_tproto;
	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
	sas_ex_get_linkrate(parent, child, phy);
	edev->level = parent_ex->level + 1;
	parent->port->disc.max_level = max(parent->port->disc.max_level,
					   edev->level);
	sas_init_dev(child);
	sas_fill_in_rphy(child, rphy);
	sas_rphy_add(rphy);

	spin_lock(&parent->port->dev_list_lock);
	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
	spin_unlock(&parent->port->dev_list_lock);

	res = sas_discover_expander(child);
	if (res) {
		kfree(child);
		return NULL;
	}
	list_add_tail(&child->siblings, &parent->ex_dev.children);
	return child;
}

static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
{
	struct expander_device *ex = &dev->ex_dev;
	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
	struct domain_device *child = NULL;
	int res = 0;

	/* Phy state */
	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
			res = sas_ex_phy_discover(dev, phy_id);
		if (res)
			return res;
	}

	/* Parent and domain coherency */
	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
			     SAS_ADDR(dev->port->sas_addr))) {
		sas_add_parent_port(dev, phy_id);
		return 0;
	}
	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
			    SAS_ADDR(dev->parent->sas_addr))) {
		sas_add_parent_port(dev, phy_id);
		if (ex_phy->routing_attr == TABLE_ROUTING)
			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
		return 0;
	}

	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);

	if (ex_phy->attached_dev_type == NO_DEVICE) {
		if (ex_phy->routing_attr == DIRECT_ROUTING) {
			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
			sas_configure_routing(dev, ex_phy->attached_sas_addr);
		}
		return 0;
	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
		return 0;

	if (ex_phy->attached_dev_type != SAS_END_DEV &&
	    ex_phy->attached_dev_type != FANOUT_DEV &&
	    ex_phy->attached_dev_type != EDGE_DEV) {
		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
			    "phy 0x%x\n", ex_phy->attached_dev_type,
			    SAS_ADDR(dev->sas_addr),
			    phy_id);
		return 0;
	}

	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
	if (res) {
		SAS_DPRINTK("configure routing for dev %016llx "
			    "reported 0x%x. Forgotten\n",
			    SAS_ADDR(ex_phy->attached_sas_addr), res);
		sas_disable_routing(dev, ex_phy->attached_sas_addr);
		return res;
	}

	switch (ex_phy->attached_dev_type) {
	case SAS_END_DEV:
		child = sas_ex_discover_end_dev(dev, phy_id);
		break;
	case FANOUT_DEV:
		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
				    "attached to ex %016llx phy 0x%x\n",
				    SAS_ADDR(ex_phy->attached_sas_addr),
				    ex_phy->attached_phy_id,
				    SAS_ADDR(dev->sas_addr),
				    phy_id);
			sas_ex_disable_phy(dev, phy_id);
			break;
		} else
			memcpy(dev->port->disc.fanout_sas_addr,
			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
		/* fallthrough */
	case EDGE_DEV:
		child = sas_ex_discover_expander(dev, phy_id);
		break;
	default:
		break;
	}

	if (child) {
		int i;

		for (i = 0; i < ex->num_phys; i++) {
			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
				continue;

			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
			    SAS_ADDR(child->sas_addr))
				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
		}
	}

	return res;
}

static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
{
	struct expander_device *ex = &dev->ex_dev;
	int i;

	for (i = 0; i < ex->num_phys; i++) {
		struct ex_phy *phy = &ex->ex_phy[i];

		if (phy->phy_state == PHY_VACANT ||
		    phy->phy_state == PHY_NOT_PRESENT)
			continue;

		if ((phy->attached_dev_type == EDGE_DEV ||
		     phy->attached_dev_type == FANOUT_DEV) &&
		    phy->routing_attr == SUBTRACTIVE_ROUTING) {

			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);

			return 1;
		}
	}
	return 0;
}

static int sas_check_level_subtractive_boundary(struct domain_device *dev)
{
	struct expander_device *ex = &dev->ex_dev;
	struct domain_device *child;
	u8 sub_addr[8] = {0, };

	list_for_each_entry(child, &ex->children, siblings) {
		if (child->dev_type != EDGE_DEV &&
		    child->dev_type != FANOUT_DEV)
			continue;
		if (sub_addr[0] == 0) {
			sas_find_sub_addr(child, sub_addr);
			continue;
		} else {
			u8 s2[8];

			if (sas_find_sub_addr(child, s2) &&
			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {

				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
					    "diverges from subtractive "
					    "boundary %016llx\n",
					    SAS_ADDR(dev->sas_addr),
					    SAS_ADDR(child->sas_addr),
					    SAS_ADDR(s2),
					    SAS_ADDR(sub_addr));

				sas_ex_disable_port(child, s2);
			}
		}
	}
	return 0;
}
/**
 * sas_ex_discover_devices -- discover devices attached to this expander
 * dev: pointer to the expander domain device
 * single: if you want to do a single phy, else set to -1;
 *
 * Configure this expander for use with its devices and register the
 * devices of this expander.
 */
static int sas_ex_discover_devices(struct domain_device *dev, int single)
{
	struct expander_device *ex = &dev->ex_dev;
	int i = 0, end = ex->num_phys;
	int res = 0;

	if (0 <= single && single < end) {
		i = single;
		end = i+1;
	}

	for ( ; i < end; i++) {
		struct ex_phy *ex_phy = &ex->ex_phy[i];

		if (ex_phy->phy_state == PHY_VACANT ||
		    ex_phy->phy_state == PHY_NOT_PRESENT ||
		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
			continue;

		switch (ex_phy->linkrate) {
		case SAS_PHY_DISABLED:
		case SAS_PHY_RESET_PROBLEM:
		case SAS_SATA_PORT_SELECTOR:
			continue;
		default:
			res = sas_ex_discover_dev(dev, i);
			if (res)
				break;
			continue;
		}
	}

	if (!res)
		sas_check_level_subtractive_boundary(dev);

	return res;
}

static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
{
	struct expander_device *ex = &dev->ex_dev;
	int i;
	u8  *sub_sas_addr = NULL;

	if (dev->dev_type != EDGE_DEV)
		return 0;

	for (i = 0; i < ex->num_phys; i++) {
		struct ex_phy *phy = &ex->ex_phy[i];

		if (phy->phy_state == PHY_VACANT ||
		    phy->phy_state == PHY_NOT_PRESENT)
			continue;

		if ((phy->attached_dev_type == FANOUT_DEV ||
		     phy->attached_dev_type == EDGE_DEV) &&
		    phy->routing_attr == SUBTRACTIVE_ROUTING) {

			if (!sub_sas_addr)
				sub_sas_addr = &phy->attached_sas_addr[0];
			else if (SAS_ADDR(sub_sas_addr) !=
				 SAS_ADDR(phy->attached_sas_addr)) {

				SAS_DPRINTK("ex %016llx phy 0x%x "
					    "diverges(%016llx) on subtractive "
					    "boundary(%016llx). Disabled\n",
					    SAS_ADDR(dev->sas_addr), i,
					    SAS_ADDR(phy->attached_sas_addr),
					    SAS_ADDR(sub_sas_addr));
				sas_ex_disable_phy(dev, i);
			}
		}
	}
	return 0;
}

static void sas_print_parent_topology_bug(struct domain_device *child,
						 struct ex_phy *parent_phy,
						 struct ex_phy *child_phy)
{
	static const char ra_char[] = {
		[DIRECT_ROUTING] = 'D',
		[SUBTRACTIVE_ROUTING] = 'S',
		[TABLE_ROUTING] = 'T',
	};
	static const char *ex_type[] = {
		[EDGE_DEV] = "edge",
		[FANOUT_DEV] = "fanout",
	};
	struct domain_device *parent = child->parent;

	sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
		   "has %c:%c routing link!\n",

		   ex_type[parent->dev_type],
		   SAS_ADDR(parent->sas_addr),
		   parent_phy->phy_id,

		   ex_type[child->dev_type],
		   SAS_ADDR(child->sas_addr),
		   child_phy->phy_id,

		   ra_char[parent_phy->routing_attr],
		   ra_char[child_phy->routing_attr]);
}

static int sas_check_eeds(struct domain_device *child,
				 struct ex_phy *parent_phy,
				 struct ex_phy *child_phy)
{
	int res = 0;
	struct domain_device *parent = child->parent;

	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
		res = -ENODEV;
		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
			    "phy S:0x%x, while there is a fanout ex %016llx\n",
			    SAS_ADDR(parent->sas_addr),
			    parent_phy->phy_id,
			    SAS_ADDR(child->sas_addr),
			    child_phy->phy_id,
			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
		       SAS_ADDR_SIZE);
		memcpy(parent->port->disc.eeds_b, child->sas_addr,
		       SAS_ADDR_SIZE);
	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
		    SAS_ADDR(parent->sas_addr)) ||
		   (SAS_ADDR(parent->port->disc.eeds_a) ==
		    SAS_ADDR(child->sas_addr)))
		   &&
		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
		     SAS_ADDR(parent->sas_addr)) ||
		    (SAS_ADDR(parent->port->disc.eeds_b) ==
		     SAS_ADDR(child->sas_addr))))
		;
	else {
		res = -ENODEV;
		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
			    "phy 0x%x link forms a third EEDS!\n",
			    SAS_ADDR(parent->sas_addr),
			    parent_phy->phy_id,
			    SAS_ADDR(child->sas_addr),
			    child_phy->phy_id);
	}

	return res;
}

/* Here we spill over 80 columns.  It is intentional.
 */
static int sas_check_parent_topology(struct domain_device *child)
{
	struct expander_device *child_ex = &child->ex_dev;
	struct expander_device *parent_ex;
	int i;
	int res = 0;

	if (!child->parent)
		return 0;

	if (child->parent->dev_type != EDGE_DEV &&
	    child->parent->dev_type != FANOUT_DEV)
		return 0;

	parent_ex = &child->parent->ex_dev;

	for (i = 0; i < parent_ex->num_phys; i++) {
		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
		struct ex_phy *child_phy;

		if (parent_phy->phy_state == PHY_VACANT ||
		    parent_phy->phy_state == PHY_NOT_PRESENT)
			continue;

		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
			continue;

		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];

		switch (child->parent->dev_type) {
		case EDGE_DEV:
			if (child->dev_type == FANOUT_DEV) {
				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
				    child_phy->routing_attr != TABLE_ROUTING) {
					sas_print_parent_topology_bug(child, parent_phy, child_phy);
					res = -ENODEV;
				}
			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
					res = sas_check_eeds(child, parent_phy, child_phy);
				} else if (child_phy->routing_attr != TABLE_ROUTING) {
					sas_print_parent_topology_bug(child, parent_phy, child_phy);
					res = -ENODEV;
				}
			} else if (parent_phy->routing_attr == TABLE_ROUTING &&
				   child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
				sas_print_parent_topology_bug(child, parent_phy, child_phy);
				res = -ENODEV;
			}
			break;
		case FANOUT_DEV:
			if (parent_phy->routing_attr != TABLE_ROUTING ||
			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
				sas_print_parent_topology_bug(child, parent_phy, child_phy);
				res = -ENODEV;
			}
			break;
		default:
			break;
		}
	}

	return res;
}

#define RRI_REQ_SIZE  16
#define RRI_RESP_SIZE 44

static int sas_configure_present(struct domain_device *dev, int phy_id,
				 u8 *sas_addr, int *index, int *present)
{
	int i, res = 0;
	struct expander_device *ex = &dev->ex_dev;
	struct ex_phy *phy = &ex->ex_phy[phy_id];
	u8 *rri_req;
	u8 *rri_resp;

	*present = 0;
	*index = 0;

	rri_req = alloc_smp_req(RRI_REQ_SIZE);
	if (!rri_req)
		return -ENOMEM;

	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
	if (!rri_resp) {
		kfree(rri_req);
		return -ENOMEM;
	}

	rri_req[1] = SMP_REPORT_ROUTE_INFO;
	rri_req[9] = phy_id;

	for (i = 0; i < ex->max_route_indexes ; i++) {
		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
				       RRI_RESP_SIZE);
		if (res)
			goto out;
		res = rri_resp[2];
		if (res == SMP_RESP_NO_INDEX) {
			SAS_DPRINTK("overflow of indexes: dev %016llx "
				    "phy 0x%x index 0x%x\n",
				    SAS_ADDR(dev->sas_addr), phy_id, i);
			goto out;
		} else if (res != SMP_RESP_FUNC_ACC) {
			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
				    "result 0x%x\n", __FUNCTION__,
				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
			goto out;
		}
		if (SAS_ADDR(sas_addr) != 0) {
			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
				*index = i;
				if ((rri_resp[12] & 0x80) == 0x80)
					*present = 0;
				else
					*present = 1;
				goto out;
			} else if (SAS_ADDR(rri_resp+16) == 0) {
				*index = i;
				*present = 0;
				goto out;
			}
		} else if (SAS_ADDR(rri_resp+16) == 0 &&
			   phy->last_da_index < i) {
			phy->last_da_index = i;
			*index = i;
			*present = 0;
			goto out;
		}
	}
	res = -1;
out:
	kfree(rri_req);
	kfree(rri_resp);
	return res;
}

#define CRI_REQ_SIZE  44
#define CRI_RESP_SIZE  8

static int sas_configure_set(struct domain_device *dev, int phy_id,
			     u8 *sas_addr, int index, int include)
{
	int res;
	u8 *cri_req;
	u8 *cri_resp;

	cri_req = alloc_smp_req(CRI_REQ_SIZE);
	if (!cri_req)
		return -ENOMEM;

	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
	if (!cri_resp) {
		kfree(cri_req);
		return -ENOMEM;
	}

	cri_req[1] = SMP_CONF_ROUTE_INFO;
	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
	cri_req[9] = phy_id;
	if (SAS_ADDR(sas_addr) == 0 || !include)
		cri_req[12] |= 0x80;
	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);

	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
			       CRI_RESP_SIZE);
	if (res)
		goto out;
	res = cri_resp[2];
	if (res == SMP_RESP_NO_INDEX) {
		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
			    "index 0x%x\n",
			    SAS_ADDR(dev->sas_addr), phy_id, index);
	}
out:
	kfree(cri_req);
	kfree(cri_resp);
	return res;
}

static int sas_configure_phy(struct domain_device *dev, int phy_id,
				    u8 *sas_addr, int include)
{
	int index;
	int present;
	int res;

	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
	if (res)
		return res;
	if (include ^ present)
		return sas_configure_set(dev, phy_id, sas_addr, index,include);

	return res;
}

/**
 * sas_configure_parent -- configure routing table of parent
 * parent: parent expander
 * child: child expander
 * sas_addr: SAS port identifier of device directly attached to child
 */
static int sas_configure_parent(struct domain_device *parent,
				struct domain_device *child,
				u8 *sas_addr, int include)
{
	struct expander_device *ex_parent = &parent->ex_dev;
	int res = 0;
	int i;

	if (parent->parent) {
		res = sas_configure_parent(parent->parent, parent, sas_addr,
					   include);
		if (res)
			return res;
	}

	if (ex_parent->conf_route_table == 0) {
		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
			    SAS_ADDR(parent->sas_addr));
		return 0;
	}

	for (i = 0; i < ex_parent->num_phys; i++) {
		struct ex_phy *phy = &ex_parent->ex_phy[i];

		if ((phy->routing_attr == TABLE_ROUTING) &&
		    (SAS_ADDR(phy->attached_sas_addr) ==
		     SAS_ADDR(child->sas_addr))) {
			res = sas_configure_phy(parent, i, sas_addr, include);
			if (res)
				return res;
		}
	}

	return res;
}

/**
 * sas_configure_routing -- configure routing
 * dev: expander device
 * sas_addr: port identifier of device directly attached to the expander device
 */
static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
{
	if (dev->parent)
		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
	return 0;
}

static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
{
	if (dev->parent)
		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
	return 0;
}

#if 0
#define SMP_BIN_ATTR_NAME "smp_portal"

static void sas_ex_smp_hook(struct domain_device *dev)
{
	struct expander_device *ex_dev = &dev->ex_dev;
	struct bin_attribute *bin_attr = &ex_dev->smp_bin_attr;

	memset(bin_attr, 0, sizeof(*bin_attr));

	bin_attr->attr.name = SMP_BIN_ATTR_NAME;
	bin_attr->attr.owner = THIS_MODULE;
	bin_attr->attr.mode = 0600;

	bin_attr->size = 0;
	bin_attr->private = NULL;
	bin_attr->read = smp_portal_read;
	bin_attr->write= smp_portal_write;
	bin_attr->mmap = NULL;

	ex_dev->smp_portal_pid = -1;
	init_MUTEX(&ex_dev->smp_sema);
}
#endif

/**
 * sas_discover_expander -- expander discovery
 * @ex: pointer to expander domain device
 *
 * See comment in sas_discover_sata().
 */
static int sas_discover_expander(struct domain_device *dev)
{
	int res;

	res = sas_notify_lldd_dev_found(dev);
	if (res)
		return res;

	res = sas_ex_general(dev);
	if (res)
		goto out_err;
	res = sas_ex_manuf_info(dev);
	if (res)
		goto out_err;

	res = sas_expander_discover(dev);
	if (res) {
		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
			    SAS_ADDR(dev->sas_addr), res);
		goto out_err;
	}

	sas_check_ex_subtractive_boundary(dev);
	res = sas_check_parent_topology(dev);
	if (res)
		goto out_err;
	return 0;
out_err:
	sas_notify_lldd_dev_gone(dev);
	return res;
}

static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
{
	int res = 0;
	struct domain_device *dev;

	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
		if (dev->dev_type == EDGE_DEV ||
		    dev->dev_type == FANOUT_DEV) {
			struct sas_expander_device *ex =
				rphy_to_expander_device(dev->rphy);

			if (level == ex->level)
				res = sas_ex_discover_devices(dev, -1);
			else if (level > 0)
				res = sas_ex_discover_devices(port->port_dev, -1);

		}
	}

	return res;
}

static int sas_ex_bfs_disc(struct asd_sas_port *port)
{
	int res;
	int level;

	do {
		level = port->disc.max_level;
		res = sas_ex_level_discovery(port, level);
		mb();
	} while (level < port->disc.max_level);

	return res;
}

int sas_discover_root_expander(struct domain_device *dev)
{
	int res;
	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);

	sas_rphy_add(dev->rphy);

	ex->level = dev->port->disc.max_level; /* 0 */
	res = sas_discover_expander(dev);
	if (!res)
		sas_ex_bfs_disc(dev->port);

	return res;
}

/* ---------- Domain revalidation ---------- */

static int sas_get_phy_discover(struct domain_device *dev,
				int phy_id, struct smp_resp *disc_resp)
{
	int res;
	u8 *disc_req;

	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
	if (!disc_req)
		return -ENOMEM;

	disc_req[1] = SMP_DISCOVER;
	disc_req[9] = phy_id;

	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
			       disc_resp, DISCOVER_RESP_SIZE);
	if (res)
		goto out;
	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
		res = disc_resp->result;
		goto out;
	}
out:
	kfree(disc_req);
	return res;
}

static int sas_get_phy_change_count(struct domain_device *dev,
				    int phy_id, int *pcc)
{
	int res;
	struct smp_resp *disc_resp;

	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
	if (!disc_resp)
		return -ENOMEM;

	res = sas_get_phy_discover(dev, phy_id, disc_resp);
	if (!res)
		*pcc = disc_resp->disc.change_count;

	kfree(disc_resp);
	return res;
}

static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
					 int phy_id, u8 *attached_sas_addr)
{
	int res;
	struct smp_resp *disc_resp;
	struct discover_resp *dr;

	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
	if (!disc_resp)
		return -ENOMEM;
	dr = &disc_resp->disc;

	res = sas_get_phy_discover(dev, phy_id, disc_resp);
	if (!res) {
		memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
		if (dr->attached_dev_type == 0)
			memset(attached_sas_addr, 0, 8);
	}
	kfree(disc_resp);
	return res;
}

static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
			      int from_phy)
{
	struct expander_device *ex = &dev->ex_dev;
	int res = 0;
	int i;

	for (i = from_phy; i < ex->num_phys; i++) {
		int phy_change_count = 0;

		res = sas_get_phy_change_count(dev, i, &phy_change_count);
		if (res)
			goto out;
		else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
			ex->ex_phy[i].phy_change_count = phy_change_count;
			*phy_id = i;
			return 0;
		}
	}
out:
	return res;
}

static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
{
	int res;
	u8  *rg_req;
	struct smp_resp  *rg_resp;

	rg_req = alloc_smp_req(RG_REQ_SIZE);
	if (!rg_req)
		return -ENOMEM;

	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
	if (!rg_resp) {
		kfree(rg_req);
		return -ENOMEM;
	}

	rg_req[1] = SMP_REPORT_GENERAL;

	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
			       RG_RESP_SIZE);
	if (res)
		goto out;
	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
		res = rg_resp->result;
		goto out;
	}

	*ecc = be16_to_cpu(rg_resp->rg.change_count);
out:
	kfree(rg_resp);
	kfree(rg_req);
	return res;
}

static int sas_find_bcast_dev(struct domain_device *dev,
			      struct domain_device **src_dev)
{
	struct expander_device *ex = &dev->ex_dev;
	int ex_change_count = -1;
	int res;

	res = sas_get_ex_change_count(dev, &ex_change_count);
	if (res)
		goto out;
	if (ex_change_count != -1 &&
	    ex_change_count != ex->ex_change_count) {
		*src_dev = dev;
		ex->ex_change_count = ex_change_count;
	} else {
		struct domain_device *ch;

		list_for_each_entry(ch, &ex->children, siblings) {
			if (ch->dev_type == EDGE_DEV ||
			    ch->dev_type == FANOUT_DEV) {
				res = sas_find_bcast_dev(ch, src_dev);
				if (src_dev)
					return res;
			}
		}
	}
out:
	return res;
}

static void sas_unregister_ex_tree(struct domain_device *dev)
{
	struct expander_device *ex = &dev->ex_dev;
	struct domain_device *child, *n;

	list_for_each_entry_safe(child, n, &ex->children, siblings) {
		if (child->dev_type == EDGE_DEV ||
		    child->dev_type == FANOUT_DEV)
			sas_unregister_ex_tree(child);
		else
			sas_unregister_dev(child);
	}
	sas_unregister_dev(dev);
}

static void sas_unregister_devs_sas_addr(struct domain_device *parent,
					 int phy_id)
{
	struct expander_device *ex_dev = &parent->ex_dev;
	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
	struct domain_device *child, *n;

	list_for_each_entry_safe(child, n, &ex_dev->children, siblings) {
		if (SAS_ADDR(child->sas_addr) ==
		    SAS_ADDR(phy->attached_sas_addr)) {
			if (child->dev_type == EDGE_DEV ||
			    child->dev_type == FANOUT_DEV)
				sas_unregister_ex_tree(child);
			else
				sas_unregister_dev(child);
			break;
		}
	}
	sas_disable_routing(parent, phy->attached_sas_addr);
	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
	sas_port_delete_phy(phy->port, phy->phy);
	if (phy->port->num_phys == 0)
		sas_port_delete(phy->port);
	phy->port = NULL;
}

static int sas_discover_bfs_by_root_level(struct domain_device *root,
					  const int level)
{
	struct expander_device *ex_root = &root->ex_dev;
	struct domain_device *child;
	int res = 0;

	list_for_each_entry(child, &ex_root->children, siblings) {
		if (child->dev_type == EDGE_DEV ||
		    child->dev_type == FANOUT_DEV) {
			struct sas_expander_device *ex =
				rphy_to_expander_device(child->rphy);

			if (level > ex->level)
				res = sas_discover_bfs_by_root_level(child,
								     level);
			else if (level == ex->level)
				res = sas_ex_discover_devices(child, -1);
		}
	}
	return res;
}

static int sas_discover_bfs_by_root(struct domain_device *dev)
{
	int res;
	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
	int level = ex->level+1;

	res = sas_ex_discover_devices(dev, -1);
	if (res)
		goto out;
	do {
		res = sas_discover_bfs_by_root_level(dev, level);
		mb();
		level += 1;
	} while (level <= dev->port->disc.max_level);
out:
	return res;
}

static int sas_discover_new(struct domain_device *dev, int phy_id)
{
	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
	struct domain_device *child;
	int res;

	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
		    SAS_ADDR(dev->sas_addr), phy_id);
	res = sas_ex_phy_discover(dev, phy_id);
	if (res)
		goto out;
	res = sas_ex_discover_devices(dev, phy_id);
	if (res)
		goto out;
	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
		if (SAS_ADDR(child->sas_addr) ==
		    SAS_ADDR(ex_phy->attached_sas_addr)) {
			if (child->dev_type == EDGE_DEV ||
			    child->dev_type == FANOUT_DEV)
				res = sas_discover_bfs_by_root(child);
			break;
		}
	}
out:
	return res;
}

static int sas_rediscover_dev(struct domain_device *dev, int phy_id)
{
	struct expander_device *ex = &dev->ex_dev;
	struct ex_phy *phy = &ex->ex_phy[phy_id];
	u8 attached_sas_addr[8];
	int res;

	res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
	switch (res) {
	case SMP_RESP_NO_PHY:
		phy->phy_state = PHY_NOT_PRESENT;
		sas_unregister_devs_sas_addr(dev, phy_id);
		goto out; break;
	case SMP_RESP_PHY_VACANT:
		phy->phy_state = PHY_VACANT;
		sas_unregister_devs_sas_addr(dev, phy_id);
		goto out; break;
	case SMP_RESP_FUNC_ACC:
		break;
	}

	if (SAS_ADDR(attached_sas_addr) == 0) {
		phy->phy_state = PHY_EMPTY;
		sas_unregister_devs_sas_addr(dev, phy_id);
	} else if (SAS_ADDR(attached_sas_addr) ==
		   SAS_ADDR(phy->attached_sas_addr)) {
		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
			    SAS_ADDR(dev->sas_addr), phy_id);
		sas_ex_phy_discover(dev, phy_id);
	} else
		res = sas_discover_new(dev, phy_id);
out:
	return res;
}

static int sas_rediscover(struct domain_device *dev, const int phy_id)
{
	struct expander_device *ex = &dev->ex_dev;
	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
	int res = 0;
	int i;

	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
		    SAS_ADDR(dev->sas_addr), phy_id);

	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
		for (i = 0; i < ex->num_phys; i++) {
			struct ex_phy *phy = &ex->ex_phy[i];

			if (i == phy_id)
				continue;
			if (SAS_ADDR(phy->attached_sas_addr) ==
			    SAS_ADDR(changed_phy->attached_sas_addr)) {
				SAS_DPRINTK("phy%d part of wide port with "
					    "phy%d\n", phy_id, i);
				goto out;
			}
		}
		res = sas_rediscover_dev(dev, phy_id);
	} else
		res = sas_discover_new(dev, phy_id);
out:
	return res;
}

/**
 * sas_revalidate_domain -- revalidate the domain
 * @port: port to the domain of interest
 *
 * NOTE: this process _must_ quit (return) as soon as any connection
 * errors are encountered.  Connection recovery is done elsewhere.
 * Discover process only interrogates devices in order to discover the
 * domain.
 */
int sas_ex_revalidate_domain(struct domain_device *port_dev)
{
	int res;
	struct domain_device *dev = NULL;

	res = sas_find_bcast_dev(port_dev, &dev);
	if (res)
		goto out;
	if (dev) {
		struct expander_device *ex = &dev->ex_dev;
		int i = 0, phy_id;

		do {
			phy_id = -1;
			res = sas_find_bcast_phy(dev, &phy_id, i);
			if (phy_id == -1)
				break;
			res = sas_rediscover(dev, phy_id);
			i = phy_id + 1;
		} while (i < ex->num_phys);
	}
out:
	return res;
}

#if 0
/* ---------- SMP portal ---------- */

static ssize_t smp_portal_write(struct kobject *kobj, char *buf, loff_t offs,
				size_t size)
{
	struct domain_device *dev = to_dom_device(kobj);
	struct expander_device *ex = &dev->ex_dev;

	if (offs != 0)
		return -EFBIG;
	else if (size == 0)
		return 0;

	down_interruptible(&ex->smp_sema);
	if (ex->smp_req)
		kfree(ex->smp_req);
	ex->smp_req = kzalloc(size, GFP_USER);
	if (!ex->smp_req) {
		up(&ex->smp_sema);
		return -ENOMEM;
	}
	memcpy(ex->smp_req, buf, size);
	ex->smp_req_size = size;
	ex->smp_portal_pid = current->pid;
	up(&ex->smp_sema);

	return size;
}

static ssize_t smp_portal_read(struct kobject *kobj, char *buf, loff_t offs,
			       size_t size)
{
	struct domain_device *dev = to_dom_device(kobj);
	struct expander_device *ex = &dev->ex_dev;
	u8 *smp_resp;
	int res = -EINVAL;

	/* XXX: sysfs gives us an offset of 0x10 or 0x8 while in fact
	 *  it should be 0.
	 */

	down_interruptible(&ex->smp_sema);
	if (!ex->smp_req || ex->smp_portal_pid != current->pid)
		goto out;

	res = 0;
	if (size == 0)
		goto out;

	res = -ENOMEM;
	smp_resp = alloc_smp_resp(size);
	if (!smp_resp)
		goto out;
	res = smp_execute_task(dev, ex->smp_req, ex->smp_req_size,
			       smp_resp, size);
	if (!res) {
		memcpy(buf, smp_resp, size);
		res = size;
	}

	kfree(smp_resp);
out:
	kfree(ex->smp_req);
	ex->smp_req = NULL;
	ex->smp_req_size = 0;
	ex->smp_portal_pid = -1;
	up(&ex->smp_sema);
	return res;
}
#endif